

BACHELOR UNIVERSITAIRE DE TECHNOLOGIE

Ressource R5-04: OUTILS MATHEMATIQUES ET LOGICIELS

Chapitre 2 : Fonctions à plusieurs variables - Intégrales multiples

Enseignant : Sylvia Le Beux sylvia.lebeux@univ-tln.fr

Table des matières

Partie A : Fonctions à plusieurs variables (limites, continuité)	7
Partie B : Calcul différentiel	12
Partie C : Calcul d'intégrales doubles	24
Partie D : Calcul d'intégrales triples	38
TP1 : Recherche d'extrema de fonctions à plusieurs variables	52
TP2 : Applications au calcul d'intégrales doubles	53

<u>Notes</u>

Partie A : Fonctions à plusieurs variables

I. <u>Définitions</u>

Une fonction numérique f, de n variables est une application de \mathbb{R}^n dans \mathbb{R} , qui associe à tout n-uplet de nombres réels $(x_1,x_2,...,x_n)$ un unique réel $y=f(x_1,x_2,...,x_n)$ D_f , l'ensemble de définition de f est l'ensemble des $(x_1,x_2,...,x_n)$ éléments de \mathbb{R}^n , tels que $f(x_1,x_2,...,x_n)$ existe.

<u>Exemples</u>
- Déterminer l'ensemble de définition de la fonction $f(x,y) = \frac{x+y}{x-y}$
- Déterminer l'ensemble de définition de la fonction $h(x,y)=e^{\frac{1}{x^2+y^2}}$
- Déterminer l'ensemble de définition de la fonction $g(x,y) = \sqrt{1-x^2-y^2}$
- Déterminer l'ensemble de définition de la fonction $k(x,y) = \frac{1}{x^2 - y^2}$

<u>Notes</u>

II. Limites et continuité

Exemples de limites Déterminer la limite en (0,0) des fonctions f suivantes :

Soit $f(x,y) = x^2 - y^2 + 3$ $\lim_{\substack{x \to 0 \\ y \to 0}} f(x,y) = \lim_{(0,0)} f(x,y) = \dots$

Soit $f(x,y) = \frac{x-y}{x+y}$ $\lim_{\substack{x \to 0 \\ y \to 0}} f(x,y) = \lim_{(0,0)} f(x,y) = \dots$

.....

<u>Définition</u> Soit f, une fonction à 2 variables réelles (x,y). Soit $(x_0,y_0) \in D_f$. f est dite continue en (x_0,y_0) si et seulement si $\lim_{(x_0,y_0)} f(x,y) = f(x_0,y_0)$.

On pourra écrire cette définition quelque soit le nombre de variables.

Opérations

Soit $\lambda \in IR$. Si f et g sont continues sur D, sous-ensemble de \mathbb{R}^n , alors f+g, λf , f.g sont continues sur D, et $\frac{f}{g}$ est continue sur le sous-ensemble de D où g ne s'annule pas.

Exemples Etudier la continuité des fonctions suivantes sur leur ensemble de définition :

$$f(x,y) = \frac{x-y}{x+y}$$

.....

 $g(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$

.....

.....

.....

<u>Notes</u>	

III. Représentation graphique

<u>Exemple</u>	f(x,y) =	$e^{-(x^2+y^2)} D_f$	= R ² . Soit	$(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$) un repère	orthonormé o	de l'espace.	
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •					• • • • • • • • • • • • • • • • • • • •		•••••	
•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		•••••	· • • • • • • • • • • • • • • • • • • •
						• • • • • • • • • • • • • • • • • • • •	•••••	· • • • • • • • • • • • • • • • • • • •
•••••				• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	
								.
•••••				• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	
								.
•••••								
•••••								
•••••								
•••••								
•••••								· • • • • • • • • • • • • • • • • • • •
•••••								

Partie B : Calcul différentiel

I. Dérivées partielles du premier et du second ordre

1) Dérivées partielles du premier ordre

Définition Soit f une fonction définie dans Df, sous-ensemble de IR².

$$Si \ les \ fonctions \begin{cases} f_1(x) = f(x,y_0) \ où (x,y_0) \in D_f \\ f_2(y) = f(x_0,y) \ où (x_0,y) \in D_f \end{cases} sont \ dérivables \ respectivement \ en \ x_0 \ et$$

 y_0 , la fonction f est alors dite partiellement dérivable par rapport à x et y en (x_0,y_0) . On note alors :

$$\frac{\partial f}{\partial x}(x_0, y_0) = f_x'(x_0, y_0) = f_1'(x_0) \text{ et } \frac{\partial f}{\partial y}(x_0, y_0) = f_y'(x_0, y_0) = f_2'(y_0)$$

Si les dérivées partielles existent pour tout (x_0,y_0) , élément de D_f , elles définissent alors les fonctions dérivées partielles $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$.

Exemples:

$$f(x,y) = e^{x+2y}$$
. D_f=.....

$$\frac{\partial f}{\partial x}(x,y) = \dots \qquad \frac{\partial f}{\partial y}(x,y) = \dots$$

$$f(x,y) = \sqrt{x^2 + y^2}$$
. D_f =.....

$$\frac{\partial f}{\partial x}(x,y) = \dots \frac{\partial f}{\partial y}(x,y) = \dots$$

Remarque:

$$R(r,s) = \frac{rs}{(r+s)^2}$$
. $D_R = ...$

$$\frac{\partial R}{\partial r}(r,s) = \dots$$

$$\frac{\partial R}{\partial s}(r,s) = \dots$$

Remarque On peut étendre cette définition aux fonctions à plus de deux variables : Soit f une fonction définie dans D_f , sous-ensemble de IR^3 .

<u>Notes</u>

 $\begin{cases} f_1(x) = f(x,y_0,z_0) \ \text{où} \ (x,y_0,z_0) \in D_f \\ f_2(y) = f(x_0,y,z_0) \ \text{où} \ (x_0,y,z_0) \in D_f \ \text{sont dérivables respectivement en } x_0 \\ f_3(z) = f(x_0,y_0,z) \ \text{où} \ (x_0,y_0,z) \in D_f \end{cases}$

 y_0 , et z_0 , la fonction f est alors dite partiellement dérivable par rapport à x, y et z en (x_0,y_0,z_0) . On note alors :

$$\frac{\partial f}{\partial x}(x_{_{0}},y_{_{0}},z_{_{0}}) = f_{_{x}}^{'}(x_{_{0}},y_{_{0}},z_{_{0}}) = f_{_{1}}^{'}(x_{_{0}}) \; ; \; \frac{\partial f}{\partial y}(x_{_{0}},y_{_{0}},z_{_{0}}) = f_{_{y}}^{'}(x_{_{0}},y_{_{0}},z_{_{0}}) = f_{_{2}}^{'}(y_{_{0}}) \; et \; . \label{eq:final_control_control_control}$$

$$\frac{\partial f}{\partial z}(x_0, y_0, z_0) = f_z(x_0, y_0, z_0) = f_3'(z_0).$$

Si les dérivées partielles existent pour tout (x_0,y_0,z_0) , élément de D_f , elles définissent alors les fonctions dérivées partielles $\frac{\partial f}{\partial x}$; $\frac{\partial f}{\partial y}$ et $\frac{\partial f}{\partial z}$.

