{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\n", "\n", "\n" ], "text/plain": [ "" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from IPython.display import display, Latex\n", "from IPython.core.display import HTML\n", "css_file = './custom.css'\n", "HTML(open(css_file, \"r\").read()) " ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Python version 3.8.10 (default, Nov 26 2021, 20:14:08) \n", "[GCC 9.3.0]\n" ] } ], "source": [ "import sys #only needed to determine Python version number\n", "print('Python version ' + sys.version)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# M62 TP 3 - Implémentation de schémas\n", "\n", "\n", "Compléter le notebook en ajoutant l'implémentation des schémas indiqués et en vérifiant l'impléméntation sur l'exemple donné." ] }, { "cell_type": "markdown", "metadata": { "toc": true }, "source": [ "

\n", "
" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "WyG-bTRQE3f6", "slideshow": { "slide_type": "slide" } }, "source": [ "## Implémentation des schémas" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "On écrit les schémas numériques : \n", "+ les $N+1$ nœuds d'intégration $[t_0,t_1,\\dots,t_{N}]$ sont contenus dans le vecteur `tt`\n", "+ les $N+1$ valeurs $[u_0,u_1,\\dots,u_{N}]$ pour chaque méthode sont contenues dans le vecteur `uu`.\n", "\n", "Comme `len(tt)` $=N+1$ et `range(1,N)` produit 1,2,3,N-1 : \n", "- pour un schéma à un pas $u_{n+1}=F(u_n)$ on initialise $u_0$ et on calcule $u_{n+1}$ pour $n$ de $0$ jusqu'à $N-1$, autrement dit `n in range(N)` soit encore `n in range(len(tt)-1)`\n", "- pour un schéma à deux pas $u_{n+1}=F(u_n,u_{n-1})$ on initialise $u_0$ et $u_1$ et on calcule $u_{n+1}$ pour $n$ de $1$ jusqu'à $N-1$, autrement dit `n in range(1,N)` soit encore `n in range(1,len(tt)-1)`\n", "- pour un schéma à trois pas $u_{n+1}=F(u_n,u_{n-1},u_{n-2})$ on initialise $u_0$, $u_1$ et $u_2$ et on calcule $u_{n+1}$ pour $n$ de $2$ jusqu'à $N-1$, autrement dit `n in range(2,N)` soit encore `n in range(2,len(tt)-1)`\n", "- etc.\n" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "application/javascript": [ "IPython.notebook.set_autosave_interval(300000)" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Autosaving every 300 seconds\n" ] } ], "source": [ "%reset -f\n", "%matplotlib inline\n", "%autosave 300\n", "\n", "from matplotlib.pylab import *\n", "from scipy.optimize import fsolve" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "skip" } }, "source": [ "### Schémas explicites" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "y69SGZjfIDo9", "slideshow": { "slide_type": "slide" } }, "source": [ "#### Schéma d'Euler progressif = de Adam-Bashforth à 1 pas\n", "$$\n", "\\begin{cases}\n", "u_0=y_0,\\\\\n", "u_{n+1}=u_n+h\\varphi(t_n,u_n)& n=0,1,2,\\dots N-1\n", "\\end{cases}\n", "$$" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "colab": { "autoexec": { "startup": false, "wait_interval": 0 } }, "colab_type": "code", "id": "_Bgo6mNyIQgu", "scrolled": true, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "def EE(phi,tt,y0):\n", " h = tt[1]-tt[0]\n", " uu = [y0]\n", " for i in range(len(tt)-1):\n", " k1 = phi( tt[i], uu[i] )\n", " uu.append(uu[i]+k1*h)\n", " return uu" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "bJ2pbhejIQM2", "slideshow": { "slide_type": "slide" } }, "source": [ "#### Schéma de Adam-Bashforth à 2 pas\n", "$$\n", "\\begin{cases}\n", "u_0=y_0,\\\\\n", "u_{1}=u_0+h\\varphi(t_0,u_0),\\\\\n", "u_{n+1}=u_n+\\dfrac{h}{2}\\Bigl(3\\varphi(t_n,u_n)-\\varphi(t_{n-1},u_{n-1})\\Bigr)& n=1,2,3,4,5,\\dots N-1\n", "\\end{cases}\n", "$$" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "colab": { "autoexec": { "startup": false, "wait_interval": 0 } }, "colab_type": "code", "id": "g38fKrIgSiBQ", "scrolled": true, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "def AB2(phi,tt,y0):\n", " h = tt[1]-tt[0]\n", " uu = [y0]\n", " uu.append(uu[0]+h*phi(tt[0],uu[0]))\n", " for i in range(1,len(tt)-1):\n", " k1 = phi( tt[i], uu[i] )\n", " k2 = phi( tt[i-1], uu[i-1] )\n", " uu.append( uu[i] + (3*k1-k2)*h/2 )\n", " return uu" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "nI8swyc6RxIR", "slideshow": { "slide_type": "slide" } }, "source": [ "#### Schéma de Adam-Bashforth à 3 pas\n", "$$\n", "\\begin{cases}\n", "u_0=y_0,\\\\\n", "u_{1}=u_0+h\\varphi(t_0,u_0),\\\\\n", "u_{2}=u_1+\\dfrac{h}{2}\\Bigl(3\\varphi(t_1,u_1)-\\varphi(t_{0},u_{0})\\Bigr),\\\\\n", "u_{n+1}=u_n+\\dfrac{h}{12}\\Bigl(23\\varphi(t_n,u_n)-16\\varphi(t_{n-1},u_{n-1})+5\\varphi(t_{n-2},u_{n-2})\\Bigr)& n=2,3,4,5,\\dots N-1\n", "\\end{cases}\n", "$$" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "colab": { "autoexec": { "startup": false, "wait_interval": 0 } }, "colab_type": "code", "id": "3ymFHJHrSkOh", "scrolled": true, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "def AB3(phi,tt,y0):\n", " h = tt[1]-tt[0]\n", " uu = [y0]\n", " uu.append(uu[0]+h*phi(tt[0],uu[0]))\n", " uu.append(uu[1]+h*(3*phi(tt[1],uu[1])-phi(tt[0],uu[0]))/2)\n", " for i in range(2,len(tt)-1):\n", " k1 = phi( tt[i], uu[i] )\n", " k2 = phi( tt[i-1], uu[i-1] )\n", " k3 = phi( tt[i-2], uu[i-2] )\n", " uu.append( uu[i] + (23*k1-16*k2+5*k3)*h/12 )\n", " return uu" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "awcWzBp7SXvQ", "slideshow": { "slide_type": "slide" } }, "source": [ "#### Schéma de Adam-Bashforth à 4 pas\n", "$$\n", "\\begin{cases}\n", "u_0=y_0,\\\\\n", "u_{1}=u_0+h\\varphi(t_0,u_0),\\\\\n", "u_{2}=u_1+\\dfrac{h}{2}\\Bigl(3\\varphi(t_1,u_1)-\\varphi(t_{0},u_{0})\\Bigr),\\\\\n", "u_{3}=u_2+\\dfrac{h}{12}\\Bigl(23\\varphi(t_2,u_2)-16\\varphi(t_{1},u_{1})+5\\varphi(t_{0},u_{0})\\Bigr),\\\\\n", "u_{n+1}=u_n+\\dfrac{h}{24}\\Bigl(55\\varphi(t_n,u_n)-59\\varphi(t_{n-1},u_{n-1})+37\\varphi(t_{n-2},u_{n-2})-9\\varphi(t_{n-3},u_{n-3})\\Bigr)& n=3,4,5,\\dots N-1\n", "\\end{cases}\n", "$$" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "colab": { "autoexec": { "startup": false, "wait_interval": 0 } }, "colab_type": "code", "id": "-r1BaNeLTrHq", "scrolled": true, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "def AB4(phi,tt,y0):\n", " h = tt[1]-tt[0]\n", " uu = [y0]\n", " uu.append(uu[0]+h*phi(tt[0],uu[0]))\n", " uu.append(uu[1]+h*(3*phi(tt[1],uu[1])-phi(tt[0],uu[0]))/2)\n", " uu.append(uu[2]+h*(23*phi(tt[2],uu[2])-16*phi(tt[1],uu[1])+5*phi(tt[0],uu[0]))/12)\n", " for i in range(3,len(tt)-1):\n", " k1 = phi( tt[i], uu[i] )\n", " k2 = phi( tt[i-1], uu[i-1] )\n", " k3 = phi( tt[i-2], uu[i-2] )\n", " k4 = phi( tt[i-3], uu[i-3] )\n", " uu.append( uu[i] + (55*k1-59*k2+37*k3-9*k4)*h/24 )\n", " return uu" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "heLmvMe_S0y6", "slideshow": { "slide_type": "slide" } }, "source": [ "#### Schéma de Adam-Bashforth à 5 pas\n", "$$\n", "\\begin{cases}\n", "u_0=y_0,\\\\\n", "u_{1}=u_0+h\\varphi(t_0,u_0),\\\\\n", "u_{2}=u_1+\\dfrac{h}{2}\\Bigl(3\\varphi(t_1,u_1)-\\varphi(t_{0},u_{0})\\Bigr),\\\\\n", "u_{3}=u_2+\\dfrac{h}{12}\\Bigl(23\\varphi(t_2,u_2)-16\\varphi(t_{1},u_{1})+5\\varphi(t_{0},u_{0})\\Bigr),\\\\\n", "u_{4}=u_3+\\dfrac{h}{24}\\Bigl(55\\varphi(t_3,u_3)-59\\varphi(t_{2},u_{2})+37\\varphi(t_{1},u_{1})-9\\varphi(t_{0},u_{0})\\Bigr),\\\\\n", "u_{n+1}=u_n+\\dfrac{h}{720}\\Bigl(1901\\varphi(t_n,u_n)-2774\\varphi(t_{n-1},u_{n-1})+2616\\varphi(t_{n-2},u_{n-2})-1274\\varphi(t_{n-3},u_{n-3})+251\\varphi(t_{n-4},u_{n-4})\\Bigr)& n=4,5,\\dots N-1\n", "\\end{cases}\n", "$$" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "colab": { "autoexec": { "startup": false, "wait_interval": 0 } }, "colab_type": "code", "id": "yPXMx8CITt4C", "scrolled": true, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "def AB5(phi,tt,y0):\n", " h = tt[1]-tt[0]\n", " uu = [y0]\n", " uu.append(uu[0]+h*phi(tt[0],uu[0]))\n", " uu.append(uu[1]+h*(3*phi(tt[1],uu[1])-phi(tt[0],uu[0]))/2)\n", " uu.append(uu[2]+h*(23*phi(tt[2],uu[2])-16*phi(tt[1],uu[1])+5*phi(tt[0],uu[0]))/12)\n", " uu.append(uu[3]+h*(55*phi(tt[3],uu[3])-59*phi(tt[2],uu[2])+37*phi(tt[1],uu[1])-9*phi(tt[0],uu[0]))/24)\n", " for i in range(4,len(tt)-1):\n", " k1 = phi( tt[i], uu[i] )\n", " k2 = phi( tt[i-1], uu[i-1] )\n", " k3 = phi( tt[i-2], uu[i-2] )\n", " k4 = phi( tt[i-3], uu[i-3] )\n", " k5 = phi( tt[i-4], uu[i-4] )\n", " uu.append( uu[i] + (1901*k1-2774*k2+2616*k3-1274*k4+251*k5)*h/720 )\n", " return uu" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "OldEmxFfTJfq", "slideshow": { "slide_type": "slide" } }, "source": [ "#### Schéma de Nylström à 2 pas\n", "$$\n", "\\begin{cases}\n", "u_0=y_0,\\\\\n", "u_{1}=u_0+h\\varphi(t_0,u_0),\\\\\n", "u_{n+1}=u_{n-1}+2h\\varphi(t_{n},u_{n})& n=1,2,3,4,5,\\dots N-1\n", "\\end{cases}\n", "$$" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "colab": { "autoexec": { "startup": false, "wait_interval": 0 } }, "colab_type": "code", "id": "BCR9Z7VzTxEN", "scrolled": true, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "def N2(phi,tt,y0):\n", " h = tt[1]-tt[0]\n", " uu = [y0]\n", " uu.append(uu[0]+h*phi(tt[0],uu[0]))\n", " for i in range(1,len(tt)-1):\n", " k1 = phi( tt[i], uu[i] )\n", " uu.append( uu[i-1] + 2*h*k1 )\n", " return uu" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "dADQEhyYTVQz", "slideshow": { "slide_type": "slide" } }, "source": [ "#### Schéma de Nylström à 3 pas\n", "$$\n", "\\begin{cases}\n", "u_0=y_0,\\\\\n", "u_{1}=u_0+h\\varphi(t_0,u_0),\\\\\n", "u_{2}=u_{0}+2h\\varphi(t_{1},u_{1}),\\\\\n", "u_{n+1}=u_{n-1}+\\frac{h}{3}\\Bigl(7\\varphi(t_{n},u_{n})-2\\varphi(t_{n-1},u_{n-1})+\\varphi(t_{n-2},u_{n-2})\\Bigr)& n=2,3,4,5,\\dots N-1\n", "\\end{cases}\n", "$$" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "colab": { "autoexec": { "startup": false, "wait_interval": 0 } }, "colab_type": "code", "id": "bS1FABgRTzdC", "scrolled": true, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "def N3(phi,tt,y0):\n", " h = tt[1]-tt[0]\n", " uu = [y0]\n", " uu.append(uu[0]+h*phi(tt[0],uu[0]))\n", " uu.append(uu[0]+2*h*phi(tt[1],uu[1]))\n", " for i in range(2,len(tt)-1):\n", " k1 = phi( tt[i], uu[i] )\n", " k2 = phi( tt[i-1], uu[i-1] )\n", " k3 = phi( tt[i-2], uu[i-2] )\n", " uu.append( uu[i-1] + (7*k1-2*k2+k3)*h/3 )\n", " return uu" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "LsgdqQnfTf66", "slideshow": { "slide_type": "slide" } }, "source": [ "#### Schéma de Nylström à 4 pas\n", "$$\n", "\\begin{cases}\n", "u_0=y_0,\\\\\n", "u_{1}=u_0+h\\varphi(t_0,u_0),\\\\\n", "u_{2}=u_{0}+2h\\varphi(t_{1},u_{1}),\\\\\n", "u_{3}=u_{1}+\\frac{h}{3}\\Bigl(7\\varphi(t_{2},u_{2})-2\\varphi(t_{1},u_{1})+\\varphi(t_{0},u_{0})\\Bigr),\\\\\n", "u_{n+1}=u_{n-1}+\\frac{h}{3}\\Bigl(8\\varphi(t_{n},u_{n})-5\\varphi(t_{n-1},u_{n-1})+4\\varphi(t_{n-2},u_{n-2})-\\varphi(t_{n-3},u_{n-3})\\Bigr)& n=3,4,5,\\dots N-1\n", "\\end{cases}\n", "$$" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "colab": { "autoexec": { "startup": false, "wait_interval": 0 } }, "colab_type": "code", "id": "dbDTaW5LUcss", "scrolled": true, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "def N4(phi,tt,y0):\n", " h = tt[1]-tt[0]\n", " uu = [y0]\n", " uu.append(uu[0]+h*phi(tt[0],uu[0]))\n", " uu.append(uu[0]+2*h*phi(tt[1],uu[1]))\n", " uu.append(uu[1]+(7*h*phi(tt[2],uu[2])-2*h*phi(tt[1],uu[1])+h*phi(tt[0],uu[0]))/3)\n", " for i in range(3,len(tt)-1):\n", " k1 = phi( tt[i], uu[i] )\n", " k2 = phi( tt[i-1], uu[i-1] )\n", " k3 = phi( tt[i-2], uu[i-2] )\n", " k4 = phi( tt[i-3], uu[i-3] )\n", " uu.append( uu[i-1] + (8*k1-5*k2+4*k3-k4)*h/3 )\n", " return uu" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "p4f0txAsIwNG", "slideshow": { "slide_type": "slide" } }, "source": [ "#### Schéma d'Euler modifié\n", "$$\n", "\\begin{cases}\n", "u_0=y_0,\\\\\n", "\\tilde u = u_n+\\frac{h}{2}\\varphi(t_n,u_n),\\\\\n", "u_{n+1}=u_n+h\\varphi\\left(t_n+\\frac{h}{2},\\tilde u\\right)& n=0,1,2,\\dots N-1\n", "\\end{cases}\n", "$$" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "colab": { "autoexec": { "startup": false, "wait_interval": 0 } }, "colab_type": "code", "id": "O5rOYvtPI7TO", "scrolled": true, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "def EM(phi,tt,y0):\n", " h = tt[1]-tt[0]\n", " uu = [y0]\n", " for i in range(len(tt)-1):\n", " k1 = phi( tt[i], uu[i] )\n", " uu.append( uu[i]+h*phi(tt[i]+h/2,uu[i]+k1*h/2) )\n", " return uu" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "_50Xo95mT9tC", "slideshow": { "slide_type": "slide" } }, "source": [ "#### Schéma de Runge-Kutta RK4-1\n", "$$\\begin{cases}\n", "u_0\t = y_0 \\\\\n", "K_1 = \\varphi\\left(t_n,u_n\\right)\\\\\n", "K_2 = \\varphi\\left(t_n+\\frac{h}{2},u_n+\\frac{h}{2} K_1)\\right)\\\\\n", "K_3 = \\varphi\\left(t_n+\\frac{h}{2},u_n+\\frac{h}{2}K_2\\right)\\\\\n", "K_4 = \\varphi\\left(t_{n+1},u_n+h K_3\\right)\\\\\n", "u_{n+1} = u_n + \\frac{h}{6}\\left(K_1+2K_2+2K_3+K_4\\right) & n=0,1,\\dots N-1\n", "\\end{cases}\n", "$$" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "colab": { "autoexec": { "startup": false, "wait_interval": 0 } }, "colab_type": "code", "id": "rbRn1INwGY-8", "scrolled": true, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "def RK4(phi,tt,y0):\n", " h = tt[1]-tt[0]\n", " uu = [y0]\n", " for i in range(len(tt)-1):\n", " k1 = phi( tt[i], uu[i] )\n", " k2 = phi( tt[i]+h/2 , uu[i]+k1*h/2 )\n", " k3 = phi( tt[i]+h/2 , uu[i]+h*k2/2 )\n", " k4 = phi( tt[i+1] , uu[i]+h*k3 )\n", " uu.append( uu[i] + (k1+2*k2+2*k3+k4)*h/6 )\n", " return uu" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Schémas implicites" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "y69SGZjfIDo9", "slideshow": { "slide_type": "slide" } }, "source": [ "#### Schéma d'Euler régressif\n", "$$\n", "\\begin{cases}\n", "u_0=y_0,\\\\\n", "u_{n+1}=u_n+h\\varphi(t_{n+1},u_{n+1})& n=0,1,2,\\dots N-1\n", "\\end{cases}\n", "$$\n", "avec $u_{n+1}$ zéro de la fonction $$x\\mapsto -x+u_n+h\\varphi(t_{n+1},x)$$" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "colab": { "autoexec": { "startup": false, "wait_interval": 0 } }, "colab_type": "code", "id": "_Bgo6mNyIQgu", "scrolled": true, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "def EI(phi,tt,y0):\n", " h = tt[1]-tt[0]\n", " uu = [y0]\n", " for i in range(len(tt)-1):\n", " temp = fsolve(lambda x: -x+uu[i]+h*phi(tt[i+1],x), uu[i])\n", " uu.append(temp[0])\n", " return uu" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "23PyYGzhQwuo", "slideshow": { "slide_type": "slide" } }, "source": [ "#### Schéma de Crank-Nicolson\n", "$$\n", "\\begin{cases}\n", "u_0=y_0,\\\\\n", "u_{n+1}=u_n+\\frac{h}{2}\\Bigl(\\varphi(t_n,u_n)+\\varphi(t_{n+1},u_{n+1})\\Bigr)& n=0,1,2,\\dots N-1\n", "\\end{cases}\n", "$$\n", "avec $u_{n+1}$zéro de la fonction $$x\\mapsto -x+u_n+\\frac{h}{2}(\\varphi(t_n,u_n)+\\varphi(t_{n+1},x))$$" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "scrolled": true, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "def CN(phi,tt,y0):\n", " h = tt[1]-tt[0]\n", " uu = [y0]\n", " for i in range(len(tt)-1):\n", " temp = fsolve(lambda x: -x+uu[i]+0.5*h*( phi(tt[i+1],x)+phi(tt[i],uu[i]) ), uu[i])\n", " uu.append(temp[0])\n", " return uu" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "23PyYGzhQwuo", "slideshow": { "slide_type": "slide" } }, "source": [ "#### Schéma de AM-2\n", "$$\n", "\\begin{cases}\n", "u_0=y_0,\\\\\n", "u_1=u_0+\\frac{h}{2}\\Bigl(\\varphi(t_1,u_1)+\\varphi(t_{0},u_{0})\\Bigr),\\\\\n", "u_{n+1}=u_n+\\frac{h}{12}\\Bigl(5\\varphi(t_{n+1},u_{n+1})+8\\varphi(t_n,u_n)-\\varphi(t_{n-1},u_{n-1})\\Bigr)& n=1,2,\\dots N-1\n", "\\end{cases}\n", "$$" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "scrolled": true, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "def AM2(phi,tt,y0):\n", " h = tt[1]-tt[0]\n", " uu = [y0]\n", " temp = fsolve(lambda x: -x+uu[0]+0.5*h*( phi(tt[1],x)+phi(tt[0],uu[0]) ), uu[0])\n", " uu.append(temp[0])\n", " for i in range(1,len(tt)-1):\n", " temp = fsolve(lambda x: -x+uu[i]+h*( 5*phi(tt[i+1],x)+8*phi(tt[i],uu[i])-phi(tt[i-1],uu[i-1]) )/12, uu[i])\n", " uu.append(temp[0])\n", " return uu" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "23PyYGzhQwuo", "slideshow": { "slide_type": "slide" } }, "source": [ "#### Schéma de AM-3\n", "$$\n", "\\begin{cases}\n", "u_0=y_0,\\\\\n", "u_1=u_0+\\frac{h}{2}\\Bigl(\\varphi(t_1,u_1)+\\varphi(t_{0},u_{0})\\Bigr),\\\\\n", "u_{2}=u_1+\\frac{h}{12}\\Bigl(5\\varphi(t_{2},u_{2})+8\\varphi(t_1,u_1)-\\varphi(t_{0},u_{0})\\Bigr),\\\\\n", "u_{n+1}=u_n+\\frac{h}{24}\\Bigl(9\\varphi(t_{n+1},u_{n+1})+19\\varphi(t_n,u_n)-5\\varphi(t_{n-1},u_{n-1})+\\varphi(t_{n-2},u_{n-2})\\Bigr)& n=2,3,\\dots N-1\n", "\\end{cases}\n", "$$" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "scrolled": true, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "def AM3(phi,tt,y0):\n", " h = tt[1]-tt[0]\n", " uu = [y0]\n", " temp = fsolve(lambda x: -x+uu[0]+0.5*h*( phi(tt[1],x)+phi(tt[0],uu[0]) ), uu[0])\n", " uu.append(temp[0])\n", " temp = fsolve(lambda x: -x+uu[1]+h*( 5*phi(tt[2],x)+8*phi(tt[1],uu[1])-phi(tt[0],uu[0]) )/12, uu[1])\n", " uu.append(temp[0])\n", " for i in range(2,len(tt)-1):\n", " temp = fsolve(lambda x: -x+uu[i]+h*( 9*phi(tt[i+1],x)+19*phi(tt[i],uu[i])-5*phi(tt[i-1],uu[i-1])+phi(tt[i-2],uu[i-2]) )/24, uu[i])\n", " uu.append(temp[0])\n", " return uu" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "23PyYGzhQwuo", "slideshow": { "slide_type": "slide" } }, "source": [ "#### Schéma de AM-4\n", "$$\n", "\\begin{cases}\n", "u_0=y_0,\\\\\n", "u_1=u_0+\\frac{h}{2}\\Bigl(\\varphi(t_1,u_1)+\\varphi(t_{0},u_{0})\\Bigr),\\\\\n", "u_{2}=u_1+\\frac{h}{12}\\Bigl(5\\varphi(t_{2},u_{2})+8\\varphi(t_1,u_1)-\\varphi(t_{0},u_{0})\\Bigr),\\\\\n", "u_{3}=u_2+\\frac{h}{24}\\Bigl(9\\varphi(t_{3},u_{3})+19\\varphi(t_2,u_2)-5\\varphi(t_{1},u_{1})+\\varphi(t_{0},u_{0})\\Bigr),\\\\\n", "u_{n+1}=u_n+\\frac{h}{720}\\Bigl(251\\varphi(t_{n+1},u_{n+1})+646\\varphi(t_n,u_n)-264\\varphi(t_{n-1},u_{n-1})+106\\varphi(t_{n-2},u_{n-2})-19\\varphi(t_{n-3},u_{n-3})\\Bigr)& n=3,4,\\dots N-1\n", "\\end{cases}\n", "$$" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "scrolled": true, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "def AM4(phi,tt,y0):\n", " h = tt[1]-tt[0]\n", " uu = [y0]\n", " temp = fsolve(lambda x: -x+uu[0]+0.5*h*( phi(tt[1],x)+phi(tt[0],uu[0]) ), uu[0])\n", " uu.append(temp[0])\n", " temp = fsolve(lambda x: -x+uu[1]+h*( 5*phi(tt[2],x)+8*phi(tt[1],uu[1])-phi(tt[0],uu[0]) )/12, uu[1])\n", " uu.append(temp[0])\n", " temp = fsolve(lambda x: -x+uu[2]+h*( 9*phi(tt[3],x)+19*phi(tt[2],uu[2])-5*phi(tt[1],uu[1])+phi(tt[0],uu[0]) )/24, uu[2])\n", " uu.append(temp[0])\n", " for i in range(3,len(tt)-1):\n", " temp = fsolve(lambda x: -x+uu[i]+h*( 251*phi(tt[i+1],x)+646*phi(tt[i],uu[i])-264*phi(tt[i-1],uu[i-1])+106*phi(tt[i-2],uu[i-2])-19*phi(tt[i-3],uu[i-3]) )/720, uu[i])\n", " uu.append(temp[0])\n", " return uu" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "23PyYGzhQwuo", "slideshow": { "slide_type": "slide" } }, "source": [ "#### Schéma BDF2\n", "$$\n", "\\begin{cases}\n", "u_0=y_0,\\\\\n", "u_1=u_0+h\\varphi(t_1,u_1),\\\\\n", "u_{n+1}=\\frac{4}{3}u_n-\\frac{1}{3}u_{n-1}+\\frac{2}{3}h\\varphi(t_{n+1},u_{n+1})& n=1,2,\\dots N-1\n", "\\end{cases}\n", "$$" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "scrolled": true, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "def BDF2(phi,tt,y0):\n", " h = tt[1]-tt[0]\n", " uu = [y0]\n", " temp = fsolve(lambda x: -x+uu[0]+h*phi(tt[1],x), uu[0])\n", " uu.append(temp)\n", " for i in range(1,len(tt)-1):\n", " temp = fsolve(lambda x: -x+4/3*uu[i]-1/3*uu[i-1] + 2/3*h*phi(tt[i+1],x) , uu[i])\n", " uu.append(temp[0])\n", " return uu " ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "23PyYGzhQwuo", "slideshow": { "slide_type": "slide" } }, "source": [ "#### Schéma BDF3\n", "$$\n", "\\begin{cases}\n", "u_0=y_0,\\\\\n", "u_1=u_0+h\\varphi(t_1,u_1),\\\\\n", "u_{2}=\\frac{4}{3}u_1-\\frac{1}{3}u_{0}+\\frac{2}{3}h\\varphi(t_{2},u_{2}),\\\\\n", "u_{n+1}=\\frac{18}{11}u_n-\\frac{9}{11}u_{n-1}+\\frac{2}{11}u_{n-2}+\\frac{6}{11}h\\varphi(t_{n+1},u_{n+1})& n=2,3,\\dots N-1\n", "\\end{cases}\n", "$$" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "scrolled": true, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "def BDF3(phi,tt,y0):\n", " h = tt[1]-tt[0]\n", " uu = [y0]\n", " temp = fsolve(lambda x: -x+uu[0]+h*phi(tt[1],x), uu[0])\n", " uu.append(temp)\n", " temp = fsolve(lambda x: -x+4/3*uu[1]-1/3*uu[0] + 2/3*h*phi(tt[2],x), uu[1])\n", " uu.append(temp)\n", " for i in range(2,len(tt)-1):\n", " temp = fsolve(lambda x: -x+18/11*uu[i]-9/11*uu[i-1] + 2/11*uu[i-2]+6/11*h*phi(tt[i+1],x) , uu[i])\n", " uu.append(temp[0])\n", " return uu" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Schéma RK1_M\n", "$$\n", "\\begin{cases}\n", "u_0=y_0,\\\\\n", "u_{n+1}=u_n+h\\varphi\\left(\\frac{t_n+t_{n+1}}{2},\\frac{u_n+u_{n+1}}{2}\\right)& n=0,1,2,\\dots N-1\n", "\\end{cases}\n", "$$" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [], "source": [ "def RK1_M(phi,tt,y0):\n", " h = tt[1]-tt[0]\n", " uu = [y0]\n", " for i in range(len(tt)-1):\n", " uu.append( fsolve(lambda x: -x+uu[i]+h*phi( (tt[i]+tt[i+1])/2,(uu[i]+x)/2 ), uu[i])[0] )\n", " return uu" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Schémas predicteur-correcteur" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "23PyYGzhQwuo", "slideshow": { "slide_type": "slide" } }, "source": [ "#### Schéma de Heun\n", "$$\n", "\\begin{cases}\n", "u_0=y_0,\\\\\n", "\\tilde u = u_n+h\\varphi(t_n,u_n)\\\\\n", "u_{n+1}=u_n+\\frac{h}{2}\\Bigl(\\varphi(t_n,u_n)+\\varphi(t_{n+1},\\tilde u)\\Bigr)& n=0,1,2,\\dots N-1\n", "\\end{cases}\n", "$$" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "colab": { "autoexec": { "startup": false, "wait_interval": 0 } }, "colab_type": "code", "id": "1ewZyxhHRYxg", "scrolled": true, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "def heun(phi,tt,y0):\n", " h = tt[1]-tt[0]\n", " uu = [y0]\n", " for i in range(len(tt)-1):\n", " k1 = phi( tt[i], uu[i] )\n", " k2 = phi( tt[i+1], uu[i] + h*k1 )\n", " uu.append( uu[i] + (k1+k2)*h/2 )\n", " return uu" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "23PyYGzhQwuo", "slideshow": { "slide_type": "slide" } }, "source": [ "#### Schéma AM-2 AB-1\n", "$$\n", "\\begin{cases}\n", "u_0=y_0,\\\\\n", "u_1=u_0+h\\varphi(t_0,u_0),\\\\\n", "\\tilde u=u_n+h\\varphi(t_n,u_n),\\\\\n", "u_{n+1}=u_n+\\frac{h}{12}\\Bigl(5\\varphi(t_{n+1},\\tilde u)+8\\varphi(t_n,u_n)-\\varphi(t_{n-1},u_{n-1})\\Bigr)& n=1,2,\\dots N-1\n", "\\end{cases}\n", "$$" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "scrolled": true, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "def AM2AB1(phi,tt,y0):\n", " h = tt[1]-tt[0]\n", " uu = [y0]\n", " uu.append(uu[0]+h*phi(tt[0],uu[0]))\n", " for i in range(1,len(tt)-1):\n", " pred = uu[i] + h*phi(tt[i],uu[i])\n", " uu.append(uu[i]+h*(5*phi(tt[i+1],pred)+8*phi(tt[i],uu[i])-phi(tt[i-1],uu[i-1]))/12)\n", " return uu" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "23PyYGzhQwuo", "slideshow": { "slide_type": "slide" } }, "source": [ "#### Schéma AM-3 AB-2\n", "$$\n", "\\begin{cases}\n", "u_0=y_0,\\\\\n", "u_1=u_0+h\\varphi(t_0,u_0),\\\\\n", "u_2=u_0+\\frac{h}{2}(3\\varphi(t_1,u_1)-\\varphi(t_{0},u_{0})),\\\\\n", "\\tilde u=u_n+\\frac{h}{2}(3\\varphi(t_n,u_n)-\\varphi(t_{n-1},u_{n-1})),\\\\\n", "u_{n+1}=u_n+\\frac{h}{24}\\Bigl(9\\varphi(t_{n+1},\\tilde u)+19\\varphi(t_n,u_n)-5\\varphi(t_{n-1},u_{n-1})+\\varphi(t_{n-2},u_{n-2})\\Bigr)& n=2,3,\\dots N-1\n", "\\end{cases}\n", "$$" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "scrolled": true, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "def AM3AB2(phi,tt,y0):\n", " h = tt[1]-tt[0]\n", " uu = [y0]\n", " uu.append(uu[0]+h*phi(tt[0],uu[0]))\n", " uu.append(uu[0]+0.5*h*(3*phi(tt[1],uu[1])-phi(tt[0],uu[0])))\n", " for i in range(2,len(tt)-1):\n", " k1 = phi( tt[i], uu[i] )\n", " k2 = phi( tt[i-1], uu[i-1] )\n", " pred = uu[i] + (3*k1-k2)*h/2\n", " uu.append(uu[i]+h*(5*phi(tt[i+1],pred)+8*phi(tt[i],uu[i])-phi(tt[i-1],uu[i-1]))/12)\n", " return uu" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Comparaison sur un exemple\n", "Considérons le problème de Cauchy\n", ">trouver la fonction $y \\colon I\\subset \\mathbb{R} \\to \\mathbb{R}$ définie sur l'intervalle $I=[0,1]$ telle que\n", "$$\\begin{cases}\n", "y'(t) = \\sin(t)+y(t), &\\forall t \\in I=[0,1],\\\\\n", "y(0) = 0\n", "\\end{cases}$$\n", "\n", "1. Calculer la solution exacte en utilisant le module `sympy`.\n", "1. Calculer la solution approchée obtenue avec la méthode d'Euler explicite avec $h=1/N$ et $N=8$ (pour bien visualiser les erreurs);\n", "2. même exercice pour les méthodes *multipas explicites*;\n", "3. même exercice pour les méthodes *multipas implicites*;\n", "4. même exercice pour les méthodes *predictor-corrector*.\n", "5. Pour chaque méthode, afficher solution exacte *vs* solution approchée ainsi que le maximum de la valeur absolue de l'erreur." ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "ve4iOfOIGsYc", "slideshow": { "slide_type": "fragment" } }, "source": [ "**Correction 1** \n", "Calculons la solutions exacte en utilisant le module `sympy`:" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "colab": { "autoexec": { "startup": false, "wait_interval": 0 } }, "colab_type": "code", "id": "W3EcAN2eGz2j", "scrolled": true, "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMEAAAArCAYAAADBnex4AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAIZUlEQVR4Ae2c/XXWNhTGnZwMQOkG6QaBTFDYgNIJSjeAw1/JfznpBiET8LFB6QQhbBA2IM0G6fNTZWPLkiy9tnntF91zFNn6sp7HurpXst7s3d/fV6lyenp6pLKXCocK73T/Z2rdUq4wsFQGDnI6pkH/WeUfKUZz/s6pW8oWBpbKwH5ux6QAT2ydj7l1S/nCwBIZyFYCgXiq8EXKcLdEQKVPhYFcBjZRAixBsQK5TJfyi2UguibQbM8C+Fzhi8JXBQY/i+MzhSKFgZ1gIKgE1vd/L5QshFGCSnG9GC6WYCdefwEBA153SIP9gfJQgFe1AlBYgjJ8VlpZDxg6yp9dYMCrBAKGC/RAg/2NA7KsBxxCyu36GQgpwXNB67g81jqwRqhdovWjLwgKA2KgpwR2sOMOuYMdxaiU31EO0ooUBtbMQE8JWmDMYrh1z/cBvhijCM8UsApFCgOrZ6CnBBrcLHqZ7ZtBzqDXPVujnxSQp0pzleT/nIn+pipZarmJujV7Mzl4csrO3vEtPyCVC1+5nhJYLL8pPlaFlwr1dwIswUPSFF/YcrNE9hkoXYoc2vIpZRddJhM3WHYG+5gXk8lbj7O9nFOkYzqaWleAsDoo4KuMOijmneq4u1mpTWy93Ca46bTqLRq7+odHca3Advvk70dtjh4vi1ICAWJB/o/iR4p7YvMhtOeOKY/0XxWv7huGxRXEDRG2zOqwq99sq7PJ8kbXkx69t5wEeUvlLOQOwfs2BNcr5mpBKDPLradz1KP+GmUIN5hmxc5gVXgxNXlqk/XlT4onVQDbzyHekjhbmhI8F1kxkxk8wWrrUR9rsjYZwg2eubHD2yzc6Z3MZZ2HeEvibDFKIKLw7YZ2nNDsDwohob75nhEqsLT0RNx0e+ewj3kXibwlcXYwpiOxuuokswrm9ReFa903M7zNu1TMLlQtaG3vQ5zKAARTSnu4QkdK41zTleK/FLeF+rTTPKud+b2u1a8c7F7c9FXtLB67+sguHv1ktgc38rvSOXjJ++JdEX/UvXnfts6lTX+nGLeGSRA5VvC9W5PZ+uPlTW1nc3bQanTqy9fqEDsCgANwe2AyW9eg6+c+1kVvPaD6DGwIpDx+K+BDcqMMSEgStcXzksvbRjlA2FZe37NysHtx06ieMxt2X6dz09Q/Bv254s470b3x/xVjmVEGFvSN6L7+mS7v66ECE5uZ0BSjVEyaHxRinoGXN9XJ5mwWJbBArixqCHIXsj4thlC3nG3CRNSBvJhQn1knSdTPyRdrG2Afwg2WybEnETRciIH4WJg5bHnXKu5OZqH3yiBnYmsmFV0zydAUk1N74iStLUO8JXM2ixKop/z8sh6wzPpn7d7rGoBuGjNCm0iniqkTWw9QHlIhZ5uSi30IN1jgaxLsei8h60c/KuX7Jgav9VNZLDQD/F+uFbMVygzuuqlKDkp9CsEtMPQeh3hL5uxAHU7/nytuN517tbVHkmIzmBXTEcA0Gq20I5sGaUmiOrTBDA/JMRkiJlZ3krylY1f/fIO8UjruJl9TcwYwnPFN57UC9fHtcY8m/yagdpNFz88aLyiBGbjJT8griJlzf4SDYvB1t7YUdYvMKHTeJ9SpVKdRHF27Jpgi1KedJFEboVkxVt87K3oqpGKP4abZWbB7+pudJP6YmG4V83XffOHXNZshF3Cr4L7j7GdEKsR4y+LsIPKQKbIgyV3c+NYDPItylPdJx78Tucw6lHdJxhK4z/O1Z9LUjndWDFbIy0jFHsPNE2fBngclWBqrDs7GeohTrAB9Zr3gvh8lTSYx3rI425+sS/6GOgNS5KChBJ9bA2HH/mbMDoJpS20YU6fYRzCm2ZceaHbW5FTsMdx0sFHshWJnJ8y14Nw3Vtuy7Japsdns7CjGWxZnc1sCTCTfA/AVvyrwzQBxCSLtrQJ7yj6hHcyr+ayvuJl5nMIo2Jyzu/O46G0q9hhuHrBk7HfqH+u9F3onioz8rL+sC9ggwFKwXsAqVLrn/f6hgPUgnXxcY9LPFEiv3x/KxUHKZudIeW2J8ZbHGadIv1c4OTk5V7gOPU95NwpHofxYuuodUj9WZpt56lsQO/1W2Ag3mFR3NHa18Uzh5TY5yn22+rsxb23OopZAWoim8qELDc36B7yqy+z/RLE5EaoYc8hMzkwQEuowE9SzQaicLx3tp/7WZQPsY3CDdwrszOqENckY3hrO9mOI9TLZCWEQM4A7fjyDWuFGAQXxCYvXt60MlIlFU3C/W3mYVrbpQm22mvt2actTr9mK/Za7lass7JviBtlU2NUOe/5L4S/ppdn+jh4vUUtgScbPRlw/nnQG6y2ZHkHT6l+isRbAp3fb8FSr8AHxEVnhpwpbnZtYj9T2c8ttgn0T3PRradhzuRpbfhPeupwN+WHynfBle7620i586UPtpeSrXXzcJP+UcpRPaXfpZXJwg2WXsI95Nzm8+Tgb/GWZZm8OP31S3Jlpdc/hJz6RM+sVKQysloGOO6QBjXvDYoM9brY0cV9YHJ8pVMrHBUIZWCNQNnasWdlFCgPLZ6CxBHaA44u7/4CXgc/P45qdA12z8HuveM4jF8tnr/RwJxjYB4UGMzM7CpD6D3g7n6Vpo0hhYK0MGCVQ53GB2PJ0t8iwAr4dnVD6Wnko/f6BGaiVgDP/ncFurQN+f+/7gNJ66T8whwX6yhnYt4O99zFMuMwP1pXfUQ6lYwWqdrptg+QihYHVMVBbAjreOfWo+8bv1yBv/wPeJp1K5CnCMhQpDKySASwBuz7M9s1AtgObrdH6p2/t//j2UOkpx5pVrEhhYPkMmC1SDXrcIc72XClwFJYzPygHC2bSOFdizukrRln47MxuUqV7dzFNcpHCwGoY+A8LIcqgSYZtlQAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle \\frac{d}{d t} y{\\left(t \\right)} = y{\\left(t \\right)} + \\sin{\\left(t \\right)}$" ], "text/plain": [ "d \n", "──(y(t)) = y(t) + sin(t)\n", "dt " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXMAAAAzCAYAAABllehKAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAQ1klEQVR4Ae2d7ZXWthLHlz1bACEdkA4WqADSwQ2pIJsOyOETfOPcdEC2AiAdJLcCXjqAW8EFOuD+f1qP4xfZ1mNbfnmemXO0suXRSPqPPBqP9Xhvffv27czJEVgKgefPn79XWz8p/7RUm95OPgRcn/mwPVTyLTfm6ZBp4v4l7t+Uf0iv5ZyGgHC7reMvym9Zmef7RcD1eaO7Aoc3OsNJ+bqWRs/Xanhv7UpJKOuNcjfk45X3SFV3gZ/0fDdlmKl8KbJ2yLMbfRq2h+grlVd8GPDflN7rGIdlFXJjngC7FIQh/6T8jwR2Z2kgINzuKv1bxaQzjpUuG2ybOVXfnqgzqf1jbPCfDGm8u9KnKeZAvVItWbeSjZMSDLq1t3TuYZYBxKWkK7H8qvzeAKtfHkBAGBIvf6H8zwHWzsuqi8eMHMJdsy+ukvkvyX6gnBszicSLMf+aoz9JHViJSeOdrM+luq6+HqxX+qZ6B+lW/DgsLAI/LTU2a8c9c0MikkshGA6Us7hiIt05hiK83b8nDgSd8Cg7++IqfSP3qfKoIee60kcl+lCSzn/XCQv+ao/YZWeWPZhDn9l7XOilU690AB6lybqVDObOpXKcwEXpYtHW9tcYLzzxJH3nRUV3woObOIRMKsWxQwxcwE458VW8168xxtQy1f9b6bupcjraY0wvO65RzBgw5J85aRD1qP9ro3zzp8JyNX0uBM6QXunGnLrFoF8L19eZ5mkcNnazeGpj8OzZsyulL45NG5sxmAjLJ0pvqKv8ttLlGDk566hPvfrW9ZdKH7v6QH2l213Xj6lc49y8Pg1v9GLHXbl4ZtWt5L1HZld7OcrP4ybeS4UAq/nsMdkTRvYHjf1tMf6nyjf1tCMPipjqUJ/w3vri/dR/rHQKtGl9mgIS9Qr73LrFO79S+7WQnPUrR36RQ+jeZUoBvPQg/vli72MZ03+NP8SOVfd/RX1uXF44TgmREIYg7EIs8VWXLJXzyM+NRVv0A/pZ5feUuDHYWUROuCW8yyjqXBflr5WzEGOcoQdKb8VDXLuPftTFVjxf9egLoRP6QrvEQ+lDTCb1kbMpJ0D9pe8soIvrU22eFe2jE3RqBH7lwljh+VgwMOfYClzqRMedc8OERvKoXuGTvGy6pd9K7HBh3Iu8c3NjjlbbxM37p5RRnXxtriMsKSY4hpcfQIQ94cq5iTAG0ReDKTAUsnrjyeLB6LBtkRuwJJ2HesrxfDHq7KIoSef0k3IMwR0lDG4w3srpO/t/0Wef531ffIy7RqqDMeHGZHF4pLzWtxrz2RntYyA2Q+ov/VlFn4Cg9lkA0dcvOg7Gu+gThprtvh+U0BEL5I+UKQ+k47+4pvS7Uu/csDqRPKpX+CQzt25fqBnGycvV7LbkPDL4ky4S6EwsJiCKOCnS2Bk3L30xqMGQFwBgECjPTdx499U2N26Vmkb2c/Vi5RhDgMGtenw2jiEjS5tdcmkCI26yOI8R9cFwE7QBfYIDRhqjXepE56ZfM3DwxBZbnAf7TULq3FCVGg3pFeZcurWnikV2tlzUhu0nIIAHyq6LoRv3GNEyo4knQagJ+l4JD8kmZijM8Yc2lDCI/OSf9lhAuMmHQiTV7ryrnlSOzYBUimqHePRmXGoXihMWg6pBivGwmAy1E6uXq2xtfYIFzlFNf9InOAYsdWzO09smCLqG104xYTbCfGPmxpBekZ9Ft+ovdoR5zJNlDQManZvcmLcRRbHZDVe72U2UhEmtCZh94vWMlv3jLKiENYg34pn9oRRCLTpfnNQ2RsmeWvraTzEcffXnvra2Pu0pxWL1sfEZT99CisGHZp8bC+iWp46XaocfEpUhpDCaGf5IJiGs8OG68xnkHY0IAcOk4cZdIqSwVdxaHtJSHWXC05ZyvLAflPggF0b8Ssd2Q8OSg/D60H2MMIpn6kO5yOs4xksZcrZEq+lTIJjx4mVmFxlPDE+rQ5hm7Nzo0yvyc+v2dTGI0I4NaI68mIO8UwgYujGvo2qAlzdt/fLRnzEpCKu0SBMGTzk3YbBr8UW1y84QHsmJmeYkxh4MRqSRWky1wCLGe0d1zThFxCxetKo+hdNXjfiDUlR34KjEdfhaL5Z1ze5HvNuxc6NPrxJbj5fTJ5XNplvJY2zR8dH4RAIf8As0izFXh2ODtzbKPJWvrLD8AROKONeWbsglUSCsYTdQaFdYED8n9lpOmswd4mfXtxttcN5cYJs8VMGYjiXGxzbGGJVGuugbj8wxPAgDxMpjMpco24I+2ZYHXs1Fmr4ZVg91/Fg8GOwqwcNOFtN96tyoyujTK3xL6Pad2mmOrdrHg46FB3iCDemMY6XLyR/akhBelDXfVtNGi8SLoSi3jbUYVi5Q/76oC++Ut7yElbu2WPOFPvHObb8vxnyRGLraYX6AfTXGSl/CC1hd54Ygnm4LDjf5L0o4ExZnxwuinN1IlBOmgT+US0Z0z28hm21krZCAypDDgoaHeKbz6D5ylYMZe+nN+MC+Kqkv3J+r6NMGrj6w8AbDo9zmVW33injAmN0r6AkKmBuWynvnxk2V9l/VY85E9Qq3rmfXrdpg7E+Uz/odf8kjXs7nRsLL5EnGXEJ4JDmKL8xpLEw4jPmkl22FHLyQ4OUrN8IgIZvJww0/es+2CfR8XgSkEwxNub/+EOmFXtFxazE4RI7zzo/AFL3Sm6m6VX3sAc4A++hnW+gli38TV36n6Fwno0iCMH6dXyLjutLkr5CN6ty4ShhZyDyHm7MD/mq8eEH/LapgFMqkss86R6G8XB3dRiHbszwI4EGN3TUT9kTn6ZZLnYjAFL3S9FTdEmaB5gy1hKdN2RR7kjkbbczVMQDCOHURjWEgP0cYqEf9LZEZ84Pj5QKUhQsjjSF4qGPifCXIDFLn4VFIh7Qz2+qMbKd5EJCOCJ8Qj7S5kCS44KdeNPySJMSZsiEwVq90aCbdmk2Z86mNhSHYEfUR+3N5PgFBXlj0TV7CDMTSa0aN9op61Me73wrdKTpiwB/Sr/+ImTf2/KTcXurE6hNz/SqeMW3E5HnZ/AgQU+9zUmItwj/Wo4/J87L5ERijV3oxWbe6380Gmo2ZY3QsDLbt9KmOP40y5uocsfIhg4Rnbt6oDltE/cet0vUKbGEx4JN6Iix4wmCV5NsTQ3V5SrF9p0nynWlZBAod8k6DkNkgFXzwD90Pg7KcIR8Ch+qVnmTQrdmYOQbKIsNvMYjHv2J8F0jVAY1QiLXno0Slx11cu1Ze3QWA190KFYgHA46HgjweVdm5gjf6VnlzRwT1kVO2peM1iTf+UCwsdHOl8VdjYozc9Em7eeBTQglOG0ZAekVPzfka7XFkXkf5vHB9BA7RK72dWbc4esmeudrGhuJx284ubDM/pkMOfSMCUHsaDMZcheFFphjwuK+VqgYW75nyKhFSaBkl1cdAz/6FOcmlLRaKQ4jvOlQXoKG6gHcoGZgtLGKC1B8U0ReGiVXzMkfAEdg/AjiJSTZGdgJbh00pd1apjKf/p0qdu+AuCiaLveApNz3TmBdOp5p8KiqJOkNGi/p4toOkPprRHOSdwBBWTbWFwU0lW+T6wkmdstQWOLJY8ph+r5PRLzgCjsAxIDDomcsOYBPDZgodV20oBp7yTsIzJ0RglTAsLxrcCGmW0ak+o0edIQPHoyzGbM9kC0BSvFQ489Y54Kb8UgMHJygJB+qLl5etSfwIFpWr+81p/K9ks2fVaWYEhGvvD0Vy6dT1ObMiI+KGdBupklJkT/nYCkK4UPnDuZvT+F88czMuGBaMRBli0TUMDmWt+LjKoqQ68NvqEuUpCocWhL66Oa7xpHBG/5UCJgmNUIfxDpJk4sVj9MPCqXNyQkHm3afIoF9ZPHj1o9foDHbOGUYhINyz6NT1OUoduSsFGzPQSHCEpb+kdzZVWReVE+LLGJeqIUMwW+mCAarw0qkuI0adM9UpFwAdxwwk9VMGhyxWqyAX2Yl0aMzcxn3IIsMYr9Q/9hgPeecPxDP0tJI4NGdzBByBnSGAXRmyETYkC3vbeVJeNeZ4083GYvFyBMPXFe+uxctlwGoeKZULSh6cZCwRM7e3xl2LlPW7mrMtkV1AjLFzJVX/4WuGqlTk5Ag4AieEQNO+xoYOj+2sq13Hlip1OoTnFe5aQ6qEJ0yKBd3x1B9U6lYPSyMtGRhGvNamZw8/4YJYOdfWIPPMk9vWuMCMJxq+WoZRr5HKHikFQ678YPk1YX7iCDgCe0YAW5gSicBe1KIQsh1ENohO9NrLqmfOlhf2kyMML9V+elqGS1Rm9EoH7B+PEXJeSk4wbsq7PFY6vITHHetjrMyAZjFKJo2Pr799pwoYdBY+M9rI42ttnVuJkhtxRkfAEdgtArIBGHLIbMPNWeSvePkYH8YbO2zfcOJ80FaWxlzMNFTuyy6EEXeueey0rzLKyflRUG210Dn8hFo6STwhRKM8tlB01st8wcbZFT7qbF7jALtBsDsF+IVeBIr5YovifTGzUPIDitrc6xXiFzeHwAnp1WyKhXJ7dSFcuhzg3nrnXFVlvMr3xqljVhI86744LyvHWAPGjUn9zZDGbIYhy26RzQx0Zx2RXrgReNJjL77tx0dX/FKZpzunHSJwYno1Y24OYxaNBWMuybzAI3RidK0D3P3OYLuusYXx2L4wB9h4ftmJyazEgsavusKxzm1fafb2d9RAy2kQTjgDPA11hfp2NLyT7eop6dWMuTmMWZRuYRZujjuFMSFWjieUEgIhLMMN1RtW0fUqEcgf69FX5eQ4BuxFvD3hy8JhoYMcYzkWmeiD7+KXH+EvBsb85O0+C2FWj+dYgNzYOE5Jr2GzSO55Goy5Gun0wPsmgOp9VeLRl3+JNBjngU/y4N/qzccLTAwELxzw/JzWRwCjzbuZLn0QEnTaHwKnpFcWrhTneJIWgzGfIqEwzIOGnDbEm8Q3pT8T674r6gP+qAVuYvtevYGA5kz5Ur5x6ZJzXc/66Npo009nQuBU9KpxEmLB4Yht8Z4JzRsxFjOfVehehRWGAQ/w572O4RT6LT1hyLlJPEx1RAo/Ur3iGELZnUM35jdAV/++1okpoFrux9tBgPc07O/f+pPedhDbR0+OUa+8T+RjhtlDy27M25OcCUXM3A16G5vVS6QXXqBzc3SFX1bvo3fgcASOWK/sFGTOZic35g2INal4UcEq6saigc3ap9INv31g19Uhu6fW7ra3P4DAseq1GBejL79EOwDFpMtuzOPwsQf2SsrwnRJxfBYvlS7wcPifh+Uiq+ODf+eweMe9wV4EjlyvvNMhHMh7uOzkxjwCscBnJUUB/KDHaWUEpA9eePIJ4eYLTwz855W7582PROCY9aqxEaa9q9ScsyPRGq5269s3/wczMZikDB7piXU1f6wSY/eyTAhID9wQbOuK7dN9pOv2QbhMPXCxORA4dr1qfMxZfodTPknmwLEq86J64sf/ICAl8DkDfqmKd77Y6vpPD/yoQICbAoMevsLZQMX3mDcA2dHp0epVdgOvnMTXVBcj98x7oJZSeLznf27e03H2rUU9XfFLjoAjsBMEZCv4dC1f9cy+t7wKicfMq2g0jqUMPD++HLnI1qJG837qCDgCO0NANoPNE3wifFFDDkxuzAcmi5TCD1OIfaEkJ0fAEXAEogjIRoTwivLF4uTVjrgxr6LRcVwoh5dt7J5wcgQcAUeghoBsAyFZHL6HtQsLnrgxTwRbyuKfVvDFR5Tm5Ag4Ao5AQEA2gd+jXCs91PEie8pj0P8fbdeo9NkFmKIAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle y{\\left(t \\right)} = \\left(C_{1} - \\frac{e^{- t} \\sin{\\left(t \\right)}}{2} - \\frac{e^{- t} \\cos{\\left(t \\right)}}{2}\\right) e^{t}$" ], "text/plain": [ " ⎛ -t -t ⎞ \n", " ⎜ ℯ ⋅sin(t) ℯ ⋅cos(t)⎟ t\n", "y(t) = ⎜C₁ - ────────── - ──────────⎟⋅ℯ \n", " ⎝ 2 2 ⎠ " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAFMAAAAyCAYAAAAgGuf/AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAFcElEQVR4Ae2b63UUORBGxz4bAHgzGDLgEQEmAyADIAM4/mX/84EMzEbAQgZABkAGQAa7ZGDubUuie9QPjafH9kxPnSN3SSo96utSSaoe752fn8/66OTkZE79mTLwj/pkt7EOne+i12fSKfybPh33+ypp/JL676QfpCd9sttaBwbfgu5H8N9JGlcr7XVZJo1e00IwX8C/bW29wYXopMW9J92D/zWkCjK3kNFCBdM2GliD/mrkQgbBQ1iBfAu/NUAGQP5Br/9I90mdVkZdg2j7i/SQwp8k3V7m8lotk0YfET7kucdzKwndNBZX3234QcuMICAbV6zWqQtItJ+4JqNlfmoW7XIBgXfhKUYNysAEbX2DVPy2LsQn8zf6yjuLGmdg1gT0KztaAoE+MJfoZicqAjswR7SDHZg7MEdEYMSudpa5A3NEBEbsasqW+XfA8WAsPFvv5mN1fhP74VJicEOKN5j3lHkQ/8hzpTjE6GCGG9RzJmcgoH6LqiZL/ZxyI1GveF45Me7aQomjgslEDR4ckU5JT8gnMOEfk4y2aBEGC7aORgETkLzPu3y0uofkG9EUUaPsA0lrVWYbgiiZr23bgFRWSlZ1ke39a9DU+GAWllpoJeDGBWOwYKH65meZe8RFA2pQm2W6DCVjmoNE5y5Zo9aNZd3R0ODJvx11m1Tsyos4pXm3WaY+7wcgDS5FZLRi/aTyH1Kv3YwWqd9ciRjLbzEr97PCJNwTZszBjTZRA8zaBLOQfGrRZF6EbJFi9O8Sz/xps8v+HO1dXr5E3cq1EHPQcDxGncE7l4oSmBQKyFOSG0ipT3t80c2sxCqD6J8H49wiPSd9/VPazyGrz/JTw71+yfXWMr6GJKBf4XVzs73j42PftMpoMc/CZGGHCdn/kRKQom9FyCkrGDOeTiD6Hc+dWeRaubGI/vt/IFAbCNkifWyCrAblvnFW34DcHJYl2/gyBikMqsVXy5y8z2+hfLD9qgKMUwzQJcaqjkn7DKIfi1bxE74y2cIOq02KNslv9LR7gFwFZI/MRlWhj0c9Px3rGt/UfaY+wGPL50JwEE03meg7LcuI/lwG1Q6YVW5oQdBJvdMlJYGpTggIqEs3BgMs7iTkXbbedV/DN44JNqLskFQBybPylZavQvSj3z0nFW9aq4zX1pax9fUeCfX1abXVfWZs564uOAJRctb0mng7tPGgH0GrXgp1owY06E+35Ev8QrouqnRiHo0oUxuYEUDPmpHvnbQKIqBVXwkxXvTxS49H2zmN4gu+D+9Lf0V5srCCTrXMTL4NzHjGLNqlCwa+MSIBSA/a6VICrxvyrPiINGg8yERcIk5Jv4bPTKVXwDCpOUlFjkgVT14/tE5yvMYKYkyt1JVVtE/UJqdFN6jNMhsC68qghG82Lrd1DbPYr8vTe/3ij7W0SOOtvtTM4hY76cpfm2V2TWjN5YJmUEZLbKO4hNvqBsuuzTIHZ7YGAUDs+mRRXVSozzaVZaYxNcvMsAFAgazv8JlMacHkwQQoNx7Pyr0//i8BdNJgAqAXFH1o1/IvwTDJTBZMAPT6e8AznTkTKpdkJgkmABqguFO3SHiPRfNL4lg1mxyYAOaGYzhw8YwrwNlBfBlwp3Y00vLccD4Bpv6yTgZ2VtqE+sA8qI+0JbxRLQHNwoWUlZ4xO3HJwOTtGOKi77LPEQpuCqHXpaNNNR3jLSm7RXX5TK9dmn1sWOtr8uxhQODdIhJdYEbnbERnRwGBYFxi4ofAzC20ghkEdcYv4d3lJk8BSH9TJbUe8lvBVJrGWqfJH4Mu7nyKTIbQ36XtNyfdXut/9ApG6z+iWhGJjubwFZjwo90WYv83/YnOnku1yFP43qPTb7pMx2dVw9UAAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle \\left\\{ C_{1} : \\frac{1}{2}\\right\\}$" ], "text/plain": [ "{C₁: 