ÉTUDE DE CAS

1

ÉTUDE DE CAS NUMÉRO 1 : QUI AURA LA PEAU DES DÉCHETS PLASTIQUES ?

Partie 1 : Consignes à lire avant de commencer

Préparation en amont de la séance :

En amont de la séance, vous devez travailler (2h) :

- **le chapitre 4 d'enzymologie** : de la partie I à la partie III. Vous avez une version rédigée mais aussi la présentation vidéo à disposition.
- Les exercices de préparation très courts intercalés dans le chapitre 4
- Les consignes du premier TD d'enzymologie : Afin de comprendre comment traiter les documents fournis ainsi que la rédaction attendue.

Objectifs d'apprentissage :

A l'issue de cette séance, les étudiants seront capables d'analyser des résultats de cinétique enzymatique simple dans un article et de traiter des résultats de cinétique sans inhbiteur (1S, 1P)

Organisation de la séance :

Cette étude de cas est faite pour vous mettre en difficulté de prime abord. Vous allez travailler en équipe de 4 maximum afin de résoudre l'ensemble de données. Vous vous installez sur un îlot de travail. Vous avez à votre disposition des marqueurs, des feuilles véléda et de la patafix pour écrire au mur sur des « tableaux ». Vous pouvez utiliser des ordinateurs des tablettes MAIS vous ne pouvez pas utiliser l'IA. Elle ne vous permettra pas de réussir ce type de travail ni d'atteindre les objectifs d'apprentissage.

Vous **devez** échanger au sein d'une équipe mais entre membres de l'équipe pour réussir ce travail et vous équiper de :

- calculatrice
- papier millimétré, crayon gris et règle
- papier brouillon
- un support propre pour le rendu final

Accompagnement de la séance :

Au cours de la séance pour passer d'une sous partie à l'autre, vous devrez **aller voir l'enseignant pour valider votre travail**.

Vous devez également remplir un questionnaire d'autoévaluation avant la séance (une fois que vous avez lu le cours) et après la séance afin que je puisse adapter la séance de retour en classe entière.

A la fin de la séance, vous déposerez le fruit de votre travail en équipe en indiquant bien sur les parties individuelles qui a fait quoi dans l'espace moodle dédié. Ce document doit contenir le résultat correctement rédigé final de votre travail mais aussi vos difficultés et comment vous les avez résolues (voir la box Help).

Help: Que faire?

Vous ne pouvez pas m'interroger à chaque difficulté, vous allez suivre un parcours et remplir le document de type "Help" pour cela. Voici l'ordre du travail à réaliser quand vous ne voyez pas comment répondre à la question :

- 1. Reprendre la partie de cours correspondante et noter les informations
- 2. Aller voir dans l'énoncé de TD d'enzymologie correspondant afin de comprendre comment traiter les données et noter les informations
- 3. Échangez avec vos co-équipiers : notez les idées des autres
- 4. Échangez avec une autre équipe : notez les propositions de l'autre équipe

Vous serez autorisés à venir me demander quand vous aurez réalisé et noté toutes ces étapes.

WHOLE BIBLIOGRAPHY

- Jaewon CHOI et al. "Recent advances in microbial and enzymatic engineering for the biodegradation of micro- and nanoplastics". In: RSC Adv. 14.14 (2024). Publisher: Royal Society of
- Chemistry (RSC), p. 9943-9966. (Visité le 16/07/2025).
 Seongjoon Joo et al. "Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation". In: Nat Commun 9.1 (26 jan. 2018). Publisher: Springer Science and Business Media LLC. (Visité le 16/07/2025).
- Yuan Ma et al. "Enhanced Poly(ethylene terephthalate) Hydrolase Activity by Protein Engineering". In : Engineering 4.6 (déc. 2018). Publisher : Elsevier BV, p. 888-893. (Visité le 16/07/2025)
- Till Tiso et al. "The metabolic potential of plastics as biotechnological carbon sources Review and targets for the future". In: Metabolic Engineering 71 (mai 2022). Publisher: Elsevier BV,
- p. 77-98. (Visité le 16/07/2025).