2) Plan tangent à une surface d'équation z=f(x,y) en un point

Soit f une fonction partiellement dérivable en (x_0,y_0) . L'équation du plan tangent à S_f , la surface représentant f, au point $M(x_0,y_0,z_0)$ est alors :

$$z = f(x_0, y_0) + (x - x_0) \frac{\partial f}{\partial x}(x_0, y_0) + (y - y_0) \frac{\partial f}{\partial y}(x_0, y_0)$$

Exemple $f(x,y) = 10 - x^2 - y^2$ $D_f =$

$$\frac{\partial f}{\partial x}(x,y) = \dots$$
; $\frac{\partial f}{\partial y}(x,y) = \dots$

.....

Equation de P_f , le plan tangent à S_f au point M(-1,5,f(-1,5)):

.....

3) Dérivées partielles du second ordre

<u>Définition</u> Soit f une fonction définie dans D_f , sous-ensemble de IR^2 . f est partiellement dérivable sur D, sous-ensemble de D_f . Si les fonctions $\frac{\partial f}{\partial x} = f_x'$ et $\frac{\partial f}{\partial y} = f_y'$ sont ellesmêmes partiellement dérivables, on peut alors définir les dérivées partielles du second ordre :

$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x^2} = f_{x^2}^{"} \; ; \; \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial x \partial y} = f_{xy}^{"} \; ; \;$$

$$\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial y \partial x} = \mathbf{f}_{yx}^{"} \; ; \; \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y^2} = \mathbf{f}_{y^2}^{"} .$$

<u>Notes</u>

Remarque On peut étendre cette définition aux fonctions à plus de deux variables :

Soit f une fonction définie dans D_f , sous-ensemble de IR^3 . f est partiellement dérivable sur D_f , sous-ensemble de D_f . Si les fonctions $\frac{\partial f}{\partial x} = f_x^{'}$, $\frac{\partial f}{\partial y} = f_y^{'}$ et $\frac{\partial f}{\partial z} = f_z^{'}$ sont elles-mêmes partiellement dérivables, on peut alors définir les dérivées partielles du second ordre :

$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x^2} = f_{x^2}^{"} \; \; ; \; \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial x \partial y} = f_{xy}^{"} \; \; ; \\ \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial y \partial x} = f_{yx}^{"} \; \; ; \; \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y^2} = f_{y^2}^{"} \; \; ; \\ \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y^2} = f_{yy}^{"} \; \; ; \; \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y^2} = f_{yy}^{"} \; ; \\ \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y^2} = f_{yy}^{"} \; ; \; \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y^2} = f_{yy}^{"} \; ; \\ \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y^2} = f_{yy}^{"} \; ; \; \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y^2} = f_{yy}^{"} \; ; \\ \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y^2} = f_{yy}^{"} \; ; \\ \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y^2} = f_{yy}^{"} \; ; \\ \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y^2} = f_{yy}^{"} \; ; \\ \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y^2} = f_{yy}^{"} \; ; \\ \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y^2} = f_{yy}^{"} \; ; \\ \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y^2} = f_{yy}^{"} \; ; \\ \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y} = \frac{\partial^2 f}{\partial y}$$

et						 	
						 	• • • • • • • • • • • • • • • • • • • •
Détermi	ner les d	1	artielles dı				
			•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	 •••••	

3) Théorème de Schwarz

Si $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ admet en un point (x_0, y_0) des dérivées partielles d'ordre 2, continues (on dit alors que f est de classe C^2), alors :

$$\frac{\partial^2 \mathbf{f}}{\partial \mathbf{y} \partial \mathbf{x}} (\mathbf{x}_0, \mathbf{y}_0) = \frac{\partial^2 \mathbf{f}}{\partial \mathbf{x} \partial \mathbf{y}} (\mathbf{x}_0, \mathbf{y}_0).$$

La réciproque est fausse.

Exemple

$$f(x,y) = Arc tan\left(\frac{y}{x}\right)$$
. $D_f = IR^* \times IR$

<u>Notes</u>

II Recherche d'extrema

1) Définitions

Soit une fonction $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$

- On dit que f admet un minimum local (resp. maximum local) en (x_0,y_0) s'il existe un voisinage V de (x_0,y_0) tel que :

$$f(x, y) \ge f(x_0, x_0) \ \forall (x, y) \in V \text{ (resp. } f(x, y) \le f(x_0, x_0)$$

Lorsque l'on peut prendre pour V, tout l'ensemble de définition de f, on parle de minimum ou de maximum global.

Un extremum est un maximum ou un minimum.

- Si f est de classe C^2 en (x_0,y_0) , on appelle matrice hessienne de f, la matrice carrée, notée H(f) de ses dérivées partielles secondes : $H(f)(x_0,y_0) =$

$$\begin{pmatrix} \frac{\partial^2 f}{\partial x^2}(x_0,y_0) & \frac{\partial^2 f}{\partial x \partial y}(x_0,y_0) \\ \frac{\partial^2 f}{\partial y \partial x}(x_0,y_0) & \frac{\partial^2 f}{\partial y^2}(x_0,y_0) \end{pmatrix}$$

Remarque On peut étendre ces définitions aux fonctions à plus de deux variables

2) Proposition

Soit une fonction $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ de classe C^2 en (x_0, y_0) et telle que $\frac{\partial f}{\partial x}(x_0, y_0) = \frac{\partial f}{\partial y}(x_0, y_0) = 0$.

- Si det(H(f) (x_0,y_0))>0 et $\frac{\partial^2 f}{\partial x^2}(x_0,y_0)$ >0, alors f admet un minimum local en (x_0,y_0) ,
- Si det(H(f) (x_0,y_0))>0 et $\frac{\partial^2 f}{\partial x^2}(x_0,y_0)$ <0, alors f admet un maximum local en (x_0,y_0) ,
- Si $det(H(f)(x_0,y_0))<0$, alors f n'admet pas d'extremum local en (x_0,y_0) . On parle alors de point selle ou encore de point col,
- Si det(H(f) (x_0,y_0))=0, alors on ne peut pas conclure, et il faut étudier le signe de : f(x,y) $f(x_0,y_0)$.

Remarque Cette proposition ne s'applique qu'à des fonctions à deux variables.

