CLAY CARE

un pansement à base d'argile

SAE 54: Concevoir un projet

Par: KISSAR Silia

L3 SV BGB

CLAY

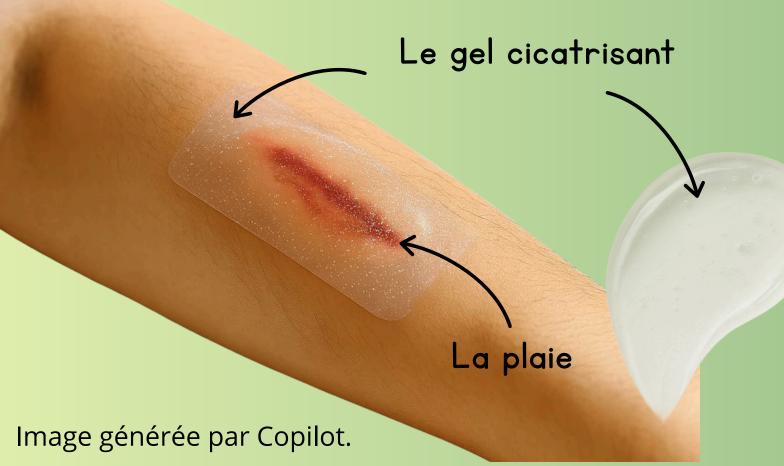
HEALING GEL

Pansement liquide régénérant

À BASE D'ARGILE VERTE

Contient acttides PN) + Acide hyaluronique (HA)

Forme un film protecteur transparent – Favorise la cicatrisation


50 mL

Clay Care : une cicatrisation naturelle à base d'argile verte

Le gel Clay Care associe l'argile verte et l'acide hyaluronique pour stimuler la cicatrisation et protéger la peau, tout en évitant l'usage de traitements médicamenteux.

- Nettoie la plaie
- Forme un film protecteur
- Favorise la régénération cellulaire

Figure 2 : Plaie recouverte du gel pansement

Composition du gel:

- Polynucléotides (PN) Acide hyaluronique (HA) →accélère la régénération et hydratation optimal
- Peptides/ protéines → synthèse de collagène (hémostatique)
- Argent → agent anti microbien
- Polyéthylène glycol (PEG) → cicatrisation, biodégradable et hydrosoluble

Figure I: Processus de cicatrisation

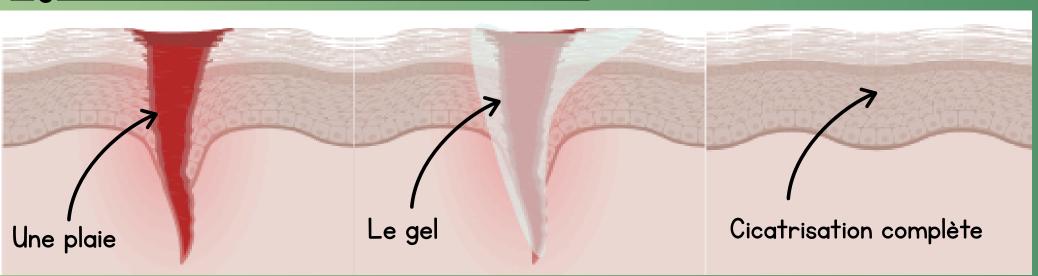
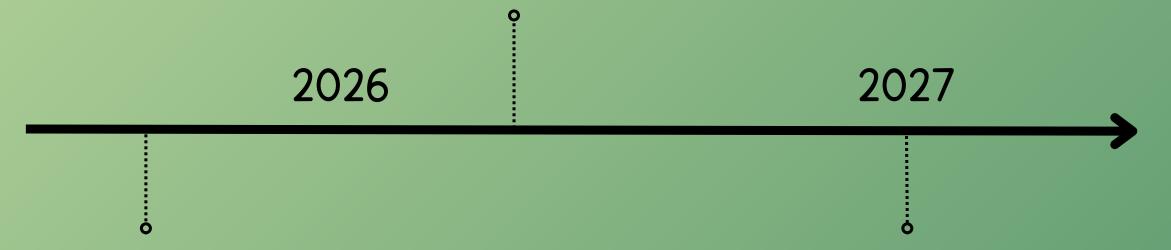


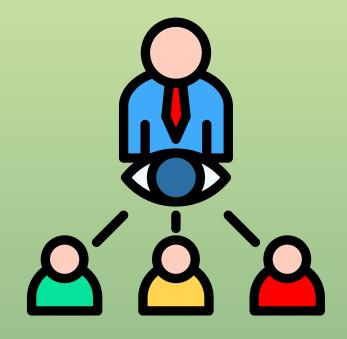
Figure réalisée sur Biorender.


PROJET

But

Concevoir un gel pansement innovant, formulé à base d'argile verte et de bioactifs, capable de remplacer les pansements classiques tout en assurant une protection optimale, une réparation active et une régénération cutanée, avec un confort maximal.

Temporalité


Mise en place et identité visuelle

Optimisation de la formulation, tests et études précliniques

Industrialisation et mise sur le marché

LEQUIPE

Responsable Scientifique

Responsable administratif/ financier

Chargé de communication Technicien/ingénieur d'étude

Références:

- HEO, Tae-Hyun et al. (juin 2025). "Polynucleotide and Hyaluronic Acid Mixture for Skin Wound Dressing for Accelerated Wound Healing". en. In : Tissue Engineering and Regenerative Medicine.
- LEE, Soung-Hoon et al. (2023). "Adhesive Hydrogel Patch-Mediated Combination Drug Therapy Induces Regenerative Wound Healing through Reconstruction of Regenerative Microenvironment". en. In : Advanced Healthcare Materials.
- OVINCY, Cene et al. (f'ev. 2024). "Clay Therapy in Wound Healing : A Brief Review of the Literature". en. In : Journal of Wound Management and Research.
- PORWAL, Sejal et al. (juill. 2025). "Exosomal peptides and proteins in wound healing and skin regeneration". en. In : Naunyn-Schmiedeberg's Archives of Pharmacology. ISSN
- YATES, Cecelia C. et al. (sept. 2007). "The effect of multifunctional polymer-based gels on wound healing in full thickness bacteria-contaminated mouse skin wound models". In : Biomaterials.