 Jan Zrimec et al. "Plastic-Degrading Potential across the Global Microbiome Correlates with Recent Pollution Trends". In: mBio 12.5 (26 oct. 2021). Sous la dir. de Libusha Kelly et Dianne K. NEWMAN. Publisher: American Society for Microbiology. (Visité le 16/07/2025).

USEFULL FACT : POINT MÉTHODOLOGIQUE - COMMENT TRAVAILLER EN ENSEIGNEMENT HYBRIDE MAIS PAS QUE _

Dans un enseignement hybride, la première approche du cours est réalisée par l'étudiant à partir de sources disponibles en ligne. Les séances en présentiel sont destinées à mettre en pratique le contenu du cours pour mieux l'assimiler. Il est donc tout à fait impossible d'avancer sans travailler le cours par soit-même. Néanmoins, pour avancer pendant les séances, la méthode de travail est identique à celle de n'importe quel TD.

- 1. Je lis l'énoncé afin de connaître les attendus
- 2. Je reviens vers le cours/support/source approprié.e.s afin de répondre correctement à la question : par exemple "méthode fait/voit/interprête" où ai-je été formé à cela? à quel enseignement cela peut-il correspondre?
- 3. Une fois la source d'information retravaillée, si des difficultés surviennent encore, travailler avec d'autres étudiants
- 4. Finalement demandez à l'enseignant.

Partie 2 : Le plastique ça se dégrade?

Chaque année, 9 à 14 millions de tonnes de m^3 de déchets plastiques s'ajoutent au 150 millions de tonnes métriques déjà accumulées. Certains plastiques sont recyclables (polyéthylène [PE], polypropylène [PP], polyéthylène téréphtalate [PET], polychlorure de vinyle [PVC] et acide phtalique [PA]) mais la moindre contamination ou l'utilisation de composites thermodurcissables empche leur remodelage. Néanmoins, ces plastiques peuvent être une source de carbone pour les microorganismes et des réactions de biodégradations sont observées dans différentes environnements [5]. Nous allons nous intéresser ici à la diversité des enzymes microbiennes capables de dégrader le plastique même à des vitesses réduites.

A. Étude de métagénomique à partir des données des campagnes Tara Oceans and global topsoil 20mn

Ces données dont basées sur un article. Certaines parties du texte sont des traductions directes de l'article afin de vous donner les informations correctes.

"La durée de vie estimée d'une bouteille en polyéthylène téréphtalate (PET) dans des conditions ambiantes varie de 16 à 48 ans. De plus, bien qu'une partie de la diversité microbienne reste encore inexplorée, la dégradation synergique des plastiques par les micro-organismes présente un fort potentiel pour révolutionner la gestion des déchets plastiques à l'échelle mondiale. À cette fin, les méthodes et les données sur de nouvelles enzymes dégradant les plastiques présentées ici peuvent aider les chercheurs en : (i)fournissant des informations supplémentaires sur la diversité taxonomique de ces enzymes ainsi qu'une meilleure compréhension des mécanismes et des étapes impliqués dans la dégradation biologique des plastiques, (ii) indiquant les zones où la disponibilité de nouvelles enzymes est accrue, et (iii) offrant une base pour des applications ultérieures dans la biodégradation industrielle des déchets plastiques. Il est important de noter que nos résultats apportent la preuve d'un effet mesurable de la pollution plastique sur l'écologie microbienne mondiale." [5]

Question 1 Analysez les résultats de cet article en respectant la rédaction "fait, voit, interprête"

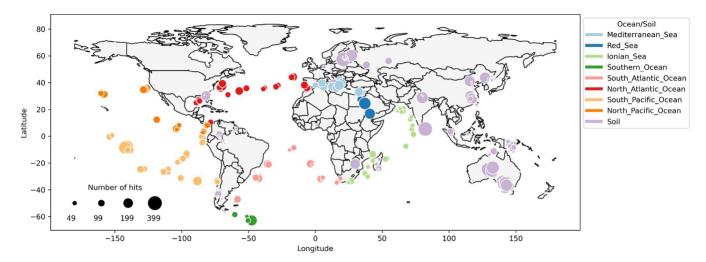
La présence d'enzymes dégradant le plastic dans les sols et les océans a été analysée par des méthodes de metagénomique (utilisation de séquences ADN connues spécifiques des enzymes connues dégradant le plastique).