3)	Exempl	les
-		

Exemple 1 Trouver les extrema de la fonction $f(x, y) = 4xy - x^4 - y^4$

<u>Notes</u>

Exemple 2 Trouver les extrema de la fonction $f(x, y) = x^2 + y^2$
Exemple 3 Trouver les extrema de la fonction $f(x, y) = \cos x + y^2$
Exemple 4 Trouver les extrema de la fonction $f(x, y) = 4x^2y + 2x^3 - 4xy + 2x + 1$

<u>Notes</u>

III. Différentielle

1) Définitions

Les fonctions $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ $(x, y) \mapsto f(x, y)$

Qui admettent des dérivées partielles continues sur un ouvert V de \mathbb{R}^2 sont dites de classe C^1 sur V. On dit qu'elles sont alors différentiables sur V, et si (x_0,y_0) est dans V, alors la différentielle de f en (x_0,y_0) est : $df_{(x_0,y_0)} = \frac{\partial f}{\partial x}(x_0,y_0)$. $dx + \frac{\partial f}{\partial y}(x_0,y_0)$. dy

 $\underline{Remarque} \ Si \ f \ est \ d\acute{e}finie \ dans \ un \ sous \ ensemble \ de \ IR^3, \ alors \ df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy + \frac{\partial f}{\partial z} dz \ .$

$$\underline{Exemple} \quad f(x,y) = Arc tan \left(\frac{y}{x}\right). \ D_f = IR^* \times IR$$

$$df(x,y)=....$$

$$\begin{cases} d(\lambda f + \mu g) = \lambda df + \mu dg \\ d(fg) = g df + f dg \\ d\left(\frac{f}{g}\right) = \frac{g df - f dg}{g^2} \\ d(\ln f) = \frac{df}{f} \end{cases}$$

2) Application

On suppose que les variables x et y varient respectivement de $\Delta x = dx$ et $\Delta y = dy$. Si dx et dy sont proches de 0, on peut approximer la variation de la fonction f, notée

$$\Delta f = f(x+dx,y+dy) - f(x,y) \ par \ df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy \ .$$

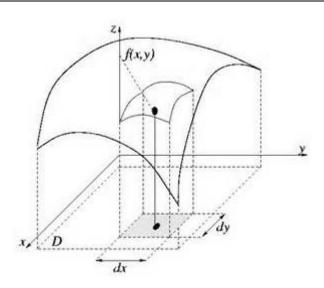
3) <u>Application</u> Soit $R = \frac{\rho I}{s}$. Donner une formule d'approximation de ΔR pour des accroissements petits des variables ρ , l, s. Donner une formule d'approximation relative $\frac{\Delta R}{R}$ en considérant lnR.

<u>Notes</u>

Partie C : Calcul d'intégrales doubles

I. Généralités :

1) Domaine fermé de R ²


<u>Définition</u> On appelle domaine fermé de **R** ² tout domaine du plan délimité par une courbe fermée

Exemples

$$\begin{split} D_1 &= \left[0;1\right] \times \left[-1;3\right] = \left\{ (x,y) \in IR^2 \ / \ x \in \left[0;1\right] \text{et } y \in \left[-1;3\right] \right\} \\ D_2 &= \left\{ (x,y) \in IR^2 \ / (x-2)^2 + (y+3)^2 \le 4 \right\} \end{split}$$

2) Intégrale double

<u>Définition/théorème</u> Soit f, une fonction continue dans D, un domaine fermé de \mathbb{R}^2 . Alors l'intégrale double $I = \iint_D f(x,y) dxdy$ existe.

3) Applications

- Si $f(x,y) = 1 \ \forall \ (x,y) \in D$, alors $I = \iint_D f(x,y) \, dxdy$ représente l'aire du domaine D.
- Si f(x,y) est la masse surfacique au point M(x,y) du domaine D, alors $I = \iint_D f(x,y) dxdy$ est la masse du domaine D.
- Soit A, l'aire du domaine D. Les coordonnées du centre de gravité G de D sont données par les intégrales : $x_G = \frac{1}{\Delta} \iint_D x dx dy$ et $y_G = \frac{1}{\Delta} \iint_D y dx dy$

4) Propriétés

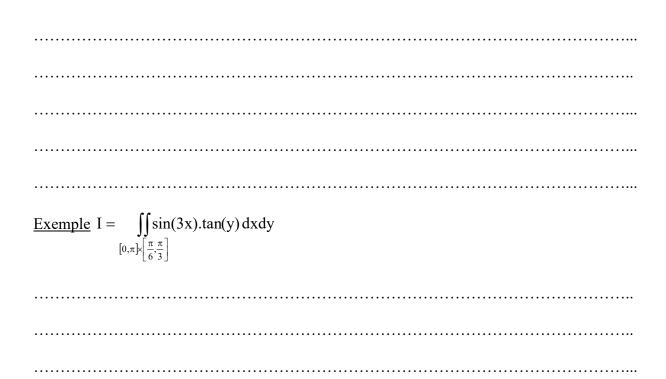
Soient D un domaine fermé de \mathbb{R}^2 ; f et g, deux fonctions continues sur D; α et β deux nombres réels.

- Si $f(x,y) \ge 0 \ \forall (x,y) \in D$, alors $\iint_D f(x,y) dxdy \ge 0$
- $-\iint_{D} (\alpha f(x,y) + \beta g(x,y)) dxdy = \alpha \iint_{D} (f(x,y)dxdy + \beta \iint_{D} g(x,y) dxdy$
- Si $D = D_1 \cup D_2$ où D_1 et D_2 sont deux domaines fermés de \mathbb{R}^2 et disjoints $(D_1 \cap D_2 = \emptyset)$ alors : $\iint_D f(x,y) \, dx dy = \iint_{D_1} f(x,y) \, dx dy + \iint_{D_2} f(x,y) \, dx dy$

II. Calcul d'une intégrale double en coordonnées cartésiennes :

<u>Théorème de Fubini</u> Soit f, une fonction continue dans D, un domaine fermé de \mathbb{R}^2 . On peut calculer l'intégrale double $I = \iint_D f(x,y) dxdy$ en intégrant soit d'abord par rapport à la variable x, soit d'abord par rapport à la variable y:

$$\iint_{D} f(x,y) dxdy = \iint_{D} f(x,y) dydx$$

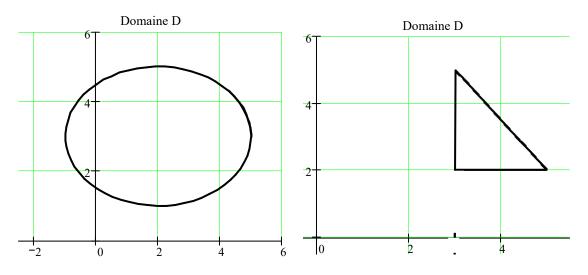

1) 1er cas : D est un domaine fermé rectangulaire de R 2

Exemple Calculer $I = \iint_D (x + y) dxdy$ où $D = [0;2] \times [0;1]$

Application du théorème de Fubini

$$\iint_{[a,b],k[c,d]} f(x,y) dxdy = \int_{c}^{d} \int_{a}^{b} f(x,y) dx dy = \int_{a}^{b} \int_{c}^{d} f(x,y) dy dx$$

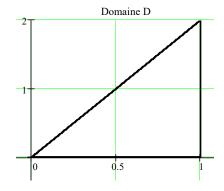
 $\underline{\text{Cas particulier}}: \text{Calculer} \ \ I = \iint_{[a,b] \times [c,d]} f(x,y) \, dx \, dy \ \ \text{lorsque} \ \ f(x,y) = g(x)h(y)$