1/2}" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPAAAAAvCAYAAADdPUdoAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAL/klEQVR4Ae2d65EUNxDHlysCsI8M7AyAywAyAByBTQa4+MY3ys4AiMCPDLAjwHYGdgY8MsD/n5B0kkaa0c7uzs7edlcJjaSW1Gr1S5rZ49bnz583BufLgRcvXtzV6v/u5YDwb/XiLo0n2n7QnP8p/2PpuQ8xn9bxSunp2Ni3xxqt7Sw48JNWeU+C8s8pr1b0P/LreH3K6yho/0nreqv0sKiPxYv4ZA9bcUBM/Vvpm606rQxZ9ON9N8pPXXm/0jKeax2j3mpl7J8kR+v5T0i/KX/WQjYP3OLMSL0YisDc9QwewVx903NRiAc+dfhNC3i15kVIVjD2b5VaRv/bmjyp7rXSvz7/VK7RFLjkSF/5gdBO3WshSN9IMOJ5Uc/U/ehZcF/5B8qqn71WPyZnbMbZe3jrx7+vvBlm+vUcLRNtGHz4ek/pUukBvFAiRA78VnUTME5vlB6XGKbAJUdGymI2Ak6YxnnrExug/BflswVc/Y8FCE4UHr82Lk2iIvj1cVR4qBQVfUuC4RkCjPAeAljDqGEQ7cyPEWEdhKWLg+Z14b1yLtp+9zT10sH6UPavlDIvfNE7guG5syI3nAgMTHzJs9LJKa9oRqDxWqlSYoyyMyTr82slRJ0Ffo6vlWdjzxqs3gmFIDQdAyImDAkRxdYg2vGYzDML1DdVumBEgmGbHNP3R86elMimwCVH+spc/qTC39drPVgo68uCHIScsxbKnQLrxPIjcLOgEOBZY9Q6aVx3Cae2v2rtSR1RBcY3VaSkefIRnpR8mexUIhQ8JJQm9QJrHITQpsC97PN42gQEnfB5rjBsOeN+0UU3gohH+b0YGUUdE/KdBbiYbx9F9mKM5jAHeOV6Q9uSORFNGi1AVy/8K0TuJTK4nZWs0MOB6H29MnARdEphdPXmWWsYWHfPDOflWmtUPe0IIgYtKPl3qufdMl6b8Jv8D5XdHL4PlzLU/6pERMC9AnCl9E44P7vS+D/gMu8A1B+aCNuhiXl4awAtvWMLde+AAqLEG9ECPz4oDc61jVmRMXAzfFPgglswSFUI+Xvf9K1yzrpBUCi/823glaGob1o+E43hcm0svH8kPNYwCcJDORF+J3RlB7XDKy5X4sUXOCq7865yLoxQ5OxLL5URRurxKpdKKJdTWOXMycUZFz1TF07M/0FpAOoLD1ASeELEkdE46LBAhWjILvJU7toHT1pYJ/sB/xxchAfLneBhtRE2bpZ/JumZK3wUNQBl3tlxqQFeUOzQfpRcdPCyH6+GN6uCx4H+XsBjoUgtb4hH4TIMRUqhnCMIX4rDMwqKcsXwVs9BONmLKUD5p/iP4oYxp8Zbc3tYJ2uOYB7Ys0KCg2XjfPI0ESJaEaR4bvFtzsPQuAYQTXgtXjXcUXpGuVhDIJO1dVl94aGEnC9bofVGbS4MFN5HnpXDpzGFV/MAuJypQWkUWjgt4xDw2b9oIEJlLdcaWHPNcDilUXtt3/9RfZNHzKP27h8cCLf1rXl1nabA1zsZvAZnjPDpGgrBt6hjIen1CEd6En3OwygnnIf250qZUKmNiCGsUY9t8LiXynvCTsJC5iNUxfsTUvORQk3Y1bxXwCtlHikdXTRgBIJhTpuqzy2aVc/auOtoRSLV8UKl+rWUMqD05GGdmSKbAl+zzlnquZt0PczxnkT7JyU88Q/KEbj0DMk5NjuD1ShVH4SVI0I0AIwFrvJ0PMrUcxHD2OFyxhkK1fFRiDMs9D0SOG8qOqIB1nN2CXQkuuZMGyISjFaEi/hkD3AgXE6dMjfCGThePEloUUpC22zzy0WqnVD8Snns63Hon1l+Xw9+9oGD+mJACFnve5xDZhiUINi1ebLzr2hjHc4Y1ZCXrhM92eXexPxVD2wKfM01hIGQeQB+4wf1a6wQrawDj4MXDsJNiEt43QThIthcWuGh8J4xqY6zc0v5n6stzBPGpxy9nq8scagOQulRts4wuGOGgvFd1OBpXM0rP9HDUQcD2AvsDxFWtg97CaE1aBmuVYnqxat2Pnwlnis7t4lehM6d6w4//V5ngGbCR5QYAf5Lebbxldm4gEJIMo/q8VqhMGOGkN2jOiPIOZgLMAQU4+GUTGUMxPdKzEM97Qgl9RgY6sMeYBiIBmIor7YSoAuDQ6qtj0gCQ+TWpHzWGbacdNey6GBvnGHZYiyOP6VR3Nza9S9yiBgsCZs1edPnCY/v/LYgfhFUvxa8MO8nAQRjFZv+hZz+f0U34RkKgaA8Vnlbgemf7IiYWtdHv76BcO+LLM3hQm/lO8uCxsApYFAwfNzed11wCY/9xBjRL8JOHliDsbA7yrsWJjxeO6DAeIaMkEjRER9EU9c6jkjiNlPj0fBsGNcbqbyeGb8q56x7MAXW2Hj3modX9daA7PONAYrcBR6XaIW1ZnCRlbYo+EEJc8oLDzcK7Up8HI8XiKAySsKZqnsBsbM9dHNA/CUiIsSs7k/3QOtHfCUSa2H/3igXL3E8OzscjYHDm4xUK4Q/oZ/6D4zIbAXWgJyzYF4LiPNR3trtJf3ob3BADmjD+VzxJnvfjdaHkQqfTB6Qm7sNLTrRBd6tz9kPjHDVEO+iwE9EzJhVIqwhfBtYDd+P/uaFd5ML6/2FA1yMcSm2ZkDWeb/OBV+8GPVlPHMV1E50wdm3qvizzsAajAmrAyZU4IHHwgX6ExqMGYFkOHs0DtQ5IHn8pPRSCeWoeqp6z+VqRReRAsmBynhklBO6B04OJI/DBSTOsApOgYWAdWAwvpPllyBRqXzbG+XpdX710kA4KC2vARgPArmw4iKl9hMuLh0YJ86lZwPjwCwOSM44IxKi8uOIQ15ozaIv7ST60LWglBgdPtetOTuMUap36TDuOXhgdxmlQfCsb5RSpcJLli7+vuoG51/1h3HhPAIjA5GqHgCvalD4SdA4zNWFmww2+ZF5gmuPN4ADkpNUble7Ik/nJK3CC+/Em2u5LSSup995DBSuvHSirrRoeNgSzw/hMvrEcCFtSJ7pj5eehJ6FTA5iCMaBG8gBPDAXTUHZ8La8P0wBz1fWXaquGrf7jvSphQS+2WWcgTEERwetv/vnXi1iNcboC3m1s9Y/lbZZM+efsDfVqfdBe3VgqzwJDuCBnSIqR+kQrujaVYd3pq70wKqqg/qAj2eNv6GtY7rvYN3cjfbFqkXzqPLtgxDNwVonfw207VxL0L4tTYa/HAfwwAE4LHNuTJUKpeaGr/QChL8oag3os1GfqPR65qOOdFxQ6M84k6C+dgae5JIhnCMHUgXGa5avhmrnX/gEXuv8mp1/pXzhlVNpBAjDy/kYewAaY/IwP+hkFcaBM+DARbLGTJmkNHhSUi0URhmvkr7pY1RMjYGXbf2Ei3CyVOp0HHs2DhgHJjiQemDeOfG+l69E3iuFv50UQ+FkrF/0zPvdGjAOX47wrmujvPUDAYyDeVaYZGAcmMmB5s8JvSI/UF69eFE973Enb0lrdKmvu+RSHoxEDe2odZ7G8FUP7705r5/kf6VyVEbueXLbl5yhLoQWU/gaJP55Dz0T+rrPvHL0rISnnutBUQz6rxK8kBBF8KspUgj3+UqNyMHgCBwQ7zH8ti8J78MZmIsmwuIA7mssMaz5LldtvG7ifAtTu8Hj0y++ruruvBziwDiJXowON+mto8Ny1J3vTLYvxd4HBXbCKSHlbwrzygYrF8LHoktW5NXT4JPKDGNYAH+u5x6OdpgavOxB/qOvw5B7NqPavhRbfZuylLXpaQv8rKh+vCMmxETxW5dVsQ94KoCf3XhHhPU8cHHHDzHwuDXgiGGwPAdsXwqeNy+xCjwrigNSaC7uCP8P/uWWMbyfA+e8LyGE7ufWmWJKSPislPN+z9HiTLm0/LLPfV9MgftljssrfnM6eVToH9Iw98CBs94XC6E7JEhKy8UboTOfiRqshAO2L5uNeeAJYZSQ8D6cv/RgyjvBqyWbbV++cNsUeETqJCS8Hx/8R1+q5yxscCQO2L5cM94U+JoX2ZOEhEurK+XlpRVKzWeVBkfggO1LznQ7A+f8cCUJCR6WX2HVfsjB9+Gr/Ya7spwbU2X7MtxK9yHHsPrsa1BelNj9oqrghv0EsmDIgkXbl4LZ/wNKal9rnohzUAAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle y{\\left(t \\right)} = \\frac{e^{t}}{2} - \\frac{\\sqrt{2} \\sin{\\left(t + \\frac{\\pi}{4} \\right)}}{2}$" ], "text/plain": [ " ⎛ π⎞\n", " t √2⋅sin⎜t + ─⎟\n", " ℯ ⎝ 4⎠\n", "y(t) = ── - ─────────────\n", " 2 2 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import sympy as sym\n", "sym.init_printing()\n", "\n", "t = sym.Symbol('t')\n", "y = sym.Function('y')\n", "edo= sym.Eq( sym.diff(y(t),t) , sym.sin(t)+y(t) )\n", "display(edo)\n", "solgen = sym.dsolve(edo,y(t))\n", "display(solgen)\n", "\n", "t0=0\n", "y0=0\n", "consts = sym.solve( sym.Eq( y0, solgen.rhs.subs(t,t0)) , dict=True)[0]\n", "display(consts)\n", "solpar=solgen.subs(consts).simplify()\n", "display(solpar)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "On définit la solution exacte à utiliser pour estimer les erreurs:" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [], "source": [ "sol_exacte = sym.lambdify(t,solpar.rhs,'numpy')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Correction de 2 à 5** " ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "cnwNf75iGe0F", "slideshow": { "slide_type": "slide" } }, "source": [ "On initialise le problème de Cauchy" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "colab": { "autoexec": { "startup": false, "wait_interval": 0 } }, "colab_type": "code", "id": "OLLu4aFJFENg", "scrolled": true, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "t0 = 0\n", "tfinal = 1\n", "y0 = 0" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "xpjn_ogYGo20", "slideshow": { "slide_type": "fragment" } }, "source": [ "On définit l'équation différentielle : `phi` est une fonction python qui contient la fonction mathématique $\\varphi(t, y)=\\sin(t)+y$ dépendant des variables $t$ et $y$." ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "colab": { "autoexec": { "startup": false, "wait_interval": 0 } }, "colab_type": "code", "id": "df9F-MXWGm2a", "scrolled": true, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "phi = lambda t,y : sin(t) + y" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "bA_8O6n7GDZD", "slideshow": { "slide_type": "slide" } }, "source": [ "On introduit la discrétisation: les $N+1$ nœuds d'intégration $[t_0,t_1,\\dots,t_{N}]$ sont contenus dans le vecteur `tt`. \n", "On a $N+1$ points espacé de $h=\\frac{t_N-t_0}{N}$." ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "colab": { "autoexec": { "startup": false, "wait_interval": 0 } }, "colab_type": "code", "id": "vpENCboHGiku", "scrolled": true, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "N = 8\n", "tt = linspace(t0,tfinal,N+1)" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "SnKKU27oGyQb", "slideshow": { "slide_type": "fragment" } }, "source": [ "On calcule les solutions exacte et approchées et on les compare.\n", "\n", "Nous pouvons utiliser deux méthodes différentes pour calculer et afficher les solutions. " ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "SnKKU27oGyQb", "slideshow": { "slide_type": "fragment" } }, "source": [ "**Méthode 1**\n", "\n", "La première méthode est celle utilisée lors des deux premiers TP:\n", "- on crée autant de liste que de solutions approchée\n", "- on compare les graphes des solutions exacte et approchées \n", "- on affiche le maximum de l'erreur" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "cell_style": "center", "colab": { "autoexec": { "startup": false, "wait_interval": 0 } }, "colab_type": "code", "id": "ySox-VsNGt8p", "scrolled": false, "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABkMAAAK7CAYAAABBIfhtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd5hTZdrH8e9NL6KIqICiWLArFnYta2NX30XFuq66NkRdO4ogiCBWho6ABUFFUCxYURDbqoMFXRewoFhAERAUpCldyjzvH/cZCcP0CTkh+X2uKxck55zkniR3znOeaiEEREREREREREREREREMlWluAMQERERERERERERERHZnNQYIiIiIiIiIiIiIiIiGU2NISIiIiIiIiIiIiIiktHUGCIiIiIiIiIiIiIiIhlNjSEiIiIiIiIiIiIiIpLR1BgiIiIiIiIiIiIiIiIZTY0hIiIiIiIiIiIiIiKS0dQYkuHMrLqZfWVmDaL7x5vZ+M3wOjPNrEn0/4PM7MNkv4ZI3JRPIulFOSmSPpSPIulFOSkSPzPraWbtEu7/kS9JfI07zOyOhPv/M7P9k/kaIplA+Sj50qYxxMzGm9kSM6te4PERZrbGzJab2TIzm2xmxyVsb2hmY8zsJzML5f0iR6+/Onqd/NvYaNvxZpZXYNtyMzuyIn9zilwBvBdCmJeqFwwhTAF+NbNTy3qsud5mtii69TEzK2Lfamb2fPQDFszs+ALb25nZDDNbGn0/BphZlWjbLoV8nsHMOiTE0dXMZkfHjzKzrROeu7qZPRptm2dm7YuIsXX0vJeX9b1IdxXI2VPM7AMz+zV67x42szqp/wvKJWPzKdr/b2b2jZmtNLNcM9s1YVtHM/sy+kx/MLOOBY49KjrRLzOzKWZ2dIHt25vZU9HnvsTMnkzYdo6ZfRi97vhC4gpmtiIhVx9J2HaAmb1hZgvNLJT1PcokFcjJFmb2RfTZLDKz0Wa2U+r/gnJRThadk3dHn+s6SyiQR9u6FDj/rTIv59SPthebkwnPU+w5zszeibZXKd07lDnKm48F9h0evX97pibqClM+FpKPZraDmT1tXhb9zcwmmNnhCduLvZYxs35mNj167m/M7OIi4tskH6PHJpuXV+dEf2PW5SNU6BxZ2HVg69T/BeWinCzHOTLa3jY6bqmZTbKEcm1x50gz28vMXjazBWa22LyMunfC9kvMbH2B79PxZX2vMon5tfx8M6ud8Njl+e9tSb+h6czMtgcuBoam+KX7AXeV58Di8qqQfeuZXzesMLNZZnZ+wrZi62oK7PeNmc0p8PhM8/Jpfp68WWB7cTla5HnTzOpH36FF5tc+H5nZX8rxVmWkkvIxup8b/cYtNbPPzez0WIItI+VjsXWnxZ5/rZi6HiuhnFRcPkbbK5tZ9+g3fpmZfWpmdcvzfpVFWjSGmBf6jwECcFohu/QJIWwFbAM8CLxoZpWjbXnA68A/khDKdSGErRJuiYW4nwps2yqE8FESXnNzuxIYmYwnskIungp7LPJk9NpldQVwBtAMOAhoVcLzfABcCBRWyB8LHBpC2Bo4IHrO6wFCCLMTP0vgQPy79EJ07MXARcBfgEZATeC+hOe+A2gK7Aq0ADqZWcvEFzezbYFbgKml+cO3JBXM2W2A7vj7ui+wM9B3M4ecLBmbT+aVoC8C3YB6wCTgmcRd8LzYFmgJXGdm50XH1gPG4J9jXaAPMDbKgXwv4nm6K7ADXijItxgYCPQq5m9plpCziRWva4FngcuKOTbjVTAnvwL+HkKoi+fl9GifLYFyspCcjHwHdALGFXzuEEKPAufA3sD4EMLCaJcSc7Kkc5yZXQBka6VrE8qfj/nPcTSwx+aNNOmUj4Xn41bAROCw6NjHgHFmtlW0vaRrmRXAqfj3pTUwyMyOKhBfUflYC2gH1AcOB/4G3FTE62SsJORkwevAxzZ3zEminCzHOdK8or0XcDb+nRgGjE74ThR3jqyLl4n3BnYE/ge8XGCfjwp8n8YX9jdmmSrADUVsK+k3NJ1dArwaQlhV0ScqYw6OAVqYWcMyvkZJeVXQA8Aa/Lt+AfCgbdwDvri6mnwdgV+K2HZqQp78X0KcJeVocefN5cClwPb470Nv/Lo1K8usRSguH4m2NYzq2a4Anijrdy0ml6B8LCofizz/lrKup7hyUknl2DuBo4Ajga3xetjVxfydyRFCiP0G3AZMAO4BXimwbQTQPeF+Lbwg26jAflWix5uUM4bxwOVFbDsemJPEv3cEMBh4Df8xngA0wAtVS4BvgEMS9u8MfA8swyutzkzY9iDwfML93sDbeAFwF2AVUKXA3zI+4X51vFJyNjAfGALUTPy7gZvxhBlZ2GPRvjMT33tgp+i1q5fxvfkQuCLh/mXAf0tx3Bzg+GK2bwe8BQwuYvvtQG7C/eeBjgn3j8ITslZ0fy7wfwnb7wZGFXjOIcA1xX23ttRbMnI2YftZwBcViEX5VPR7U+p8wk+AHybcrx295j5F7H8vcF/0/1bA1ALbpwGXRf//v+hvqlxCvJcnvp8JjwdgzxKO3RMIcedGXLdk5WT0He4JfFWBWJSTRb83KcnJAo8/AdxRTEwWvf+tC9lWaE5G24o8x+GF3WnAEdF3rUpRr5+Jt4rmI16m/RS/GCnx96+EWJSPRb83Kc/HhO1LgcMKPFaqaxn8grRDgcdKVeYE2gNj486RVN8qkpPoOjCjc5JCzpHAucD/Cjx3wCv/Evcr8hyZsE+96NjtovuXAB/EnRPpdIu+P53xRqa6pXlvKeQ3tAyvl/897oRXwv+MVwKejJddFgNdEvb/M/AR8Gu07/1AtWjbUcBCoHF0v1m03z7R/XeACwv5exPzpRXwWXTch8BBBfa9GZgC/I6fJwp77I5Cvsf/oZCyXQnvTanzKtq2Btgr4bGRQK9C9i20rgbYDfgaOIkCv7PR33lCEXGWKkcTtm9y3ower4RX0gZgh7hzIR1uZc3HKD9WA38u5+spH4t+b1KWjxRz/qXkup7jC+ZvCX/XH/mIN0guB/ZI9Xc9LUaG4L02noxufzezHQvbKWrpvRj4AS+wlcjMBkfD3wq7TUnWH1AO5wC34j21fscT+pPo/vN4YT3f93hvpm3wVrPEltcOwEHmQ26Pwb+0rYN/sw4EZoQQ1hUTR29gL+BgvDJxJ/yCIV8DvBC3K56MRT22kRDCXLzH9t4AZta5mM/h14RD9wc+T7j/efRYuZjZ+Wa2FP9RbEbRQ+IuxnuZ/HFodEu8Xx1oGrWANiouTjP7M9Acv6jIRMnM2WOp+OgZ5VPF82mjfUMIK/D3apP9oyGTx7DhcyuYL/mPHRD9/wjgW+CxaNjlRCtiWphivGc+rdqLluR5PTNEhXLSfOrAX/EC1k14j4+KUE7Gm5NlcQzeg+iFknZMeL2SznE98Eq6lE3NkmYqeo68EZ/aJlnlVOVjGuWjmR0MVMN7ppeJmdUE/pT43GUscyajzLUlqmhO7mA+bcgP5tPu1i7s+DJQTqZRThbiNaCymR0efScuxSvHynNOOxaYF0JYlPDYIebTu04zs27qkQ54j+fxlGLkWkV+QxM0AGqw4Tv/MN5j+jD8u3Kbme0e7bsePy/Xx3su/w1vfCaE8CFev/BY9Ps8Erg1hPBNdOyB+DVQUX/LocCjeA/s7aLnGmMbT+f3L+AUvGJ6XTGPFfQ1Xv/xRzm/mFv+dDqlziv8t2N9CGFawmNlrbu5D+iCX38U5knz6ZjeNLNmCY+XOkcLO29Gj0/BK/HHAI+EEIoanZKNSsxHM3vFzFYDH0f7TqrA6ykf48/H4s6/JdX1QCnLSYXk44HAOuDsqK5nmpldW8qYKybVrS+FtAodjReW6kf3vwFuTNg+Av+R+jX6dzVwQSHPk4yRISuj18m/3R02tHTlFdj2K1C7nK81Ang44X5b4OuE+wcCvxZz/GfA6Qn3/4y3mM4C/pXw+AUU6E1DQo8g/Au8goRWOPwH5YeEfdcANQocv9Fj0eMzC773+OiJY8v43qwnoaUTn4oqAFbCcSWNDGmKj95oUMi2Y/DWyK0SHrscb+1sgl98jIniOBJoHP0/8X05EZgZ/b8yfjI4MuG7lTEjQ5KVswnv2xISWrDLEY/yqei/rdT5hA8v7lXgsQnAJYXseyd+gqwe3d8u+rz/BVTFhz/mAUOj7Q9Fr3tZtP28aP/6BZ63qJEhx+IXPXXx3h9fUqCnOVk8MiTJOVkP791yRAXiUU4W/belJCcLbCtpZMgwYEQR2zbJSUo4x+GVsp/h5bImZNnIkIrmI17G+A7YJrofqPjIEOVj4X9bHPm4NfAFcEsh20q8lsE77ryeH2NJ+Vjg2DZ4ebl+Uc+fibck5GQDYD+8B/FuwHtE5ZtyxqOcLPpvS4tzZPTedIm+N+vwTnV/KuTYkkYv7By9D4mfy+7R96hS9Fl/RSG/B9l0i74/J+AVa7/h0xcVdU1Q5G9oGV7veLzyvXJ0v070PTs8YZ/JwBlFHN8OGJ1wv2q0/xck/D5H29ZSoBd3Yr7gHUfuLrD9W+C4hH0vLeT4go/dUcj3OAd4tIzvTVny6hi8oS/xsX8X8bkV1hP9TOD1hM+k4MiQv+BTldfCp4Gcx4aRCqXK0Wjfjc6bBbbVwK9fW8edB+lyK2M+VsVH9dxYgddTPhb93qQyH4s8/1JyXU+py0kF8xE4P3qdYVG+HwQsAE7c3N/1dBgZ0hp4M2yYp/qp6LFE/YLPZV4Tv8jua2YnbYZYrg8h1E24dUvY9lOBbXWDt8xtxMwusA2LxrxWzGsl9jZaVcj9P+bANLOLzeyzhN4zB+AtoQCEEP4HzMC/qM8mPM8S/MekKNvjJ5fJCc/9evR4vgUhhILztRX2WGHq4ElTFsvxQk6+rYHlIcqU8gohTMdbHwcXsrk18EIIYXnCY48CT+MXlVOB3OjxOVGM+bElxrks+v81wJSwZawpUx5JyVkzOyI69uywcQt24j7Kpw02dz4V3Dd//2WJD5jZdXivyVNCCL8DBO/tdjo+/cZ8fG7mt/B8Af8MZoYQhoUQ1oYQRgE/4oXcEoUQ3gshrAkh/IrPUbobvt6MuKSdR0MIi/FCysuF9VRUTm4kbXOytKLeOf9k45GRJSnyHGdmlfDz7A2h+N7Imayi+TgQuCuE8FtJL6R83Eja52OUb2PxCuqeZYwVM+uLfx7nJMRYqjKnmZ2Bz69+UsJ3M1tUKCdDCPNCCF+FEPJCCD/gU3mcXdgLKSc3kvY5WYzL8Z7m++OdcS4EXjGzRqU8Pn+h3jfxKZqfzn88hDAjhPBD9H36Al9Ut9DvU7YJIXwJvIJP0bOJ0v6G2saL+O5SxG6LQgjro//nj0ooNA/NbK+oF/w88xknerBxDq7FGzkPAPoX+L6WlIe7Ah0Se4XjnSISv2s/FnJcYY8VlIwchELyqhz7biTqNd4HbwwuVAhhQghhVQhhZfR5/4pX+EIpc7SI82bia6yO8rNzgZEnWa+kfIz2WRtCeA0fcVnYelzKxw3SNh+LOP6P829JdT2lLScVkY/5n/ddUb5PAUbh06RtVrE2hkQntHOA46Iv8zx8yFOzwn6Mog/iS7w17JRSvsaQAgmYeEv6MPEQwpNhw6IxFW6wMbNd8WFi1+FzjdbFe0Vbwj7X4lM4/YR/8fJNAXYvrEIrshD/8u2f0MCzTfAFBP/4kwo5rsSGiehEVI1oGJqZdSnmc0hshJhKNHws0ozkDeevQoHFSIuqCIoS+fYQQpMQws5RDHOBuSGEJfj8hEXF+TfgzITv9FFAfzO7P0l/R2ySlbNmdgg+2ubSEMLbRb2e8umPmFKRTxvtGxVS92DjqTguxQtEfwshzEk8OITwbgjhTyGEeviiV3vji0aCv3cVatAsIL+XQtbbTOfRKvgi9wULVMrJDTGlfU6W0ll4j+LxZTimuHPc1nhF4jPRtonRMXPMp3DJaEnKx7/hFbH5xwN8ZBuGzCcer3xky8hH8ykWXsLLkmVeWNrM7sR7X/5fCGFpwqYSy5xm1hL/XE+NKl+zxmY6RxZZBlFO/hFT2udkCZrha+tMi64JX8ev/Y4q4bj8190WbwgZE0LIKWF3lWk3djvem3mnxAfL8hsaNl7Ed3YSYnoQH1HWNPiC0V3YOAd3iuIejv/+Jk6pMwWfvqYoPwI5YeMOt7VCQgMa5cxDvOPY51GMuxSXg2Z2QXRMiXmVYBpQxcyaJjxW2rqbpvjo4fej3+UXgYbR73STIo5JzJUSc7SY82ZhquKjtmRjheZjITapZ8unfPxDOufjJq9V8NgS6noK2uS8Vkw+Tkk4JqXiHhlyBj4cZz98rtKD8S/J+3gPjk2Y2T74cOfEgk4NvBAIUD26D0AI4aoCCZh4K/daFCmUvxjUAgAza0PC3GxmthfQHW8NvwjoZD6PJlGhbzo+fHoTIYQ8vIA9wMx2iJ5vJzP7exLiPh54J2zoOd6jmM8hsdD9ONA+iqMRPhfuiKJexMwSP+9qZlbDzCzadnnC37UfPryyYMX7mXgLbW7ig2ZWz8z2MLcfPnfvXdF7lh/nrWa2bfSd/HdCnJfg3+P87/QkfHh215LetC1AhXPWzA7Ae561DSGMTUHMiZRPRefTaOAAM/tHlFO34b1Nv4n+lgvwnhcnhhBmFDzYzA4xs6pmtjW+GOecEMIbCc+9rZm1NrPKZnY2XqiaEB1bOXrNKkClKI+rRtv2N7ODo322AvrjF0JfR9stOrZadL9GgUJPpktGTp5lZnubWSXznoz3AJ8GHyWyuSknN19OVo2Oq4QXjmuYz6ucqDXweAgb95YrLicp/hz3G957Kn9bfq+ew/A5hTNdMsq1e+EXIPnHgy/uOXqzRb2B8nEz5GOUO8/jFc8XJ5QlE/cp8lrGzG7BpxE4MWy87gCUUOY0s7/i62T8I/gIgmyTjHPk8VHFhZlZY3yEzcspiB2Uk3GdIycCp5jZ7tHnfiL+2/xldGxx5datgTeACSGETXpUm9lJFq1ZE33XupG671PaCyF8BzwDXJ//WGl+QzezOviC7cujz+zqhNgM/44Ow6cD/hmfmjvfq8BxxTz3w8BV5mtfmJnVNrNTzKy43usliq6FDsMXbSaEMLu4HAwhPBkdWmxeJQo+S8qLwF1R3H/Be4+PTIzDCq+r+RLvcZ//u3w53uP8YODH6Df3L2aWf0xHvPf/hOi5SsrRIs+bZnaEmR0dPXdNM7sZXzsvG8qpZVJEPu4T/Y7VjH5HL8SntH43RWEpH5Ofj1DC+deKqespqZxUXD6GEL7Hy2Rdo/j2Bc7FRyVtXmEzz8NV3A2vEO1fyOPn4HMCVsE/gDX4sJ0VwGy8YFMpYf9Q8FaOWMbjc8QuT7hNjrYdj8+JtrzA7R/l/LtHAN0T7m80Bx8+9/26hPs5eM/NhXgl1bvRMVXw1rjOCftejc+Plz+X/7XAgwnbjy/wWjWi93MG/qPyNT5dWP6+Bedu3OSx6PGZJMwVC4wDTivHe2P4kMnF0a0PbDTP31Q2nsd3ZiGff5No23D8pLoi2q8vm85x+wYF5gWMHt8L7820Ep+Dt32B7dXxqbSWRq/Rvpi/aTwZsmYIScjZ6HMpmE9TKxCT8il5+XQC3tNiVfS9TYzhB3yezcTPbUjC9qfxitDf8ELTDgViOSZ6L5fjlTXHJGy7hE3zeES07a94Lq4AfsF7hTVNOLZJIcfOjDtXtrCcbBt9viuiY0YBu1YgphEoJ9MhJ0cUkhuXJGzfCZ9neZP1KCgmJwvZdzxFr1HQhCxaMyQZ+VjIsaGwz6gMMSkfi35vUpKP+IV3wMuUidsTz4NFXstE938vcGyXIv6mjfIR7+yzrsCxr8WdK6m6JSMn8Wkh5kaf34/4gr91KhDTCJSTseZkwudQ6DkyiuOu6LuwLHpfLko49pJCjh0RbWsd3V9R4LV3ibb3Y8P16YzodarGnStx3qLvzwkJ9xvj9TLjo/sl/oaW8fU2+h5TyHpNwAfAhdH/j42+Z8vxSru7gA+ibTfgPZurRfcb4Y2Xx0T36+NTydQsJl9a4pX7v+KVt88R/cYUfG+KeewOEtYowGe+eLGc709xedWFhHMIvtbgS2z47Ty/kFgL5kqTQl6z4Geyf/S+rgAW4R1amydsLylHizxvRt+nz6PjFuO/qWVa3yiTb6XIx33xhqNl0Xd2InBmBV5P+Vj8+5OSfKTk82+RdT2UUE6ihHIsfk36evT4DODKVHzX8xctkQwVtUJ+ig8P/tnMjscT8/gkv85MfBGemWZ2IPBQCOHIZL6GSNyUTyLpRTkpkj6UjyLpRTkpEj8z6wH8EkIYGN2fSZQvSXyNOwBCCHdE9z8GLgs+7Z+IRJSPkq+oOUQlQwQfnrxfil/zC0AFYMk4yieR9KKcFEkfykeR9KKcFIlfCKFLDK95eKpfU2RLoHyUfKVaM8TMWprZt2b2nZkVNvdlRzP7LLp9aWbrzaxe8sOVJJhJMWtwVMBAfCiZbGbKx7QyE+VT1lNOppWZKCeznnIybcxE+Zj1lI9pZSbKyaynnIzd5siX8dFNtkDKyVgpH7NUidNkmS8kNg04EZ9fbSLwrxDCV0XsfypwYwjhr0mOVSTrKR9F0otyUiS9KCdF0ofyUSS9KCdF0otyUiQepZkm68/AdyGEGQBmNgpflb7Q5AT+hS+uUqz69euHJk2alDJMkcwxefLkhSGE7ct5+GbJR1BOSnaqYD6CzpEiSaWcFEkvKreKpA+dI0XSi3JSJL2UNidL0xiyE74ifL45QKFznplZLaAlcF0R268ArgDYZZddmDRpUileXiSzmNmsChyetHyM9lFOSlarYD6CzpEiSaWcFEkvKreKpA+dI0XSi3JSJL2UNidLs2aIFfJYUXNrnQpMCCEsLmxjCOGhEELzEELz7bevSOOpSNZKWj6CclIkCXSOFEkvykmR9KFyq0h60TlSJL0oJ0ViUJrGkDlA44T7OwM/FbHveZRyaLOIlIvyUSS9KCdF0otyUiR9KB9F0otyUiS9KCdFYlCaxpCJQFMz283MquEJOKbgTma2DXAc8HJyQxSRBMpHkfSinBRJL8pJkfShfBRJL8pJkfSinBSJQYlrhoQQ1pnZdcAbQGXg0RDCVDO7Kto+JNr1TODNEMKKzRatSJZTPoqkF+WkSHpRToqkD+WjSHpRToqkF+WkSDwshKKmo9u8mjdvHrSgj2QjM5scQmgedxwFKSclGykfRdKLclIkvSgnRdKH8lEkvSgnRdJLaXOyNNNkiYiIiIiIiIiIiIiIbLHUGCKSJE88AYMGQV5e3JGISAhw/fUwYULckYgIwLRpnpMLFsQdiYgADB0KDz/s50sRiVdeHlx1FUyeHHckIgIwaRLcfDP8+mvckYgIwLNX57J8+yaQm5uU51NjiEgSrFkDXbrAc8+BWdzRiEhuLtx3H3zxRdyRiAhA795e8aoOAyLxW77cy61jx6rcKpIORo/2Bsrvvos7EhEBeLldLtf2bULVD5JT8Soi5ffr6FxOGdKKrRbOglatktIgosYQkSR44gn48Ufo2lUXlSLpICcHGjaESy6JOxIRmT0bHn8c/v1v2HHHuKMRkaFDYfFiL7eKSLxC8HLrXnvB2WfHHY2I/PBoLp0ntGKXMIva5yan4lVEyik3l1rntKI2K/3+ypVJaRBRY4hIBa1fD716wSGHQMuWcUcjIv/9L7zzDtx0E9SoEXc0ItK3LxyXl8s9LzbRBaVIzFavhn79oP0huRx+bhPlpEjMXn8dPv0UBp6eS+U9mignReKUm0ujK5Jf8Soi5ZCbSzilFdXWrdz48STkpRpDRCro+edh+nSfbkCjQkTil5MD9erBFVfEHYmIzJ8P04bmMs5aUWVu8oY2i0j5DB8O+8zLpc9XrWCWclIkTvmjQs7ZPpeWDygnRWKVm0veya2ovj75Fa8iUg5t2mCrVha+beVKaNOm3E+txhCRCggBevSAffaBs86KOxoR+fxzeOUVaNcOtpqYC02aqOAqEqOX2+Xy4tqEC0tdUIrEZu1aeO/OXF6t1IrKvysnReL2/vtQdUIuT/zaClupnBSJVZs2VFq9eSpeRaTsVg0ezkpqFb6xVi3v4VNOagwRqYBXXoEpU+CWW6CSskkkdj17Qp060K5Zrl9IqoedSGyWjcnlwlEJUw3kU0WPSCzeuS2XR+a3omaeclIkHbzSIZdxtKLqWuWkSNwW9BnOis1U8SoiZTd0Wgsu4VFCwQ21anllbIsW5X5uVd+KlFP+sOYmTeBf/4o7GhGZNg2efRb6nZJLnX+18gtJ0AWlSEzWX9yGWgUbQvKph51ISuXlwQH92mzaOJlPOSmSUhMnwjWTdJ4USRc9PmrB6TaGUHDu8yRUvIpI2fz+u69xd06jD7FKlaBmTd+QpHxUY4hIOeXmwscfQ6dOULVq3NGISO/ecGKVXP79ckJDSD41iIik1PLl0DpvOKsrq4edSDoYPRouXDecddWUkyLpoGdPaFt7OCG/gqcg5aRIyixYAEOHwmnHLcVCgGrVfIMaQkRi8fjjsGbuL5y56GG46CIYNw523TVp+ajGEJFyysmBhg3VYUckHcye7SfMp2tsvkW2RKT0hg6FMctaMGPQK5vOI6kLS5GUyh/NPLdpC2zk45vuoJwUSampU72B8tAOLbCLL950B+WkSEoNHAirVwX+vbAH7LFH0iteRaT01q2DXr2gd4OBVFqz2tclaNECZs5MWj6qMUSkHP77X3jnHejQAWrUiDsaEenb1/9d+9Bwv4AsjHrYiaTE6tU+rPmvf4X9Dqzs8/PkD6FUBY9Iyr3+Onz6KXTuDJX/9xGYbSjAKidFUq5nT6hdG67/9yp46SU47LAN5VflpEhK/fYb3H8/3HH0W9T8chLcfDOccEJSK15FpPSefRYWzfiVC5c+gJ19Nuy9d9JfQ40hIuXQowfUqwdXXhl3JCIyfz488ghcfDHseF4LuPbaTXfShaVIyowYAfPmQdeuQPfusMMO8PLL6mEnEpMePaBxY7iw5UJ48EE4/3x49VXlpEgMZsyAp5+Gq66C7UY/4gXZe+7xXFROiqTcAw/A0qVw4+oe0KiRX1SKSCzy8rzcetcOD1B15VIfFbIZVNksz9giJCAAACAASURBVCqSwaZMgbFj4c47Yaut4o5GRAYMgDVrvMcr69bBiy/CXnvBnDk+NZYaQkRSZu1aX7/niCOgRa2P4T//gT594KSTvIediKTUe+/BBx/AffdBtQcGwKpV0KUL7LefclIkBr17+2DJDtf9Dkf3hmOP9RsoJ0VSbMUKv5Zsf8SH1PnveG+YrF497rBEstaYMfDD1BVcsdUAOPlkOOSQzfI6agwRKaMePbwRpG3buCMRkSVLYPBgOOccaNoUGPk0fP+9Tzmw9da+Rsjw4WoIEUmRp5/2upz77gPL6e7DKK+6Ku6wRLJWTo4PzrrsrCWwz33wj394Q4iIpNzcuT568rLLoOGbj/kDmsJVJDYPPwwLF0LXvXrCdtvBFVfEHZJI1spf467zdg9TY9Ei77yzmagxRKQMpk3z+es6doRtt407GhG57z5YtiwaPbl+vU/J06wZnHaaz4muHnYiKZOX5/OgH3QQnNLoUx+RdffdUKdO3KGJZKWJE+HNN30RypqPRCfMW2+NOyyRrNWvnxdXO7ZbC3/vCYcf7msTiEjK/f6752SbQz+n3odRmbV27bjDEslab70FUyb9zvi6feG44+Avf9lsr6XGEJEy6N3bR022bx93JCKyfDkMGgSnnuqVrzz9rLdYPv+8N4SISEqNHg3ffAOjRoH1yPHRWdddF3dYIlmrZ0+oWxeuvmApHDTQT5jNmsUdlkhWWrAAHnoILrgAdvvwyYRhlCqzisTh8cd9cFZO017ecaewdSdFJGVycuCGuo9T+9efoOuIzfpapVpA3cxamtm3ZvadmXUuYp/jzewzM5tqZu8mN0yR+M2e7SfMyy+HHXeMLw7lo4gbOhQWL45GT+bleW+e/feHM89MaRzKSZENw5qbNoWz950KL7wA11/vNbEpppwUgalTvYHy+uth6ycf9Hklu3VLeRzKRxE3aJAv2dO543qfd/ngg+GUU1Ieh3JSxJeZ7NULzjxgOg3eexauuSa2qT+UkyIwYQJ88O46ulTuBc2bb/ZRkyWODDGzysADwInAHGCimY0JIXyVsE9dYDDQMoQw28x22FwBi8SlXz//t2PH+GJQPoq41as9J//6V1+omedegK+/9i7plUrVzp8UykkR9/rr8OmnMGwYVO6V49MM3HBDyuNQToq4nj09Da+/bAU07w9//zv86U8pjUH5KOJ++w3uvx/OOgv2/eJZmD49lpHMykkR9+yzMGMGvH1CH+y7anDjjbHEoZwUcT16wGVbPUvdRTPgkf6b/fxYmhqjPwPfhRBmhBDWAKOA0wvscz7wYghhNkAI4ZfkhikSr/nzfXGtiy6CXXaJNRTlowi++OS8edC1Kz4qpHt32GcfOPvsVIeinBTBC7CNG8OFf54GzzzjPezq148jFOWkZL0ZM+Dpp+Gqq2C7Fx/2+XniWStE+SgCDB7sDSJdb8nzYZQxjGSOKCcl6+Xlebn1b3v9yK7vPgaXXRbn1B/KScl6n34Kr72ax921evj58bTTNvtrlqYxZCfgx4T7c6LHEu0FbGtm481sspldXNgTmdkVZjbJzCYtWLCgfBGLxGDAAFizBjoXOmgxpZKWj6CclC3T2rW+fs8RR0CLFsCYMTBlireMVK6c6nB0jpSs99578MEH0KkTVOvfE6pVi3NxLeWkZL3evaFKFehw7Wro0weOPx6OPjqOUFRulay3cqVfS550Ehwy6yWfw65r15SOZE6gc6RkvTFjPA3v360/FkK8U38oJ0Xo0QPOqzmGHX6ZCrfckpLzY2kWUC9sbEoo5HkOA/4G1AQ+MrP/hhCmbXRQCA8BDwE0b9684HOIpKUlS7w3zz//CXvtFXc0yctHUE7Klunpp33NyXvvBSPAXXfBnnvCeefFEY7OkZL1cnJghx3g8hNmQruRvgBlgwZxhaOclKw2d66Pnrz0Umj4+nD4+WcYOTKucFRulaz3cDQ4q8stAW7o7otrnXNOXOHoHClZLQSveG2+6wL2fu8huOAC2HXXOENSTkpW++YbeOH5wOyGPaDh7nDuuSl53dI0hswBGifc3xn4qZB9FoYQVgArzOw9oBmwSSFWZEtz//2wbJk3UKYB5aNktbw8nwf9oIOgVStg3DgfVzl8uHeDTT3lpGS1SZPgzTd9EcoaA3v56Kx4e9gpJyWr9e8P69dDp3Zr4P96wZFH+gJb8VA+SlZbswb69oVjj4Wjl766ocya+pHM+ZSTktXeegsmToTJJw3CZq+Gm2+OOyTlpGS1Xr3g5GpvsfPPE2Ho0JTV6ZRm7MlEoKmZ7WZm1YDzgDEF9nkZOMbMqphZLeBw4OvkhiqSesuXw8CBXunarFnc0QDKR8lyo0d774EuXRJGhey2m/fqiYdyUrJajx5Qty5cc9ocr+Bp0wZ23jnOkJSTkrUWLvTryAsugN0+GAmzZ0O3bilfpDmB8lGy2uOP+2itrl0C3H03NGkSZ5kVlJOS5XJyYO8Gv3HIh/fDWWfBvvvGHZJyUrLWzJnwxBMwYIce0KgRtG6dstcuscklhLDOzK4D3gAqA4+GEKaa2VXR9iEhhK/N7HVgCpAHPBJC+HJzBi6SCg89BIsXR4s0pwHlo2SzELwA27RptE76G294156HH4aqVWOKSTkp2WvqVG+g7NYN6gzp693RY15cSzkp2WzgQFi1CjrftA7O7AmHHQYtW8YWj/JRstm6dd7j9bDD4MRKb8PHH8OQIbGVWUE5KdltwgR49114/5QHsXG/pcXUH8pJyWZ9+8JRfEjTOePhnnugevWUvbaFEM9Ucs2bNw+TJk2K5bVFSmP1ath9d+8s8PbbyXteM5scQmievGdMDuWkpLvXX/fFJ4cNg0vbBPjLX7y73fTpvmBzOSgfRcrvoou8MWT2xPnUO7SJr9szfHiFnlM5KVI+v/3m056fcAI8f8YTGxL0jDMq9LzKSZHyefppOP98ePFFOHPQ8fDdd/D99xWq7FE+ipTfKafAFx+vZJY1wQ471C8uK0g5KVI+P//sE3z8b4dWHLTyvzBrFtSuXeHnLW1OxjLBusiWYMSIuNecFJFEOTnQuDFceCHwzjvw0UcweHC5G0JEpPxmzPCKnnbtoN7w/j4xehr0sBPJVoMHe4NI11vy4MIcOOAAOO20uMMSyUp5eT6N5P77w+n13vfu6IMGpbTXq4hs8Omn8Oqr8HqrR7FXFvicyyISm3vugf3WfMZBP47zaSST0BBSFmoMESnEunXQuzccfnica06KSL733oMPPoD77ovaPu66C3baCS69NO7QRLJS796+/utNbRbB4YPh3HNhr73iDkskK61cCQMG+OjJQ2a84ItrjRoFlUqzPKSIJNvYsfDllz4XeqWcu2GHHeDyy+MOSyRr9ewJ29VZw4mf9vHZBY45Ju6QRLLW4sXw4IPwVuMesKQOXHddymNQY4hIIZ5+2hfzuffeONecFJF8OTl+HXnZZXjvuvfe8wRVDzuRlJs710dPXnopNBg1EFasSJ/FtUSy0MMPw4IF0OWWANd1h733jhbXEpFUy1/jbvfd4dwmH8N//gN9+kCtWnGHJpKVvvkGnn8enj35KSqN+xEeGqJKHpEY3Xsv7LTiWw5f+TzcfDPUrZvyGNQYIlJAXp73HDjwQJ9XUkTiNWkSvPmmL0JZsyY+KqRBA/WwE4lJ//7RWulX/QrH3gtnneVzgYhIyq1Z4wtQHnssHL1kLEyZAo895kO3RCTl3n4bJk6EoUOhSq/uUK8eXHVV3GGJZK1evaBW9fWc8W0vaNbMh1GKSCyWLfPGkOca98IW1oAbb4wlDjWGiBTw0kvw9dc+OkSzC4jEr0cP7yxw9dX4XFnvvOOTTNasGXdoIlln4UKv4LngAth17P2wdCncemvcYYlkrccf99Fajw4L0K27r0Z5/vlxhyWStXJyoFEjuKTZp3DlKz4Xep06cYclkpVmzvTp6h7++2iqvPotPPOMRoWIxGjIEKizZBYtlj4B117j03/EQI0hIgnyhzU3bQr//Gfc0YjI1KkwejR06wZbb41fUO6wA1x5ZdyhiWSlgQNh1Sro0nYZ/H2AD6E85JC4wxLJSuvWeY/Xww6DE8Ob3h39oYegii7xROLw4Ycwfrz32anWNwe22Qbato07LJGs1bcvVLLABbN7eCXPP/4Rd0giWWvVKp9hYGjjvlSaZ3DTTbHFopKySII33oBPPoFhwzS7gEg66NULateGG24APv7Y58vSvMsisfjtN7j/fp8Va+/cIb76XbducYclkrWeew6+/x5efCFg3e+Gxo2hdeu4wxLJWj16QP36cOXRU6H9Cz5ycptt4g5LJCv9/LPX6/T52xtUe+NTVfKIxOzRR4H58zi16iNw8cVebo2JGkNEEvTo4fl44YVxRyIiM2b4dHXt2sF22wGt7/b/XH113KGJZKXBg71BpOuNK+GsfnDiiXD44XGHJZKV8vK83LrffnB63XdhwgRvraxWLe7QRLLSZ5/BuHHQvTvUGtjDe/O0axd3WCJZa8AAWLsWrlykSh6RuK1d631a+zUagM1b6wunx0grIohE3n/fbx07lvM6MjcXmjTxf0Wkwnr39s477dsDkyf7FWb79rDVVnGHJpJ1Vq70i8qWLeGQyY/AL79orRCRGI0dC19+CbfcApVy7oYGDeDSS+MOSyRr9ejhU7q2bTkdRo2Ca66JevOISKotXgwPPgi3tXifmpMqUskjIsnw5JOwdPYSzlsyGDvnHJ+2LkZqDBGJ5OT4UgSXX16Og3NzoVUrmDXL/1WDiEiFzJ0LI0Z4vU6jRvhaIXXrwnXXxR2aSFZ65BFYsABu7fi7d+s59li/iUjKheAVr7vvDuft8iG8845X9NSsGXdoIlnp22/h+efh2mth6wd6eqVrhw5xhyWSte69F5Yvh/are8D228Nll8UdkkjWWr8eevaEHg3uo8qq5d6TJ2ZqDBHBO52/8QbceGM5riPzG0JWrvT7K1eqQUSkgvr395Nmp074vAMvv+wJuvXWcYcmknXWrPEFKI89Fv4yfYS3VmpUiEhs3n4b/vc/n2GgSq/u0SIFV8YdlkjW6tULatSA9mfNhJEj4YorYMcd4w5LJCstW+aNITce9wl1Jrzu15Bab1IkNi++CHOnLefS5YPg1FPhoIPiDkmNISLgvevq1vXRzGVSsCEknxpERMpt4UIYOhTOPx922w2ffHnrreH66+MOTSQrPf44zJkDXTut9Rqfww+HE06IOyyRrJWT46MmLzlwMrz2mk8hWbt23GGJZKVZs+CJJ+Df/4b6w3pDpUo+UktEYjFkCCxZArdW7unXkGWu5BGRZAnBy63dth9K9eWLoUuXuEMC1BgiwldfeUtl27bl6HTeps2mDSH5Vq707SJSJgMHwqpV0ejJL7+EF16AG27wFksRSal167z947DD4MRfnoSZM31UiFncoYlkpQ8/hPHj4aaboFqf7n5uvPbauMMSyVp9+vgp8eYL58Kjj/r13847xx2WSFZatcpnGGhz5DfUy33Bp1jeZpu4wxLJWq++Ct98vpq2a/rBX/8KRxwRd0iAGkNE6NXLO9PdcEM5Dh4+vOghl7Vq+XYRKbXffoP774ezzoJ998W7EWy1FbRrF3doIlnpuefg+++ha+f1WM8ecPDBcMopcYclkrV69IhmxTpqCrz0khdgNYWkSCzmzYNhw6B1a2j0ZF/Iy4POneMOSyRrDR8O8+dDzja9fe66clXyiEgy5I8K6VBvBLV+mwddu8Yd0h/UGCJZbcYMeOopn2Z5u+3K8QQtWvg4zIJq1YJXXvHtIlJqgwd7g0iXLsA338Azz3iPnnr14g5NJOvk5XnF6377wemrn4Hp0zUqRCRGn30G48Z5/4BaA3pAnTqaQlIkRvfcA2vXQpfL5vscrxddBE2axB2WSFZau9ZHap156CwavBXNXbfDDnGHJZK13n0XJn60lputt0+znEb1o1XiDkAkTn36QOXK0KFDBZ7k+ee914GZj8tUQ4hIuaxcCQMGQMuWcOihwEU5ULOmz4UuIik3dqzPVDfysTwq9cyB/feHM8+MOyyRrNWjhw8CaXviN9DtWV9BXZ0FRGKxeDE8+CCcey7sNvoeWLMmmuNVROLw5JO+hs/4A/thU/D5JEUkNjk5cNU2o9h60UwYfm9adajTyBDJWj/95MMoL73UF6Esl//8B8aMgTvu8K56u+6qhhCRcnrkEViwIBo9OX26D9u65hrYfvu4QxPJOiF4xevuu8O/aoz2Bba6dvWFYUUk5b791vvfXHstbP1AT++Io84CIrG57z5Yvhy6XbMIHngAzjsPmjaNOyyRrLR+vU9//tf957PrW4/AxRdD48ZxhyWStf73P3j7rTzuqN4TDjoIWrWKO6SNlOqK1sxamtm3ZvadmW0yCaaZHW9mv5nZZ9HttuSHKpJc/fv7SbNTp3I+wbp1cOONXlPUrp03gMycudkbQpSPkonWrIG+feHYY+Hoo/Fa2GrVtogePcpJyURvv+2F2Js7BSr37O4VPOecE3dYpaKclEzUq1fU/nHGDO/+etVVW0RnAeWjZKJly2DQIDj9dNj3zUGwYkU0x2v6U05KJnrxRe80cH/Tgdjvv/vIyS2EclIyUY8ecGHtl9jul6991GQajQqBUkyTZWaVgQeAE4E5wEQzGxNC+KrAru+HENKrqUekCAsX+lIf558Pu+1WzicZOhSmTvUzb/XqSY2vKMpHyVSPPw5z5vjoEGbMgJEjoW1b2HHHuEMrlnJSMlVOjo+abLPDOF+oYPhwn1cyzSknJRPNmgVPPOGDJes/0guqVIGOHeMOq0TKR8lUQ4bAkiXQ7frf4Kx74R//8Kkk05xyUjJR/iLNzff8lX3efgD++U/Ya6+4wyoV5aRkoi++gJdfDsxtmAMN9/ScTDOlGRnyZ+C7EMKMEMIaYBRw+uYNS2TzuvdeX96j3NO6Ll4Mt90Gf/0rnHFGUmMrgfJRMs66dd7j9bDD4P/+D+jZc4up6EE5KRnoww9h/Hi4qUOgau/uvhjsBRfEHVZpKScl4/Tt6x3qOp8/G0aMgMsvh4YN4w6rNJSPknFWr/YZBk44AQ776H747bdojtctgnJSMs5rr8Hnn8PQgx7Ali3b0tbuUU5KxunVC86o8QaNfv4EOndOyw51pWkM2Qn4MeH+nOixgo40s8/N7DUzK7RbhJldYWaTzGzSggULyhGuSMUtXepzvJ51Fuy7bzmf5I474NdfYeDAVA/3Slo+gnJS0sNzz8H33/t1pM2eBY895hU95V7MJ6V0jpSM06MHbLcdXNX0Lfj4Yy/EVq0ad1ilpZyUjDJvno+abN0aGo7s4w+We47XlFO5VTLOo4/C/PlwW/vlMGCAz4N+yCFxh1VaOkdKRskfFbL3zis45L2BcPLJcPDBcYdVFspJyShzn8gl56kmPLBVJ9h5Z7joorhDKlRpGkMKq+kNBe5/AuwaQmgG3Ae8VNgThRAeCiE0DyE0334LmONWMlOfPt6OUe5pXb/6CgYPhiuugAMPTGpspZC0fATlpMRvzRq4/XafWeD004HevX3DljPPq86RklE++ADGjfMlsWr26w477QSXXBJ3WGWhnJSMctddPoLylkt+3tAqsssucYdVWiq3SkZZvtwrXo86Co7+cggsWgS33hp3WGWhc6RklHHjoNqHuXy2uDG2cOEWs3ZPAuWkZI7cXOpf0oomzKLRwi98Fp1q1eKOqlClaQyZAzROuL8z8FPiDiGEpSGE5dH/XwWqmln9pEUpkiQ//AD9+sGFF8Khh5bjCULwGqKttvKr09RTPkpGufdemD7d87LST3Ng2DC49FJo3Ljkg9ODclIyxvr1cP318M/6udxybwN47z3vgZ6idbGSRDkpGWPKFPh2SC6/1GrC7gOv91aRzpusrZrOlI+SUXr2hL1+yuWd73fFevaAE0+Eww+PO6yyUE5KxlizBkZdmcur1ooaK5dApUr+4JZFOSmZITeX9Se1ovr6lRseGzYMcnPji6kYpWkMmQg0NbPdzKwacB4wJnEHM2tg5nMFmdmfo+ddlOxgRSqqY0efrq5Xr3I+wbhx8OabPk1WPK3tykfJGPPne5viKadAy5b4sK28vC2tokc5KRljxAjY5tNcnlraikq/zPcHmzaNNaZyUE5KRggBRrTOZWxoRb1ls+D5532tuj32iDu0slA+SsaYMQMm9c3l9cqtqD5/tq+gfvLJcYdVVspJyRijr89l6E+tqBmiyte8PJ+2Lk0rX4ugnJQtX24uoVUrKv++cuPHV61K25ysUtIOIYR1ZnYd8AZQGXg0hDDVzK6Ktg8BzgauNrN1wCrgvBBCwaFdIrHKzYUXXoDu0awfZbZmDbRvD3vvDddem/T4SkP5KJmka1c/Pz54Ti40vthbR1q39sWatxDKSckUv/0G427K5dVKraiyJqEge/bZ8Mor0KJFfMGVgXJSMsX7d+Vy92etqEVCPr7/vhdolY8iKffYJbmMXtuK6ok52bUrNGumnBRJscUv5HLq0ALnSICVK73ydQspuyonJSO0aYOtXFn4tpUroU0bmDkzpSGVxOLKoebNm4dJkybF8tqSfdatg8MO88XTv/oKatYsx5Pccw906OCjQyrQC8jMJocQmpf7CTYT5aSk0uTJ8Kc/wQNn53L1uFZ+kgQYOdLnsUsR5aOIG3JuLhc924raBS8qAWrVStlFpXJSBNa8kcu6k1pRK8Sbj6CcFAH4pH8ue9+kc2RRlI+SagvrNKH+8llF77DrrimpfFVOisDysblUOq2QxklI23JraabJEtniPfywz7vcv385G0J++QXuvNPn8tnyhkOLpJUQ4IYb4IxtcrnqlYSGEIArr0zLYZQimWzaNDjp2TaFV/LAhh49IpISK89rU3hDCCgfRVJs3TpocIvOkSLpYvJkOGf5cNZUKaJip1YtGD48tUGJZLE73m3B2TxHwDbekOKGkLJQY4hkvMWLoVs3z78zzyznk3Tr5gXde+5Jamwi2WjUKKg6IZdnVrbCVhUxtFkNIiIp0749XFNzOKFmrcJ30EWlSMrMnQvnrx7O6srKR5F08NBDcMHa4ayrrpwUiVsIcP31MHWHFtgxx2y6QxpXvopkom+/hUGD4NpmEzACVK/uG9I8F9UYIhnvzjt9fbuBA8Gs5P038fnn8Mgjvk7IvvsmPT6RbLJiBXTqBE9Wa0PVNephJxK3117z2R9b3NUCu+Lfm+6Q5gVZkUzTuTO8E1qweMRYqFTgUk35KJJS+Z3qrEULKj88dNMdlJMiKTVqFHz4IQxr8wFVc9+E88/3PATlo0gMOnSAA2p8x8lf94OLLvKLy113TftcVGOIZLSvvoIHHvCZdw46qBxPEAK0awfbbgu33570+ESyTZ8+MGcOLOo7fEPBtSD1sBNJibVr4cYboWlTuP6CRfD443DwwbqoFInJRx/BE0/4hWWjbVZAXh5UreoblY8iKXfHHfDrr1Gnumef8fmW8+dcVk6KpFR+p7o/HbKOU167Fho39qFbr7yyRVS+imSa/E51zzduh1WvDr17ew7OnJn2uajGEMlY+e0YderAXXeV80lefBHGj/cn2HbbZIYnknVmzfLGkPPOgwOvbwG33LLpTrqwFEmZBx7woc333APV7roVli6FkSN1USkSg7w8X0+rUSO45cbVXojdd1+/ylQ+iqTc1KkweHDUqW7Oq56Dd92lnBSJSX6nuqePHYxNmeKtlLVrbzGVryKZJL9T3b8bvsIeX4/zzuMNG8YdVqlViTsAkc1l7Fj4z398/rr69cvxBKtXw003wQEHwBVXJD0+kWzTqZNPVde7N7BqFQwbBk2awC+/+NRYaggRSZkFC7zH69//Dqc0+hSGDoW2bf2cB35RKSIpM3IkTJzo/2710D0wY4YXZE84QfkokmIheCXP1lvD3bf+Dse3g7339sUKqlVTToqkWH6nuqvOmMcew7t5AbbcC8KKSEXdfz/M/HY1kxu2g3328evILYgaQyQj/f67Lwi7335w9dXlfJIBA7yg+9ZbUEWpIlIR770Hzz7rla+77ALc2cfz6513fIc2bXxqLDWEiKREt24+3cCAewJ25fWw3Xa+yJaIpNyyZb5WyBFHwPnH/Aj75cBZZ3lDiIikXH6nunvvhe1GDoTp030+kGrV4g5NJCt17Oid6vpV6uSdVu+7r5wLwopIRf3yi182Dml6D7Wnfw+PvbnFnR9VwysZadAg+P57ePPNDVMtl8lPP0FODpx+Ovztb0mPTySbrF/vHel22cULsvzwA/TqBeeeu6HxQz3sRFLms898iuUbboB9P30KPvgAHn4Y6taNOzSRrJSTA/PmwcsvQ6XOnXzOrP794w5LJCsldqq76rSfYP+74bTToGXLuEMTyUrvvgvPPQfDL32f2o+OhC5dfME7EYlFt26w7fIfuXhN1HnnxBPjDqnM1BgiGWfePLg7KrOWOye7dPFJ8Pr1S2psItlo2DD4/HN45ploXeb27aFSJeWXSAxC8EaQ7baD225cBkd0hObN4dJL4w5NJCt9950PRm7dGv686l0YNcrnXW7SJO7QRLLSwIEJneq6doJ16zxJRSTl1q/3cutujddx8cfXeu+6Ll3iDkska332mfehm9z0JirN3nI776gxRDJOly7eo6fcOTlxIjz2mC9wsOeeSY1NJNv8+it07QrHHAP//Cfw+uvw0kvQsyfsvHPc4Ylkneef92nrhgyBbQfnwM8/w4svegOliKTcTTf5zAI9714HraJhlJ06xR2WSFb6+Wfo3j3qVFdrAjz5pBdkd9897tBEslJ+p7pPWj9Apce+8DJr7dpxhyWSlfI71Z1e5x0Omfasz5W1hXbeUWOIZJSJE33ZgXK3Y+Rn9447esFXRCrkrrtg0SKfus7W/O7zZe21l69KKSIptWqVV7wedBBcftx0aHuPd0c/4oi4ChlUhQAAIABJREFUQxPJSv/5j0+N1bMnNBwzFKZM8RbLWrXiDk0kK3XpAmvWQP8+6+G867zjzi23xB2WSFbK71R3xuE/c/Do23yqujPOiDsskaz1/PPw4Xtrmd/oeqjXJJoDfcukxhDJGElpx3j6afjoI3jkEdh666TGJ5JtvvnG17a7/HI45BCg1wBfgPL116F69bjDE8k6/frB7Nk++LFyh3ZQo4av3yMiKbduHbRrB3vsATdetBAO7Obr1J11VtyhiWSliRNhxAi4+WbYc/wjPhfIqFHqhS4Skzvv9E51ww7vhK1eDffeq0XTRWKycqV3quvR6AHq/TTVZ/uoWTPusMpNjSGSMZ56ytsxHn20nO0YK1Z46ffQQ+GSS5IdnkjWad/eO7d27w7MmeOL+ZxxBvz973GHJpJ1fvzRe5+ffTYcv2IcvPqqt440aBB3aCJZacgQ+Oorv5asfvetsHRpNIxSFT0iqRaCD15u0AC6Xr0YDusKxx0H55wTd2giWenrr+H++6FPq/eoN/YJuPVWLZouEqN+/WD17PncWPt2r8857bS4Q6oQNYZIRli+3KfGat7cZ/wol759vcL2qaegcuWkxieSbV59FV57zdfu2WEH4LybIC8P7rkn7tBEslLnzl7Z07f779CqHeyzD7RtG3dYIllp0SK47TY44QQ4bedP4KGHfHjz/vvHHZpIVnrqKfjvf3265Tp9usGSJeqFLhKTEHxG5W1qraXdd9fCrrtqujqRGP34o08mMK5JZ6rMXZURnXfUGCIZoXdv+Oknn8OuXGvAzp7tT3LOOb7Ss4iU25o1XoDde2+47jogNxeeeQbuuAN22y3u8ESyzoQJXtHTrRs0GT0AvvsO3njDV20WkZS77TYfCDLgnoBd1Rbq14fbb487LJGslNip7uJmn8NlQ+Caa3yBLRFJuVdf9WJq7un3U+XlL2H0aK2lJRKjm2+GP63/Ly1mjvAT5t57xx1ShakxRLZ4M2f6oI4LLoAjjyznk9x8s//bp0+ywhLJWvfdB9OmeUG2mq31FpEmTfzEKSIplZfnU3/stBN0vmguHNLdp6v7v/+LOzSRrPTFFz5F1jXXwAGfPwkffgjDhkHdunGHJpKVevWKOtU9F6h0Q1vYdlu46664wxLJSvmd6o7e42eOe+d2OOkkOP30uMMSyVoffADPPL2e2Q2vA2vkU9ZlADWGyBbvppt8VqtyrwE7YYIvjtetmw/BFJFymz/frx9PPtnLrgy4f8Ok6FvwAlsiW6oRI+CTT+DJJ6HW7R191eb+/eMOSyQrheCzYdWtC3fetAyO7AR/+pPWqhOJyQ8/+DzoF1wAR85+Bt5/H4YO9QYREUm5e++F6dMht0VH7MffNV2dSIzWr/dya4e6j7LTz5P9grJOnbjDSopSTShkZi3N7Fsz+87MOhez35/MbL2ZnZ28EEWKlpsLL7zgU0juvHM5niAvz7N7p502jA5Jc8pHSWe33gorV0ZLg8yb59N+tGy5xS+wVRzlpKSrpUv9/HjUUfCvnd+Hp5/2EVq77x53aJuVclLS1Usvedn17ruh3uDu8PPPPpyyXHO8bhmUj5LOOnb0TnV9blvuPewOPRQuuyzusDYr5aSkq/xOdTcf8S475T7p9TN77hl3WJudclLS1YgR8MMni7l73S2+nMC//hV3SElT4sgQM6sMPACcCMwBJprZmBDCV4Xs1xt4Y3MEKlLQunXQrp0P5ujQoZxP8thjMHkyjBwJtWsnNb7NQfko6eyTT3ymj/z1Qmh9M/ye2T16lJOSzrp3h19+gXFj1mNXtoXGjX0l9QymnJR0tXq1l1cPOACuOH4aHDzAR4QcfnjcoW02ykdJZ/md6rp3h0aP9YS5c+HZZ711JEMpJyWdde0Ka1eu5c5F1/oUyxleZgXlpKSv336DLl3g4Qa3Ue2XJd55J4PqdErTDenPwHchhBkhhDXAKKCwSfvaAi8AvyQxPpEiPfIITJniQ5vLNfvOsmWe3YcfDuefn/T4NhPlo6Sl/Kk/6tf3GeeYMAEef9xrfpo2jTu8zUk5KWlp+nQYOBDatIHmnzwEn3/u02Nl/gKUyklJSwMG+JQ8AwcEqtzUzguv5Z7jdYuhfJS0lN+prkkT6HD6d35BedFFPpQysyknJS1NngyPPgrPHH0f1adPhUGDsqHMCspJSVPdu0PDXz7nrF8exK65Bpo1izukpCpNY8hOwI8J9+dEj/3BzHYCzgSGFPdEZnaFmU0ys0kLFiwoa6wif1iyxKfjOe44+Mc/ynhwbq6XfK+80qfxGTRoS5qeIGn5GO2rnJSkeOYZX1wrJwfq1lnvi6bvvLN38clsOkdKWmrfHmrUgJ43LfITZosWcHZWjKpXTkramTvXz49nngl/W/UKvPYa3HEH7Lhj3KFtbiq3Slp6+OENnepqdGkP1apB795xh5UKOkdK2snvVLf/tj9x6uTb4ZRT4NRT4w4rVZSTknamTYNBAwPP7ngdVq+ez1+XYUpTA1zYOJhQ4P5A4OYQwvriniiE8FAIoXkIofn2229f2hhFNnHnnd4gMmhQGUdq5eZCq1Ywa5bPnX7iiVva9ARJy0dQTkpyrFzpcy4fcghceim+8ORnn3kv9C1g+rkK0jlS0s7rr8Mrr/gorR3v7+bjnDN4uroClJOSdm65Bdauhf45q707+r77eqeBzKdyq6SdxYv9/Hj88XBWzddg7Fi47TZo2DDu0FJB50hJO88845MKjN6zI7Z2bTkqebZoyklJOx06wMVVnmKv+R9Az56w7bZxh5R0Ja4ZgrdMNk64vzPwU4F9mgOjzH+w6gMnm9m6EMJLSYlSJMFX/8/efYdXUW4LHP5NEgIEpCpYqNLFIwhIU4RIh9BEEaQGEJEuvXdBkS4gPfTee98iIEoXBOm9SO8JqXP/WOSCFE1w7z07mfU+z7lK9h5Y3nOWM/Ot9X3rEIwaBU2axHKnVnQhJDj40c+2bpWf+/s7PU4X0XxUHmfQIDh/HmbNAu8bV2U3iL8/fPqp1aG5g+ak8ijh4TK3J2tWaF18H3QeJ4uub79tdWjuojmpPMqvv8poui5dIPPioXDyJKxbBwkSWB2aO2g+Ko8T3VQ38vtQjM9bQ/bs0pZuD5qTyqPcvy9NdY2z/kTWHbOkMJkli9VhuZPmpPIoa9bATyvucilZB3i7wMNu1/gnJsWQnUA2wzAyAxeAmsDfBiyYppk5+u8Nw5gCrNDEVK5gmtJQ99JLsdyp9axCCEBIiPx8xYq4UhDRfFQe5exZOVXgs8+gWDGgSTeZxxPPBmz9A81J5VHGjIHDh2HZUhPfdi0hVSo5jsc+NCeVx4iKkjXW116DbvXPQ76HZ2WVLm11aO6i+ag8yqFDMHq0nJb8v00jZMDW6tVyTJY9aE4qjzJoEPx1PpzhmewzNP0JmpPKY4SHy3rr0JT9SHrzEoxaHJdGCsTKvxZDTNOMMAyjBbAW8AYmm6Z50DCMpg8//9fzXZVylhUrYP16GQobq51/gYFPF0KiBQfL56dPOyNEl9J8VJ6mY0f566BBwM6dMHGi3EFz57Y0LnfRnFSe5OpV6NULypSBgLuzZffjhAnxcmvz82hOKk8yYwbs2AHTpkGS3h2kOjJ0qNVhuY3mo/IkjzfV9W92EYr0k7kE5cpZHZrbaE4qT3LmjLxDBuUdSZJ9h2DZMkic2Oqw3EpzUnmS0aOBI4dp5DNc1kjj1kiBWDFM88nj6NyjQIEC5q5duyz5s1XcFBoqp3z4+MjAu1idLvC8nSEAfn5u3RliGMZu0zQLuOUPiwXNSRVbW7bAhx/K4mvvnlFQpIg81R49CsmSWR1ejGg+qvjkq6+k9nFg+z1yVc0h7ei//Qbe3laHFmOakyq+uHsXcuSADBngl4Gb8fqohBz/0aePxZHFjuakii+WL4fKlWUcQauddWHePNkqEoeO5NF8VPHJZ5/B7mUXOOqdEy//EpKkcYzmpIovrl6FbFlNNiYoR76I3zCOHIG0aa0OK9ZimpMxOSZLKY8wciQcPy5n2MX6mGV/f2jVCr799u8/d3MhRKn4IjJSUipduoe7Q6ZMedT+GkcKIUrFJ7//DuPHy3iQXIu+gYsXYeHCOFUIUSo+GTAALl2CxfMj8GrWSqoinTpZHZZSthQaKvO0cuWCZnm2QesZ0LVrnCqEKBWf/Pyz1CP3v90er2MPh6YrpSzTowd8dG8p+aPWyVE8cbAQEhtaDFFxwl9/Qb9+srmjbNkX+A3OnJGD1HPnhlOnZIeIFkKUemGTJ8O+fTB7NviF3pQFnvffhzp1rA5NKdsxTZlLkDIl9K17DIoOgfr1oXBhq0NTypZOnJDTsOrVg0L7xsmW5gUL5NlTKeV2I0ZIXq5ZGYnP1y3hjTekGKKUcrvoproarzj43x9zZLbdm29aHZZStrVvH0wbF8K5ZF9DhreheXOrQ3I5LYaoOKFrV3jw4AWPWY6MlLfRqCjZenn6tJx/FxSkhRClXsCtW9CtG3zwgWxvplVPuHEDRo2yy9B0pTzKwoWwebPU/JP3/hoSJXp6J6RSym3at5ddzN91uAYf9oCPPoKPP7Y6LKVsKbqprlIlKHtuIuzdK908SZJYHZpStjRpEhz8PZzNbzSHzJkfDaFUSrlddFNdr8SDSH3nNPzgkNkE8Vz8/ydUcd7OnVK36NABsmV7gd9gyBDZhzl5stxsM2eOE8PSlfJU/frBtWtyZJ2x/3dZgW3aFPLmtTo0pWwnJEQWXt95B5q8sRJWroTBg+HVV60OTSlb2rABliyBgQPh1VHd4c4dOetVmwWUskTXrnJM1vCeN6BcNxl499lnVoellC1FN9WNyDyC5Kf+lGZVmw1NV8qTLFgAZ34+TbsE38q9sUQJq0NyCy2GKI8WXaVMkwa6d3+B32DfPrmwWjVo0MDZ4SllO0eOyJpOo0aQ710TPmwhZ/P062d1aErZ0pAhchKkY00o3i3ayMTmli2tDkspW4qIgDZt5LSPr0vshaLj5SyQ3LmtDk0pW4puquvYEd6c0hNu3tTipFIW6tsXEl07z5f3e8t2rYAAq0NSyraim+omJ2uLd4SXNNTZhBZDlEebPRu2b5etlLGeyfzggcwvSJ1apsrqQ69S/1nbtnLkef/+wKxZsHWr5FeqVFaHppTtnD8v3efVq0OJvcPg+HFYuxZ8fa0OTSlbGjcODh6ExYtMErZvCS+/LGehK6XcLrqpLm1a6FH5d/jwR/jqK8iTx+rQlLKls1MdtB4WSJPXMuN9M1KHpitlsfnNHOw4W5O0XIEBAyBdOqtDchsthiiPdfOmHI2VP/8Lburo0kXeSFetkpdRpdR/smSJpNPgwZA28R1pI3jvPdkmopRyK9OEr7+WsVhD212A0v2hShUoU8bq0JSypUuXoEcPKFkSqtybCdu2wcSJkCKF1aEpZUtTpkhT3eRJJkm7tpKdzH37Wh2WUrYUtdFBmoYBJCIYLp2RBZ7Mma0OSynbujDDwSdTAvAjWBrH8+WzOiS38rI6AKWexTShSRO4cgXGjgWv2P4vdcMGGD4cmjWD8uVdEqNSdnLxIjRuDO+++/AEnr59ZSLlqFEvkKBKqf9q6lS4tsDB5cSZyNCjvpzPM3So1WEpZUtRUVC/PhS872D1wQwYbVpDgQIQGGh1aErZ0vHj0vF6KWEm6p/oKfMjv/lGdzIrZQWHg8jyASSKCn70s3nzwOGwLialbCxivYNU9R8WQkAWYD/+2FY5qStYyiMFBckgn/795V0yVm7ckE6DHDng++9dEZ5SthIVBfXqwXv3HPx2ORO+M4NkW3OjRlCwoNXhKWU7x47BvK8crPYKIPmtM7BxI9SoIYMKlFJuN2wYhK93sJwAEvx1Tp5FAwO1WUApC4SHw5AABwseBPBq6Bm8Bn4DWbNKV49Syr0cDiIrBJAgPPjvPw8OlnkhNlp8VcojOBxEVQggcZS9c1Kf0JXHOXpUZk36+8sxWbHWvDlcvgwzZshwA6XUfzJ0KERudLDMDCDBxTPyMpkwoQwrUEq5VVjYo0Wev3XYLVhgm4dXpTzJ3r2wppOD1d4BJAh7LCc7dNCcVMoCUxs4GHzkiY7Xc+dkd4hSyq2i6gfi/SD42R8GB+sOSqXc7EGtQHwjNCe1GKI8SlgYfP65rLNOm/YCDXWzZsGcOdCr1wtsKVFKPWnPHljb+YlFnqgoSdY//rA2OKVsaGoDB0OOPrbIEy0kxFbdPEp5gvv3YXgVB0ujAkgUae8OO6U8wb5hDmrNCiDJk/fI0FDNR6UsMCxPEPd5ToOqn58cCaKUcosbN6BeZBDhJHj2F2yUk1oMUR6lZ0/YvVvmTaZLF8uLz56VGSFFikDnzi6JTyk7+cdFnvBwfalUys0cDig9O/DpRZ5oNurmUcoTtG0Lfc4F4mdqTipltRs34OUOeo9UylMsXgztV/hzLGelpz/084MVK+Q4EKWUy5kmfPklnL35Et5ekeDt/fcv2CwntRiiPMamTTBokAxOr1YtlhdHRcmckMhImD4dfHxcEaJSttKmDfQ9r4s8SnmC69ehbl3olT4IM7F22ClltcWLYfx4WF8rCBIlevaXNCeVcgvTlHfIQIKITKT3SKWsduGCnKzcJPtP5DkyT5rooo8wt9miq1KeYPJkWLXgPqtS1sbr9ddh0SJb56QWQ5RHiF7kyZ5d5hPE2rBh0jI7fDhkyeL0+JSym4ULZYfW+lpBz5+9oy+VSrlF9CLPlSvQeok/RoXyT3/Jhg+xSlnl/HlZ5ClQAOqPLQKvv/70lzQnlXKbyZPl2bXMQH+8+/d9+guaj0q5TWSkrO0kDLnFqLv1MLJmlaPMV6yAjBk1F5VysyNHZC7z3NfbkvL6MZlJULmyrXNSiyHKcqYpL5RXr8Ls2ZAkSSx/g/37oWtXqFoVGjZ0SYxK2cm5c/DFFw8Xeab4w4QJT39JXyqVcpuJE6V5Z8AAyHdppaz4VKtm624epawSGQn16skIglmzwLdrezh5UhJUc1Ipt4te5ClZEtrVuwpDhkD69JA4sXxB81Eptxo8WPpUf36nOQmuXISZM2WRx98fTp/WXFTKjcLCoHZt+NhrCQEXx2N06PAoB22ck1oMUZabMAGWLIGBA+Hdd2N58YMHUKcOpEwpZxUYhktiVMouohd5wsIeLvIQBiNGyAOsvlQq5XaHD8uRdaVKQduaF+VIyDx5JEFt3M2jlFWiF3l++AGyHVoKo0fD119Dly6ak0q5WVgYfP65PKJOnWLi1bCBDA9ZvhxWrtR8VMrNdu2C7t1heMFZZP1tFvTuDe+9Z3VYStlWjx5wYfclJhqNZcG1Xz+rQ/IIOlhBWSp6kad0aXmPjLXu3eHAAXnIfeUVp8enlN0MGgQ//STHDWTLBnToBjt2wIIFkCqVzAgJCtKXSqXcIDT0sUWeyZF41a8rs3rmzJEZBdHdPEopt9i5Ux49P/0UGpQ6D3kbQr580tEDmpNKuVn37rBnjzTWvbFgBKxaJZXKPHnkC5qPSrnNvXvy3Jrv5bO0PNwMihaFzp2tDksp29q4EQYPimJ/ugYkvB4su7R8fa0OyyPEaGeIYRjlDMM4YhjGccMwnvq3mWEYVQzD2G8Yxj7DMHYZhvGB80