Des enzymes dégradant les plastiques (figure 1.1 - a) ont été identifiées à la fois dans les océans (11906 enzyme pour 10 types de plastiques) et dans les sols (18119 pour 9 types de plastiques).

Dans chaque océans, la diversité des types plastiques identifiés dans les échantillons peuvent aller jusqu'à 8 types de plastiques différents. Dans les sols, chaque échantillon contient plutôt au maximum 4 types différents de plastiques maximum. La quantité de types de plastiques de plastiques détectés dans les échantillons semblent en corrélation avec la quantité d'enzymes détectées dans les échantillons.Par exemple, dans la mer Méditerranée, 7 types de plastiques différents sont détectés et jusqu'à une centaine d'enzymes dégradant le plastique. Au contraire dans la forêt tropical sèche, très peu de plastiques sont détectés (1 type) mais aussi très peu d'enzymes (de l'ordre 1 ou 2).

Usefull Fact : point méthodologique - Analyse de résultats .

L'analyse de résultats nécessite une rigueur à la fois dans le traitement des données et dans la mise en perspective de celles-ci. Dan l'ordre, vous devez :


- Traitez les données (cf niveau 1 encart à la fin) : le traitement doit vous aider à extraire des informations chiffrées comparables. Vous devez aussi vous demandez quand vous comparez des résultats quel est le facteur multiplicatif (deux fois plus grands par exemple)
- Fait : dans votre rédaction vous commencez par rappeler les expériences réalisées pour répondre au questionnement. Cela doit prendre une phrase ou deux.
- Voit : c'est la partie dans laquelle vous décrivez les données que vous avez traitées. Vous devez mettre des chiffres sur vos affirmations ainsi que des facteurs multiplicatifs ou encore des données statistiques pour affirmer que les différences observées sont significatives ou non.
- Interprête : c'est une étape dans laquelle vous "répondez" au questionnement de départ. En L3, vous ferez une discussion des ces résultats plus approfondie en vous appuyant sur la littérature.

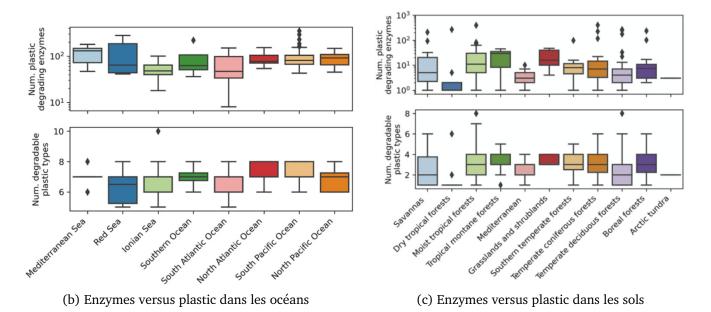
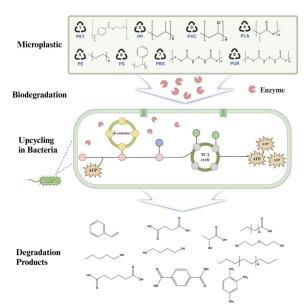
B. Réactions enzymatiques de dégradation des plastiques 20mn

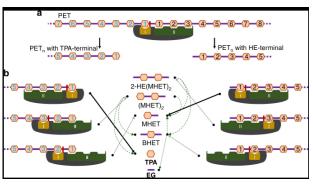
De nombreuses réactions enzymatiques ont été identifiées dans la dégradation des plastiques mais souvent ces dégradations sont peu efficaces, coûteuses pour l'organisme considéré. L'ensemble des données sont disponibles dans un tableur sur moodle afin de faciliter le traitement.