2) 2^{ème} cas : D est un domaine fermé quelconque de R ²

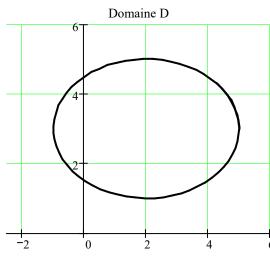
D'après le théorème de Fubini, on peut calculer $I = \iint_D f(x, y) dxdy$ soit :

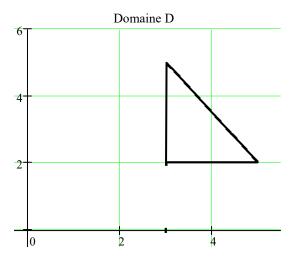
a) En intégrant d'abord par rapport à la variable y


On suppose alors que toute parallèle à l'axe (Oy) coupe la courbe délimitant D en au plus deux points ou en une infinité de points :

On fixe $x \in [a, b]$, alors $y \in [y_1(x), y_2(x)]$ et on obtient :

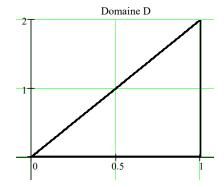
$$\iint_{D} f(x, y) dxdy = \int_{a}^{b} \int_{y_{1}(x)}^{y_{2}(x)} f(x, y) dy dx$$


Exemple Calculer $I = \iint_D xy^2 dxdy$ où D est le domaine représenté ci-dessous :



b) En intégrant d'abord par rapport à la variable x

On suppose alors que toute parallèle à l'axe (Ox) coupe la courbe délimitant D en au plus deux points ou en une infinité de points :



On fixe $x \in [c,d]$, alors $x \in [x_1(y), x_2(y)]$ et on obtient :

$$\iint_{D} f(x,y) \, dx dy = \int_{c}^{d} \int_{x_{1}(y)}^{x_{2}(y)} f(x,y) dx \, dy$$

Exemple Calculer $I = \iint_D xy^2 dxdy$ où D est le domaine représenté ci-dessous :

I=	

<u>Notes</u>

3) Exercices

Exercice 1 Calculer l'intégrale double : $\iint_D xydxdy$ avec successivement :

$$D = \{(x, y) / 2 \ge x \ge 0, 3 \ge y \ge -2\}$$

D est le plan limité par les paraboles d'équations $y=x^2$ et $x=y^2$.

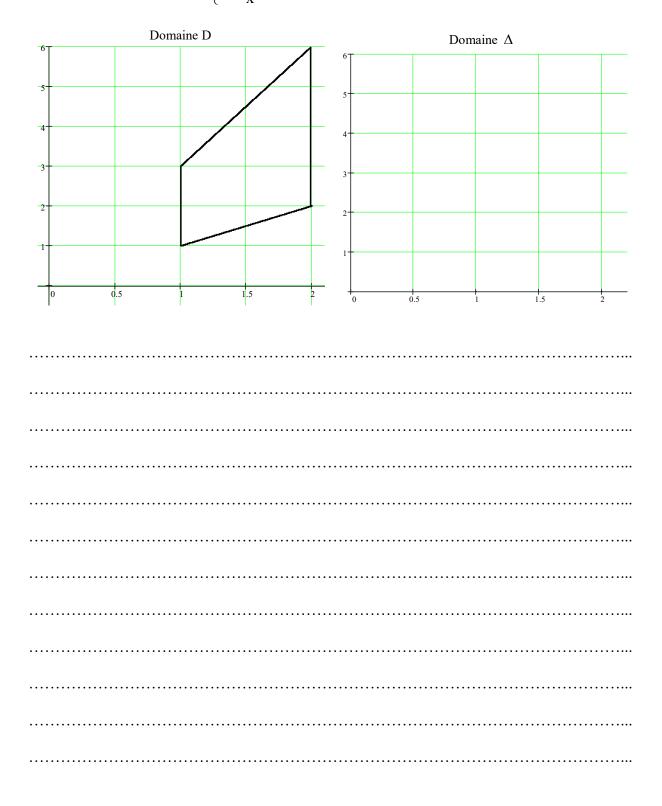
Exercice 2 Tracer le domaine D du plan limité par les courbes $y=x^2$, x=2, y=1; puis calculer $I=\iint_D (x^2+y^2)dxdy$

Exercice 3 Soit D= $\{(x,y)/1 \ge x \ge 0, x^2 \le y \le 2-x\}$. Représenter puis calculer l'aire de D.

III. Changement de variables

1) Définitions

$$\frac{\mathbf{D}(\mathbf{x},\mathbf{y})}{\mathbf{D}(\mathbf{u},\mathbf{v})} = \begin{vmatrix} \frac{\partial \mathbf{x}}{\partial \mathbf{u}} & \frac{\partial \mathbf{x}}{\partial \mathbf{v}} \\ \frac{\partial \mathbf{y}}{\partial \mathbf{u}} & \frac{\partial \mathbf{y}}{\partial \mathbf{v}} \end{vmatrix} = \frac{\partial \mathbf{x}}{\partial \mathbf{u}} \frac{\partial \mathbf{y}}{\partial \mathbf{v}} - \frac{\partial \mathbf{x}}{\partial \mathbf{v}} \frac{\partial \mathbf{y}}{\partial \mathbf{u}} \ .$$


2) Calcul d'une intégrale double par changement de variables

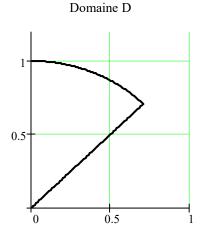
Soit f une fonction continue sur D un domaine fermé de R ². Soit φ une transformation

de
$$\Delta$$
 en D de classe C¹: $\varphi: \Delta \to D$
 $(u, v) \mapsto (x, y) = \varphi(u, v)$.

On obtient alors :
$$\iint_{D} f(x,y) dxdy = \iint_{\Delta} f(x(u,v),y(u,v)) \left| \frac{D(x,y)}{D(u,v)} \right| dudv$$

<u>Notes</u>

3) Passage en coordonnées polaires


Lorsque le domaine d'intégration est un disque ou une portion de disque, le calcul d'une intégrale double est simplifié si l'on passe en coordonnées polaires (r, θ) :

$$\begin{cases} x(r,\theta) = r\cos\theta \\ y(r,\theta) = r\sin\theta \end{cases} \text{ avec } r \ge 0 \text{ et } \theta \in \left[0,2\pi\right[.$$

Le jacobien est alors : $\frac{D(x,y)}{D(r,\theta)} = \dots$

On obtient alors :
$$\iint_{D} f(x,y) dxdy = \iint_{\Delta} f(r \cos \theta, r \sin \theta) r dr d\theta$$

Exemple Calculer $I = \iint_D xy \, dx \, dy$ où D est le domaine délimité par le cercle de centre O et de rayon 1, la droite d'équation y=x et l'axe des ordonnées.