NV8U1oKNSqJQ3nU6eCV2z3KTkcMmCkaVOoWNElMXoizUflKjt2QM+eUKOGNJ+zerW0wH71FVSvbuttlP9Ec1K5SvfusHevFCdfn/4dbNokizw5c1odmkfTnFSuEL3I89prMG5MJEad2tKWPmcOJExodXgeS/NRucqGDfD99/IqWCX9HujYUc5Ab97c6tA8muakcpXWreHksUjWpq2HV1QkTJ8OPtp//W80J5UrXL8uJ370S/MDuc+vkyMkc+WyOiyP8a//ZjIMwxsYDZQGzgM7DcNYZprmoce+thFYZpqmaRjGO8A8QN/U1T/q1g327YOlS+XFMlZu3YL69SFrVlmstQnNR+Uqd+8+WuQZOxaMixfk7vnOO1J0VM+kOalcZf36R7XIyi//IpXKmjVld5Z6Ls1J5SqtWsloEIcDUo75Bn7+WQZQZstmdWgeS/NRucq1a/KYmisXDOlzDz6oCWnSSPeAHpv8XJqTylXmz5f0W/XRUFJs2iwnCbz5ptVheTzNSeUK0XOZ0145QGevThAQIJ0D6v/FpExbEDhumuZJAMMw5gBVgP9PTtM07z32/SSA6cwgVfyz7mFhslkzaeCJtebN4eJF+OWXF5i4HqdpPiqXaNUKTp2SI7JSJouEj+vIcTxz58pxPOp5NCeV0129KvX+XLlgcPdbUPRzyJDhYaVSF3n+heakcrp582Rdp3t3+NDYAn36yMy6unWtDs3TaT4qp4te5Ll+XU7F8uvUEo4fl0pl6tRWh+fpNCeV0509C02aQO3c+yi3pZucKFC/vtVhxRWak8rpxo+H1UsecO612nhFJodJk/Qd8gkxOZjoDeDcY78+//Bnf2MYRjXDMA4DK4GGz/qNDMNo8nBb166rV6++SLwqHohe5HnrrRfc1DFnjgyO7dkTChZ0enwezmn5+PB7mpOKuXNhyhTo2hWKFQP695eqyOjRehzPv9N7pHIq04RGjWSRZ/YsE782TeDCBZg9G5Intzq8uEBzUjlV9CJPoULQs8UNqF1bul3HjLE6tLhAn1uV040bJycLfPst5D00Sx5iu3eH4sWtDi0u0HukcqrISOkL8AkPYXJobYyXX5Yk1YXXmNKcVE71558yj3lmxq68cumAdPOkSWN1WB4nJsWQZ/1b7KlKpGmai03TzAlUBZ45nt40zfGmaRYwTbPAKzrs2pZMExo2hJs3ZV0nceJY/gbnzsmZIYULy8qt/TgtHx9+T3PS5s6cgS+/lJTq2RPYvBn69pWOV+3oiQm9RyqnGjsWli+H776DPDsnyrkD/fvLSqyKCc1J5TSRkXI7jIqCWTNNEjRtBH/9JY05L71kdXhxgT63Kqc6dAjatoWyZaF1wAk59uP99x8+xKoY0Hukcqpvv5VTI38u2hnf44ekOKk7tGJDc1I5TfRc5ooJ1lH9zDA5UadCBavD8kgxKYacB9I/9ut0wMXnfdk0zZ+BLIZhvPwfY1Px0I8/wooVssjzzjuxvDgqSqY6h4fbeRiX5qNymoiIR4s8M2dCgtvXZHBIlizS8aodPTGhOamc5uBBWeQpVw5alTokkyhLlYIOHawOLS7RnFROM3AgbNkiGyXfXDcWliyRlZ/8+a0OLa7QfFROExoqj6lJk8KU8WF41a4F3t7yEGvP98IXoTmpnOa336BXLxhQfC251o+U59YyZawOK67RnFRO07UrnP/9GtN9Gsh5y99/b3VIHismxZCdQDbDMDIbhuEL1ASWPf4FwzCyGoasmhmGkQ/wBa47O1gVtx08CO3aQfnyMp8g1kaMgE2bYNgwGZxuT5qPymkGDoStW6Xu8WZmU4qN167J4eja8RpTmpPKKR48kEWel16CKT+G4PV5TVnxmTYNvGLyuKYe0pxUTvHrr9C7t+RlnTwH5MyBcuWgTRurQ4tLNB+V03TpAr//Lid+vDq6B+zcKeegZ8xodWhxieakcoo7d+T++L/XrtHpcAM5A33gQKvDios0J5VTrFsHQ4eabHizCYnuXpPRArE+isc+/rWFwjTNCMMwWgBrAW9gsmmaBw3DaPrw87FAdaCeYRjhQAjwmWmaOtRH/b8HD2S7VrJk8gAb64bzP/6QJ+DKlWVink1pPipn2b5d5r9+/rnsDmHoMFi5En74AfLmtTq8OENzUjlL586wf7+kYdrv28OBA7B6Nbz2mtWhxSmak8oZohd50qeHMYODMUp+BilTwtSpWpyMBc1H5Sxr1kg/XIsWcvwHgwbJEVkff2x1aHGK5qRylpYt4fQpk8sffonXL9dhzWpdeH0BmpPKGa5cgXr1oOfrk8h7crHsCNE1nX9kWJVDBQoUMHft2mXJn63cr3VrGDlSFnlidWSdwyHd6j4+cO+eLA7F8eE/hmHsNk2zgNVxPElz0j5u3350b9y3D5If3SnnLQcEwMKFtjoeS/NReYLVq+Xe2LIljPRfLIs77drB4MFWh+Z2mpPKE9SrJyfvbNkCRac0gYkTpeWuVCmrQ3M7zUlltStX5HjlV16BHcsvk7hwHnj5ZdkZYrPFV81H5Qlmz5aGgcWVg6i6rKEUJ216pKvmpLKaaUrP+Mm1xzjgnRevooVh/XrbNu/ENCf1cE3lcqtXSyGkVasXKIQEBEBwsPz6m2/ifCFEKU/QvDmcOyfD7pJzGz77TLrPJ02yVSFEKU9w+bLU/N9+Gwa1PAeFGsk8ggEDrA5NKVuaNUtG0/XuDUUvzIcJE2Trlg0LIUpZzTQhMBBu3YIN66JI3LS+dPVs2GC7QohSnuD0admU9Um+k1TZ1ApKlJCBd0opS4wZA2tWhHMuQ2287ibUXcwxpMUQ5VLRizz/+58MTY+xJwshIMWQIkXA39/ZYSplGzNmSLdrnz5QtIgJNZvA2bNSGUmZ0urwlLKV6EWe27dh49oIEjWqDeHhMGcO+PpaHZ5StnPqFHz1lWyW7Fb7NBT4AgoVgr59rQ5NKVsaPRpWrZJTXN9ePwzWroUff5QOAqWUW0VEyPHK3mYE0426GN7esvDq7W11aErZ0h9/QPv2MD1LH149sRPmz4d06awOK07QYohymehFnjt3ZO55okQxvPBZhRCQXwcEwIoVWhBR6gWcPAnNmskiT9euSLfrvHnSgV60qNXhKWU7P/wguyd/+AHeXtJfzuSZPh2yZrU6NKVsJyICateWv58RFI5Pvc/lYXb2bEiQwNrglLKhAwdkkadiRWheaBe830WOkfzyS6tDU8qWvvkGtm2DfZ98S6IFv8hWygwZrA5LKVuKnstcKtFWPjs1ULrQP/nE6rDiDC2GKJeJXuQZPRpy547FhYGBTxdCogUHy+enTzsjRKWcd06RAAAgAElEQVRsI3qRx8tLdob4/HlAhvmULg2dOlkdnlK2s38/dOz4cJHn7c1Qsh/UrSstd0opt+vfH7Zvl9pHpim95Rdz5kDmzFaHppTthITITIIUKSBoxB2MsjXh1VelkUePdFXK7bZtk02SvcrvIM/i3pKgtWpZHZZSttWpE5z94zY70tTByJRJZhOoGNNiiHKJ/ftlhlalSnLcQKxMnAhly0JU1NOf+flBUJBTYlTKTvr2hV9/lUWejC/fh/KfQfLk0oWuZ0oq5VYhIfL+mCIFBA2+jlG6Drz5pnQPKKXcbutW6NdPBqfXTLMJBg6ERo1kppZSyu06dpTjP9asgVd6N5cz7DZvhlSprA5NKdu5fVua6nJluE+Po3Xg9df1mVUpC61aJbWPnTmak/j4eVi6FV56yeqw4hQthiini17kSZXqBeYxm6accxcVJeelh4U9+szPT4/IUuoFbNki25rr14eaNYHGreHwYVi3DtKmtTo8pWynQwc4dAjWrDZ5pXMjGbC1fbs+xCplgVu3ZENWpkwwuvdVeL8O5MgBI0ZYHZpStrRyJYwaBV9/DWUvT5OBd336wAcfWB2aUrZjmtLcev48XKjUDu+lx+UM9BQprA5NKVu6fFkOy+mYfjYFjsyE3r2hcGGrw4pztBiinK59e1nkWbcOXnkllhd/9x2MHw+dO0OZMo9mh2ghRKkXEr3IkzmzHF3H7NlSpezaFUqVsjo8pWxn+XJppvv6ayh7YgwsXQpDhkD+/FaHppTtPL7Is22rSdKWgXDjhpzzmiSJ1eEpZTt//SXHnufJA982PAqFm8GHH0K3blaHppQtzZghr49zai8n7cxxsm2rRAmrw1LKlqKi5B6Z4vYZBvh+BUWK6P3xBWkxRDnV8uUwZgy0ayejCGJl1izo0kXOn/zmGzm6Z8UKKXsGBWkhRKlYMk1o2hQuXpRzXl+6fByaNJEJ6n36WB2eUrZz6RI0bPhwkefz/fBBOyhfHtq0sTo0pWxp+nQZC/LNN1Do1xHSkv7DD5KkSim3il7kuX8fZk8Jxbd+LUiYUIbdeXtbHZ5StnPiBDRvDpULXabGukaQN6+cvayUssQPP8C6NZGcy1oX78tRUq300WX9F6H/X1NOE73IkzevvFTGyubNUvQoXhwmT340w8DfX4elK/WCpk2DuXMlHwvmCYWin0GCBFJ41JumUm71+CLPnEn38a1bE1KmhClTdG6PUhaIXuQpXhw6ld4D73eEypXlh0optxs5EtauhR9/hFzTu8KePbBkCaRLZ3VoStlOeLjMCfH2MpmTpBHG3btSmEyY0OrQlLKl33+XjVlBuQbx+p9b5B3yzTetDivO0rdv5RRRUTKP4P592UYZq3vkoUNQtSpkyQKLF+sNViknOH78sUWeTsj/2bNHio0ZMlgdnlK2M3y4HB85bBjkHNtG5vZMnw5p0lgdmlK2Ex4uG5F9fGDG2Ht4164puTh5ciyH3SmlnGHfPnlUrVIFvsywGoYOlQfZKlWsDk0pW+rbF377DTZ8Oo7Em1bCoEHw1ltWh6WULYWucfDye5lonWgsdY/1hBo1oF49q8OK07Q1WDnFoEGwfj2MGwc5c8biwkuX5IiQRInkfOaUKV0Wo1J2ERwMtWrJJpDp08F75TIZBNuypRQelVJutWOHnAJZpQo0ST4XJk6U2Vg6t0cpS3TrJnk5fz6k+7aFbBPZtAlSp7Y6NKVs5/ZtKU6mTg2T+l/C+Kg+/O9/MHiw1aEpZUu7Bzto1D+QjMX6kH9mWyhbVndNKmURc5MDKgXwRkQw30U0w0idGsaO1ead/0h3hqj/bNo0WeSpWRO++CIWF967BxUrwvXrMhskY0aXxaiUXYSHw6efwu7dsnMyPefkCLp334Xvv7c6PKVs588/YUBpByciMzGt/CyML5tAoUJ65rJSFhkxAnZ+7+Ba0kx8srcbTJ0K3bvLVkqllFuFhEClSvDGUQcnIjOSun6AvCPOnSvNckoptzoyzkGuDgFk4gyNtjaU7rrHjzFXSrmPw0F4uQASRgQDYJgm3L0r2ynVf6I7Q9R/sny5zAkpVUoWXmNcnIyIkK1d+/fDsmWQP78rw1TKFqKiJB9XrYJlXzuo1KoBvPQShIXJS6UeQaeUW507B70+dDDrTgB+BEOzurK4M3u2vFwqpdxqxgxY0sbBau8AEt0LhgED4O23oUcPq0NTynYiIqSZzmeLg9W+AfhcCYYrZ6FdO8iVy+rwlLKdc9McpG/68JkVMMwoCA2FI0fg9dctjk4pm3E4CC8bgG948N9/HhoKAQHSUO7vb01s8YCWd9UL27JF6hn58sVy1IdpQrNmcizWmDFQoYJL41TKDkwT2raVhZ7pDR1UGhcAZ8/CwYPQqhVky2Z1iErZyrVr0P19B1OuPXqpJCpKVn9On7Y0NqXsaOVKmFLfwWqvABJFPvZieeKEPNQqpdwmKgoaN4Y7yxys9Q3AJ+yxnPzxR3A4rAtOKRu6Os9B6gaPPbNGi1541ZxUyq3u1wgkwZOFkGjBwXL6h3phWgxRL+T33+WemCmTdKEnTRqLi7/9FiZMgK5doUkTV4WolK0MGCBHf/zwsYPacwLkBhlt+HB9gFXKje7ehR4fOBhz7hkvlWFh+lKplJtt2yb3x+VmAIminsjJkBDNSaXcyDShY0c4M9XB2gQBJAh7IieDgzUnlXKj69chrE4gfqYuvCrlCdasgSo3ggg1nnNcpJ8fBAW5N6h4RoshKtZOnJAZWsmTw7p18PLLsbh45kwpgnz+OfTv77IYlbKTcePkuPNvSjloviYAI1hfKpWySmgofPwxdD4SSJInCyHR9KVSKbc5cEBugZOiAkmsCz1KWW7QIBgyBBa+FPj08R/RNCeVcovoMa4NCSIywXOO+tCFV6XcZvt2qF4dUmRPQ4KXfJ+eReDnp0dkOYEWQ1SsXLoEpUvLKR/r1kH69LG42OGQh9oSJWQIV4wHjCilnmfBAvjqK3mI7XI08OlCSDR9qVTK5SIjoW5d2LABDncKev7wV32pVMotTp6UBp4kScB7WtDzZ/VoTirlFhMnQufO0heXYvaY5w9l1pxUyuXCwmTRdedO6NovMd4+XrrwqpSFDh6UdZ0iLx9j7o1SeCVJAtOmSR6C5qMTxagYYhhGOcMwjhiGcdwwjM7P+Ly2YRj7H/7nF8Mw8jg/VGW1W7egXDm4ckWOxsqZMxYXHzwI1arJ3IJFi3SQ83+g+aiibdggL5NFi8K8eWAMHfL8IqO+VLqM5qQCOfajeXOYPx8GD4ayddPIwqu+VLqd5qQC+OsvKFMGHjyAtWvh1bCzEB4O3t5//6LmpEtpPqpoixbBl1/K+2TQ2FC8Ro6Qm6ev79+/qDnpUpqTCmRuT/360uC6uOtOig8oK0PS58zRhVc305xUICMly5SBrD6nWRNREu+oCFnwqVNH8jBjRs1HJ/rXYohhGN7AaKA88BZQyzCMt5742imguGma7wD9gPHODlRZKzgYKlWCP/+EJUugYMFYXHzxIpQvD4kTSxUlZUqXxRnfaT6qaDt3QtWqUpRcvhz8HtyAPn3khfLJYqM+yLqM5qSK1rOnHFnXuTO0q3ZStlFqN4/baU4qgNu3ZcH10iV59Mx9ZBE0bAilSskkdc1Jt9B8VNEcDqhVCwoVggVzIvANrC2rsJMmyeHompNuoTmpQGqQrVpJ3WNKqz1UHlUGUqeWRK1RQxde3UhzUoE0nJcpA8nvXWCr70f4BN+VQshbD/+n4O8v1RLNR6eJyc6QgsBx0zRPmqYZBswBqjz+BdM0fzFN8+bDX/4KpHNumMpK4eFyT9y2DWbNkvfIGLt7Vw5qvnFD3kYzZnRZnDah+ag4fFjqi2nSSLdrSu87supz5Ig8tK5erS+V7qM5qRgxQsZgNW4MA1pclELIgwewfr1287if5qTNhYRA5cpw6JB0ohe+u/7RKuzixXJuluaku2g+KnbvhipV5ICAFcuiSNLmC1i4EIYNkyNc/f01J91Hc1LRpw+MHg1D6+2j/vRSMgzW4Xh0BrouvLqT5qTN3Xm4lBN27jK7UpTE9841WeTJoxuAXMknBt95Azj32K/PA4X+4fuNgNXP+sAwjCZAE4AMGTLEMERlpagoaaRbuRLGjoVPPonFxRERUkXZv19a199912Vx2ojT8hE0J+Oic+dkndXHRxrqXkseDOUrwZ49suoTXa1csUJeMIOC9EHWtfQeaXMzZkCbNjI0/cf+1zFKlpH2no0b4e235UvRL5XKHTQnbSwiAmrWhC1bpIGn7Eu/QOmH2yhXroSkSeWLmpPuos+tNnf0qDTwpEoFa9eYpOrfFqZMgV695OYZTXPSXfQeaXOjRkkxpEfVA7RZWUp2MW/apE2r1tGctLEHD6RZ4ML+6xxLXxq/K+ekEBKro3jUi4hJMeRZB9Cbz/yiYfgjyfnBsz43TXM8D7d0FShQ4Jm/h/Icpgnt2slCT//+csZrrC7+6ivZ9jx+vDwFK2dwWj6C5mRcc+2abJ+8cwc2b4as6UOhanVZ9Zk5U1pho+lLpbvoPdLGVq161NQ6c+xdfCqWh+PHZXeWPsRaRXPSpkwTvvgCli2TjteauX6H4hXkDPR16/SYVmvoc6uNXbggDTwgGyXfmNRXtlK2bi3FEGUFvUfa2OzZ0LIltPjoEH22lcRImFB2hLz5ptWh2ZnmpE1FRMjG5T0/3eZk5rIku3hUGnc+eO5jkHKimBRDzgPpH/t1OuDik18yDOMdYCJQ3jTN684JT1lp4EAYPlyeV7t2jeXFAwbAxInQrZu8mSpn0Xy0qbt3oUIFqW+sXQt5346Azz6XguOECXInVVbQnLSpbdtkt+Q778CS2SEkqlH50Q4t3Y1lJc1JGzJN6NBBGs5794ZmpY5CsTKQLJmcuZw2rdUh2pXmo03duCENPDdvwk8/QbaVwyU5GzSAoUPBeNb6n3IDzUmbWrMG6tWDuu8dZuTBjzC8vaUQkjWr1aHZneakDZkmNG0K65fc42jmCqQ+v1+GM5csaXVothGTmSE7gWyGYWQ2DMMXqAkse/wLhmFkABYBdU3TPOr8MJW7jR8vdYw6dV7geXXGDOjeXS7u189lMdqU5qMNhYbKETx79sDcufDhBw/Pr1u0SM5bbtzY6hDtTHPShg4ckHFY6dPD6mXhJPviM9muNXXq33doKStoTtrQoEEwZAi0aAE9G5yVIyNNU9rR9egPK2k+2tD9+1CxIpw4ITu18v0eBF9/LQ+zEyaAV0yWIJSLaE7a0PbtUL06VMh2jCnnPsIwTSmEZM9udWhKc9KWunSBmZNCOJCxEq+f/U22bVWoYHVYtvKvO0NM04wwDKMFsBbwBiabpnnQMIymDz8fC/QEUgNjDFk1jzBNs4DrwlautGCBVCkrVoTJk2P4vOpwyFkhLVtKZvv7w6RJ2vXjZJqP9hMZCXXrSmPrlClQuZIJzVvA9OlSbHz8vGXldpqT9nPqlMxfTpIE1q2JIk3HBjIXa/RoqF3b6vBsT3PSfiZNgs6dZYPkiK6XMUqUlvMkHQ7IkcPq8GxN89F+wsJk0XXHDpmRXuL6QmnaKV1aBvn4xORgCuUqmpP2c/CgrOsUfuUEi2754xURLtu1cua0OjSF5qQdDR4Mw74LZU+Gj8l0drOs61SvbnVYtmOYpjVHyRUoUMDctWuXJX+2er6NG6Ug+d57cryyn18MLnI4pEU2OFh+nSkT7N0LKVK4MtQ4yzCM3Z5489Kc9DzRo3fGjZObZru2JnTqBN9/Dx07wrffasHxP9J8VLFx+TK8/74c/7HlZ5PcY5rDjz/K0ZBdulgdXrygOaliY/FiOa6udGlYNvUmvmX94dgxeYh9/32rw4sXNCdVTEVFSU/AnDlSpGz4xlqoVOnRi2WSJFaHGOdpPqrYOH1aboXpwk+xLUFxfEKDZVj6O+9YHVq8oTmpYmPKFPgiMJxtb9Sg4IUlMlqgUSOrw4pXYpqTukdV/b+dO6FqVWmiW778BQshIKtFe/e6LE6l7KJnTymEdO4M7doB/ftLIaRZMy2EKOVmt2/LjpBLl2Rweu5Z3aQQ0rGjJKlSyq0cDqhZEwoWhIXT7uNbrSIcOiQVEi2EKOVWpgmtWkkh5LvvoGGObVCtGrz1lgyE1UKIUm515YrM7Ul97wxbEvjjE3JPjhrQQohSlli6FJo0imTdq/WkEPLDD1oIsZAWQxQAhw9D+fLwyisynDllyhhc9KxCCEBIiPzc4XBJrErZwciRUvto3Fiazhk+XKoj9erJjVMLIUq5TUiIjAI5dEhG9RTe/B0MHAhNmmhhUikL7NkDVapAtmywclEoSepUg98enrlcpozV4SllO337ymmR7dtDxzL75FyedOnkxVJPC1DKre7cgXLlwDx7jh1JP8L3/i2ZoZU3r9WhKWVLmzdDzRpRLErVGP+/5siwuxYtrA7L1rQYojh3Tt4bfXxkB/Nrr8XwwsDApwsh0YKD5XOlVKzNnAmtW0tD3Y8/gjFpogyerF5dzh3QwZNKuU1EhHSfb9kC06ZB2dMPt2vVrAljxmghRCk3O3pUFnlSpYK1KyNI1byWLPJMmqRnLitlgdGjoXdvefUb1PiovFgmSyZd6GnTWh2eUrby4IE0C1zff4F9qT8i0b1rssiTP7/VoSllS3v3ytzXyX4tCLg2RW6YHTpYHZbt6YqazV27Js+rt2/DmjWQNWssLv6nYoefHwQF/ef4lLKbVaugQQPw9384Z3L+bOk+L19eB08q5WamCV98AcuWwahRUNOcLYN8KlaUyoi3t9UhKmUrFy7IfBCAdWuieKNXYzkWa/hwuXkqpdxq9mxo2VIWX8d3P4tRupR8sH49ZMhgbXBK2UxEBNSqBYd/usSBNB+R5M5fsshTsKDVoSllS8eOQbmyJoNpT61bD49X7tnT6rAUWgyxtXv3ZD3n9GmZERKrXZPDh0OfPpArFyRO/PfP/PxgxQpZzVVKxdi2bTII9p13YMkSSLRuGdStCx9+CAsXgq+v1SEqZSsdO8qgu969oVmGFXJMXbFiMH8+JEhgdXhK2cqNG9LAc/MmrFltkn1MG5g6VZ5HW7e2OjylbGft2ke3xdnDL+NTvrScz7N2rQyhVEq5jWlC06bwy5LLHExbkmR3LsDq1VCkiNWhKWVLFy/Kc2uHe7344u5Q6RzQ45U9hhZDbCo0FD7+GHbvhrlzZa01RiIj5YXz66/lDJ/du2UoXvS0dS2EKPVCDhyQUTvp08tza7IdG+DTT2VL8/LlTxcdlVIuNWgQDB4sx7n2/PAnycc8eTQflbLA/fvSwHPihOzUyre0l8zPatsWevSwOjylbOfXX+Vd8u23Ydm0WySuWlbOXl65Et591+rwlLKdLl1g6aSr7H+lJKnunJZc/OADq8NSypZu3oSyZaH+xYG0D+kng2CHD9dCiAfRYogNRUZKs3n08cqVK8fwwuBgaVsfOVKKIfPmyYKQv78UQDJm1EKIUi/g1Cm5WSZJIke6pjm2Tc4byJlTKiMvvWR1iErZyqRJ0KmTHDUwos5OjMqVIHNmOWogWTKrw1PKVsLCZBTIjh0wZw6U2D0E+vWDRo2kYqkvlkq51cGDUKECvP46rFl4n+SfV4RDh+TIuvfftzo8pezF4eB2qkz8+d0S9qYuRZq7J2RNpnhxqyNTyn4cDqIyZKJnMQdl/xxO77CuULs2jB2rc189jB4+bzOmKV2u8+fL+2P9+jG88MoVqZrs2AEjRkCrVn//3N9fzttSSsXK5cty/vmDBzKgOeO13fKGmS6dVEZSpbI6RKVsZfFiGdNTtixM7XgQr5Ll4OWXpYPg5ZetDk8pW4mKklEga9fCxIlQ9dpEaN9edmqNG6eFEKXc7MwZuT8mSgTrloeS9quPZZvI3LnygVLKfRwOIsoFkDwsmMV8jHHHB2PlSvjoI6sjU8p+HA7MgAC8goMZTDkS8rCbZ8oUnTPpgbQ0ZSMhIbIjZOxY6NwZ2rWL4YVHj8pZk/v3w6JFTxdClFIv5I8/pIHu0iUZnJ6bg/IimTIlbNgAadNaHaJStmGacn8c/YmD8z6ZWFJjJgkqlJZZPRs2wBtvWB2iUrZy5w70LOZgwOxMzG7ioFHSuVKpLFcOZszQF0ul3GznTuhQwMEvFzOxtfcGMnevLY07EybI6QFKKbcxNzkILxuAT1gwAF6YGF5e4KP9zkq5ncOBWTEAI1jyMSFhshOkSRPNSQ+l/63YxNmzMuJj7145WaBbtxheuG2b7Ajx9gaHAwoVcmmcStnFokUydLKsr4M/kgWS6Hh/mdYcvfCaPr3VISplG6GhMtPu2AQHq70CSBQWDI3rytl127dDlixWh6iUrRw9CgNKOxh9NoAkBJNpanmYGC4dBAsXyr1SKeU2U6fCrC8cLI4IwM8Mhmbl5OzlYcOgYUOrw1PKVkJWOfCqHEDCyOC/fxAaKkMo9ehypdzH4SCqQgBeD57Ix6goWYTVfPRIujPEBjZvhgIF4PhxGTrZvXsMTxWYPx9KloTUqWUxSAshSv1nUVEy67V6daiX3sH8BwEk+uuMVEbu35dCSNasVoeplG1cuiTPp8cmOFjrE0CiqIcPsqYJERFw9aq1ASplM6tWQbt8DsY8LIQAssBjmtI04OdnbYBK2Uh4OLRuDVMaOFga+bAQAlIISZAA8uSxNkClbObUKbhZNfDpQki04GAIDHRvUErZ2P0agU8XQqJpPnosLYbEY6YJo0ZBqVIydmDHDmkUiNGFQ4ZAjRpSRdGuWKWc4vZtmYvevz98V146Xr1CHlt4DQuTISJKKbf49VfInx9S7HWw3jcA34gnHmQfPJAbp8NhTYBK2YhpwsCBMLiig3nBAfgR/PQXatbUfFTKTa5eldNb9498olkgWni43iOVcqONG2V5Zox3S8znfcnPD4KC3BmWUrYUGSnjBz69NoZInnN0q+ajx9JiSDz14AE0bizHfpQvD7/9BjlyxODCyEiZCRI9nHLDBtkZopT6Tw4fls1Va9bA4tYOOmx+dKbk/9OFV6XcZvJkKF5chsAuSRn4/2cuP0U7epRyuXv3pAena1eY6xdIYlPzUSkr7d0ri66//ALLUwc+3SwQTXNSKZczTRg+XIqTLRJOoF9EZ4xMmSBx4r9/0c9Pj+RRyg1u3oSKFWHGd+cZl7obXkaU7JZ8nOajR9NiSDx04QKUKCELPT17wpIlkDx5DC68fx8+/li2k7RvD3PmyCqRUuo/Wb4cChaEGzeko6fqksCnCyHR9KVSKZcKD4cWLaBRIymG7Npp4lu90vMv0I4epVzq5EkoWlRmaQ0eDC/PG/P84eiaj0q53KxZMp4nKgq2boWkA7o+/4xlzUmlXCokBOrXh7ZfRzH/zY70udQEo1Qp+P13WLny0dGRuvCqlFscPAjvvQe3N+zkaLL3SB92AmPlSli7VvMxDtFiSDyzbZt08Rw8KC+VffqAV0z+W758WRJ1xQophnz/fQwvVEo9T1QU9OsHlStD9uywezd8+F4IvPXW8y/Sl0qlXObKFTk6cvRoqfmvWhBMqlZ15L5XtKh22CnlZuvXy3Pr+fOwejW0CziC0bGD3EC1w04pt4qIgA4doHZtyctdu6DAwakyNCR16qeb5DQnlXKps2ehWDFYOP0+h3JVp9qx76F5c+m0S5bs0fpNxoyai0q5waJFULgwfHRtHlu9P8QvVSLZQlm+vOZjHKOr3fHI+PGSb0mTyjno1arF8MIjR6BIEfjjD1i8WG6wSqn/5O5d+OQT2Z1Vpw5s2QLpwx+2v65eDXXrPj0EVl8qlXKZ3btlPsiOHTBzJnzf9AQ+xYrA7NkyyGfLFu2wU8pNTFN2gZQrB2+8ATt3QpngJdJqd+UKrFunHXZKudGNG1ChguRl8+awYVUYafs0gwYN5D3x4EFYtUpzUik3+flnKUreOXyRC1k+JOeRZTBypDTw+Pg8+qK/P5w+rbmolAtFRcm6TvXqJt8n78/425/hXSCfzCN4++1HX9R8jDO0GBIPhIVB06bw5ZdQsqQs9OTO/ZwvOxyQKdOjmQRbtsgD7v37sHmztLArpf6T48elY2DZMhg2DKZNg8QblstK7Jkz8vI4bZr8VV8qlXK56dPhgw9kw+O2bfB5ilXyhnnunCzudOsmH2pHj1IuFxwsTQIdOsjprNu3RpJlUlfp4smRQyqXpUppPirlJgcOSB1y82aYOBFGdT6Pb+ni8OOPkqjr1kGaNJqTSrmBacoO5pIloWjivRxMWpAUl4/Ki2XLllaHp5Tt3L4NVarAoH4P2P5mHZpe6CEPshs3yr1RxUkxKoYYhlHOMIwjhmEcNwyj8zM+z2kYxnbDMEINw2jv/DDV8/z1F3z0EYwbB507y3NpypTP+bLDIcOZz5yRv/bsKS+badLIVpL33nNr7OrFaD56tjVrJJUuX5am1jYtIzG6d5NC45tvyiJPxYryZX2pjBc0Jz1XRAS0bQv16kmBcteOKPIt7yP3wEyZ5AyQcuX+fpF29MR5mpOe68wZKUzOng0DBsC8MddI+ml5GDgQvvhCmnQyZHh0geZjnKf56NkWLJC+uJAQKYY0yvKTNO/88QfMnw+DBmkXejyjOem5QkOhcWOZbdcj73IWXy9GggSGDO+Jfn9U8Y7mpOc6cgQKFYI9qy9zKvNHFD45C775Rhpbdb5ynObzb18wDMMbGA2UBs4DOw3DWGaa5qHHvnYDaAVUdUmU6pl27JCOups3Ye5cqFHjH74cXQiJHtocHCzDDP73P/jpJ0iVyh0hq/9I89Fzmaa8L3bpAu+8IyfOZU56FcrWkq6Bxo3hhx+evmlGv1SqOElz0nNduwaffQabNslx5993u0WChnWl8Fi3Lowd+/RRdSrO05z0XD/9BJ9+CuHhkoYV0uyCAtWle2DiRGjUyOoQlZNpPnquyEjpixswQIohC3EuDLIAACAASURBVBeYvDZ7KHTqBFmzSsLmymV1mMrJNCc918WLsrbz228mK0sPp/yGdhj588uOkNdeszo85SKak55rxQqZoZXX+wD7Xg4g0V9XpUngk0+sDk05QUx2hhQEjpumedI0zTBgDlDl8S+YpnnFNM2dQLgLYlTPMGUKfPihzJb85ZdYFkIed+IE/P67q8JUzqf56IHu34eaNWV3Vo0acgxP5su/Qr588otJk2DCBO0eiJ80Jz3Q77/LDq1t2yAoCIY33E+CIgVk69aoUTB1qhZC4i/NSQ9jmtILUKoUvPKKNPNUuDRJtoiAdLxqISS+0nz0QLduyYblAQOkV8ex7C6vtfkM2reXs0B27NBCSPylOemBtm+XDVmHD4RzokwzKqxvi1GtmmzX0kJIfKc56WGiomScZOXK0OCVlTjCipLIO0IG+WghJN6ISTHkDeDcY78+//BnygLh4dCqFQQGyjvkrl2QJ8+/XBQY+OxCCMjPAwOdHqdyGc1HD3PqlMxEnz8fvvsOZs8ySRI0SqqVvr5SrWzY0OowletoTnqYuXOlyzU8XJ5ZG/jOkjOygoOl07V5czAMq8NUrqM56UEePJDHzFat5ISPXzeHkn1wE1mBLVZMjo4sUMDqMJXraD56mD//hIIFZQzIjz/C+HZHSPhhIVi4UB5kFyyAZMmsDlO5juakh5kwAYoXh7SJbnMubwBvrhsrHXbz52vjjj1oTnqQu3dlF3OPHibT8w1j+KnKeOXILk0C+rwar8SkGPKsFQPzRf4wwzCaGIaxyzCMXVevXn2R38LWrl6F0qWlu65tW2lwTZ06BheOHPn3s14f5+cnbbMqrnBaPoLm5H+1caPcE8+elRnMHZvdw6hTW4bblSsn1cp337U6TOVaeo/0EJGRcrpHzZqyKWvX9nAKzv5a9jfnzw979sD771sdpnI9zUkPcf689AVMnQq9esHiEWdJVrGYrPx06SIPsi+/bHWYyrX0udWDLF0qZ5/fvi1HSDZNuxij4HvykrluHXTsqM0C8Z/eIz1EWBh89RU0aQK1Cp9id8KivLRjE0yeLHO0vGI03lfFfZqTHuL4cWmoW7E4nN8LN6X27rYYVatKd90bWp+Kb2Lyb9jzQPrHfp0OuPgif5hpmuNN0yxgmmaBV1555UV+C9vas0cWXX/7DaZPhyFDnl/f+H+mCXPmyB02MvLpC/z8dGhz3OO0fATNyRdlmjBsGJQpIzuXd+6EcpkOyxvm3Lly7sCSJZAypdWhKtfTe6QHuHlTus4HDYKmTWHTrL94tU4pGD5cWtI3bYJXX7U6TOUempMeYOtWqUH++afM0OpdbCNe7+WHw4dh0SK5T3p7Wx2mcj19bvUAUVHQuzdUrQo5csCu3yIptqqLDCjImVN2aJUsaXWYyj30HukB/voLPvpIxteNrrOdKYcL4X3lkhQl9dQOu9Gc9ABr18oRyyEXbnApTzne+XW8NO7Mnw9JklgdnnKBmBRDdgLZDMPIbBiGL1ATWObasNTjZs6UZlbTlJfLOnVicNHJk1C+PNSqBenTS4f6unWPtlpqISSu0ny0WEgI1Ksnu7OqVpUzXrPunS93z+jOui5dtJvHPjQnLXbwoKTfpk0wfjz8WG87vkXyS5VyxgwYMUIGbCm70Jy02Nix8niZPDn89qtJ1SPfSfdAmjSSl9WqWR2ich/NR4vduSMp16cP1K8PWxZdJf0X5eDbb6Vh7uefIUMGq8NU7qM5abGdO6XJdc8e2NZiNs3m+2MkSyYvlbo2Y0eakxYyTWmmq1ABiqU9yuEUhUl1cItsax4wQNd04rF/21uAaZoRhmG0ANYC3sBk0zQPGobR9OHnYw3DeBXYBSQDogzDaAO8ZZrmHRfGHu9FRMhxkUOGyDED8+fLe+Q/Cg+XC/r0kcWfkSOhWbNH3XcrVki3QVCQ3mzjIM1Ha509Ky+Ue/dCv37QtUM4Xl06yTaRwoUlSdOlszpM5Uaak9ZatEiKky+9BD85TIruHwvFW0sTwK+/wjvvWB2icjPNSeuEhspGrPHjpR9n1tg7pGjTQLaGfPqpHP2RNKnVYSo30ny01tGj0rhz9Kj0BbQsvBPj/epw5QpMmqQz7WxIc9JCDgf3Pg2k+50gfF4rwYn6/XhtVC+Zn7VokR4baVOak9YJWSU5uTo4iF4loMfv1TG8vaXD7oMPrA5Pudi/FkMATNNcBax64mdjH/v7v5DtXMpJ9u+XF8rNm6FFCxg6NAaNrb/8Al9+CX/8IdueR4x4emHW3x9On3ZV2MoNNB/dLyoKNnRzkGtQIK8lCqL3Un8q5b8IpT6T7VotW8LgwTIwXdmO5qT7Xb8Os75wUGlxIPVyBtF9RWFe7/eVdPFUqCA7QvSYOtvSnHS/HTtgSn0HXQ4H8t7nQQR2eRXvMtXkAObBg2U7pc4isCXNR/eLiIDVHR3kGR5I9peCGL3eH/8TE6FYczkycutWHQRrY5qT7nd9gYOkNQNIGhnMUq8AvDIXxXfsBunoGT8eEia0OkRlIc1J9/t9uIPsbQN4xQxmg3c5vH6OwMiZE5YvhzfftDo85QYxKoYo9zl3Dnr0gGnTIEUK2cDRoMG/XHTzphzLM26cdMMuXQqVK7sjXKXivXXrYH4zB8NPBJCEYJZFBeB14hv44lu4exdmzZLj6JRSLhcSInX+bf0dzLkvOTn6dAWMculk0bVXL+jZU7c0K+UmJ05A165wZZ6DlQTgRzCNF5SDRV6QLBls2AAlSlgdplK2YJryGri4lYMx5+QeuSgsAK/BJWDVKihdWp5btQNdKbe4excWNHdQY3oACQkGIFFUMGzeIDuzJk7URgGl3OjgQZjZ2EG3XwNI/DAnvSPD5N3x22+1EGIjulrgIW7dgk6dIFs2mXnevr28YP5jISR6QHquXDBhgnTdHTqkhRClnGDvXjnifGBZByNOygslgNeDYPj6a9kFsmOHFkKUcoPISJgyBbJnh7VdHMx/8CgnjQcPpBDyzTcyIVYLIUq53NWrsoM5Z064s9TB2gRSCAEgLEz+88MPWghRyk22b5fTdkZUczD2/BPPratWweefw+rVWghRyg3Cw2HMGKifQQoh0fn4N3PmwE8/uT02pezowgVo3Bha/c9B91+fkZNRUVCzJjgc1gSo3E5XDCwWGirjBrJkge+/hxo14MgRGeLzjyd8PGtA+pAhehazUv/RmTNQty7kzw+Jf3WwLkEAfuYzHmCvXZMzl5VSLmOasnbz7rsy7iogiYMNCQNIFPmMnPzmG32AVcrFgoMl1bJkkYWe78o5WOkVgG/4M14qAwM1J5VysaNHoXp1KFoU0h5ysM43gMTPem5dskSGpSulXMY0YeFCyJ0bmjeHMSGBzy6EgNxQAwPdG6BSNnPnDnTvLk3n06bBosS1HzXvPElz0la0GGKRqCjZpZwzp2zoKFAA9uyRBM2Y8R8uDA+X7Vu5c8uMkJEjZUjsu++6LXal4qMbN2RHVvbssGABdOwIi1MEkuDJBZ5oISF6s1TKhXbvhlKlZATI/fswdy6MCa6Pd6g+wCrlbhERMm85WzZ5qSxZUkbUtd1TB68QzUml3O3yZVlsfestOdK1Tx+YnzSQBGGaj0pZYetWeP99+OQTSOBj8muv1aTNkfz5F/j5yZnoSimni96gnCWLNPF0en8rt4pWIHnwpedfpDlpK1oMscDGjfDee1C7tswFWbcO1q6FvHmf+KLDAZkyPeqq++UXyJdP5oNUqCBHYrVsCd7e7v5HUCreePBAZrtmyQJDh8opAkePwrdd7+DlX/z5F+rNUimXOHVK8rBAAdi/X2r+f+4Pp8at8RjBz1nkAc1JpVzANGHFCsiTR44XyJABtmyBxWMukXPEV/DXX8+/WHNSKae7dw/69oWsWWXu8pdfykmRPYtvxiup3/Mv1HxUyiUOH4aqVeWYugunw3E0msEf3nko1KcCxo0b8NVXkDjx3y/y85Obq7+/NUErFU+ZJsybJ40CrVqZBL6+ljvvFqfXhmL4HdoFAwbAsmWSg4/TnLQdLYa40f79crJVqVJyws706dL5Wrr0M77scEBAgJzZU7EiVKokrQa3b0vyLlwI6dK5/Z9BqfgiKkpyMEcO6NABihSBffsgaNR90s8eBJkzy1atYsUgUaK/X6w3S6Wc7vp1GceTI4ec5tGtG5w4FkXLtPPwfTe3rPjkyCFnS+oDrFIut2OHjPyoVEk2Ji9YAL+susUHq7pKB8HEidC0qXygOamUS0VEwLhxsjurVy8oW1YGwY5uvJe0DcpLst65A+3aaT4q5QaXLskt8O234deN91lbcSSnfLJSYlJdjKiHw+5OnJAzJVeufJSXmo9KucTmzVC4MNT8LIqAsEXcyvoeg/aX46WrJ2HECDh9WhrLK1WSHNSctDUthrjBuXMyCD1vXjnRavBgmQtSp85z5rxGF0KiO2BDQiQ5P/lEdoNUquTO8JWKd9atk5kg9erJHMmNG2HV4lDe2fxwL2WnTlCokMzi+flnGTypN0ulXCIkRE5/zJJFdoHUqwfHjpr0/3AdyUq+B599BgkTSiPA1q3Qpo0+wCrlQidOSNoVKiQdr6NHw8GdwVQ/MQgjy5swcCBUq/bow+rVNSeVchHTlAaB//1PFl6zZJHDAhZ8e5zsvWrJqQG//SbDJ48dkxdNzUelXObuXSlIZs0KSyZeY3m+XlxMkIEyK1vjlTEDLF8OBw5A/frg6ysX+ftLHmbMqPmolJMdPChLpCVLRFD42HRuvP42w89VJzm3pXHnxAlo1ervjQKak7anxRAXunVL1lSzZYPZs6VR58QJ+euTjeb/78lCyONWrYKdO10as1Lx2d69UKaMdNPduiVze3b+Es5HJydKorZqJYN8tmyRfMufXy7Um6VSThf5sGkue3Zp0ilWTHZQTvziN96oV1IS9fp12aG1b5885RqGXKw5qZTTXb366Da4YgX07AnH/wynmc94EryVTR5qixSRm+nMmbIqG01zUimn275d7o3Vqj0qimyZd4ki05tBrlzSJNCtG5w8KYPvoo/i0XxUyunCw2WTR9asMK3vKRa+3pKLCTJQfmdfvIp9ANu2yTtkQMCzO179/aUzXfNRKae4cEGOcH3vfw/IumEs11JmZ8TNeqRI7SMLsH/+CY0aPSpKPklz0ta0GOICoaFyikeWLNKkU6OGzCD4/ntIleofLjxxQg6cfN6Z6Dr4TqkXcuYM1K0rtY3du2U2yOGDkdQyZ+H19lvwxRfw2muwfr0UJD/44OnfRG+WSjmFacLq1fDuu3JLe+01+OknWD7oT3L3+Fj2N//xh2wTOXJEkvdZs7E0J5VyiuBgGS6ZJYss9DRqBMePRtEn9zxeKvzwiLpMmeT8gZUrnzHk7iHNSaWc4uhR2XBVtKi8Ho4dC39svUWV37piZM0CEyZAkybyYf/+MoTySZqPSr2YJ+a2mqacUJ47N4xvvo+Z5uec9M5GuTPj8KpVU07uWLpUElYp5XxP5OSdO9C9O+TNeo9UQUO45Pcmwx58RYrsaaRJYN8+qFkTfHysjVt5NC2GOFFUlHSa58wJbdvK8Nc9e6SpNWPG51wUGioTfkqVkjaDu3efPxBdB98pFSs3bkijXPbscqR5x45w4rjJ15kWk7BgHqhdW/Jq6VI5w65UqUed50opp9u9+//YO+8wq6qrD7+LJlUBxYYUC3YFFWssoEZRsWssQQQ1irGbLxaMiqjEEkusWEGNsSsoImoENPYSFcWKiIoNEZBeZ31/rH2ZM2dunbltZtb7PPeZOefss/c65XfW7ttktv/+sGABPPIIvPXYt+xx/4k26fJ//gOXXWYVPGecYdNjOY5TEJYvt9kDunWzQuWee8JHk5Thh73AOgeFKeqaNaucom733UttsuPUa37+GU47zRZ+feEFc4dffriQU367hiYbJ5mibu21S22y49Qvouu29u3LRzdN4He7KLceMZ4RP+zLB2zDXoueQc45x0Zk3XuvjdJyHKcwRDSpffvy5BkT2Hb92TS6cihTK7pwTcX/sdpOm9u852+8YTMJJF2LwHGq4k1leeKll6yi9X//g+7d4fnnbTqelHz+uZVAR4601dS7dIGhQ62b7JdfVp8qy+d7dZysWbwYbrnFerr+9ptN2Tr0MqXTJ8/D7/9mNbIbbwwPPwxHHukO03EKzNdf20weDz1k6/TcdBOccvhMml33d+h/q3W7O+ssmy+rQ4dSm+s49RpVy1JecIF1aN1pJ2uY3LXZ23D6BVbw7NIF7rvPOg2k6qTjOE5emD/fRi1fe62to3XKKXDJ4OWs9ey9sM1l8MMP1ovgyitTj8xyHKd2xKcrX7iQbmf14f7GXdmIL9DWa8FFw5BTT00+GstxnPwS06QsXMiBt+zD/o2a0JzF0OcgKzvutFOJDXXqIt4YUkNUbW7z0aNt/tb334fOneGBB+DYY1PUrS5ebGMs77zTFmVu0gQOOsiGOe+9d2Vhc731rJSaEL43hDhORhYvtkbJ0aNh5mMTuH7OQGbuMIJj7+rN1nNegT9eZD1bu3a1EVb9+vnQSccpID/+aB3Kv753Aqe+PZBZzUYweHBvzvvzfFa79wbY9FobHnL88TBkiDlRx3EKgqr1Axg1Cr5/cAKXThvINuuOYOjjvTlss0+Ri/8GTz5pjZH//KfVxvrILMcpGAsW2Oyso0bB7Ccn8M95A1mx2wiOvWMPNvn4CdjzbzZf1i67WE8CH5nlOIVjwgQqDuhLo0VVpytvzlI2rPgSzj0XufLKNAu/Oo6TTypemoD27UvjxVU12ZTlNBG16SJPOqlE1jn1Aa8JzIHly21NrNGj7Tdtms2os9NOVm48+eQU/nHyZBPr/ffD7Nk2KfNVV1kFUKrhzYmF7wYOtIpbbwhxnGrMmmXTl48eDePGWcFyv+YTeGpZX1ZhIVdN2h9O2MJqgNZdt3Iy9FSLaDmOU2NUbZ26hI986y3oxQSelb60ZCFjG/Wl0dwTYNtHYcYMm+rjiitsPhDHcfLO0qW2Hs+oUdYw+f33sKeYJpuzkAdmHYDc08uGM7dqZXPynHMOtGlTatMdp14yY4YV70aNsoaQxYuhb6sJPL7Y8q2Xvb0fHNLFGkG22MKE27evT+HqOAUg0bl11Cj405UDWXdZ8nVbJbFoyHXXFdlCx2lYLF5sMyaPHg2X3ns861Wk0OSKFVaG9MYQpxZ4Y0gG5s+3MuLo0VbpOmuWdZTbe28YPNimpFv70wnWaLFVpNFi4UJ47DEbBfL669C0KRx2mLWY9OqV3bQ8iYXvHMdZybRplZWtr7wCK1bYAsz9+sHArhPY4fK+yIrgOBcvtoaQU0+1DGyLFiW13XHqGytW2PSsCU1++aXt79kT7h84gT8+1JdGoUdPo8ULbf667t0tsA9pdpy889tv8NxzJrGxY22RyRYtYN994Z5+E9jnpr5I6PkqixdZ4COOsM4CPkWd4+SdL7+snEng9detArZTJ/jTn2BAlwlsc0kk37pkiZ1wwQVW0eNT1DlOXkl0bh01ynSp33zD8dxP06bLUp/k67Y6TsFIdG4dNQpeGFfBNgtf5eQmI1iTX1Kf5Jp08oA3hiTh55/hmWdMkP/5j+VL27WzjjkHH2wFytatQ+DoPHZ9+9oQkfffhwcftBLpJpvAP/4B/ft7IdNxaoAqfPBBZab1ww9t/+ab2zo9Bx8M2280m0Y33Qh/u9JqZ+Pcd5+tDeIjrByn1ixaZL5x1Cjzlb/8Yu39vXvD2WfDQQcq642/32p6liUpXH75pUXiOE5emD7dOpCPHm3Z0mXLLMt5xBFwyCGw9+5LaXHvreY0ly+vHsHYsfDxx+4jHScPVFTAO+9UNoB8+qnt794dLrnE8q09Ov6C/PNGOP/q6vlWVVtYa599XJOOkweinVvHjIHFsxdyVJMnGb3aCLoz3gLt2ht27G91OdE8qk9X7jh5J9G5ddQoa5xcb8U0Tmt9P8Ob3EcHpqIt2iBH9YOtt7bOAb6WslMAvDEk8PnnlYJ8803Lh3bpAoMGWaZ1112tsqcKSRbZ4k9/soBHHWX/77abD212nBxZtsxGfSR6m3/7rcnod7+zxSUPPrCCbnPfs7mxzh1noq2oSB3hwoU2estHWjlOjZg5M9Jr5wWT1Kqr2nquBx8M++06j9XeG2+avHZceq25Hh2nVqjaDKyJTgLvvmv7u3WDs86yBpCd1p5G4xfHwT3j4NiXrDYoFa5Jx6kVS5bA+PGmx6eftjWzGje2ZT4GDYKD9l9O1xlvm488ZZyJVjV1hK5Jx6kVP/1kHXZGj050blX6tHmNJ9caye8WP0rTRfNg1fXhzMus02rXrnbiPvv4uq2Ok2dUrb94om7nww+hJQs4c90nuHu9kWz4zQR0gSB77gkDhyKHHmr6A9hyS9ekUxAabGNIRYXNZ55oAPn8c9u/zTa2juvBB1tDZJV2jBUr4KuvKrupP/JI8grYJk3ghBN8oTvHyYF586yMmJiSbs4cW4Nnn33g0kvhwB1n0OH9FyzQ1c9b7ayIzcdz0UXWDTbecyCBD6V0nJyZOrXSR776qrm7jh1hwAA4+CCl9xof0fSlcXDnOOj/qrVitm4Ne+1ltbHDh9tUdXFcj46TM8uX2xQ7iQaQqVNt/447wrBhcGifRWzy08vI8+PgxHGVGdsuXWweyY4dLWCyUVmuScfJmdmzbVDV6NE229z8+bb0Tp8+5gIP2OYH2r39vOVbh7xoJzRqZFNEXnYZrLEG/N//eb7VcfLEZ59VVrYmOrfust63PLHtA/T+diQtv58CFa3gqCMtM7vbbtWnLvd1Wx0nLyxbBi+/XKnJ774DQTl1q1d5YIeRbDH5URr9MN/WU778cuS44yzPGsc16RQKVc34A/oAnwNTgAuSHBfgpnB8ErBtpji32247Tcv48apdutjfWlJRoTprlurkyaqvXj5eZ7buooe1G6+g2qSJ6l57qd58s+o330ROWrBA9a23VO+4Q/XUU1V33lm1VStV86uZf1261Npup34CvKtZ6C7VrxB61CJrctky1e+/V/1s+Hid276Lnr/DeG3WzKSz+uqqAwaojnp8mS584b+qF12kut12ldrq0EG1Xz/VBx9UnTGjuo0tW1bVYsuWebHZqZ/UVo9aD3ykqrm8KVNUP7hhvM5arYsO7Dp+pYS23FL1b39T/d9Ls7Ti4UdUBw5UXXfdSo1tvbXqeeeZLUuWVLXR9ejkiGvS8q0zZ6pOvWe8zu/QRa/ad7yuvrpJqFkz1f32Ux1+e4X+9PJnqjfeqNqnj2rz5hageXPbvvFG1c8+s8iiNromnRypk/nWPPvIpUtVv/tO9dPbxutv7brouduM1yZNTEJrraX6pz+pPvvUEl0ybrz5w623rtTYOuuY33zkESuQxu10TTo54D7SmDdP9YsvVN/7x3idtWoX7d+pMt+6S48F+sTh/9K5O+2tFSK2s1cv1ZEj7UTHySOuSdUVK6xaZspd43X+Gl30ir3Ga9u2ldnSE/eepu8dMlSXd93QdrZurXrCCaqvvFI1n+o4eSBbTWYcGSIijYFbgd8D04F3RORpVf0kEmw/oFv47QjcHv7WjPg6HCmGQlVUWOfwH3+s/vvhh6rbS5ZALyYwhr60YiH/btyX/w4ew3b/15t2y2bYaI+HP7C/H3xgPeoSoz5WXRV69IATT7ShIz162MIihx3mvXmcolISPULWmlyyxIYlZ9LkL7/A7hWVerzknb50PnwM2x7Vje1nPW9Te5z4oq2707gx7LyzLSTZp49pMN6LJ0Gi54APpXSKRDn7SFVbPDmZHuO6nDu3qo+8bV5f9hv0NLvsuyodPxpnPVuHheno2ra1IVt9+tjfjh2T2+l6dEpAOWtyxQrzf5k0+dNPsMvSSj2e8Xxflu81hs3796RPs/G0eHkcXB2Zjm6TTeCUU0yTe+xhK6YnwzXpFJly1iPY4MV0ekxocuZM2EMrNXnFnL5sctQYeh7RlR4/P0+j55+D48bb8JCmTW1+5auvNk1utVXqKZNdk06RKWdNqlrRL1ldTlyT8+dXzbfeMb8vJxxxFds1/YjWzz4CH8y1qa8uucSmwdpggxqb7ziFpJw1uWIFzJiRWZM//QS/W1apx3Ne6kvzvR+n15a/0uP9ETT+T1ibZ889YeilVo/aqlWNzXecfCDWcJImgMjOwBBV3TdsXwigqn+PhLkDmKiqD4Xtz4Feqvpjqnh79uyp7yYmOY4SX4cDWN60OaP73s37zXdmxgxW/mbOhOVJ1kpu0wbW7ABrrln5677wDfZ57CSaLItM2dGokVXqzJpVua9zZ2vsiP66dk2eiU1iq2dinUyIyHuq2rOG5xZEj5Bek3rAAUhkao1lTZrzRJ+7ebepafKXX6x9cM5v1U9vJLD66pVa7NABtlv2Boc+G9OjSOX8yR07WgFyv/1syp22bbO7QRGbfSilkw210WM4vyx85LOH3c2HCR/5C/wS/OSiJLNUrdKsqh7XXBN6LH6DvqNimqy8AJuOrk8f++2wg00HmS2uRycH6qImtW9fJKbJUX3v5n/NKn1kIt+6IsnsqqutWlWTPZe/wZHPn0TT5bE8q4iVTBPT0fXpA/vuC+uvn9tNck06OVCn8q0pfOQLf7ibSS2r6nHGDPhtbvV4GzeyGayiPnLbpW9wyJg0+dYuXSzP2qePVfa0aZP9TUrY7Zp0sqAu+sik+dZD7+b9VaprcsnS6lG0aB70uGZlHU/3xW9wwJNJ8q2rrAJHH23TYO2+e+oOdI6TJ+qiJpPlW5864G7ea7pzFT3++itUJKkubte2qo/suewNDh8Xy7cmWH9902N0bR7HKSDZajKb2oyOwHeR7elUb4VMFqYjkDYTW41kjQtAk2WLOfypfhyebTzzwm9qhnAVFdb94NRT4cgjoXt3aN8+e3u9N49TfIqnR1ipSYnN4zgsEgAAIABJREFUMd50+WKOHtOPo7OJQ4GZ4fdJunBqvemGD7cCYapedNnQu7cvOukUi7LwkQc/0o+Ds41nabBgehZhmzWDhx+GQw/NydQquB6d4lJ0TUoSTR7xVD+OyDaeueE3JU2YigprhLzuOjj9dNNmTXFNOsWjLHzk/g/2Y/9s46kAZoRfOhL51rvuskoez7c6dYOy0OTBj+aQb10MfBt+mWjUCI4/Hnr1yslUxykhZZFvPXJUP47MNp454fdFhnCrrGI+cq+9cjLTcYpBNo0hyXJ28fbBbMIgIicDJwN07ty5+hkDByafdirB6qvD9denPp6Kc8+1Zs1krFhhq9/ddlvu8YIv6OMUm7zpEUqkyXR6XLYMhg6FE07ILU7HKR3120cuXQrnnFO7xhDHKS51W5Pp9Lh8Odx0k4VxnLpB8fKtGfSoq6+O5NtHLlsGl15qla+OUzeo2z4S0mty0SJL1xsXnbpD3dZkOj0uWWJLDbgenTIkm8aQ6UCnyPZ6wA81CIOq3gncCTZsq1pKI0Yk7T0A2KiLxx6rWWNDp07p463t+h7em8cpHnnTI5RIk4XWo+MUF/eRjlNe1G1Nuh6d+kXx8q0Z9CjuIx0H6rqPBNekU9+o25p0PTp1lGwmUXwH6CYi64tIM+Bo4OlYmKeB/mLsBPyWaZ7XpCRGWbRsWXV/baefKlS8jlN8iqdHKIx2XI9O/cJ9pOOUF3Vbk65Hp35Rt/VYyHgdpzS4Jh2nvKjbmnQ9OnWUjI0hqrocOB14HvgUeFRVJ4vIIBEZFIKNxVbomALcBfy5xhbFxZQvERUqXscpIkXXIxRGO65Hp57gPtJxyot6oUnXo1NPqBd6LGS8jlNkXJOOU17UC026Hp26iKqW5LfddttpWsaPV+3Sxf7mk0LF6zhZAryrJdJdul9JNOl6dEqM67FI8TpOlrgmCxyn4+RIndSk+0innlIn9ajqmnTqLa7JAsfpODmSrSazWTOkNBRqHQ5f38NxakYhtON6dJya4T7SccoL95GOUz64j3Sc8sI16TjlhedbnQZONmuGOI7jOI7jOI7jOI7jOI7jOI7j1Fm8McRxHMdxHMdxHMdxHMdxHMdxnHqN2JRaJUhY5BfgmwzB1gBmFsGcbCgXW8rFDigfW8rFDsjOli6q2qEYxuRCHdNkudgB5WNLudgBdcsW12N+KBdbysUOcFuS4T6yOJSLHeC2JKNc7ID6rcm6dp+LRbnYUi52QN2ypa7qEerWfS4W5WIHuC3JqM8+EurWfS4Wbkt1ysUOyKMmS9YYkg0i8q6q9iy1HVA+tpSLHVA+tpSLHVBethSCcrm+crEDyseWcrED3JZiUU7XVi62lIsd4LaUsx2Folyur1zsALelnO2A8rIl35TTtbkt5WsHuC3FopyurVxsKRc7wG0pZzsKRblcX7nYAW5LOdsB+bXFp8lyHMdxHMdxHMdxHMdxHMdxHKde440hjuM4juM4juM4juM4juM4juPUa8q9MeTOUhsQoVxsKRc7oHxsKRc7oLxsKQTlcn3lYgeUjy3lYge4LcWinK6tXGwpFzvAbUlGudhRKMrl+srFDnBbklEudkB52ZJvyuna3JbqlIsd4LYUi3K6tnKxpVzsALclGeViR6Eol+srFzvAbUlGudgBebSlrNcMcRzHcRzHcRzHcRzHcRzHcRzHqS3lPjLEcRzHcRzHcRzHcRzHcRzHcRynVnhjiOM4juM4juM4juM4juM4juM49ZqSN4aISB8R+VxEpojIBUmOi4jcFI5PEpFtS2jLH4MNk0TkdRHpXipbIuG2F5EVInJEqewQkV4i8oGITBaRlwthRza2iMhqIvKMiHwYbBlYIDvuFZEZIvJxiuNFe2cLgWsydzsi4Qqqx2xtcU1WO+6aLI4dDc5HZmtLMTTpeiwO5aLHLG1pcJosFz1mY4trMj+4JnO3IxKuwfjIbGxxTeaHctFkuegxG1si4RqMJl2PxaFc9JilLQ1Ok+Wix2xsqXeaVNWS/YDGwFfABkAz4ENg81iY/YHnAAF2At4qoS27AO3C//uV0pZIuPHAWOCIEt2TtsAnQOewvWYJn89g4OrwfwdgFtCsALbsDmwLfJzieFHe2RLe5walyXLRYw73xDVZ/bhrsjh2NCgfmcN9KbgmXY/F+ZWLHnOwpUFpslz0mIMtrsni3OcGpcly0WMO98Q1Wf24a7I4djQoH5nDffF8a5Hf10L9ykWPOdjSoDRZLnrMwZZ6pclSjwzZAZiiqlNVdSnwMHBwLMzBwP1qvAm0FZF1SmGLqr6uqrPD5pvAegWwIytbAmcATwAzSmjHscCTqvotgKqW0hYF2oiIAK0xcS7PtyGq+kqIOxXFemcLgWuyBnYECq3HbG1xTVbHNVkEOxqgj8zWlmJo0vVYHMpFj1nZ0gA1WS56zNYW12TtcU3WwI5AQ/KR2drimqw95aLJctFjVrYEGpImXY/FoVz0mJUtDVCT5aLHbG2pV5osdWNIR+C7yPb0sC/XMMWyJcqJWGtUIchoi4h0BA4FhhfIhqzsADYG2onIRBF5T0T6l9CWW4DNgB+Aj4CzVLWiQPako1jvbCFwTdbAjiLpMStbcE0mwzVZHDuiNAQfmZUtFEeTrsfiUC56rEk6DUGT5aLHbG1xTdYe12QN7GiAPjJbW1yTtadcNFkueszKlgaoSddjcSgXPdYknYagyXLRY7a21CtNNsmbOTVDkuzTGoQpli0WUKQ3Js5dC2BHtrbcCJyvqiusYa5kdjQBtgP2AloAb4jIm6r6RQls2Rf4ANgT2BB4UUT+q6pz82xLJor1zhYC12TN7CiGHrO1xTVZHddkceywgA3HR2ZrSzE06XosDuWix5zSaUCaLBc9ZmuLa7L2uCZrZkdD85HZ2uKarD3losly0WO2tjQ0Tboei0O56DGndBqQJstFj9naUq80WerGkOlAp8j2elgrU65himULIrI1cDewn6r+WgA7srWlJ/BwEOYawP4islxVRxXZjunATFVdACwQkVeA7kC+xZmNLQOBq1RVgSki8jWwKfB2nm3JRLHe2ULgmqyZHcXQY7a2uCar45osjh0NzUdma0sxNOl6LA7loses02lgmiwXPWZri2uy9rgma2ZHQ/OR2drimqw95aLJctFjtrY0NE26HotDuegx63QamCbLRY/Z2lK/NKkFWHwl2x/WGDMVWJ/KRVq2iIU5gKqLo7xdQls6A1OAXUp9X2LhR1KYBX2yuSebAS+FsC2Bj4EtS2TL7cCQ8P9awPfAGgV6Rl1JvaBPUd7ZUr17DU2T5aLHHO6Ja7L6MddkcexoUD4yh/tScE26HovzKxc95mBLg9JkuegxB1tck8W5zw1Kk+WixxzuiWuy+jHXZHHsaFA+Mof74vnWIr+vpXz3inV9rska3xP3kdWP5eWdLenIEFVdLiKnA89jq9ffq6qTRWRQOD4cGIutFj8FWIi1RpXKlkuA1YHbQgvhclXtWSJbCk42dqjqpyIyDpgEVAB3q+rHpbAFuBwYKSIfYcI4X1Vn5tsWEXkI6AWsISLTgUuBphE7ivLOFgLXZI3tKAquyeS4Jgt/feWixxxsKQrloknXY3EoFz3mYEuD0mS56DFbW3BN1hrXZI3tKAquyeS4Jj3f2tA16XosDuWixxxsaVCaLBc9ZmsL9UyTolpXprtzHMdxHMdxHMdxHMdxHMdxHMfJnUalNsBxHMdxHMdxHMdxHMdxHMdxHKeQeGOI4ziO4ziO4ziO4ziO4ziO4zj1Gm8McRzHcRzHcRzHcRzHcRzHcRynXuONIY7jOI7jOI7jOI7jOI7jOI7j1Gu8McRxHMdxHMdxHMdxHMdxHMdxnHqNN4Y4juM4juM4juM4juM4juM4jlOv8cYQx3Ecx3Ecx3Ecx3Ecx3Ecx3HqNd4YUmaIyN9F5OzI9jQR6ZrnNIaIyJDI9tsiskU+03CcuoqI7CMioyLbI0VkQJ7T6CUiEyPb14vIoHym4TgNERHZXETejWxX8Xd5SqOriEyLbJ8pIlflMw3HKXdE5BQRuTGyPVFEeuU5jQEiMjKy/aSI9MlnGo7jJEdEVhGRT0Rk7bBdJe+ax3RWlnVFZGsReT3faThOXUREHhKRQyLbWoA0VpZzg+Y/E5E1852O45QS92dOMupcY0h4wX4WkVaRfScle5lFZA8RURG5oqhG1hAR6QD0B+4octL/AIbW5EQR2Ss4zYUiMkFEuqQJ215EnhKRBSLyjYgcGznWTEQeD89X4wVqEekd4v8tWgkVOb5LaNSZJyKTRGTX2PEOIvJvEZkjIrNF5MHIsX+IyJfh3M9EpH/s3DtF5HMRqch3pXhdIzyfRSIyP/K7JRwbEJ7d9bFzDgn7R5bE6NwZBhS7YvNa4CIRaZbriaFidkLQ4GcisneasCIiV4vIr+F3jYhINnGFTENF7NkfnySN9iLyi4i8Gtm3hoi8FtKcIyJviMjvIsdXEZEbROSHoM/bRKRpLM6k345wvGU4Z2b4RryS630sJ2I6+0msoNI6cnxk1K+JyBYi8qOI/CVsny4i74rIkmx1F56visiTsf3dw/6J+bm6gnM55tOKyZ1AP6lB4THTu50k/DnhnfhNRO4VkVWyiUtCI1HQ12wR+Y+IbB6Le1sReSW8dz+LyFmRYxOCrueKyIcicnAK+0aE92WjyL5MPvZAEfk4pPt63K5yprZajezvJiKLReRfxbS/poj5qr9hvquYXAVcWZsIROT48I6elCZMjd9ZEdlSRJ4P/ihpxZWIHC0inwatfiUiuyUJc2mwM6VPz+JaG5rvnBi+b6vE9o8M9/Kg2P4bw/4BkX3Hhnu1QERGiUj7GtqxWKrml54Jx3qJyPQaXmKxORl4RVV/KlaCqjoJmCMiB+Z6rhgp87ixsJnKnc/Fnt9SEfkoHFtTrJL6h6Cb10Rkx8i564jI0+G4SqxTY9DlI0F3M0XkQRFZNXK8sYhcEc6fJyLvi0jbXO9HoaitzjLdnxxt2Vcs3zJPLI/yciJ9qSyX/jV2zvT48y5HRGRroDswulhpquoS4F7g/Jqcn8v3UzKUX9PFJWl8tGQucx4vIu+J5Wenh+9Ek3BsFRG5J6Sb0N5+KexP6aPD9+WzcvvW50G7B4jIq+G+/iQid4lImyJeQm2ot/4shE9ZJ5sprkxajIRLVsa7RkS+C3r6RkQuip2zp4j8LxyfKiInx+y6QkS+F/OlEyXSQV+q56U+j9msUtVPX5zLPYY62BgSaAKclS6AWEXaP4G3imJRfhgAjFXVRbWNKPFRz7Qv8DTQW0TWyTGNNYAngYuB9sC7wCNpTrkVWAqsBfwRuF2qjkh5FegHJPtILcCc81/jB4JzfBorlLcFrgGeEZF2kWBPhni7AGtStbJsAXAgsBpwPPBPEdklcvxD4M/A/9JcW0PiQFVtHfmdHjn2FXBU7F3rD3xRXBNrhohsD6ymqm/mKb7G2exT1R+Bz4CD4sey4CHgfWB14CLgcbGG1WScDByCZa63BvoCp+QQ1w+xZ39fkjSuBj6N7ZsPnAB0ANqFMM9E3pMLgJ7AlsDGwLZYRVuCTN+OO7Fv0Gbh7zkprr8ucaCqtgZ6ANsAFyYLJCI9gAnAlap6Xdj9A3AF9s3MhV+AXURk9ci+46k7+l0H6A2MyhQ2y/iy8qOquhh4DvvW5Uqmdzua9r6YVvYCugIbAJdlGdcPwBGYPtbAfObDkbjXAMZhnTFWBzYCXojEfRawjqquin1H/hXPM4h1QtgwiekpfayIdAMeBAZh/vsZ4Ok0+ZVypDZaTXAr8E5BrcwvBwOfqer3tY0oFIYaZdoHoKpvA6uKSM8aptUOez6TMwStzTu7DHgUODGFDb/HfOBAoA2wOzA1FmZDTK8/5naF1WgwvlOsQnU3QEmel/oCe5aJ8E2AI7F8a2LfFtg38Djsni0EbquhSafH8ks5V4aUAacAD+QjohzLpQ9SNW+aLZnyuHFSljtVdb/o8wNeBx4Lh1tj3+vtMN3cBzwrlQ3hFZg/PTxFuldgeeENMJ+5FjAkcvwyYBdgZ2BV7H1cnOY6ikY+dEbm+5OtLUdgz+R+YD3sPl6CfbsTzALOl0hjUx3iFOBBVa31aJAc9fdv4HiJVZhnkUau38+UZc4s4kpXd5OpzNkSOBvLC++I5an/LxxrAnwH7BHivhh4VKo3aGby0X8FZqS59qKTJ+2uhn2/1sXyDetR/E4xNaXe+rMs6mRrW/+Trox3D7BpKB/uAhwrIoeFc5oCT2FaXg04CrheRLqHc4/EtLpbsPsNqj+jaF5qkyTpt40cvzzZ/UmLqtapHzANqwyYFS4e4CRgYizcBVil+Ejgilqk1wuYDpyHfdR+xF6m/bGPxixgcCT8DuFBzglhbwGahWO7ADOBTmG7ewi3adgeD/RLcr1dI9t9gQ/Cea8DW8fCng9MApZgH/Rk+4YAQ2LpvAgcn+O9ORl4PbLdCliUuJ5Y2FZYgWzjyL4HgKuShJ0O9EqR5t7AtNi+vsDk2L4vgBPD//uE+9A4y+t6GvhLkv2vAgNKrYFS/sJ93DvFsQHhHo0DDgj72mOFjGuBkbVIV7EGqS+BeVjv7w2D1uZiFQ8JnbUDxmAVu7PD/+tF7JmOVV6BFWimAP3D9iXA3bG0R0afO7Bp0Mss4HPgD7GwtwNjsYza3in29aL6N+siYESO92XjoOs2kX3/BQalCP86cHJk+0TgzWziCjZPz2DPzuGZDAReTRGmEZaBVWDNsO9d4MhImGOB78L/ab8dwCbhHVi11PoolM4wX/Zs7D27AvM3M4GTUsRzRba6o9LXDQdOC/sah32XxN/XGlzPXzE/tADLOK2FNSDMA/4DtIuEfwz7bvwGvAJsEfY3w/zfGRH7XgMuCdv9gf/E0h5CxN9hGfgnsO/D18CZsbCPA/8K79RJKfZ1pbof+iMwIcf7krVfDMf+DQyLbO8F/JRrXFg+4DRgYWTfMOCBLO3eAauY2SEW5/tYJluBjdKcv9LHAqfH3u1GWD5ir1Lprwbvdq20ChyN+bAhwL9qYUvXcO8HYoX52ViF/faY9uYAt0TCb4jlO38Ntj1IZb56Q8zHbRvRzUxC3gxraP1bLP2JRPJuwE6Yz5mDdSrpFQt7JabfRVjjW7J9A4h9w4C7gEtreI+GY3mJicmeRT7f2WC/JonrdUL+NE16z2HljPj7tQrWmedb4OdwPS1SxNGgfCfmp14DrgfGxI6NDPftJ4KvwcoOzxHJ22PfwX/HNLKUSL4oS1tSvl9kkZfKEPdIrFLwOazS7zVgbeBGTPOfAdtEwl+AVWbNAz4BDo0cux14PLJ9NfASIEDn8F43idk+MZv3kco8xfnhvj+QbF8IO42qZd2OIe1Vcrw3KfO4Gc5LWe4Mx7sCK4D104SZC2wX29cE+yZ3je1/DvhzZPs04Pnwf7vwXDcstaZSXGetdZbp/mRph4T37q9pwgwI6T5DxGdket4Z0h0Qrv8GzLdNxep3BmB+dwaR+hTgACxvNDccHxI5dlQ4f9WwvV+4dx3C9lRg11j6Gts+AeuANht4HugSDRverS+Br9PsG5nk2XwJ7JHjvcn6+0nmMmdO32JS191UK3MmCXMu8Eya65oEHB7bl9RHh2Prh2eyH7X41uf7Rx61GznvMOCjWtg0Evdnqe5N1v6MDHWy6eIii7oksizjhWv9CDgvbK8VwreMhHkHOCb8fz7waOTYFsDiyPZEUueluoa4myQ7nu2vro4MeRe7Of+X7KDYsKATqOHUT0lYG2iOPeBLsIJYP6xHyG7AJSKyQQi7AutZtQZWMbgXVvBCVV/HWsbuE5EWmJD+pqqfhXO3wipXkyIi22IF0FOwlrs7sN5o0Zb7YzDH21ZVl6fZF+dTrHEGEeksNvwt1S8xzH4LrIBLuL4F2AcqWa/WjYEVqhrtYfxhirC5IuEX37dl+H8n7L7eJzY07B0R2SNpRPZctidzr0EnNfdT2UP6aGx475I8xNsH09xOWOPknVgFZCfsWR8TwjUCRmCjgBLO7xYAVZ2FfRvuEpvS5gbgA1W9P5ybSYOtsIaQf2MjjI4Bbov1tDwWq9Bpg2UgUu2Ls1KDIa1JaTSY6B2zBTBVVedF4kmnqyqajYXNJq41xabP+VpsWqvodIWNsV6op2POqRoiMgmrRH0aa3RK9JqJa1iA9URkNTJ/O3YEvgEuE5tu4CMRqVVvs3JCRNbDMtRTYod2wBoez1HVu/OYZFS/+2Lfwh/yEO/hwO+x53kglvEdjPnKRsCZkbDPAd0wjf0Pq6RFVZdivneoiGyGZYobUzltTib9NsIKxR9i/nwv4Oww4iLBwVjjR9tEuin2xYnrd0wa/Y4JwXL1i8n0u1YYyZNVXCIyB9PgzVhhM8FOwCyxKX9miMgzItI5du4YEVmMjbidiOXFEpyDDT+flML2RBxxH5tM+1H/XWeoiVZDb9WhwF/IHzti+jkKK1BehDXCbwH8IZL/EeDvVPbw60TonayqX2GFlAdFpCXmU0eq6sRwbiatdQSexRqC2mP59SdiPc2OwwpwbbBveKp9ceJaS5dfvSASbgdsBOLwVHanuJa8vbPBT/YEOojIFLEpOm4JaSTCHAksVdWxSaK4GtN6D6yxJVEuSUZD8539se/zg8C+IrJW7Hgi73F0JPz9sTDxcs1XhAYlALEpxVK9a2m/fXnmD9jo2TWw/PUbmK9cA/NV0elqv8LKqqthIw6io/r+AmwtNp3QblgFyfFqNQ1bYXnCVOVGyPw+ro3pvwum61T7qqA24mwZ1mCHiFyQTueRU9PlcWtDf+C/qvp1soNio/6aUf3bn4pbgb4i0k5stNrhWL4H7L4vB44Qm4bmCxE5rXbm55V86CwtWepsE8xnPZ5FlBcD50gNprxLwY5YBfnqWHnwYcxHbITlUW+RylFCC7B70BarizlVwhogqvoIpt2bQj7uHqzi75dQvlqf9H72ECwffRg2CuK/WA/vKIcEezfPsC9OtF5o1wx+NjE1edrvZ4xMZc6s40pVd5OmzBln9/i5kTjWCmlOjuxL56PB8teDsfqHcqIQ2k1573LA/Vnt/VmmOtna1v+kLeOFa5qPNQ61wr6LqOrP2DdpoNj0jztj9ypRF/YwsJGIbCw2iuR4rLwU5e8hj/qaJJ/e8JuQlx4hNkImJ+pqYwjYy3mGJJ8O5ibgYlWdn6e0lmHTGizDHtoawD9VdZ6qTsY+AlsDqOp7qvqmqi5X1WlYg0W04n0IJuC3sQqmWyPH2mItnan4E3CHqr6lqivUpqhZglViJLhJVb/TqlNtJdsXZ15IH1X9VlXbpvn9O5zTGuu5G+U3rBAbJ5ewufI6sK6IHCMiTcXWMdgQGwYJNoRvH2x6irWB64DRKQQzHPsAPJ8Hu+oro2If7j/Fjj8F9BKryM45E5yGq1V1btDcx8ALqjpVVX/DChHbAKjqr6r6hKouDB/2K4loUFVfwHqev4RlTKPDBDNpsC/WI3xE0Pj/sF7mR0TCjFbV11S1Qm36nFT74qzUYLBz6zQa/HMIlquu4uF/A1qLiGQR12dYBmEdYE+sYSqaQTkTeEtV30uRNqq6NTbk/1iqNgo9B5wltrbP2lRWjLfMwq71sEqo37BKvdOxhs/NUtlRRxglIvOo7Gl2aez4Ttg1Pxc/sTaERvv2IrIJ+dXvzar6c8gU/hd7V95Xm5/4KYJ+gw33Bv+6BPOZ3cP3BFX9GKtgfQqrYD1OVVeEUzPpd3usx91QVV2qqlOxzg1HR8K8oaqjglYXpdkXZx7m2xPX0DeNfvuGYPnQLyF8VnGpattg5+lYL58E62GZ0LOwRuSviRWqg91tsN5wz6tqBYCIdMK+o6kqZaPEfeyLwB5i8+g3wwqQzaj033WB2mj1cuAeVf0uj/ZcrqqLg69bADykqjMi2kv4yimq+qKqLlHVX7DvedRX3oX1Dn0L++5H5wHOpLV+2LSvY4NuXsQaz/aPhBmpqpODL12WZl+cuK9Ml1+9ClY2QtyGjSqrSHfzkpDPd3YtoCmWZ9iNyqnV/hbsbI01Up4dPzH46T9hjWqzQv5mGFW/X1EajO8MlXFdsB6G72GVAMnWX7of6B/8yR5Un1Ix7T1T1T+nede2jp13UyyvnPv0Dal5KpQ3F2O+cLGq3h984SNU9aePqeoPQYePYJreIRxbiGn1emz04xmqmpjjPq3Gs3wfK7Ae+UsivjPZvmREy6VXpdN55Jx0edza0B/rwVwNsQbtB4DLQnkkG/6HfTN+Db8VVE4BtB7mozfGKsOPAIaITa9XUvKos7RkqbPEdK4ZpxJU1Q+waT9rtA5GEr4O5cCE3joBQ8M7/QJWab9RSHuiqn4U9DcJy1dF64VOw8pUE7HRCYnOMon3Op2fPQX4u6p+qlbJOwzoIVXXb/170OeiDPviRPX3agY/myjP5bNeKJe4ktbdaOoy50pEZCDWQaHaWoOhcvZB4D4NHZfT+ehw/FCsp/pTyY6XikJoN3yTjie7vH863J/V3p/lqqes63+yKeOFvHYbbJrzB2LxPRTOXYKVQS7SyjLPj2Hf51jj4ZFUna71fGw6yY5YJ+hnxKaoAxutvj32Xm8X0k/VYTEldbYxRK1CZAzWM3QlYgvUtAkCyYhUXXSlc4pgv2plZUviRf85cnwR9iIRWrbGhN4cczEhrax0D4W7kVgB5DpVjfagnk36xoEuwF9irYedsEJMgmQF6mwK2W2w4Z65MB9zMlFWJfnHJpewOaGqv2I9d8/FnksfbNqVxAdwEVaBfY+qLlPVh7F78rtoPCJyLfZc/hB7Lk5VDol9uO+KHgzO4FlCK7+qvpYuMqm6SOEf0wSNay6VBluKyB1iizjNxabZaStV1+q4E3vWI8L7kyAbDe4Y0+AfsUa2BOWqwWThVwXmh/c9bVyq+pOqfhIyIF9jo3OOABCRdbEGjIvIgFol3UMizK3RAAAgAElEQVTABVI5Z+SVWMXsB1jj5iisEXpGFte4KIS9Qq2C+2Ws4XOfTLaUOYeoahtsGO6mRPxIILHGwItSdX2kfPAAVjHWG8uYpkREhkf0OzhN0Gz121hErhJbVHguNtwYql7/fdjw2LGq+mVkfzb6XTem38FYBWWC2ug324qQBPnQLyF81nGp9RgaDtwvlYu+L8IKJO+EAsll2Poxq8XOXaaqz2G9yhJzDt+IVQSkvf5kPjYUMI/HRu/9iD3nT6j033WBGmlVrDfx3tgIxYyIyOSI1qotuB0hW62tKSIPiy1cOBcrPMZtvwt7ZjerNU4myEZrR8a0tivWqJKgmL7yz8AkVX0jl5MK8M4myhA3q+qPqjoTK7gnGokuw6ZaSNYDvQPW4PJe5J6OC/uT5aUaku88HusgMzNs/5vI3OcJQqVdByx/OiZJ5UU+yypnxvLKGRf2FJE/Rp5huo4OWWk8xNlfRD6IvDNbUrVc+jY2HY9g0/UlyKTxtO9j4Bet3gEo2b5k5CNPHM3j1ohQibg2SUYgiPVIfwabbuTvOUT7GDadc5tg41fY9xcqvxFDVXVRqEB/mKoNyaUiXzrLB4myW7brnV6CjcpYO1UAsZkxVtYLpYkrrrdED+jovoSf3VFsYeJfROQ3bOrKqP7mYO/DllhnzQSJdz+Tn/1nRH+zMB13jIQp1zJpprBZxZWp7iZFmTNx7iHAVcB+kXc6cawRVhZaipWHEqT00WKjea4Bzqh2taUnr9oVkZ1CHEdo1dGn0TDuzyoptD/LVU9Z1/+QZRlPjfexZ3YZgIhsijVo9cc6AGwBnCciB4TTLsUaNDphszBdBowXG5GO2gCAeaGx6T5sGrX9w7H5qvquWuepnzGd7iM5rg