Question 1 A partir des documents fournis, proposez un schéma bilan des réactions d dégradation du plastique par les micro-organismes

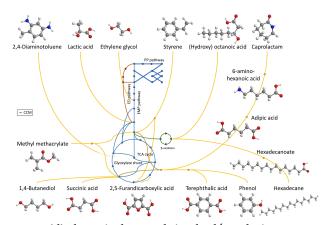
Sur le schéma doit apparaître la diversité des polymères plastiques et la diversité des enzymes capables de les dégrader. Il doit montrer que cette diversité permet d'envoyer les résidus de cette première étape de dégradation vers une voie commune : la beta-oxydation suivie du cycle de krebs et de la chaîne respiratoire

(a) Répartition des enzymes de dégradation du plastique identifiées à travers le monde


FIGURE 1.1 – Étude de métagénomic sur les enzymes de dégradation des plastics. A. Enzymes de dégradation du plastique dans le microbiome mondial. Sont représentés 11 906 occurrences d'enzymes dans les données issues des océans et 18 119 dans les données provenant des sols, obtenues en construisant des modèles HMM à partir d'enzymes connues pour dégrader le plastique, puis en les recherchant dans des ensembles de données de séquençage métagénomique. Un potentiel de dégradation allant jusqu'à 10 types de plastiques différents a été observé dans les fractions océaniques, et jusqu'à 9 types dans les fractions terrestres. B. Nombre d'enzymes de dégradation du plastique identifiées et types de plastiques dégradables trouvés dans les 8 océans.Le microbiome océanique analysé couvrait 67 sites répartis sur 3 couches de profondeur et à travers 8 océans.C. Number of plastic-degrading enzyme hits and degradable plastic types found across 11 soilhabitats.The analyzed soil microbiome spanned 169 sampling locations across 38 countriesand 11 distinct environmental habitats. [5]

Microorganism	Enzyme	Temperature range (°C)	Biological effects (results)
Polyethylene terephthalate			
deonella sakaiensis 201-F6	PETase	20~45	Almost completely degraded after 6 weeks
Thermobifida fusca DSM43793	TfH	30-60	50% degraded after 3 weeks
Fusarium solani pisi	FsC	30-60	97% weight loss after 96 hours
Thermobifida cellulosilytica DSM44535	Thc_Cut1	50	Increase of reactive hydroxyl or carboxyl groups
Saccharomonospora viridis AHK190	Cut190 S226P/R228S	60-65	27% weight loss after 3 days
Bacillus subtilis 4P3-11	BsEstB	40-45	Introduction of novel carboxyl and hydroxyl groups
Thermomonospora curvata DSM 43183	Tcur0390	50	Stronger substrate affinity and increase of the H-S distance
Polypropylene			
Pseudomonas aeruginosa WGH-6	AH alkane hydroxylase	30	17.2% weight loss after 40 days
Aneurinibacillus spp. Brevibacillus spp.	Lipase	50	44.2% weight loss after 140 days
Polyethylene			
Microbacterium paraoxydans	Lac	Room temperature	61% weight loss after 2 months
Alternaria alternata FB1	153 potential enzymes	30	62.79% decreased after 28 days
Polyvinyl chloride			
Klebsiella sp. EMBL-1	Catalase-peroxidase	30	19.57% weight loss after 3 months
Polyurethane			
Rhodococcus equi TB-60	Urethane hydrolase	30	70% degradation after 10 days
Polystyrene			
Pseudomonas aeruginosa DSM 50071	SGT/SH	25	WCA decreased from 91.56° to 79.8° after 2 month
Bacillus paralicheniformis G1	Alkane monooxygenase/ cytochrome P450	30	34% weight loss after 2 months