Domaine Δ

4) Exercices
<u>Exercice 1</u> : Calculer au moyen d'un passage en coordonnées polaires, les intégrales suivantes :
$I = \iint_{D} \sqrt{x^{2} + y^{2}} dx dy \text{où } D = \left\{ (x, y) / x^{2} + y^{2} \le 1 \; ; \; y \ge 0 \; \right\}.$
$J = \iint_{D} \frac{dxdy}{(x^{2} + y^{2})^{2}} \text{ avec } D = \{(x, y) / x \ge 1, x^{2} + y^{2} - 2x \le 0\}$
Exercice 2 : Au moyen du changement de variable $\begin{cases} x + y = u \\ y = uv \end{cases}$ vérifier que :
$\iint_{D} e^{\frac{y}{x+y}} dx dy = \frac{e-1}{2} \text{ lorsque } D = \{(x,y) / x \ge 0, y \ge 0, x+y \le 1\}.$

	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	•••••
	•••••
	•••••
	• • • • • • • • • • • • • • • • • • • •
•••••••••••••••••••••••••••••••	• • • • • • • • • • • • • • • • • • • •

Chapitre 2 : Partie C - Calcul d'intégrales doubles

<u>Notes</u>

IV. Exercices sur les intégrales doubles

Exercice 1: Déterminer à l'aide d'intégrales doubles, les coordonnées du point de gravité du domaine D suivant : $D = \{(x, y) \in IR^2 / 0 \le x \le 1; 0 \le y \le x\}$. Retrouver ce résultat géométriquement.

Exercice 2: Calculer les intégrales doubles suivantes

$$I_1 = \iint_D \left(x + \frac{x}{y}\right) dxdy$$
 où $D = [0;1] \times [1;e]$

$$I_2 = \iint_D xy dx dy \text{ où } D = \{(x, y) \in IR^2 / 0 \le x; 0 \le y \le 1; x + y \le 3\}$$

$$I_3 = \iint_D xe^{x+2xy} dxdy$$
 où $D = \{(x, y) \in IR^2 / x \le 2; y \le 2; xy \ge 3\}$

$$I_4 = \iint_D \frac{y}{x^2 + 1} dxdy$$
 où $D = \{(x, y) \in IR^2 / x \ge 0; y \ge 0; x^2 + y^2 \le 1\}$

$$I_5 = \iint_D \ln(x + y) dxdy$$
 où $D = \{(x, y) \in IR^2 / 0 \le x \le 1; 1 \le y \le 1 + x\}$

$$I_6 = \iint_D |x + y| dxdy$$
 où $D = \{(x, y) \in IR^2 / |x| \le 1, |y| \le 1\}$

Exercice 3: Changement de coordonnées. Calculer $I = \iint_D x^2 dx dy$ où D est le demi-disque de rayon R, centré en A(R,0), situé dans le demi-plan d'équation $y \ge 0$

Exercice 4: Pour tout réel a<0, on pose :

$$\begin{split} &I_{a} = \iint_{D_{a}} e^{-x^{2}-y^{2}} dx dy \ \ et \ \ J_{a} = \iint_{\Delta_{a}} e^{-x^{2}-y^{2}} dx dy \\ &avec \ D_{a} = \left\{\!(x,y) \in IR^{2} \mid x \geq 0, \, y \geq 0 \ et \ x^{2} + y^{2} \leq a^{2} \right\} \ et \\ &\Delta_{a} = \left\{\!(x,y) \in IR^{2} \mid 0 \leq x \leq a, 0 \leq y \leq a \right\} \end{split}$$

- 1) Calculer Ia
- 2) Montrer que : $\forall a>0, I_a \leq I_{a\sqrt{2}}$. En déduire $\lim_{a\to\infty} \int_0^a e^{-x^2} dx$

<u>Notes</u>

Partie D : Calcul d'intégrales Triples

I. Généralités :

1) Domaine fermé de R ³

<u>Définition</u> On appelle domaine fermé de **R** ³ tout domaine de l'espace délimité par une surface fermée

Exemples

$$D_1 = [0;1] \times [0;1] \times [0;1] = \{(x, y, z) \in IR^3 / x \in [0;1], y \in [0;1] \text{ et } z \in [0;1] \}$$

$$D_2 = \{(x, y, z) \in IR^3 / x^2 + y^2 + z^2 \le 1 \}$$

2) Intégrale triple

<u>Définition/théorème</u> Soit f, une fonction continue dans D, un domaine fermé de \mathbb{R}^3 . Alors l'intégrale triple $I = \iiint_D f(x,y,z) dxdydz$ existe.

3) Applications

- Si $f(x,y,z) = 1 \ \forall \ (x,y,z) \in D$, alors $I = \iiint_D f(x,y,z) \, dx \, dy \, dz$ représente le volume du domaine D.
- Si f(x,y,z) est la masse volumique au point M(x,y,z) du domaine D, alors $I = \iiint_D f(x,y,z) dxdydz$ est la masse du domaine D.

4) Propriétés

Soient D un domaine fermé de \mathbb{R}^3 ; f et g, deux fonctions continues sur D; α et β deux nombres réels.

- Si $f(x,y,z) \geq 0 \ \forall (x,y,z) \in D$, alors $\iiint_D f(x,y,z) \, dx dy dz \geq 0$ - $\iiint_D (\alpha f(x,y,z) + \beta g(x,y,z)) dx dy dz = \alpha \iiint_D f(x,y,z) \, dx dy dz + \beta \iiint_D g(x,y,z) \, dx dy dz$ - Si $D = D_1 \cup D_2$ où D_1 et D_2 sont deux domaines fermés de \mathbb{R}^3 et disjoints $(D_1 \cap D_2 = \emptyset)$ alors: $\iiint_D f(x,y,z) \, dx dy dz = \iiint_D f(x,y,z) \, dx dy dz + \iiint_D f(x,y,z) \, dx dy dz$

II. Calcul d'une intégrale triple en coordonnées cartésiennes :

<u>Théorème de Fubini</u> Soit f, une fonction continue dans D, un domaine fermé de \mathbb{R}^3 . On peut calculer l'intégrale triple $I = \iiint_D f(x,y,z) \, dx dy dz$ en intégrant soit d'abord par rapport à la variable x, soit d'abord par rapport à z.

1) 1^{er} cas : D est un parallélépipède rectangle de \mathbb{R}^3
Exemple Calculer $I = \iiint_D (x + y + z) dx dy dz$ où $D = [0;1] \times [-1;1] \times [1;2]$