9VZxtDApdirXjRj/5eQM/QGPETNk3A2SIyOlkEWnVxu2/zYNPtWA/qbmoLyQwmMpxebOqAS7EpB66TqlNcTSL5UMIE32EjVKKZ65bhI7/ykpKcl00mcDPC8Kl4ZiDJL1FhPZmqUxW0wkZkJBsu9wXQRGzhyQTdU4TNGVV9WVW3V9X22DQLm2Cjb8Dua9p7ICKXYdNb7KOqc/NhUwPnfmy4YsaFqrTqIoU5t+gm4S/Y898xaHD3sF9gZQ/RO4KNp4rIRpFzs9HgyzENtlbVU6OXlOS8nDQY7JycRoOJaT4mAxuISNTBp9NVFc3GwuYal1L5bdsBK5B8Er67/wR2CN/hagvGB5pirf2EAt/pqtpRVTfACjnvqTVCZ/p2FHNqiqITKqhGUr3X0gqsIe5b4PlcnX8GHsAqD8eq9bRJZ9+giH6HpQubJcdijdt7Y70ju4b90Z4wt2GdIfaVyuH5kJ1+v47pt42qRisZ8qXf59LoN1EoyNUvJtPvz6FBN9e4GmEZ/0T+Ke4nE/+n6lHbhMqF9PYCro3kuwDekMopNdP6WFV9XFW3VNXVsfxRF+rWYuJAjbTaC3u/vw337f+Aw0Xkfyni3yKitf/mweS/Y8956+Ar+1E1v9oaKwTdg/VMjk4xko3WHohprZWGkRqJS0pyXk20li6/mmig3Qs4NPKO7oLlwW9JlUgh3llVnY01mqS6zr2AMyN2dsIWbz0f6wW3CFtDKXFPV1Nb3DlZXqpB+M5QIf0HbLRO4r6dg40o7J7klH9h+cRkox7j5ZoNsHnEvwjbw9O8a7Uuz6jqg5FnuF9t4xPrIX4XVkmwulqv04+pqvPTsGv8AevkkmASlidMtShs2vcxcUlJzsuocbEONs0IUwSJyOB0Oo+cmi6PW1OOB57U2GwTofw+Cvie3BfH7Y7N9LAgxDucysaOhC7LqlNennWWKa1sdPY55meymtpPrRH7SaxeJlWYb6P1QrnanYJ/Y1MPdVLV1bBnHdVfD2z65oewmU0StiSmucnkZ0+J+dkWaiO8V0aV5Lxc64V2y+BnE50z0n4/Y2Qqc2aMK8e6m5VlznBuH+zbeKCqfhQNKCJC5dqGh2vVUarpfHQ3LE/333DsSWCdELZrBvsKRr61KyLbYO/0Car6Uqp03Z+ttKkY/ixTnWxt6n8ylvFiRMuHWwKfq+rzap1pP8c6TCfeh+7AI6o6PTRqjMTWzUo1hV+07inZMdIcT0qdbgxR1SlYa1N0rvGLqZzvrQcm1ruwBSWLQRtskaz5Yq1hKytJw8d1JPaBPRHrURYdNj2WqkMn49wFDBLrZSAi0kpEDoi9vDkTMnTbYUP/q2UGkvwSFdZPAVuKyOEi0hzrdTFJK9dAWUlw6k9ic723EpHfYRVeKyvLRWSVEA9AMxFpHu4ZItIoHGtqm9JcbHqCxLnbiE2RtSpWETFdVRPDJZ8C2onI8WK9jo/AKoBeC+deiFXA/V6rjhJIxN0spC1A05B2ndZOEXgZWx/g5hKk3QZzaHPEKm/iU5YkMsInYO/K/VJZYZ9Jg2OAjUXkuPC+NRWR7SU/00rsQWQalVjFV/w3KIT5AhtNcWl4Lw/Fpux7IkUa9wPnikjH4Jz/Qhj6nykusSlBOodvTyesN02ikfk5LAOY+O5ego306KGqK0RkJ7E5Z5uJSIuQaVwLm36FhD0h7p2w7/ilwa5M345XsErGC0WkSTjei/o11d2NwO9DoWklIYN+JJaJGxsyP4T70BxbT6NxeJ6pMoDVUOvxtAdZjPQpAG2wobS/YpX1VRpYROQ4zF8NwHz/fVI5N/OLwLYRPxLnbWCuiJwf3sPGIrKliGyfB7vj+t0vjX73C2Ey+sUY9wMnisjmYiMM/kalftPGJSK/D36ycfCT12M9pT4NcY/AKot7iE0NcDHwqqrOEZFNRWS/cM+aikg/rJH55XDuxliGNqF/sHVhngppZ/Kx2wW7OmAN1c8ky0fUEXLR6p1YgSFx34ZjhYR9KQ5tsB5hc8Q66vw1dvyfWKP0ScGu6FobmXzlv4ADRWTf8GybBx+yXh7sjmstXX418f0YgFXuJO71u1gPtKTfuNq8s8GPNccKv4Rrj3Z8GoFN87tm0PHZWN4CrNC5ZcTOH7CK1lvVpve6C7hBwoiu4DuTvi8NyHcegjU4bk7lfdsMm3qhf5LwN2H501eSHHsQe293CxodilWEJ0bIDkrzruVjbYp80wqrIPgFVk4Js3JtGxHZGJt2sh/Wkey8xLdLbXqRlVOQxMn1fcyRXsB4DaPRVHVYOp1HzkuZx02GpCl3huMtsO/2yNh5TbGRIouA/ppk6r0Qb0L30XTAGk5PCj61BTbX/IfhWr8iTCUS7NsM69g5htKST52lvT/Z6ExVFZsR4mIRGSgiq4rVFewqInemuIbLsPqgtimOF4I2wCxVXSy2blW0k0hzzFcODnZ1FJE/R87N5GeHY9/vLUJ8q4mtZ1ErQn6gPfAmgKr+N4OfTXTOSPv9jJJF+TVtXOl8dBZlzj1D/IerjSSIczv2bh+o1UdGpPTRWMV8p8ixk7BRDj3IbjROocibdkVkS2zExBmq+kyhDE6B+7PU/ixTnWyN639IU8YL39xTxNa/kvCNOw2bih6sLqibiOwZjm+ITTmf6ND0DjaKfK0Q13FYXe8UEWkbyhDNQx71j1jZ83lYOepuk3De6th7O1Gzn67S0Fqsvl6KHzZlxt6R7U7Ygj8TU4QfiQ0Br2l6vbCK9cR2E0yIXSP7XgX6hf93x0aGzMc+MkOxCgWwubgnAc3C9rqYoHcL22tgPcZaxK43mlaf8OLMwRpTHsOmBat2b9LsGwIMiWwfiTmYmtyfvcP1LsLmu4zaOhh4LrLdHutFswArgB2bxFaN/bpGnkP82MTIuQ9hU5T8hjWQrRmLezfgo/Bc3k3c83BMscq3+ZHf4MjxiUnS7lVqLZTiF57Roti9eiocG5B415OcdwU2F3hN01Vgo8j2q8CAWPx3h//XDc9sPtaD5JRwfhOsEnV2Ii6ssvg1bP7CRFzvYKNKEtsjY2ltglUM/YJV2I7HKv0TYa+I2Z5sX6/Y+7sOpv1mNbg3XcP1LsJ6HUS/j7thwyAT24IN4Z0VftcAkmVc52I94BZimbqbCd+eJDZVeRewzPyH2JDLWVgl6u6R47uHd2thSPePsfgyfTu2wBZcW4BNV3JoqbWSB53Fv9u3A08ke6ewoaX/Ce9iC+wbH/9mDcmQZi8ivi527CRS+NiaXA9W+BsSi/8/4f/WWCPbPGxx3/7B/o2wtSx+BX4XOfcR4K7I9mPAUZHtIbG01sX8xU/Yt+DNhG0h7L9itifb1xWbejF6/6cDa9Xg3qR8t8P1zgc6R/YlpoOci1WqrpJlXEdSmTf5BStkbx2z5VRM47OxqT86hf2bYYXIeVje4510GqP69zqTj32Vym/DHUCrUmuwpu922Je1VjO9azna0jXc6yaRfdOJ5Fcw7f0t/L8F8F54Hh9ghaPp4djB4V1oH9HlFMK3GSusfAusG4l7YiytHbFv/azwzj2beJdD2JNi9ifbN4BI3gEbTv9+Hp5blbSwkTuT8/HORp5D9Bf9XjTFRrfNwb5DNwHNs3m/wvszDJsGYi7WmHlmmuus974Tq5i5Lsn+P4T724Q0ZUGq5yePDfdqAeaL2tfw/Voce3/eC8d6kcLXZhl3lWsh5p8xX7k8sn1leE8TU7K9HM5pgnUQuCAS9lSsrLRK2D4NuD1yvFcsrZTvY7LrTHXtVC/rPgscVIN7kymPO5lI/pI05c5w/BgsHyKxdPYIYRfGnnG8bFnlFzm2PuZjfw12jsNmlEgc7xj2zQ/39pR6qLOU9ydHu/pg9S2JvM1E4IBwbACxcin27VVqWI6Px4npTWNhpgO7hv+PCO/QPKxB6xaCn8emyBwXOa97eB+6he0twzsbfYfjaR2HaXYuVja7N3aPN4qFT7ZvZOzZ/BW4vob3J+X3E2u8GR7Z7kqKMmcWcaX00WQuc04AlsfOfS4c6xLijn+//5jieqfF7Y4c60UtvvX5+pFH7WLljorYvZlcC9uqpIv7s2g8ufqzdHWyNa7/SWLXym8INrBiXIgzUe82OBb3H7CGwnnYt/FqoFHknt+K1WnPxdbT6hOOdcDKm4my55tY42ci3mOw9S0XhPPvB9bO9T5LiMwpE0RkGDBDVW8M29Mwhz0tj2kMAVDVIWH7LeBEtXVYHKdBIyL7AH9W1UPC9kjMWY7MYxq9sAraXmH7OuArVb0t3XmO46RHRDbH1hTZQVU17u/ylEZX7JvQNWyfgTUcnJfmNMepV4jIycDmqnp22J6I+bWJeUxjAJYHHhC2n8AWnB+brzQcx0lOGNH0PrCXqv4Yz7vmMZ1phLKuiGwF3KmqO+czDcepi4jIv7FFr0eFbVXVnKaBySKNkYRybtD8h1jjwYx8puM4pcT9mZOMrKfNcIqDqqZbgLZQae5Y7DQdp1xR1ReAF4qc5l+KmZ7j1FdU9ROs93gx0yzFdICOU1JUNdVUJIVMM6v54R3HqT1q03qkmru7UGl+BHjFkeMAqppqXv5CpbcE2LSYaTpOMXB/5iQjq3UPRKSPiHwuIlNE5IIkx/8qIh+E38ciskKqLrTo1JwbsaFB+WRi+Dl1ENdj0RmFTSGST6aRZh5jxykEknrRtucyn11nmUj+/d0czDc7ZYr7yZIwEvNt+eQDzAc7jlN6plGYvGshyrpOGtxH1lkuK0CchSjnOjnimiw603B/1uDJOE2W2MLCX2AL6UzH5u46JvS+TBb+QOAcVd0zz7Y6ToPH9eg45YeI9MEWG26MrV1zVez4X7E56cFGZG4GdFDVWUU11HEaAO4nHcdxHCc57iMdp7xwTTpOachmZMgOwBRVnaqqS4GHsYUVU3EMtjip4zj5x/XoOGVEyMDeCuyHDb89JqxbsRJVvVZVe6hqD+BC4GVvCHGcguF+0nEcx3GS4z7SccoL16TjlIBs1gzpCHwX2Z4OJF1jQkRaAn2A01McPxk4GaBVq1bbbbqpT0noNDzee++9maraoYan502PIYxr0mnQ1FKPEMnAAohIIgObtDcPWWZg11hjDe3atWstzHKcukkeNOn5VsfJI3nQZEFwP+k0RMrJR0ZxPToNlXLSpOdbHSd7TWbTGCJJ9qWaW+tA4LVUPV7DYot3AvTs2VPffffdLJJ3nPqFiHxTm9OT7KuRHsE16Ti11CMUKAPbuXNnXI9OQyQPmvR8q+PkkTxosiB07drV/aTT4CgnH+n5VscpL016vtVxstdkNtNkTQc6RbbXA35IEfZofMiW4xQS16PjlBd5zcCqak9V7dmhQ9l1wnWcuoL7ScdxHMdJTt58pOdbHScveL7VcUpANo0h7wDdRGR9EWmGCfDpeCARWQ3YAxidXxMdx4ngenSc8sIzsI5TXrifdBzHcZzkuI90nPLCNek4JSBjY4iqLsem9Hge+BR4VFUni8ggERkUCXoo8IKqLiiMqY7juB4dp+zwDKzjZMOECdC1q/0tIO4nHSdLiqRJx3GypAiadB/pOFni+VbHKS/yrMls1gxBVccCY2P7hse2RwIj82KV4zgpcT06TvmgqstFJJGBbQzcm8jAhuMJbXoG1mm4TJgAffvCwoX2d8wY6N27YMm5n3ScDBRZk47jZKCImnQf6TgZ8Hyr45QXBdBkNtNkOY7jOE7do3g9esaq6saquqGqXhn2DY9mYlV1pKoeXVBDHKcciWZeoTIT673RHac0uCYdp7xwTTpO+eB6dJzyokCa9MYQx8kTb74J775baiscxwFgwgSW9+kL33zjGVjHKRXxzGsCL1g6TmlwTTpOeeGadJzywfXoOOVFATXpjSGOkwdUYeTxE1hn565UvORO0nFKyoQJVOzflyZLvUeP45SUgQOrZ14TLFxoxx3HKR6uSccpL1yTjlM+uB4dp7wooCa9McRx8sC7107gui/60nH5NzQ6yCtdHadkhN4DjRZ7jx7HKTkjRkDLlsmPtWxpxx3HKR6uSccpL1yTjlM+uB4dp7wooCa9McRxasuECWx1YV9a4b3QHafkeI8exykfeveGMWPQpk2r7m/Z0hdsdpxS0Ls3+vQzVCBV97smHac09O4N11xTfb9r0nGKT8i3VjRuUnW/69FxSkPv3lQ8Oaog+VZvDHGc2jBhAiv260vzCu+F7jhlwYgRLGniPXocp2zYaScWN27FikSW0wuUjlNS3nl5IY1QVjRpZjtck45TWsaMgVVXhRYtbNs16Tilo0cPlmhTltPYtl2PjlNS3h/7Y8i3rmI78qRJbwxxnNowcCCNl3gvdMcpF37ctDe3VZxa/YBnZB2nJCy+5W5aLJ7DiC2ugy5dXIeOU0K0Qmlxw5V816Qr+vQY16TjlJq334Zx4+DCC+HZZ12TjlNivr/gZlpULOLFw4e7Hh2nxOiKCtrf+Xc+bbY1jB2bV002yRzEcZxUfHHhCDoOikyRFcV7oTtO0bnh2uWcUvEUS9ffmGY/T7dGSW8IcZzSsHQpS6+8lnfYle4jzobtzy61RY7ToHn/holsO/9NXjn6Njrt93uYNq3UJjlOw+ayy6B9ezjtNGjTxjXpOKVk/nzajPgnzzU9kF1HnARtTiq1RY7ToJk05Em6L/6Ml/70MJv9fs+8+kgfGeI4teCi//TmwuY3VD/gla+OU3R+/RVm3vYIGzKVZjdcYxr0Hj2OUzKW3vsvVv3tO8ZtexHbb19qaxzH4cor+bnR2uxwe/FGLotIHxH5XESmiMgFSY6vJiLPiMiHIjJZRHxYtdMweOcd6+n6l79YQ4jjOCXlxyF3sOqyWXzff7BL0nFKjSotbhzG1Mbd2PXGI/IevY8McZwa8umn8MQT8OEmL8K3LUEVFi3yhhDHKRE3/7OCvywZxuJuW9L8wAOhUSPvYec4pWLFChZcchUfsS37Xr9vqa1xnAbPx/e8xbazX+LlvteyR9vmRUlTRBoDtwK/B6YD74jI06r6SSTYacAnqnqgiHQAPheRB1V1aVGMdJxSMXQotGsHp59eakscx1m8mOa3/oOJjffksGt2KrU1jtPgmXzdOLaY/z4vHH0PG7RsnPf4fWSI49SQq66C7s0+ZcvPn4Czz/Z5Xh2nhMydC19dN4ot+ITmQy+yhhDHcUrG8oceo90vX/LUpoPZfQ8ptTmO0+BZcNEwZkl7trtrUDGT3QGYoqpTQ+PGw8DBsTAKtBERAVoDs4DlxTTScYrOe+9ZmfHcc23xdMdxSsqMq0fQbvFPfH74RbRvX2prHKeBowrDrmR6o0787rZ+BUnCR4Y4Tg2YNg0efBDe6PZ35NsW1hjSoYP3QnecEjH8duWchVewuHM3mh95ZKnNcZyGTUUFcy8Yxk9sxm7XH1pqaxynwfPFEx+x489PM7H3ZfRau3Uxk+4IfBfZng7sGAtzC/A08APQBjhKVSuSRSYiJwMnA3Tu3DnvxjpO0Rg6FNq2hTPOKLUljuMsW0ajf1zNm7ITB9/onVodp9R8cfcrbDH7NZ7vezP7tmtWkDS866zj1IBrroENZSo9v/w3DBpkDSGO45SERYvgg6vGsS3v03zIhdA4/8MoHcfJnhVPP0v77z/i4a4Xsk8fz2o6TqmZee4w5tGaHncXfTqeZMPCNLa9L/ABsC7QA7hFRJJ2lVfVO1W1p6r27OB5b6eu8v778PTTcM45sNpqpbbGcRo8v97yEGvM/4YP9r+Itdfx0cyOU2oWXjyMGbImO955YsHS8BKq4+TIjz/CvffCXRtdjTRubIveOY5TMu65WzltzhUsXqsz9CvMMErHcbJEldn/dyVf05Vtrz0G8TKl45SUaS9+yY7fPsp7O/6ZthsUfe6P6UCnyPZ62AiQKAOBJ9WYAnwNbFok+xyn+Awdao0gZ55Zakscx6moYNnlf2cSW7P/rQeU2hrHafB8/eg79Pj5Bf7X61zartOiYOl4Y4jj5Mj118OaS6ez21cj4MQTYd11S22S4zRYli6FVy5/md/xOqtcfD40bVpqkxynQVPxn/Gs8dVbPLDO+Rx0mM/G6jil5tvTr2Ypzdji7nNLkfw7QDcRWV9EmgFHY1NiRfkW2AtARNYCNgGmFtVKxykWH34Io0bZFMtt25baGsdp8My590nWnv0Zr/caTOcu3oPHcUrNrP8bxmza0vPuUwuajjeGOE4O/Por3H473LHxP5CKCjjvvFKb5DgNmgcfhJN/uYLF7dZGTjyh1OY4ToPn13Ov5AfWYeNhA2jkuUzHKSnfv/kdO31xP+9sdSIdtlyr6Omr6nLgdOB54FPgUVWdLCKDRCSxkvvlwC4i8hHwEnC+qs4surGOUwyGDrUF0886q9SWOI6jyoKLhvE5G7PX7UeU2hrHafBMH/cx2303ird3PJM1Nkg6Y2re8C57jpMDN90ErRb8zL7f3AnHHQddu5baJMdpsKxYAWMveZPHeAkd/A9o3rzUJjlOg0Zff4MOH09g2OrXcV4/16PjlJopp1zLmigb3lG6zjuqOhYYG9s3PPL/D8A+xbbLcYrOpEnw5JNw8cXQrl2prXGcBs+8R5+j44z3Gb7DvQza1NecdJxS8/2ZV9GWVmx9d+Gnkcyqz56I9BGRz0VkiohckCJMLxH5QEQmi8jL+TXTcUrPvHnWGHJ7txtotGQxXHhhSexwPTqO8fjj0H/6lSxp3R4ZdEqpzXGcBs8v5wxjJqvTcegpNClhdxv3k44DMz6ewQ6T7uLNbsfRcefOpTbHcZzLL4c2bWyKLMdxSosqs/96Jd/Qmd/dXto1Jz3f6jgw442v6PnlQ7y+1SDW2XL1gqeXsTFERBoDtwL7AZsDx4jI5rEwbYHbgINUdQvgyALY6jgl5fbbQebM4uDvb4U//AE23rjoNrgeHcdQhScu/oADGUPT886B1q1LZotnYB0H9IMPWfPtMYxY9WyOOalVyexwP+k4xid/uoFVWMJ6Nyd1S47jFJOPP7ZePGeeCe3bl9QUz7c6Diwc9wqdv3udcVudx1bblm7NSc+3Oo4x9ZSrWUZTNr7jL0VJL5uRITsAU1R1qqouBR4GDo6FORZ4UlW/BVDVGfk103FKy6JFtnD6jRvcTOOF82Hw4FKZ4np0HODZZ+GIL4extMWqNDrj9JLZ4RlYxzF+OXcYc2nDaoNPo1mzkpriftJp8Mz5ejbbvnkrb3U6kvX3LX7nHcdxYlx+uXXcOeeckprh+VbHMWacdSU/sRbb3lLyNSc93+o0eGZ//D3bfjSSV7udQNed1ylKmtk0hnQEvotsTw/7omwMtBORiSLynoj0TxaRyP+zd+dxOlf9H8dfZzb7vmVfItIiUSopKhVp0UIoURRlyb5Gsu/7EjGJbEVCSukeWrRJoUjJTtbsM2O28/vjottP3GbGNXOua77v5+PhcZtr877v2/H9XN9zzueYF40xa40xaw8dOpS6xCIOzJgBpw+cpNGhsfDoo3Djja6i+G08gsakBCdrYXbv33iS9wlt1wZy53YZRwWsyJYt5I96j7ezvsKz7Zz3QVfdKp73U4uJ5OQkeUc4W7wjIuds2gTvvQdt20K+tG/9cRmqW8XzYr/8gVJ/fMbSsh255a4sruOobhXP29xiBCEkUWJ8l3T7M5MzGWIu8pi94OcwoArwEPAA8Jox5l/LkKy1U621Va21VQsUKJDisCIuxMfDsGEwpORkwk8ehV69XMbx23gEjUkJTqtWQZ31g0mMyEJoJ+d9l1XAiucd6jSEWDIT0qkDWZx/p1TdKt52av8pbowaw/cF61G+QSXXcUSkf3/ImhU6dnSdBFS3irDvlYH8TR6uHdfadRRQ3Soed3LbIW767k2+LN6Eax4onW5/bnImQ/YAxc/7uRiw7yKv+cRae9paexj4AlD1LRnC7NlwcFcMLY6PhPvvh1tucRlH41E8b3rv7TThXcxLL4H7Qk8FrHjbzp3kWT6bWZla8lyXgq7TgK6T4nFrX5pKPnuErAO0K0TEuc2bYf58aNMG8ud3nQZUt4rHxf/0C2U2fsji4u2o/mAO13FAdat43MYWY8hMLAVG9X5J7OoAACAASURBVEjXPzc5kyE/AOWMMaWNMRHA08CSC17zIVDDGBNmjMkKVAM2+zeqSPpLTIQhQ+D1Ym+R6dhB6N3bdSSNR/G0776DO9cMhdBQwrp3dh0HVMCKxx3pPpwka4h+uTM5AuI7pa6T4l2xx2KpsGwEP+WuxfUtb3cdR0QGDIAsWaBT+hwImwyqW8XTdrUezCmyUWJEO8zFpgbTn+pW8ayY/ce5ftUEvir0BNc/WSFd/+zLToZYaxOANsAKfANugbX2V2NMK2NMq7Ov2Qx8AmwAvgfestb+knaxRdLHwoWw4/cztI0ZBjVq+H45pPEoXje5916aE4lt9jwUKeI6DqiAFS/bv58cC95iblhTnutd/PKvTwe6ToqXfffKTK5K+gvb02lLVxEB2LIF5s2DV14JhJ3M56huFc9K3LKVUt/NY1HB1tz7VF7XcQDVreJtP7ecSE57gmwOdjOHJedF1trlwPILHptywc/DgeH+iybilrUwaBB0LfQOWQ/sgd7TXUcCNB7FuzZsgEorRxAekkhI726u4wC+AtYYc66ADQVmnCtgzz4/xVq72RhzroBNQgWsZBB/9x5FrqR4DrboTt7A+E4J6Dop3pQQm0DpBUP5NdutVO50j+s4IjJgAGTODJ0DYiczoLpVvG1H66EUJZx8AzsGyq4QQHWreFPc0dNcs3w03+Spw+0tKqf7n5+syRARL1q+HH5Zn8CXBYZA1apQu7brSCKeNrHvQUbzJvENnyFTqVKu4/xDBax40t9/k3XmZN4PaUjTN8q6TiPied++Opc7E7bzfbcxmJAAussj4kW//w5z5kCHDlAwIM7T+ofqVvGipJ27KbFqJu/lacnTzxd2HUfE89a9/Ba3JR3G9HKzmzk5Z4aIeI61MHAgtMk3jxyHtvnOCgmk5QMiHvPHH1Bqse9wrUx90/dwLRH5t2P9x5M54RTbnu5JoUKu04h4W1JCEoUjB/N75huo+no913FEZOBAyJQJunRxnUREgO1tR4K1ZH6tKyG6CyriVGL0GUq9P5y12e+mWsfqTjLonwGRi1i1Cr79Jok+4YPghhvg4YddRxLxtPFvHOUVJhD3yFNQvrzrOCLedvIk4ZPHssQ8yjNDrnedRsTzvu+5mKvjNnO4RQ9CwvT1TsSprVvh3XehVSu0WkDEPXvgIEU/msqH2Z/hkbYlXccR8bwf27/DVQl7iXm1p7M156qWRS5i0CB4PvcH5N2/GXr2RMsHRNzZvRvyzplATk6Sub8OhRVx7cSwKWQ7c5SND/ekeGCcmy7iWTbJkmvCQHaEl6XayAau44jIgAEQHg5du7pOIiLAjlfHEJEUS0Ln7oTpoAARp2x8AoXfGcLGzFWp/rq7owh0h1fkAt9/DytXWgZmHQDlysFTT7mOJOJpYweeom3SGKLvexhuvNF1HBFvi4mBUSNZyX00HHmr6zQinvfjoBVcG7OO3Y27ExoR6jqOiLf9+SfMng0vvQRXXeU6jYgcO0aB9ybyUeYnqd9d3QVEXPupxwKKx23jyEu9CAl1dxSB5kVFLjBwIDTIvpxC+36GyEgI1RdLEVcOHoTw6VPIx98wQLtCRFw7NX4GOaMP8N1987hP56aLOBc+fBD7QotRbcKzrqOIyMCBEBamXSEiAWJnlwmUTDzBiQ49yZTJdRoRb7OJSeSaNIgt4ddx57BHnGbRzhCR82zcCEuWWEbkHgAlS0KTJq4jiXja+GExtE8Ywek77oNq1VzHEfG2+HgSBg3ja+7gsdF3u04j4nnrJ3xJpRNf8sdjXYjIHuE6joi3bdsG77zj2xVSpIjrNCJy+jS5Z47h0/CHeOz1m1ynEfG8DQOXcHXMr+x5pgdhEW6nIzQZInKewYOhbuYoiu/5Frp18/V7FREnjh6F6AkzuIoDZBvU23UcEc+LnvYuuY/vIur2Xlx3vbttzSLiE//6QA6ZAtwypYXrKCIyaJBvV0i3bq6TiAiwp89UcsUf4a/ne5Etm+s0Ih5nLZlGDGJHaBmqj2voOo0mQ0TO2boV5s+HsQUHQuHC0Ly560ginjZ5bBztzwzl9E3V4a67XMcR8bbERGL6DuYnbqLOuDqu04h43ubZP1L1yAp+vb8jWfNndR1HxNt27ICZM6FlS+0KEQkEZ86QZdIIvgytyWNDb3edRsTzNo9fSYWTP/DH493JnN39iR2aDBE5a+hQqBG6hrK7/gOdO0PmzK4jiXjWqVOwf8RsSrCbbIN7g9EqdBGXYt9dSL7Dv7P8pp5UqarxKOLa8W6DOE4ubp7W2nUUERk0CEJCtCtEJEDsG/w2+WL3sbVhL3Llcp1GRBL6DWRfSFHumNLUdRRAkyEiAOze7VvMM6HIQMiXz9frVUScmTY5gbanB3OqQhV44AHXcUS8zVpO9hjEb5Tn7jGPu04j4nlbl2zitn2L+OnOtuQsrrs8Ik7t3AmRkdCiBRQr5jqNiCQkEDZyKD+E3MrDY+51nUbE8/54+2tu+Hs1vzzQmWx5M7mOA2gyRASAESOgUtJPXL9zOXTsiJpKirgTGwt/DHqPcmwl+6Be2hUi4lj8h8spsG89H5TvwZ13h7qOI+J5+18dwmmycsNb7V1HEZHBg321avfuqf6IhAR47jn48Uc/5hLxqIPj5lHw1HY21OtF/gL6Hini2smegzhs8nPL1Jauo/xDkyHieQcPwrRpMLnYQMiVC155xXUkEU+bGZnEy8cGcqrUdfDoo67jiHibtRzpNJAdlOSW0Y1dpxHxvF2rtnHb9jmsvfkl8pXP7zqOiLft2gUzZsALL0Dx4qn+mEmT4J13fEePiMgVSEoiYcBgNpobqDOxnus0Ip63c/FP3PzXcn6s0YE8xQJn0bkmQ8TzxoyB0jGbqLpzIbRti5pKiriTkADrXl/C9fxKtgE9ff2XRcSZxM9XcdW2b5hfsiv3PhjuOo6I5+14eRiJhFJ+WmfXUURkyBDff/bokeqP2L8fXnvN1xX2cXWiFLkiR6YvpsjRTXx/Tw+KFNP3SBHXDnYYxHFycvP0wFp0rn8dxNOOHYOJE2FyycGQNSu0V7sBEZfmzrG0PDiA01ddjWnYwHUcEc872H4gf3EV1414Xh3rRBz7a+1eqm2O5Ltrm3PVzUVcxxHxtj17YPp0aN4cSpRI9cd06eJrETt+vDrDilwRa4nuPZA/KMs9U/Q9UsS1vZ//RpUdC/muahsKlA2sReeaDBFPmzgR8p/4kxq750Dr1pBf7QZEXElKgi96f0pVfiTLGz0gLMx1JBFPS/rmOwpv+pw5V3Wi7uOZXccR8bwtrUYRSiKlJ3d1HUVEhgzxFa9XsCvkiy9g9mzfhEi5cn7MJuJBxxasoPjBdXxxe3dKl9UZdyKu7W4zhBiycN20V11H+RdNhohnnT4No0fDpOJDMOHh0KmT60ginrZ4MTTdPYDT+YoT8tyzruOIeN7+doM4Ql5KDm6ljnUijh3ZcphbfpzCd6UbUfzuMq7jiHhXVBQUKwZvvgnNmkGpUqn6mPh431GVJUtCz55+TSjiSUe7DGIXxak+Rd8jRVw79MMOqv42mzXXvUjRmwq4jvMvyfpqa4x50BizxRiz1RjT/SLP1zTGHDfG/Hz2Vx//RxXxr6lTIcuR3dT+a6bv0LvChV1HShaNR8mIrIXl3b+gBl+RpU9XiIhwHUnE0+yGjRRZu4TZedtT/9nsruOkiK6TkhFtbDGWbERTaEzqV6GLyBWKioJ69WDvXt9Bd7VqpfqjJkyAX36BsWN93ZpFJPVOLv+S0ru/5LObulDhxuD6Hqm6VTKirS8OI4kQyk4OzEXnl50MMcaEAhOBOkBFoJExpuJFXvqltfams7/e8HNOEb86cwZGjICxRYcTgoWuwdFuQONRMqpPP4UGfwwgOmchQlq+4DpOiqiAlQwnKorEW28jmszkf70NoUHUaUDXSclwoqJIKlaCql+N5tsij1P2kYv9dRaRNHduIiQ6+r+PtWzpezyF9u2Dvn2hbl145BE/ZkwG1a2S4URFkfnR+zlKLqpMDLrvkapbJWOJiiKxaHGq/PwWX13djNI1irlOdFHJ2RlyK7DVWrvNWhsHzAMeTdtYImlr5kxI2HeARw9Ng6ZNffuTg4PGo2Q8UVFUfbgw9/MZEd07QZYsrhMlmwpYyXCiorB16xJ2JppwEmhYYb3rRCml66RkHGdvvobs3U12TlP4uftdJxLxpotNhIDv53r1Ujwh0rkzxMXBuHHpe2i66lbJcKKisHXqEp4QSw4TzU1nvnOdKKVUt0rGcfZaGbpvD+HEU67FXa4TXVJyJkOKArvP+3nP2ccudLsxZr0x5mNjzHUX+yBjzIvGmLXGmLWHDh1KRVyRK5e4Moq6r5TinbztCUmIg+7/WhATyPw2HkFjUgJAVBSJdeqRL34/Fgi7MehWvKqAlYzjbAFrYmMBCCeBsMdSfpPHMdWtkjFc5OZrybEdg208imQMzZv/eyLknOho3/PJFBUFc+f6voJefbWf8iWf6lbJOM7VrWd8dWuYjU/V5KRjqlslY7igbjVA8f4vBex4TM5kyMXWKtgLfl4HlLTWVgLGA4sv9kHW2qnW2qrW2qoFCgTeASriAVFRJD1Uj2IJO7n/7/mYmjWhXDnXqVLCb+MRNCbFsagobL16hJ757wWTBg0C9oJ5CSpgJWPw86pXh1S3SvDLOONRJGOIjLz0wR5Zs/qeT4a4ON+h6aVLQ7dufsyXfKpbJWPIONdJ1a0S/IJwPCZnMmQPUPy8n4sB+85/gbX2hLX21NnfLwfCjTH5/ZZSxB+iorAP1SM87rwbr2vWBOTA/B80HiVjOLeSJ4gumJegAlYyBj+uenVM10kJfhlnPIpkDLVq+XpbXShrVli2LNkHqY8dC5s3+9pjOeoKq7pVMoaMc51U3SrBLwjHY3ImQ34AyhljShtjIoCngSXnv8AYc5Uxvm6Xxphbz37uEX+HFUm1czdeYy4YoLGxwXbjVeNRMoYgvGBeggpYyRgiI7GZMl38uRSseg0Auk5K8PPTKvRAcLnDms++pubZg5p/NcasTu+MIpd16hTMmOHra3VubKZwImTPHujXz3dger16aZj1MjFQ3SoZQWQkNjzi4s8F13VSdasEvyCsWy87GWKtTQDaACuAzcACa+2vxphWxphWZ1/2JPCLMWY9MA542lp74QoDEXcyyI1XjUfJMCIjiQ8PrgvmJaiAlYzhzjs5maUgSRcuGk3hzR7XdJ2UDKFWLXa2H/Wv5drBNh6Tc1izMSY3MAl4xFp7HfBUugcVuZyBA32zGTNn+sZgyZIpHoudOkFiIowZk4Y5L091q2QM1apxIiQniapbRdyrVYudz/f79+MBPB7DkvOisysCll/w2JTzfj8BmODfaCJ+FBlJbO16ZE68yIRIcN141XiUDGHvNbX40LbgZcb9/ycC+IJ5MdbaBGPMuQI2FJhxroA9+/wUfAVsa2NMAhCDClgJQKeGTSLnsd1EXj2AZn8N8rWwC7LxeI6ukxLsbJLl+IRZnCAXObPEYWJignU8/nNYM4Ax5txhzZvOe01jYJG1dheAtfZguqcU+V+2bIGRI6FpU6he3ffYjh0p+oiVK2HBAnjjDd95Ia6obpWMYtcrQylx5jAf3T+Gh77q6VvgGpzXSdWtEvSS4hJInB7J/pDCFMp03NeRJ8DHY3LaZIkEvRVxtaiTuIwkE/r/nwjwASqSUQ3seISnE2ZxpmLlVLcbCBTW2uXW2mustVdbaweefWzKuSLWWjvBWnudtbaStfY2a+0at4lFLnDoECFv9GWFeYDblvTEpHLVq4j4xzevzufGk1+zoekIzEcfBfN4TM5hzdcAeYwxq4wxPxpjml7qw3Rgs6Q7a6FdO98BH8OGpeojzpzxHZpetix06eLnfKmgulWCXeK2nRScOYwPszxNzUXtU71bS0T8Y22LKZSJ2cTmNpMwHwXHeEzWzhCRYBYfDx06QLUi8YTsS4TwcN+DQXrjVSTYffstXLegD7nMCULnvwOHDvla1UVGajyKOHCo9WvkiTvFuqajeaCigYq1UrzqVUT8I/pwNKUmdeG3LJW5Y1pziAgN5vGYnMOaw4AqwL1AFuAbY8y31trf//VGa6cCUwGqVq2qleqS9j74AD791NfbqlChVH3E6NHw++/w8ceQObOf84l40M6GXbnKGhg6lGzZ8H1/DN7rpEhQO7XzCOVm9+G7nPdx96hHIdQExXjUzhDJ8CZNgj82xzMupL3v0LulS4NiplIkI0pKgnEtNtCKKSS+2Bquv/6/BazGo0i6sz/9TL6FU5mepQ2tx17rOo6I533/xFCKJO4hbvhYQiNCL/+GwHbZw5rPvuYTa+1pa+1h4AugUjrlE7m06GjfirobbvBt7UiFXbugf3+oXx8efNDP+UQ86NTyLyizdgFzi3fjkTYlXMcR8byNj/clhz1BlsmjCQm92BqYwKSdIZKhHToEffvChPITyLHlN99EyAMPBMVMpUhGNOsdS8tf2xOfPQ+ZB13kkC0RST/WcrDJq4SQj8yD+pI7t+tAIt625+udVPtiGGtKPM0dr9RwHccf/jmsGdiL77Dmxhe85kNggjEmDIgAqgGj0zWlyMUMHuybzVi9GsJSd9ukQwdfpy3Hh6aLZAyJiRxv1o4jlODmuV0wwXPfVSRD2v3xRm5dN5n/lH+Z2o2vdx0nRbQzRDK0Pn0g68kDtNj7um85zkMPuY4k4lknT8JXHd6nFquIGDoA8uZ1HUnE02Jnv0+hzauZWnwAz7TN4zqOiOftatQVi6HkvKGuo/iFtTYBOHdY82ZgwbnDms87sHkz8AmwAfgeeMta+4urzCIAbN3qOyOkSRO4665UfcQnn8CiRfDaa1BCC9hFrthfA6dT9NB6PrlnOJWrZ3UdR8TbrOVY0/YcIzfXLwy+Ra7aGSIZ1vr1MHUqfHVtL0K3RPuW5Gj5gIgzw/tF0/tYZ06Xq0S2l1q6jiPibTExxLbpzBZu5O5ZLQgN+m48IsFt/fgvuGP3AlbVfJ2at2ecO6fW2uXA8gsem3LBz8OB4emZS+SSrIX27SEiAoan7q/lmTPQti1ccw107OjnfCJedOwYWQf04uvQGtSf85TrNCKet+GNxdx4OIoVD0/ggeuCb5GrdoZIhnSuhr0nxw/ctmkGvPoqlC/vOpaIZ/35J4SNGU5JdpHtrXHozquIW0d7jSD3iV18eO847rxb41HEpcS4RDJ1a8/e0OLc+l4X13FEvG3pUli+HF5/HQoXTtVHDB/u21wyYQJkyuTfeCJetK1ZP3LEH2Fbu7EULKQFriIuJZyKJc/ATmwJv56757zkOk6qaDJEMqSFC+GL1UnMytsOU7Cgb3+yiDgz5OVddE4cSszDDVLdbkBE/GT3brKOG8zC0Kd4/u27XacR8byvW8ygQszP7GoznKz51fpDxJmYGN+KuooVoV27VH3Ejh0wcCA89RTUru3feCJeFLd+M8U/nMB7uVrScEhl13FEPG9t41EUj9/Ood5jyJw9OBtOBWdqkf8hJgY6d4YexWdz1fZvITIScuZ0HUvEs1auhPs+7UJ4OIRPUBcMEdf2N+tGrkTLvo7DKFbMdRoRbzu+8xgVZ/dkfc4a3Daqges4It42dKhvNuM//4Hw8FR9xKuv+jZAjxrl32ginmQtext0IA/ZyD9lABERrgOJeNvRX/Zy/dJBfFmgPne+dq/rOKmmnSGS4YwcCUd2nqTP6W5w663QtKnrSCKelZAAs1usoiELoHt3nSAp4ljCqq+46j9zmZarCy0GlHIdR8Tzfnr8DfLaI2SaMhYTotYfIs5s2wZDhkDDhlCrVqo+4qOP4MMPoU8ftNhAxA+Ovruc0r+v4L1r+3Lv0wVcxxHxvN+f7EE48RScOSKoj2TWZIhkKHv2wODBMOuaAWT6ez+MHw8h+msu4sqbExPosLM90QVKEt5DfdBFnEpK4u+m7dlNMUpO6kaWLK4DiXjbtuW/UX3deL6q0IIKjdT6Q8SpDh0gLAxGjEjV22NifIemX3utb3eIiFyhuDjOvNKB36hAzffbuE4j4nlbZ39LtS2zWF2lE+XrlHEd54roLrFkKN27Q+n433l0+2ho3ty3M0REnDhyBLb1nEYlNpBl4gh051XErVPjIym4ex0zKw7jkUbZXMcR8bwjzToSTVaufX+A6ygi3rZ8OSxZckVbOoYNg+3bfYemq5WPyJXb3WUcV534g6+eHE25iqlrWyci/mETk0h4uR37TWGqLurpOs4V02SIZBhr1sC778LCkh0wWbL4toiIiDNDu/1Nz+jenLqlJubJJ1zHEfG248dJ6tGTr6nOY/OeDuptzSIZwQ/9lnPLoY/5+ZG+FLiuoOs4It4VG+s7LL1ChVRv6fjzT99Xz6efhnvu8XM+EQ+y+w+Qd+IbfBbxEA2mP+g6jojnreswiwonf2Djs0PJWyK76zhXTAeoS4aQlOSrYZ/N9xHlty