(a) réactions de dégradation

(c) Vue globale du métabolisme

(b) Exemple de dégradation d'un polymère

(d) devenir des produits de dégradation

FIGURE 1.2 – Vue de la dégradation des plastiques A. Types de plastiques dégradés par les micro-organisme et leur efficacité. Les données sont issues de l'agrégation de différentes publication par les auteurs. [1] B. Schéma du processus de dégradation du PET.a. Étape de formation des entailles ("Nick generation step"). Les unités TPA et EG du polymère PET sont représentées respectivement par des hexagones orange et des lignes violettes. L'enzyme IsPETase est illustrée en gris foncé. Les sous-sites I et II de l'IsPETase sont représentés par des schémas colorés en orange et en vert, et sont étiquetés respectivement I et II. Le résidu catalytique Ser160 est représenté par un rectangle rouge. Les polymères PET terminés par TPA ou HE sont identifiés. Les unités TPA de ces polymères PET sont numérotées de 1 à 5 à partir de chaque extrémité. b. Étape de digestion terminale ("Terminal digestion step"). Chaque réaction enzymatique de cette étape est représentée sous forme de schéma. Les produits clivés issus des réactions enzymatiques sont indiqués par des flèches noires. Les lignes pointillées vert clair indiquent les trajectoires empruntées par les produits du polymère PET vers la réaction suivante. Six composés liés au PET — 2-HE(MHET), (MHET), MHET, TPA, BHET et EG — qui sont des produits de clivage issus de cette étape, sont représentés. Les produits finaux de la dégradation (MHET, TPA et EG) sont indiqués en gras [2]. C. Schéma de la dégradation microbienne et enzymatique ainsi que du surcyclage des microplastiques. Les microplastiques présents dans l'environnement subissent une dégradation enzymatique par des enzymes extracellulaires, puis sont utilisés comme source de carbone par les micro-organismes, ce qui conduit finalement à leur dégradation complète. Figures générées avec BioRender [1].D. Métabolisation des monomères issus de la dépolymérisation des plastiques. Le réseau métabolique de Pseudomonas putida est présenté, incluant le métabolisme central du carbone (CCM, en bleu) ainsi que certaines voies secondaires (voie d'Entner-Doudoroff - en brun, -oxydation - en vert). Les points d'entrée des voies de métabolisation des monomères plastiques dans le métabolisme central du carbone sont indiqués en jaune. Pour certains monomères, il existe des voies alternatives (voir les informations complémentaires dans le « Tableau SI » pour plus de détails), mais elles ne sont pas représentées ici afin de préserver la clarté du schéma [4]

.

Partie 3 : Ingenierie enzymatique pour le recyclage du plastique

"Le plastique polyester est l'un des types de plastiques les plus largement utilisés dans la vie quotidienne. Rien qu'en 2013, environ $5,610^7$ tonnes de plastique polyester ont été produites, tandis que moins de 30 % de cette quantité totale a été recyclée . Les principales méthodes de recyclage du plastique incluent des méthodes chimiques et biologiques.

Cependant, la dégradation chimique du plastique nécessite des conditions de haute température et de haute pression, tout en consommant une grande quantité d'énergie. De plus, cette approche génère de nombreuses substances toxiques et nocives pour l'environnement, et présente un risque de pollution secondaire.

En revanche, la méthode de biodégradation semble plus douce et plus respectueuse de l'environnement, offrant ainsi une nouvelle approche pour la valorisation des produits plastiques [7,14]. Les recherches antérieures ont principalement utilisé des cutinases dérivées de Thermobifida fusca (T. fusca) , Fusarium solani pisi , et T. cellulosilytica [17]; ces enzymes étaient capables de dégrader le PET dans une certaine mesure à 50 °C, mais se montraient inefficaces à température ambiante.

Jusqu'à présent, le potentiel prometteur de l'enzyme PETase n'a pas encore été exploité dans des applications concrètes. Afin d'améliorer l'activité de dégradation du plastique polyester par la PETase, une modification de la protéine par conception rationnelle a été réalisée — une approche qui s'est déjà révélée efficace pour renforcer l'activité des cutinases utilisées précédemment [3]."

Nous allons étudier dans cette partie l'efficacité des mutations enzymatiques réalisée sur la PETase sur le site actif de l'enzyme.