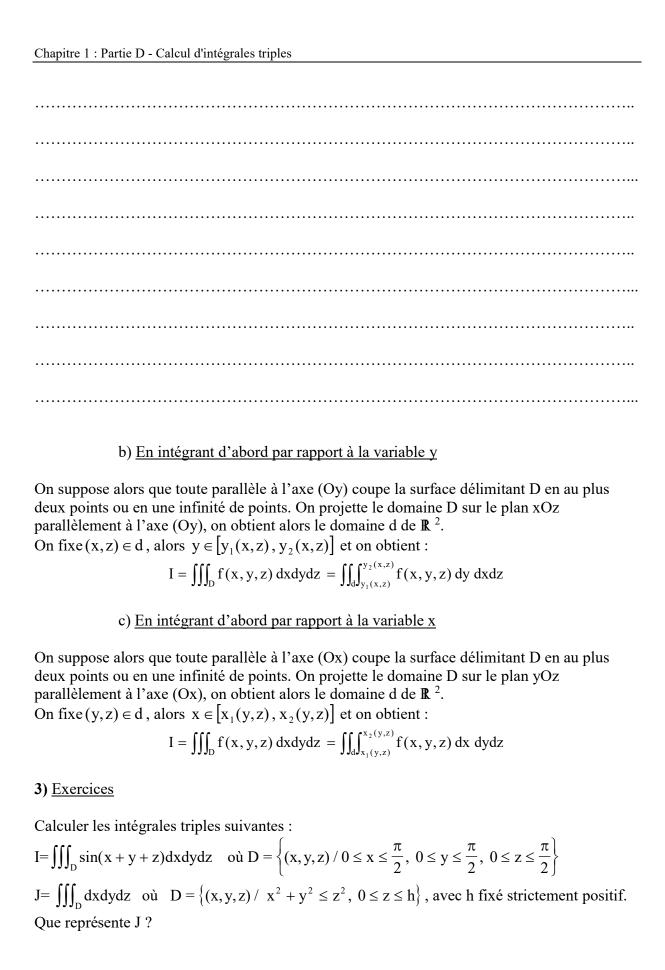
<u>Notes</u>

$\underline{\text{Cas particulier}}: \text{Calculer} \ \ I = \iiint_{[a,b] \times [c,d] \times [e,g]} f(x,y,z) dx dy dz \ \ \text{lorsque} \ \ f(x,y) = g(x)h(y)k(z)$
Exemple $I = \iiint_{[0,1] \times [0,2] \times [0,3]} x(y-1)(z-2) dxdydz$

2) 2^{ème} cas: D est un domaine fermé quelconque de R ³

D'après le théorème de Fubini, on peut calculer $I = \iiint_D f(x, y, z) dx dy dz$ soit :

a) En intégrant d'abord par rapport à la variable z


On suppose alors que toute parallèle à l'axe (Oz) coupe la surface délimitant D en au plus deux points ou en une infinité de points :

On projette le domaine D sur le plan xOy parallèlement à l'axe (Oz), on obtient alors le domaine d de \mathbb{R}^2 .

On fixe $(x,y) \in d$, alors $z \in \left[z_1(x,y), z_2(x,y)\right]$ et on obtient :

$$I = \iiint_D f(x, y, z) dxdydz = \iiint_{d} z_2(x, y) f(x, y, z) dz dxdy$$

Exemple Calculer le volume d'un tétraèdre de côtés 1m :

<u>Notes</u>

III. Changement de variables

1) Définitions

<u>Changement de coordonnées</u> : Soit Δ et D deux domaines fermés de \mathbb{R}^3 . On appelle transformation de Δ dans D toute fonction vectorielle bijective

$$\varphi: \quad \Delta \quad \rightarrow \quad D$$
$$(u, v, w) \mapsto (x, y, z) = \varphi(u, v, w)$$

le déterminant défini par :

$$\frac{\mathbf{D}(\mathbf{x}, \mathbf{y}, \mathbf{z})}{\mathbf{D}(\mathbf{u}, \mathbf{v}, \mathbf{w})} = \begin{vmatrix} \frac{\partial \mathbf{x}}{\partial \mathbf{u}} & \frac{\partial \mathbf{x}}{\partial \mathbf{v}} & \frac{\partial \mathbf{x}}{\partial \mathbf{w}} \\ \frac{\partial \mathbf{y}}{\partial \mathbf{u}} & \frac{\partial \mathbf{y}}{\partial \mathbf{v}} & \frac{\partial \mathbf{y}}{\partial \mathbf{w}} \\ \frac{\partial \mathbf{z}}{\partial \mathbf{u}} & \frac{\partial \mathbf{z}}{\partial \mathbf{v}} & \frac{\partial \mathbf{z}}{\partial \mathbf{w}} \end{vmatrix}$$

$$\frac{\mathbf{D}(\mathbf{x},\mathbf{y},\mathbf{z})}{\mathbf{D}(\mathbf{u},\mathbf{v},\mathbf{w})} = \frac{\partial \mathbf{x}}{\partial \mathbf{u}} \frac{\partial \mathbf{y}}{\partial \mathbf{v}} \frac{\partial \mathbf{z}}{\partial \mathbf{w}} + \frac{\partial \mathbf{y}}{\partial \mathbf{u}} \frac{\partial \mathbf{z}}{\partial \mathbf{v}} \frac{\partial \mathbf{x}}{\partial \mathbf{w}} + \frac{\partial \mathbf{z}}{\partial \mathbf{u}} \frac{\partial \mathbf{x}}{\partial \mathbf{v}} \frac{\partial \mathbf{y}}{\partial \mathbf{w}} - \frac{\partial \mathbf{x}}{\partial \mathbf{u}} \frac{\partial \mathbf{z}}{\partial \mathbf{v}} \frac{\partial \mathbf{y}}{\partial \mathbf{w}} - \frac{\partial \mathbf{z}}{\partial \mathbf{u}} \frac{\partial \mathbf{y}}{\partial \mathbf{v}} \frac{\partial \mathbf{z}}{\partial \mathbf{w}} - \frac{\partial \mathbf{z}}{\partial \mathbf{u}} \frac{\partial \mathbf{y}}{\partial \mathbf{v}} \frac{\partial \mathbf{z}}{\partial \mathbf{w}} - \frac{\partial \mathbf{z}}{\partial \mathbf{u}} \frac{\partial \mathbf{y}}{\partial \mathbf{v}} \frac{\partial \mathbf{z}}{\partial \mathbf{w}} - \frac{\partial \mathbf{z}}{\partial \mathbf{u}} \frac{\partial \mathbf{z}}{\partial \mathbf{v}} \frac{\partial \mathbf{z}}{\partial \mathbf{w}} - \frac{\partial \mathbf{z}}{\partial \mathbf{u}} \frac{\partial \mathbf{z}}{\partial \mathbf{v}} \frac{\partial \mathbf{z}}{\partial \mathbf{w}} - \frac{\partial \mathbf{z}}{\partial \mathbf{u}} \frac{\partial \mathbf{z}}{\partial \mathbf{v}} \frac{\partial \mathbf{z}}{\partial \mathbf{w}} - \frac{\partial \mathbf{z}}{\partial \mathbf{u}} \frac{\partial \mathbf{z}}{\partial \mathbf{v}} \frac{\partial \mathbf{z}}{\partial \mathbf{w}} - \frac{\partial \mathbf{z}}{\partial \mathbf{u}} \frac{\partial \mathbf{z}}{\partial \mathbf{v}} \frac{\partial \mathbf{z}}{\partial \mathbf{w}} - \frac{\partial \mathbf{z}}{\partial \mathbf{u}} \frac{\partial \mathbf{z}}{\partial \mathbf{v}} \frac{\partial \mathbf{z}}{\partial \mathbf{w}} - \frac{\partial \mathbf{z}}{\partial \mathbf{u}} \frac{\partial \mathbf{z}}{\partial \mathbf{v}} \frac{\partial \mathbf{z}}{\partial \mathbf{w}} - \frac{\partial \mathbf{z}}{\partial \mathbf{u}} \frac{\partial \mathbf{z}}{\partial \mathbf{v}} \frac{\partial \mathbf{z}}{\partial \mathbf{w}} - \frac{\partial \mathbf{z}}{\partial \mathbf{u}} \frac{\partial \mathbf{z}}{\partial \mathbf{v}} \frac{\partial \mathbf{z}}{\partial \mathbf{w}} - \frac{\partial \mathbf{z}}{\partial \mathbf{u}} \frac{\partial \mathbf{z}}{\partial \mathbf{v}} \frac{\partial \mathbf{z}}{\partial \mathbf{w}} - \frac{\partial \mathbf{z}}{\partial \mathbf{w}} - \frac{\partial \mathbf{z}}{\partial \mathbf{w}} \frac{\partial \mathbf{z}}{\partial \mathbf{w}} - \frac{\partial \mathbf{z}}{\partial \mathbf{w}}$$

2) Calcul d'une intégrale triple par changement de variables

Soit f une fonction continue sur D un domaine fermé de \mathbb{R}^3 . Soit ϕ une transformation

de
$$\Delta$$
 en D :
$$\phi: \Delta \to D$$

$$(u,v,w) \mapsto (x,y,z) = \phi(u,v,w)$$

On obtient alors:

$$\iiint_{D} f(x,y,z) dxdydz = \iiint_{\Delta} f(x(u,v,w),y(u,v,w),z(u,v,w)) \left| \frac{D(x,y,z)}{D(u,v,w)} \right| dudvdw$$

Exemple En utilisant le changement de variable : $\begin{cases} u = -\frac{1}{a} \\ v = \frac{y}{b} \text{ où a,b,c>0, calculer l'intégrale} \\ w = \frac{z}{c} \end{cases}$

$$I = \iiint_D dx dy dz \text{ où } D = \left\{ (x,y,z) \in IR^3 / x \ge 0, y \ge 0, z \ge 0, \frac{x}{a} + \frac{y}{b} + \frac{z}{c} \le 1 \right\}.$$

<u>Notes</u>

3) Passage en coordonnées cylindriques (ρ,θ

Lorsque le domaine d'intégration est un cylindre ou une portion de cylindre, le calcul d'une intégrale triple est simplifié si l'on passe en coordonnées cylindriques (ρ, θ, z) :

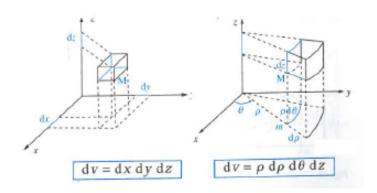
$x(\rho, \theta, z) = \rho \cos \theta$
$\begin{cases} y(\rho,\theta,z) = \rho \sin\theta \text{ avec } \rho \ge 0 \text{ , } \theta \in \left[0,2\pi\right[\text{ et } z \in IR \text{ . Le jacobien est alors :} \right. \end{cases}$
$z(\rho, \theta, z) = z$
D(v, v, z)
$\frac{D(x,y,z)}{D(\rho,\theta,z)} = \dots$
D(p,0,2)

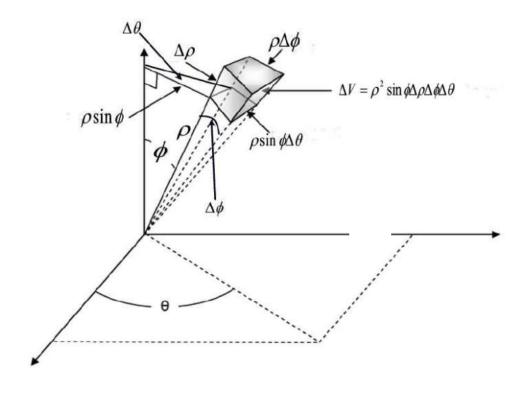
Chapitre 1 : Partie D - Calcul d'intégrales triples
On obtient alors: $\iiint_{D} f(x,y,z) dxdydz = \iiint_{\Delta} f(\rho \cos \theta, \rho \sin \theta, z) \rho d\rho d\theta dz$
Exemple Calculer le volume d'un cône droit de hauteur h :
$D = \{(x, y, z) \in IR^3 / 0 \le z \le h, \ x^2 + y^2 \le z^2 \}$
Exercice
Calculer au moyen d'un passage en coordonnées cylindriques, les intégrales suivantes :
$I = \{\{\{\{1, 2, \dots, 2\}, \{1, 2\},$
$I = \iiint_{D} z \cdot \sqrt{x^{2} + y^{2}} dx dy dz \text{où } D = \left\{ (x, y, z) / x^{2} + y^{2} \le R^{2} ; 0 \le z \le h \right\}.$

4)	Passage en coordonnées sphériques	(r, θ, φ)	p)
•,	1 abbage on coordonneed apricingues	(±, U, 4	ŀ	•

Lorsque le domaine d'intégration est une sphére ou une portion de sphère, le calcul d'une intégrale triple est simplifié si l'on passe en coordonnées sphériques (r, θ, ϕ) :

$x(r,\theta,\varphi) = r\cos\theta\sin\varphi$
$\left\{ y(r,\theta,\phi) = r\sin\theta\sin\phi \text{ avec } r \ge 0 \right., \ \theta \in \left[0,2\pi\right[\text{ et } \phi \in \left[0,\pi\right[. \text{ Le jacobien est alors :} \right. \right.$
$z(r,\theta,\phi) = r\cos\phi$
$\frac{D(x,y,z)}{D(r,\theta,\phi)} = \dots$
$D(r, \theta, \phi)$


.....


On obtient alors : $\iiint_D f(x,y,z) \, dx dy dz = \iiint_\Delta f \big(r \cos \theta \sin \phi, r \sin \theta \sin \phi, r \cos \phi \big) r^2 \sin \phi dr d\theta d\phi$

5) Différentielle de volume

Si on note V le volume, la différentielle de volume dV s'écrit :

- en coordonnées cartésiennes dV = dxdydz
- en coordonnées cylindriques $dV = \rho d\rho d\theta dz$
- en coordonnées sphériques $dV = r^2 sin\phi dr d\theta d\phi$

5) Exercices
Exercice 1 Calculer V, le volume d'une sphère de rayon R.

TPN°1 Tableaux blancs du semestre 2 Programme : Recherche d'extrema de fonctions à plusieurs variables

Exercice 1 ($\simeq 8$ points). On considère la fonction f de deux variables définie sur \mathbb{R}^2 par :

$$f(x,y) = 3xy^2 - 4x^3 + \frac{5}{2}y^2 + 2y - 2.$$

- 1. Calculer les dérivées partielles premières de f.
- 2. Déterminer les éventuels points critiques de f. Combien y a-t-il de points critiques ?
- 3. Calculer les dérivées partielles secondes de f.
- 4. Déterminer la nature de chacun des points critiques de f (maximum local, minimum local...). Si besoin, on pourra présenter les résultats dans un tableau.

Exercice 2 ($\simeq 12$ points).