A. Analyse de l'efficacité de l'hydrolyse enzymatique sur le PET 30mn

Matériel et Méthode

Avant l'hydrolyse du PET, tous les films ont été lavés en trois étapes consécutives, chacune durant 30 minutes : d'abord dans une solution à 1 % de SDS, ensuite avec de l'éthanol, et enfin avec de l'eau déionisée. Un film de PET (1,5 cm \times 1,0 cm) a été placé dans une solution réactionnelle contenant 5 μ g de PETase et 1,5 mL de bicine-NaOH à $50mmolL^{-1}$ (pH 8,5), et la réaction a été menée pendant 48 heures à 30 °C. La réaction a été arrêtée par dilution de la solution aqueuse avec du NaOH à $1,0molL^{-1}$, suivie d'un traitement thermique (50 °C pendant 10 minutes). Les films de PET préalablement lavés ont ensuite été lavés de nouveau, séchés, puis soumis à une détermination gravimétrique de la perte de masse. Toutes les expériences ont été réalisées en triplicat, et des contrôles ont été effectués en utilisant 1,5 mL de bicine-NaOH (pH 8,5) sans enzyme [3].

Résultats

TABLE 1.1 – Mesure de la dégradation du PET par les enzymes mutées [3]

Vitesse de dégradation du plastique en mg par umol/L/jour								
Mutant	Non mutée	•			rien			
exp1	9	12	18	21	0.5			
exp2	7	14	18.5	20	0.25			
exp3	10	10	17.5	22	0.75			

Question 1 Valeurs mesurées

Les données sont exprimées en mg par umol/L/jour. Pouvez associer cette valeur à une grandeur explicitée dans le cours d'enzymologie.

Cette valeur est une activité enzymatique.

Question 2 Traitez et analyser les résultats

Vous devez utiliser les fonctions statistiques vues en L1 pour traiter les données et vous devez choisir une représentation graphique cohérente. L'analyse de ces données traitées doit suivre leplan "fait/voit/interprete".

La vitesse de dégradation du PET a été mesurée chez 3 mutants de la PETase mais aussi en abscence d'enzyme au cours de trois expériences indépendantes (graphique)

En absence d'enzyme (produits chimiques), la vitesse de dégradation du PET (0,5 mg/umol par jour) est 16 fois inférieur à la vitesse en présence de la PETase sauvage (8,67 EC 1,53). La mutation d'acides aminés clefs dans la PETase entraîne des variations de cette vitesse de dégradation. La mutation I179F n'augmente pas de façon significative la vitesse de réaction (12 avec EC de 2). par contre, le mutant L88F multiplie par deux la vitesse de dégradation et le mutant R61A par 2,5.

Les mutant L88F et R61A sont de bons candidats pour améliorer l'efficacité de dégradation des plastiques par la PETase. Il serait interessant de tester la combinaison des deux mutations.

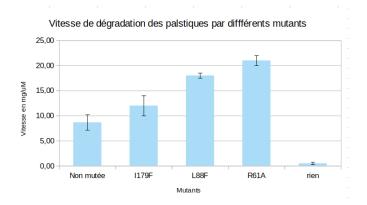


FIGURE 1.3 – Vitesses de réactions enzymatiques de différents mutants de la PETase. La réaction de dégradation du PET a été réalisée pendant 48 et évaluée en mesure la masse de film de PET perdue.

Usefull Fact : point méthodologique - traitement de résultats niveau 1

Le traitement de résultats niveau 1 correspond à ce qu'on vous a appris en L1.

Cas numéro 1 : Expériences identiques menées indépendamment

Vous obtenez pour une même condition une mesure par expérience. Dans ce cas, vous faites la moyenne des valeurs obtenues ainsi que l'écart-type.

Cas numéro 2 : Expériences réalisées dans différentes conditions (gamme étalon) ou à temps variables (cinétiques) qui se répartissent selon une droite

Dans ce cas, vous devez utilisez les points pour calculer la droite moyenne (pente et ordonnées à l'origine) et le coefficient de corrélation r2. Dans ce cas, d'un point de vue mathématique, votre modèle est bien une droite si le r2 est supérieur à 0,95.