Partie A. On considère g la fonction d'une variable définie par :

$$g(t) = t \ln(t)$$
.

- 1. Déterminer l'ensemble de définition D_g de la fonction g.
- 2. Dresser le tableau de variations de la fonction g sur son ensemble de définition D_g . On déterminera également les valeurs à mettre au bout des flèches.

Partie B. On considère f la fonction de deux variables définie par :

$$f(x,y) = (x^2 + y^2) \ln(x^2 + y^2).$$

- 1. Déterminer puis représenter dans un repère orthonormé le domaine de définition D_f de la fonction f.
- 2. Déterminer puis représenter, sur le dessin effectué à la question B.1, la ligne de niveau 0 de la fonction f.
- 3. Calculer les dérivées partielles premières de f.
- 4. Déterminer les éventuels points critiques de f. Combien y a-t-il de points critiques ? Placer approximativement tous ces points critiques sur le dessin effectué à la question B.1.
- 5. Pour chacun des points critiques trouvés à la question B.4, on admet que $rt s^2 = 0$ (avec les notations habituellement utilisées en cours).
 - Déterminer la nature de chacun des points critiques trouvés à la question B.4 (maximum local, minimum local...).

<u>Notes</u>

TPN°2 Tableaux blancs du semestre 2 Programme : Applications au calcul d'intégrales doubles

Partie A: Les exercices

Exercice 1 **Probabilités** 10 minutes

Considérons la fonction f, définie par :

$$f(x,y) = \begin{cases} a(1-x^2-y^2) \ \forall (x,y) \in D = \{(x,y) \in \mathbb{R}^2; x^2+y^2 \le 1\} \\ 0 \ sinon \end{cases}$$

Calculer la valeur de a pour que f soit une loi de densité (voir §B.5)

Exercice 2 Calcul d'aire 10 minutes

Calculer l'aire du domaine D (voir §B.2) limité par l'ellipse d'équation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a>0 et b>0) en utilisant le changement de variables $x = a.r.cos\theta$ et $y = b.r.sin\theta$ $r \in [0,1]$ et $\theta \in [0;2\pi[$

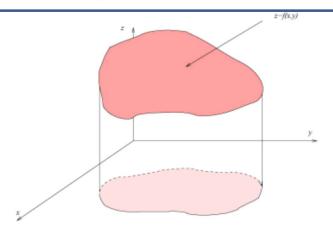
Exercice 3 Centre de gravité 15 minutes

Calculer les coordonnées du centre de gravité (voir §B.3) de la surface qui se trouve dans le demi-plan $y \ge 0$ et qui est limitée par la courbe d'équation $y^2 - 4x = 0$, la droite d'équation y = 0 et la droite d'équation x = h (h>0). On suppose que $\mu(x, y) = 1$.

Exercice 4 Moment d'inertie 20 minutes

On désigne par D le domaine du plan délimité par le quadrilatère ABCD où A(1,0) B(0,1) C(2,3) D(8,0).

- a) Faire une figure.
- b) Calculer le moment d'inertie (voir §B.4) de D par rapport à l'axe (Ox) en supposant que la masse surfacique est égale à 1.


Exercice 5 Calcul de volume. 20 minutes

Calculer l'intégrale double : $\iint_D y dx dy$ où D={ $(x,y) \in \mathbb{R}^2$; $x^2 + y^2 - 2y \le 0$ } De quel domaine de \mathbb{R}^3 cette intégrale mesure-t-elle le volume (voir §B.1)?

Partie B: Les définitions

1) Calcul de volume :

Si $f(x,y) \ge 0 \ \forall \ (x,y) \in D$, alors $I = \iint_D f(x,y) \, dx dy$ représente la mesure du volume limité par le plan xOy, par le cylindre engendré par une droite parallèle à Oz s'appuyant sur le contour de D et par la surface z = f(x,y).

2) Calcul d'aire

Si $f(x,y) = 1 \ \forall \ (x,y) \in D$, alors $I = \iint_D f(x,y) \, dx \, dy$ représente l'aire du domaine D.

3) Masse et Centre de gravité :

Soit une plaque mince dont l'épaisseur est négligeable, on peut la représenter par un domaine D du plan xOy. Supposons que la masse surfacique est égale à $\mu(x,y)$, alors la masse m de la plaque vaut : $m = \iint_D \mu(x,y) \, dx \, dy$.

- Si on souhaite calculer les coordonnées de G, le centre de gravité de la plaque précédente, on obtient alors : $x_G = \frac{1}{m} \iint_D x.\mu(x,y) dxdy$ et $y_G = \frac{1}{m} \iint_D y.\mu(x,y) dxdy$

4) Moment d'inertie :

Sous les mêmes hypothèses que précédemment, le moment d'inertie d'un domaine D par rapport à un axe Δ est défini par : $I = \iint_D d(M, \Delta)^2 \cdot \mu(x, y) \cdot dxdy$ où $d(M, \Delta)$ est la distance du point M(x,y) (du domaine D) à l'axe Δ .

Remarque: Par définition, le moment d'inertie par rapport à un axe (Δ) d'un point matériel de masse m, situé à une distance r de cet axe est : $I_{\Delta} = m.r^2$

Pour un système de N points matériels de masse m_i , distants de r_i de l'axe (Δ), le moment d'inertie par rapport à cet axe est, comme on l'a vu précédemment : $I_{\Delta} = \sum_{i=1}^{N} m_i \cdot r_i^2$

Lorsqu'on considère un corps solide qui est constitué d'une distribution continue de matière, on peut admettre qu'il est formé d'une infinité de points matériels. Cette hypothèse de continuité nous permet de remplacer la

sommation \sum_i par une intégration et on obtient : $I_{\Delta} = \int_{solide} r^2 dm$ où dm est un petit élément de matière distant de r de l'axe (Δ).

Comme pour le calcul du centre de gravité, l'intégrale dépend de la distribution de la masse dans le solide. Selon que le solide est linéique, surfacique ou volumique, dm sera λ . dl, μ .dS, ou ρ . dV. Les termes dl, dS, dV sont respectivement les éléments de longueur, de surface et de volume et λ , μ , ρ des densités linéique, surfacique ou volumique de masse.

Lorsque le solide est homogène, la distribution de la masse est uniforme et ces densités sont constantes. Le calcul intégral se simplifie alors considérablement.

5) Probabilités:

Soit X et Y deux variables aléatoires réelles continues de loi de densité f (appelée aussi loi conjointe du couple (X,Y)), alors : f est positive et $\iint_{\mathbb{R}^2} f(x,y) dx dy = 1$.

$$\textstyle p\big((X,Y) \in [a,b] \times [c,d]\big) = \iint_{[a,b] \times [c,d]} f(x,y) dx dy = p\big((a < X < b) \cap (c < X < d)\big)$$

La première loi marginale est définie par : $f_X(x) = \int_{\mathbb{R}} f(x,y) dy$

La <u>deuxième loi marginale</u> est définie par : $f_Y(y) = \int_{\mathbb{R}} f(x, y) dx$

<u>Notes</u>

<u>Notes</u>