73bW8uVMh1LBHP2rgRSkzvSx5zjJC3xqI7ryJuHWw3gPwxh/i6wXK63qDxKOJS3Kk48g/swLaI8tz+rlp/iDg1YoRvNuPTT1O1pcNa3/fQ8HDf2ZUicuX+bNiTEomxnOg/ipw5XacR8bbYQycpPqk767NUo9a0Jq7j+IV2hkiGMHMmbPzxDBPCO0D58r6GrSLihLUwtsVGWjOJuOat4MYbXUcS8TS75XfyzBrLnEzP02JyFddxRDxvTZMJlI7/nSO9RhORXf10RJzZuRMGDYInnoDatVP1EUuX+rps9esHRYr4OZ+IB0V/sZYyX0Qyv1B76ne7xnUcEc9b99QgCibuJ27YWMIiMsY0gnaGSNA7cQJ69IBRJceSc+cfEPmxGrWKOLT4A0vj79sTnzU3mYe94TqOiOf91bgj2W1mEvoNJG9e12lEvO3QLweovKQfPxSoyy196riOI+JtHTr4di+PGpWqt0dH+3aFXHed1uKJ+IW1HGrSnswUoPys3oRkjPuuIkHrwJo/qbJ6FFHFm1KrTTXXcfxG/7RI0Bs4EEIO7KPVof7wyCPwoHpKirgSGwuftV7EPUQRPqQ/5MvnOpKIp8V+8DFF1n3EtMJ9eLaz2keKuLb5yd5kJZp8M1N381VE/GTFCvjgA+jVC0qUSNVHDB7s21wyaZKvTZaIXJkDY+dScs8alt42iFtr53IdR8Tz9jTsRBwRlFkwxHUUv0rWZIgx5kFjzBZjzFZjTPf/8bpbjDGJxpgn/RdR5NL++ANGj4b3r+5OaEJcqlf1BBONRwlk44fF0PVgJ06WvoHQ1i+6jiPibfHxnHqxA79TjlveaUdoqOtA6UPXSQlUm99dx51bpvN1lXaUqVPedRwR7zpzxreVo1w56NQpVR/xxx8wbBg88wzcdZef84l40enThPXoyk8hN1NnfjPXadKN6lYJVJvHfUaVPR/ydc1elLytsOs4fnXZyRBjTCgwEagDVAQaGWMqXuJ1Q4EV/g4pcimdOkGNsG+4489Zvh+uvtp1pDSl8SiBbN8+iB0wglLsJMeMcRDmjU6MKmAlUB3tP4H8h7ew8M7R3HWfN9pH6jopgcomWeJebs8Rk5/KC19zHUfE20aP9s1mjBsHmTKl+O3W+uZSMmeG4cPTIF8aUt0qgWp7q6Hki93LxhbjKFrCGyt4VLdKoEqKSyBT91fZEVqGO9971XUcv0vOzpBbga3W2m3W2jhgHvDoRV7XFlgIHPRjPpFLWrECli1N4t28bX2n1fXs6TpSetB4lIA1vO0uOsUP5tSDT0LNmq7jpAsVsBKwDh4kYkg/VoQ8SONZdV2nSU+6TkpA+qbDAiqd+IrfnhlIrpK5XccR8a7du6F/f3jssVS3V/7gA9930TfegKuu8nO+NKS6VQJVwtYdFH53OEuyNaLB2Oqu46Qn1a0SkH54YQplYjaxo81IsufP7DqO3yVnMqQosPu8n/ecfewfxpiiQH1gyv/6IGPMi8aYtcaYtYcOHUppVpF/xMf7zrvrViCSq/b+6FuSkz2761jpwW/j8exrNSbFL777Dqot6kp4mCX7lBGu46QnFbASkP5q8RoR8af5o/VoSpYyruOkJ9WtEnCiD0dTcmIXNmepzB1vPe86joi3deoESUm+3SGpcPo0vPoq3HgjvPKKn7OlPdWtEpB2PNWFJGvINGYomTPefdf/xa/3d0T84eSOI1zzbh9+yHkvd4282CUi+CVnMuRi36DtBT+PAbpZaxP/1wdZa6daa6taa6sWKFAguRlF/mXyZNi3+Rivx/WA6tWhUSPXkdKL38YjaEyKfyQlwYxmX/A080nq3A1KlnQdKT3pxqsEnMQff6bQ0mm8nb0tzw+r4DpOelPdKgHn+yeHUTRxN3HDxhIa4Y3WHyIBaeVKeO89X0eBUqVS9RH9+/s2l0ycGJQdYVW3SsA5/uEqyv78PvPL9OD+F4q7jpPe/Fa3akyKv/zyRB9y2BNkmjyGkNCMuaguOZfvPcD5/yIVA/Zd8JqqwDxjDEB+oK4xJsFau9gvKUXOc+gQ9O0LM0r0I2L3YRi/AkzGHKAXofEoAefddxJp/Vs7TuctTrbXurqOk95SVMCa//FvlbV2KjAVoGrVqhd+hkjyWMvBp9sRRj7yj+tD1qyuA6U7XScloOz9ZhfVVg9lTfGG3NGmhus4It4VF+c76KNMGejSJVUfsXq1ryHBCy/AnXf6OV/6UN0qgSUxkZMvtOcYJai2oLOHbuv8w291q8ak+MPu5Ru5dd0Uoiq8zH2Nr3cdJ80kZzLkB6CcMaY0sBd4Gmh8/gustaXP/d4Y8zawTF8oJa306QPFTmyi/qkJmJYtoXJl15HSk8ajBJSTJ2Fj+7d4lvUkTZyPB++86sarBJRTke9ReOuXjCj3Jp2aefJcAl0nJaDsbNiVvEDJ+cNcRxHxtrFj4bffYOlSUtOH58gReOYZuPpqGDMmDfKlD9Wt1qdGjQAAIABJREFUElD29J1GsSMbmPHgAp6vksV1HBdUt0rgsJajz7UnG7m5fmE/12nS1GUnQ6y1CcaYNvgOzwoFZlhrfzXGtDr7vPrWSbpZvx6mvmnZVKw95mR2GDDAdaR0pfEogWZ0n6N0PdGLE5XvJmfDp1zHcUEFrASO6GjiXu3CT9xE7XkveHF1na6TElDWT/iSO3bPZ9Xdfal5ewnXcUS8a+9e6NcP6tXz/Uoha327QQ4cgG+/DeqjKlW3SsCwfx8lx9DefB12N/XffdJ1HCdUt0ogWf/6B1Q6HMWnj0zg/op5XcdJU8nqcmmtXQ4sv+Cxiw5Ka22zK48l8m/W+g6ra5z9Q8rvXgnjxoEHe3hrPEqg2LYN8o3rS15zlJDIsV5qV/cPFbASSA52HUHBk7uIfGQWnW727rkEuk5KIEiMSySia3v2hhbn1vc910JSJLB06QIJCb7dIakweTJ8+CGMGgU33+znbOlIdasEkq3P9qNMwlH29hhD9bze+x55jupWCQQJp2LJN7gTW8Kv5653X3IdJ80F35Ff4lmLFsG3q2I4kK8DXHcdtG7tOpKIp4178RdGJE0iuulLZK9UyXUcZ1TASiCwO3eRc/IQFoU34Lnpd7mOI+J5a1pGUiPmJ9a0m0fR/J5rISniXlQUNG8O7dvD3Lm+XstlyqT4YzZuhI4doW5d38K8YKe6VQJB7LpNlF4+gUV5W/JE/5tcxxHxvB8ajeL2+B183W8l5bNn/KmCjP/fUDKEmBjo3BmGFRpJzgM7YP5KCNNfXxFXPl9pqff5q8RnyUn2Uf1dxxHxvL3PdCNfkuVEn2Hkz+86jYi3Hd95jAqzerI+553cPrqB6zgi3hMV5WuHFR0NnTpBoULQvXuKPyY6Gho2hDx5IDLSk5ugRfzPWvY2eJV8ZKfI9P6Eenczs0hAOPrLXm5YNoivCtSn+mv3uo6TLkJcBxBJjpEjIWHHbl4+PhieeALu9cYAFQlECQmw5PnF3MfnhA18A/Llcx1JxNPOrPySYl/N4+0CXXmmV0nXcUQ876cn+pPPHiZi0lhMiO6eiqSr8ydCwNdr+dgx32EfKdShg+/M9VmzoGBBP+cU8ahDkcu4+s/P+KDS61R/zHttz0UCzR9PdCeceArMHOGZSX9NhkjA27MHBg+GucW6EkoSjBjhOpKIp701PoZXd3fkeInrCW/bynUcEe+KioKSJTnd8Hl2U4wKkd20aVLEpago4gsV5c4fx/BV+Re4tkkQHy4gEowunAg558wZ3+NRUcn+qPffh6lToVs3uO8+P+cU8aKzdWvIK634zVTgnvdfcZ1IxNuioojPX5hbf5/N6iqdKF8n5a0kg5W+MkvA694dbo//gjv3zIO+faFUKdeRRLwpKorEps3JfuAeSrMDO+NztasTceW8Gz55gZXle9PgIZ1LIOLM2TEZHh2NBW7sVsd1IhHvad783xMh50RH+57fseOyH7NzJ7RsCbfeCm+84d+IIp50Xt2aD1h7b3seKBvuOpWId0VFYc+rW2/rVN11onSlnSES0H4ZH8WAd0syP9vzULw4dO3qOpKIN50tYEP37KRJfCSnbq6Bufce16lEvOkiK1+f3DkqRSteRcSPLhiTBsjd5lmNSZH0FhkJWS+xMCBrVt/zl5GQAI0bQ1KS79z1cN2vFbkyF6lb71/TT9dIEVfOjklzXt2as0UDT41JTYZIwEpcGcXVr9ajFLvId+xP30qeSxW3IpJ2LnKTJ/vmtZ66WIoEjEu0AAmJjU5xCxAR8YNLteWJ1pgUSXe1al28pXLWrLBsme/5y3jjDVizBqZMgTLe6RgikjYucY00MbpGijihuhXQZIgEqqgoEuvWI0vSeQN0xAjPDEyRgHGpi2VMjKculiIBIzktQEQk/WhMigSO48d93xkLFoQsWXyPpWAiZNUqGDDAN2wbNUrbqCKeoGukSGDRmAQ0GSKBKCqKxDr1iIj39kylSEDQxVIksERG/vcGz4WS2QJERPwoMpLE8EwXf05jUiT9WAsvveQ78GPRIvjoIyhZMtkTIYcPQ5MmcM01MG5cOuQV8YLISGxm1a0iASMyksSwiIs/56ExqckQCThJzzUn9IxuvooEhMhIEjJdWe9lEfGjmjX5u+RN2AsfT8HKVxHxn0MFKnIyPgtJmP//hMakSPqaMQPmz/f1uape3Tf2duxI1hi0Fl54wTchMncuZM+e9nFFPOGuuziQq6zqVpEAsT+8OHEJISReOB3gsTGpyRAJKNbCwLKRRKPVAyKBYP+1tZhqXvr3Ex67WIoEimNDppD3t2+Yn/8V7LlztDQeRZxISkhiR61mZCKWv/pP/+/ZdhqTIulr0yZo2xbuvRe6dUvx2ydOhCVLYNgwqFw5DfKJeNTO1kO46sBGllbsrmukiGNJZ+I5VrcxsWRm/6g5nh6TmgyRgDJrFvSJqsnhklX//aQHB6iIS0lJ8NoTm2gWO4WY66p4+mIpEgiSNv5Klt4d+TTkQSp/OR6zbFmKWoCIiH992WA8txz+hB8ajqRo7+a+sagxKZK+YmKgYUPfdo5ZsyA0NEVvX78eOneGhx6Cdu3SKKOIB51a+S1Fp/VlabanqblmkK6RIo59V6cvFU7+wLpW0yjaoaGnx2SY6wAi5/z5J7zyCgwtN50Sf3wJL74Is2f7WmPp5qtIupswIpY2axphsmcjy2dL4bfffG3qIiM1FkXSW2wshx9ojE3KyaGRb3N/BQMVzrYAEZF0t2XBem77oCvfF3qYGnNa+x6spTEpku46dYJffoGPP4bChVP01tOn4emnIW9eX3lrzOXfIyKXZ4+f4PRjTThMMa76YDI5cxldI0Uc2jIlimpRQ/i81AvcM+lJ34MeHpPaGSIBIT4eGjeGa81vdN7THu65ByZP9vRMpYhLP/8MIT26UYkNZJ77tu/LZQp6L4uIfx1o3p2Cf21gevVIGnco5DqOiKdFH44mtGljjoXk5epV0zEhuoN6KcaYB40xW4wxW40x3f/H624xxiQaY55Mz3wS5BYu9H1n7NIFHnwwxW9/9VXYssW3oaRAgTTIJ+JR2+q2If/pHaxu+S631M7tOo6Ip53a9Te52j7LjrCy3PzFGE38o50hEiD69YOfvz/D/tKNCTmRBd55B0JCPD1TKeJKdDRMefgjpiSNI6ZlO7LUe8h1JBFPi174MYXmjWVG9na0XlpXBayIY2trduauM5v4cfCnVKmgO6iXYowJBSYCtYE9wA/GmCXW2k0Xed1QYEX6p5SgtWOH79TzW2+FAQNS/PYFC+Ctt6BHD99RIyLiH/tHzeHqNbOILNGXppOru44j4m3WsuWultyQcJC9b35DmeLZXScKCNoZIs6tXg2DBsGS63uRZ/tPMH06FC3qOpaIZ/Vr9Rf99zTjZJkbyTJuqOs4It524ADxzzRjAzdQbtFQ8uRxHUjE277rtYS7fp3M6qqdqNK9tus4ge5WYKu1dpu1Ng6YBzx6kde1BRYCB9MznASxc20FrIW5cyEiIkVv37HD15H5ttt8i/JExD/if99O9q6t+S70Du5b1TulR/iIiJ+tbT2dKjsX8fk9A6nyYhXXcQKGJkPEqaNH4Zln4LnCn/LALyOhdWt49GLfkUQkPSxelMS9s54jV9hpciydC5kzu44k4l3Wsu/B5kTEnmD1S3OpUVvjUcSl/ev2UXbw82zOUpnb/zPQdZxgUBTYfd7Pe84+9g9jTFGgPjDlch9mjHnRGLPWGLP20KFDfg0qQaZvX/jmG5g6FcqUSdFbz59HmTMHwsPTKKOI1yQksO+eJiQmwpFx71K8tBrRiLi0L2oL177Znu9z3st9yzu5jhNQkjUZcrler8aYR40xG4wxP58tUO/0f1TJaKz1rchJ/OsgU2ObQsWKMGKE61gBT+NR0sq+ffDTs6O4n88IGTPaNyZFxJkjr4+nyM8fM7H0SFpPuM51nKCh66SkhaSEJPbWfo4sNprMC+cQkSOT60jB4GJN/ewFP48BullrEy/3YdbaqdbaqtbaqgV0wIN3ffYZDBkCLVpAw4Ypfnu/fv+dRyldOg3yiXjU9hcGUHLvNyyoNYW6L5dyHSdoqG6VtJAYfYZTDzciliwUXD6T8EzaC3G+y/6vcV6v1zpARaCRMebCO2SfA5WstTcBzwNv+TuoZDyRkfD++5Yvyj1P+Oljvi3OWbO6jhXQNB4lrSQlQf/HfqRXdE9O1n6csJdfdB0paKiAlbSQsG4DOfp3YXnYwzyxsjVhWlyXLLpOSlr5ov5oqvy9krXPjqV0nQqu4wSLPUDx834uBuy74DVVgXnGmB3Ak8AkY8xj6RNPgs6BA/Dss1ChAowdm+K3R0X52jO/8EKq5lEyBNWtkhaOf/QVJd7pz+Kcz9J4aSPXcYKG6lZJK98/0JtrTv/EhvbTKVVdxxBcKDlfrf/p9QpgjDnX6/Wfg++stafOe302/r3iR+T/+f13aNsWxl4zkbK/feQrZm+80XWsYKDxKGli3KBTdPihEXF5CpFj3jR0QnPyJPNw2M+BJdZaa4y5EVgA6E6aXFpMDH8/2IhEm5fYCdMpXUbjMQV0nRS/2/zuOu5Y1oNvi9SnxtstXMcJJj8A5YwxpYG9wNNA4/NfYK39Z22+MeZtYJm1dnF6hpQgkZQETZvC8eO+3SEpXER3+LCvPXP58qmaR8kQVLdKWrBHj3HmqWc4TClKL5tAtmyuEwUV1a3id5vGreT2r0awsmwr7h2tYwguJjn7ZC7b6xXAGFPfGPMb8BG+2UqRi4qL8/VprRy2kbY7O0OdOr6ZEUkOjUfxux9/hNx92lGWrWRbNBvy5nUdKZhc9nBYa+0pa+25olUFrFzWvsadKXhoE7Nrv8PjL6kVTArpOil+dfrgaTI935gjIQUpv3oaJkSTk8llrU0A2gArgM3AAmvtr8aYVsaYVm7TSdAZMQI+/RTGjIEbbkjRW62F5s19EyLz5uHlm7WqW8W/rOXP+1uTN2YP37WbQ6UaOV0nCjaqW8WvTm4/TL6OTfkj/Fpu+WKk1rheQnImQ5LT6xVr7QfW2grAY0D/i36QDr0ToE8f+PXHGJbnaoTJnRveflur0JPPb+MRNCYFTp+GWQ/Pp5mN5EzHnpiad7uOFGz8VsBqPArAqTlLKLJ4Em/l7kSrhbVdxwlGqlvFr368uwOl4n5n//BZ5Cmbz3WcoGOtXW6tvcZae7W1duDZx6ZYa/91YLq1tpm19v30TykB79tvoVcvePJJ36GTKTR+PCxb5ptPqVQpDfIFD9Wt4ld7h8yi7Np5zC7bj6dHV3MdJxipbhX/sZY/7nqB3IlHOD11DrkK6xiCS0nOZEhyer3+w1r7BXC1MSb/RZ7ToXce95//wLBh8HHFzuTc/SvMnAkFC7qOFUz8Nh7PPq8x6XH9X9hBv79e5HjF28gypK/rOMHIbwWsxqPYvftIav48P1GZm5YNJEcO14mCkupW8Ztvuy7irt+m8cVt3ajcsZbrOCLedOwYNGoERYvCtJS3cv35Z+jSBR5+GNq0SaOMwUN1q/jNmV+3krv3K6wJv4sHV3UnROczp4bqVvGb71+Yws17lrDqgSHc1Owm13ECWnL+ufqn16sxJgJfr9cl57/AGFPWGF9VYoy5GYgAjvg7rAS3I0d85929VGQJNTdNgo4d4YEHXMcKNhqP4jeLFiTw8PwmZMoEuZbNgfBw15GCkV8nKMXDkpLYV/s5wuKiWdtxDlWrZ3KdKFjpOil+8dcPeyg/ogWbslbljs/6uY4j4k3W+naC7N7t62+VO3eK3n76NDz9NOTPDzNmqBkBqlvFX+Lj2X9vE+KSwoiZOpurioa6ThSsVLeKX+z5dBM3RHbku9wPcO+S9q7jBLzLHqBurU0wxpzr9RoKzDjX6/Xs81OAJ4Cmxph4IAZoeF6fSRGshRYtIOzgPsZnfx5uugkGDXIdK+hoPIq/7N4NW5/rz+OsIWHaHChd+vJvkou57OGwxpiywJ9nD6JUASsXdbD7KIpuXsnI8lPpMFznlKaWrpPiD4lxiey/vynlbBxZF88hInuE60gi3vTWW/DeezBkCNx2W4rf3q4d/P47fP65b0JEVLeKf2x99nXKHvieGXXe4/lmxS//Brko1a3iDwmnYomp34hTJgdFPn2bsAht07qcy06GgK/XK7D8gsemnPf7ocBQ/0aTjGTaNPhwcRLbyzUlbE80zJ0LmbTqNTU0HuVKJSbCsIe/ZEzsAE7Uf46czzZyHSloqYAVf4j7dh15RvRkWUR9Gn3eQm0GrpCuk3KlvnxkODWPRfFl8xnUqF3OdRwRb/r1V99sRu3avj5XKfT2277dIL16QS11uQNUt4p//L1oFWXmD2ZR7udpvOhJ13GCnupWuVI/3NeD26M3sLrLMu6+5SrXcYJCsiZDRK7E5s3w6qvwZrmRlPzjc5g6FSpo1auIK+P6HaXL+iacLliGnDPHu44T9FTAyhU5fZpjdRsRZwsSOn0aRYqqh4eIS5tm/kD1Fa+xpngD7nyrmes4It4UHQ0NG0LOnPDOO6R0lcDHH/u6Etx3H7z+etpEDFaqW+VKJB3+m8Qmz/KnKUuFFWPJnNl1IhFv+2XkJ9z+3Rg+rdCW+4c95DpO0NDaQ0lTZ85A48ZwR8RaWmzvCY8/7qtMRcSJ77+zlBjQkiLmL3IsnYNOaBZxa/dTHch/9A/ef3QWdZ7J5zqOiKed2n+KrC0bczC0MBVXT8GEaHJSxIkOHXw7Q2bNgqtStsr1u+/gySehUiVYtAjCtPxTxD+s5c97XyRX7AF+7jqXirdmd51IxNOO/36AQl2fY0v49dz+xTDXcYKKJkMkTfXsCX/8fIrF2RpjChXy9cvSyXUiTpw8CYsfns4TdiFxfQdibr3FdSQRTzs+YyHFP57GjPzdeGmueniIuPbTXe0oHr+Nw2PeJXfpPK7jiHjTggW+TgLdusH996forVu2wEMP+eZPli/Xmh8Rf9r1+gzKbVjInGsH8OTgKq7jiHiaTbL8WfN5ciQd58zbc8lRQNu0UkKTIZJmPv0URo2CTyu0J/tfW2H2bMib13UsEc8a1PQ3eh1qz9Gq95H1tc6u44h4mt21m5BWLfnB3EK1FW+QJYvrRCLetqbDAmr8EcmXd/akUpsaruOIeNP27dCyJVSrBv37p+it+/bBAw9AaCisWAGFCqVRRhEPivl5C/n7t+PLiHuot6qz1reKOPZ90wnc/NdyVtcbwY2Nr3cdJ+hoMkTSxKFD8Nxz0KHoAu74bQb06AE1a7qOJeJZC2adocHiRpA1K3mWpLz3soj4UWIie+9tiomPY0ufOdxwc7jrRCKetufrnVw35kU2Zr+N6iv6uI4j4j1RUVCyJNSt6+siMHcuhCf/2nj8ONSpA0eO+HaElC2bhllFvCYujoO1GxNjM2PeeYf8BfU9UsSlXR9tpNK7Xfgm70Pc98ErruMEJXXQFL+zFp5/HnL8vZPhmV70rezRyXUizuzcCYdbdKcBP5M4ZykULuw6koin/dVxGMW2rmLMTZG076s7NiIuJcYlcqTus+QkiVxL3yU8qyYnRdJVVBTUq+c7NB2gTx8oXTrZb4+Nhcceg02bfBMhVdS9R8Svfm/Ym2sOr2Nm/Q94rmFR13FEPC3+RAzxTzXiuMlNiZUzCA3TNq3U0JSu+N3kyfDxsgRWFW1CKEkwZ06KVvaIiP8kJMD4uh/zctwYjj/bhtBH67mOJOJpsV98T/5xfViSuQHPfPqc2gyIOPZl3cFUOvElG1tNokTNMq7jiHjLhRMhACNG+B5PhsREePZZWLUK3n4batdOk5QinnVo7kquWTychflfotG8x1zHEfG8tbW6cHXMr/zecyZFKxd0HSdoaTJE/OrXX6FTJ4gsO4gi27+GSZOgjL5YirgytucBumxqxtHiN5Br6nDXcUS8KSoKSpWCjz7ixMON2UcRcs6ZQv4CmgkRceLsmNzWaQJ3fv46X5dsTPXJz7hOJeItF5sIAd/P9epddkLEWmjfHt5/H0aOhCZN0jCriJecvUYmLlyMadaULaYCN64cRUSE62AiHnWubm0xiNvXTeSz6ztQY8ADrlMFNbXJEr+JjYVGjeDezF/zzLZ+vor0GX2xFHEiKorYRs2460BB8oSeIOKTKMic2XUqEe8572ZP0iOPki8piamNVtO6fh7XyUS86bwxWWpUOw6HFOT6Lya5TiXiPc2b/3si5JzoaN/zO3Zc8u2DB8PEidC5M3TsmDYRRTznvGukeepJclrD168v59FKWV0nE/Gm88Zk6em92Bl+NXesHuw6VdDTzhDxm27dYOfG4yyIaIIpWdJXnYpI+ouKwj5Uj8wHdnELa7EvtoKKFV2nEvGeC1a9hiQlkkQYLZolOA4m4lEXjkks+cOOk+vPdY6DiXjQ2LFcsldk1qwQGXnJt86YAb16+dbeDR2aRvlEvObCa6RNJMQYHqlx1HEwEY+6YEwaoLjZS7b1a9zmygA0GSJ+8e3gKDqMK8UPxeqT9cgeePddyJXLdSwR74mKwtarh4n570q7TDOnJrv3soj4ySXaf4QTT3j9y7f/EBE/u8SYDImLTVZLHhHxo1OnYMgQCA2FTJn+/3NZs8KyZVCr1kXfumwZvPgi3H+/b1IkRHc0RK7cJa6RYTYe87CukSLpTnVrmlLpIFdsy5QobuxZj1Ls5Jo9UdC0Kdx+u+tYIt5z9oJpUtl7WUT8KDntP0Qk/WhMigSGM2fg8cfh++9hwQL4+GPfBAhcdiLkm2+gQQOoXBkWLkRnGIj4i66RIoFFYzJNaTJErsiumVEUb12PrJw3SOfP101XERd0wRQJHJGRkCXLxZ+7TPsPEUkDkZEkRVzi7CyNSZH0kZjoO1Pys8/grbegfn3fxMeyZVCy5P+cCNm82be2p2hR+OgjyJ49nbOLZGSRkVjVrSKBIzKSpPBMF39OY/KKaTJEUu3g/CjyN79gIgS0Cl3Ekc8bvknipf5Z1wVTJH3ddhuH85TDXvj4ZVa9ikja2B5XlBNxmUjigjMKNCZF0oe10KoVvP8+jBr1/xfp1KrlOyz9EuNw71544AEID4cVK6BgwfSJLOIV9uYqHIwoprpVJEBsO5CNM/FGdWsa0WSIpMqRIxD/THOyWq1CFwkEHy9N4PjwqYSShL2wZ4AumCLpKyGBPTWeJu++jSwo1wubzPYfIpI2/lq7l/CH7ifeRHBg6NvJbskjIn7UvbtvN0ivXtChQ7LfdvQoPPggHDvm66hVpkwaZhTxothYtt/0GHmPb+fjGoN0jRRxbO/nm8ndpC4HQotwcMICjck0oMkQSbFTp6BuXWjNJKzRKnQR177+ynKgfiset4uIHTIG88knumCKuGIte+q2pNiPSxh39TgeWT8Ak4z2HyKSNo7++Ten77yfnIl/c/idjynctWmyWvKIiB8NHQrDhkHr1tC/f7LfFhMDjz4KW7bA4sW+s0JExI8SEtharTFldkTx9t1vU2d1D10jRRw6vG4XIQ/eT7wNI/bDT7nqlSc1JtNAmOsAElzOnXe3ce0Zlt44BrPe+k6ui4v774t081Uk3WzcCD/e1412idM53akP2bq19z2xbJlvd1ZkpMaiSDra26QrxT57m6lX9aH5j218x4aca/8hIunq9MHT7LnpIa45s5VNIz+h8jNVfE9oTIqkn6lTfbtCGjWCCRPAmMu/B9/xIk2awJdfwrx5cM89aZxTxGusZet9rSi74QOm3zCG5iub+IanrpEiTpzcfphTd9xP7oSTbI9cTeWHrvY9oTHpd8naGWKMedAYs8UYs9UY0/0izzcxxmw4+2uNMaaS/6OKa4mJ0LQp/OezBDbf9DQFf/4Mpk8HrUJPVxqPcs727bCk+lDanRnOiefakG346/998jK9l0XE//7qMIyic0fwbq6Xeezn18mVy3Uib9J1UgDiTsWx6bonqXjqe37qOo/KHXU9FEl3Cxb4zgmpWxdmzoSQ5DWmsBZeeQU++ADGjIGGDdM4p4gHbW3Qk7KrpzOrVG+afN+eMC2VdkJ1qwDEHjrJnkp1KXRmJ5uHLqVyM/3fnJYuW40YY0KBiUAdoCLQyBhT8YKXbQfuttbeCPQHpvo7qLhlLbRtC+8tSGLDzc0puW4xjB3rW3leq5a2baUTjUc558ABeKvaNHqd7M6xhxqTc8bYZK+0E/9SASsAh4ZMp/CYbnyYpSHV142nYCGNRxd0nRSApIQkfri+Gbcc/oQ1Td/ktqH1XUcS8Z4VK+CZZ6B6dXjvPd/p58nUvz+8+SZ06wbt26dhRg9S3SoA214ZSdn3h7CwwEs8tv4NMmd2ncibVLcKQMLpM2y5rj7lTq7ju07vcXvXGq4jZXjJmfu9Fdhqrd0GYIyZBzwKbDr3AmvtmvNe/y1QzJ8hxb3XX4fJky1rKreh4rrZMGAAtGv33xdo21Z60XgUjh+HEbe9x9BDL3H0jrrk+eDtZK+0E/86r4CtDewBfjDGLLHWbjrvZecK2KPGmDr4Cthq6Z9W0srRGR+Qt8eL/CfsfsqteYdSZTQeHdJ10uNskuXLm9tz9865rHpwCDVntnAdScR71qzx9Va+7jpYuvS/XQSSYepU6NsXnnsOBg9Ow4wepLpVAHb1n0mZSZ35OMdT3LVhIjlyagGPQ6pbPc4mJPLz9c9Q9dDnfNpkJvePqOc6kick59t6UWD3eT/vOfvYpbwAfHwloSSwjBsHb7xhWX5Dd27/aTJ07Qo9e7qO5VUajx4XEwNv3PkpA3c04dh11cnzWcpW2onf/VPAWmvjgHMF7D+stWustUfP/qgCNoM5tWwVWVs04seQW8jx2SIq3hThOpLX6Trpcavv68/dGyewqkon7v6oq+s4It6zYQM89BAULeprp5w7d7Lfunix74z1OnVg2jRtek4Dqls97q83l1Ckzwt8kek+rvtxFgWuCnUdyetaeEfaAAAgAElEQVRUt3qZtXxf9WX+j737Do+iXPs4/r2TEJLQIZTQe1UQAWkqRelVyhErcEREj/0cRLEeFRUrx8oLKqioKKI0QUAMRZqAIL3XkFClJ6Q+7x+z6LJsYFN2Z5K9P9cVyO7M7N472d8+z84zpene75jT4W06Trrb7oqChi9HhnjrghivM4q0wwrn9ZlMHwoMBahcubKPJSo7ffmldWjypPqv0mXD69Y5X197TXum9sm1PLrm0UzmIWlp8FzHFby48RbOValPyV+ztqed8gtvHdjL7T2XaQdW85j3JC39Hendk92mOolTfqRt20J2l6S03xrUFg34kLaxz/NrjYG0+e0NJET7q0oF1M6d0LEjFCoE8+dD2bI+L/rrr9Y11ps2zfJZtZTvtN8axI59v5iS9/+D9aHXUubXH6hcq6DdJSnttwa15R2epeUf4/ip8VN0nvuY3eUEFV+ODIkDKrndrgjEe84kIg2Bj4Fexpjj3h7IGDPOGNPUGNO0dOnS2alXBdCcOTBoELxb6z3u2Py0dc7XDz7QgRB75VoeQTOZlxgDL/TbyFO/diUtOoYSK7K2p53ym+x0YEd4m655zFtSN20nuX1njqWXYPfYebTtW8rukpRF+61BatnDk7nhmwdZWa4nLTZ+rAMhSgVafDx06GDtvTNvnnU9SR9t2gQ9ekDlyvDjj9ZYivIL7bcGqdOL11Gwfw/2Ug2ZM5u6TQvbXZKyaL81SK28bQwtF4zi5+r30uG3UbqZNcB8GQxZBdQSkWoiEg4MAGa4zyAilYHvgbuMMdtzv0wVaMuWQd++8HSFiTy042Ho3RsmTNDrEthP8xikXh26hwemdySsSCTFfpsP5crZXZKy5OoApcobMg4c5GTzjqSmGFa+NJ9u9+kZJBxE28kgtHrUXJq9dxfri91Aw02TCYvw5eB3pVSu+fNP64iQY8esPerqe17/N3MbN0KnThARYV1zPTraj3Uq7bcGocT1O0m7uRMnMopx9Mt5NO6gIXMQ7bcGoTWPfkHzyY+xpExfbtz4EaFhOhISaFf8pmCMSRORB4G5QCjwqTFmk4gMc00fCzwHlAI+FGs4K80Y09R/ZSt/2rDBOs3rPcW+4/kD91h7+EyeDGH6xdJumsfg9MGzh/jHxx0oVjCZqGWLoVo1u0tSf/urAwscxOrA3u4+g3Zg8xdz/E8ON+pI4XPH+e7BhQx+prbdJSk32k4Gn40fr6DeM33YHdGAautnEFky0u6SlAouZ89C167WKbLmzIFmzXxe9OefrR3wChWyBkKqVvVfmQrQfmvQSdkbz+kWHQhLTWfr/+bR8bZKV15IBYz2W4PPhldn0eh/g/mt6E003vwl4ZF63R47+LR12xgzG5jtcd9Yt9+HAENytzRlhz17rD1zuoXM4d3jtyMtWsAPP0BBPZ+kU2geg8sX752k9cudqRh2iPDYBchVDewuSbnRDmyQOXeOuGu6UebETj7t/xPD3m1id0XKC20ng8fO6ZsoP7Qbx8JiKPnbTxSrXMzukpQKLsnJcMstsHo1TJ0K7dr5vOinn8J990G9etapsSrpNlq/035rcMk4foJD13SiZNJRfh4ZS++H69pdkvJC+63BY/snS6g5sj9bIhpT448fKFxKt7PaRXf1V385fNg6uvnaM4v4PLUPctVVetJWpWw0Y3Ii1R7uTgPZDNN/JKTl5a5vqOyiHdggkZLC3mb9qBT3Gx+1m8K/vmmn53ZVykZxS/dRqE8nUiUcmT+P0lfr6SOVCqi0NLj9duvwjokToVcvnxYzBp59FkaNsr57TpkCRYv6t1T1N+23BgdzLpE9V/eg4qnt/HDPjwwY5fsRW0qp3Ldvxh+UvbcHB8OqUGrFbEpVLWJ3SUFNLwChADh1Cjp3hnIHVjEtowch1apaxyrrBZqVssWi+SmE39GPliwn/fOvKNC1g90lKRW8MjLY03YQVbf8xNhr/o9h8/roQIhSNjq25Sip7ToSlXGWU9/MpXLb6naXpFRwiI21zmX1yy8wbBh8/z2MGQMDB/q0eHIy3HGHNRAyZAjMmqUDIUrlutRUdjTuT7WEZXzT40tuHX+z3RUpFdQOL9tFZJ/OnJUiyLx5lG+kF7i3mw6GKM6ft3bkMRs2siC8M2Flo609fEprQJWyw++rMzjSdRCdM+Zw/p2xRNzZz+6SlApexrC31yNUW/4146u/yj3Lh+gltJSy0em40xxp2oWyqQfY98EsavdraHdJ6jJEpLOIbBORnSLypJfpd4jIetfPMhFpZEedygexsdC9O+zbZ51X+ZNPrEM8HnnEp8WPH7cuRfn11/DqqzBuHBQo4OealQo2GRlsbTWY2jtm80Wrsdw1vZ/uwKOUjU5sTiClbUfC0lM4MXkeNdpVtrskhZ4mK+ilpcGAAXBw0U7WF+9AeGRBayCkQgW7S1MqKG3fZlh3w0P8M+1rTj31GsUevdfukpQKavuGvETVWe/zRdl/c+vvI4iIsLsipYLX+ZPn2XV1b65OXMfa56fT7IHr7S5JXYaIhAIfAB2AOGCViMwwxmx2m20P0MYYc0JEugDjAD0vqNNcGAhJTLRup6VBWBi0bevT4jt3WtdY378fJk+GW2/1X6lKBS1j2NrlMequ/pJJ9UZxx6KhOhCilI3OHTzJsWadiUk9zNb3F9C0fz27S1IuemRIEDMGhg6FNdMPsKbkzUSGploDIdX1VANK2eHgQZjT/Hn+ef5D/rxnOMVeGWF3SUoFtQMjP6TKp8/zQ9GBdF7/BkWL6TdKpeySnpLOugZ30PhkLCuHTaTZC93sLkld2XXATmPMbmNMCjAZuOjCEsaYZcaYE66bK4CKAa5RXYnnQMgFaWnQo4c1/TKWLYOWLeHPP2HBAh0IUcpftg0cRd157zKl4qP0W/OUHsmslI1STlrX7amSuIV1z/1A03/pfh5OooMhQWzECJg14QhrS91M0bQT1jVC6te3uyylgovr3Munp8fyRdP/8ciplzjW6x5Kjh9td2VKBSdXJo8/8CwVXn2Q+RE9aLL2Y0qX0YEQpQLOlUez4BeWNhxGi/jvWXTLGFp/dKfdlSnfVAAOuN2Oc92XmXuAOZlNFJGhIrJaRFYfPXo0l0pUVzR48KUDIRckJlrTMzFlCrRvb12GcvlyaN3aTzUqFaxc7eTBWx+jzhfP8mPJO+m04S0iIrXfqlTAufKYMXc+GxvcSv0TS1kydBLX/1ev/+o0OlYcbGJjYfBgJneawPhx17ChVEdKJR6AefOgSRO7q1MquLjtaRdxS2eeNCkcubEvZab+H3pMs1I2cMtkyY9eZnPI1VRa9g2Vq2t3SamAc8tjRsdO3JiRxsLWT9P2e9+uT6AcwVtnxnidUaQd1mBIpuc+M8aMwzqNFk2bNvX6OMoP3nkH+vWDjIxLp0VFwYQJl9xtDLzxhrXzXevWMG0aREcHoFalgolbO1l+3xjWRjSn2fpPKVpc93lWKuDc8mi6dOFak87cXh/S6f/+YXdlygv9lAwmbhe96zmuG+uLtqbCmS3ItGlwvZ5zWamA8jjlQLhJwUgIZUbeC6GhNhenVBDyyKQAdQvspO7JFfbWpVQw8shjaEYa6RJGm/+2t7kwlUVxQCW32xWBeM+ZRKQh8DHQyxhzPEC1KV/88Qc89pjVNw0Pv3haVBTMmgXt2l10d1oaDBtmDYQMGGCdhVkHQpTKZV76rY1YT5ntv9pbl1LByLPfatJJCylAx4fr2lyYyowOhgSL2FiMWzijSKLi6S3I009Dx442F6dUkMnk3MtiMqBPnyuee1kplcsyyWRocpJ1v2ZSqcDJLI8mDel55esTKEdZBdQSkWoiEg4MAGa4zyAilYHvgbuMMdttqFFl5rvvoFUra3Rj2TL46SdrAAQyHQg5fdqK77hx8NRT8OWXEBFhQ+1K5WeZtJMh57XfqlTAZZLHsIxUpIfm0al0MCQYuAZCxHPDK8Do0RpOpQItB+deVkr5gWZSKefQPOYbxpg04EFgLrAF+NYYs0lEhonIMNdszwGlgA9FZJ2IrLapXHVBRgY89xz07w+NGsHq1dC0qTXwMWsWVKnidSAkLg5uuME6EmT8eHjlFQjRrQ1K5b5Bg7SdVMoptN+aJ2n3JAik3TX4koGQv2g4lQq4lYPHkkYmp8LK5NzLSik/OXeOhMhqmU/XTCoVUEcefYUMr5eaQPOYBxljZhtjahtjahhjRrnuG2uMGev6fYgxpoQx5hrXT1N7Kw5yZ85YRym/9BL885/WTnPlyv09vV072Lv3koGQdeugeXPYswdmz4YhQwJbtlLBIuPPkxxIj8l8Bm0nlQqoQ0Oe1n5rHqSDIfncihUwIGkCSWRyfLKGU6mAMQbef2I/oS88QxjpmLACF8+QySkHlFL+kbpjL3FVW1N26yJmlb8XExl18QyaSaUC6vc3FhD2+EMkEkV6gYIXT9Q8KuVfu3ZBy5ZWzt59Fz7+GAoWvOJis2dbR4SEhsLSpXoGZqX85eyqLSRUbk65g2uYW/cR7bcqZbO1IyZT9NlHOC6lSA/32OaqeXQ0HQzJxz75BNq0gWLhiYRHeBmp1HAqFTBnz8ILbRdy6xtNqF9gB8lTZiDz5l7x3MtKKf/4c+ovnKvflELH9vHxLbPpvG8c8uMszaRSNjAZhkW3jKHhE504Hh7D8Z/XETp3juZRqUD5+Wdo1gwSEmDuXHjoIZBM9nR189FH0KMH1Kpl7YR39dUBqFWpIBT30Qxo0ZywcyeZ8cgvdNw8RvutStnEpKWz4sYnaPz6bWwt1ISklRsJ/Wm25jEP0cGQfCglBf71LxgyxPBelTf5+HAPQuvXg2++0XAqZYNdOw3v1/ofzy6+mZAy0USu/42C/Xpc8dzLSik/MIb9j4+haL+OxKeX5de3fmPo950JC0MzqZQNkv5MYmmtgbSZ9hirY3pSbvdyqtxUU/OoVCAYA//7H3TuDOXLw6pVcNNNV1wsIwOGD4cHHoAuXWDxYmtxpVQuy8hg6x0vUvGBXuwMqc3ub1bTd8wN1liltpNKBdzZ/X/yR8WutFjyBvNqPUDduAVUblZW85jHhNldgMpdR45Av36wckkyqxrcR9NNn1kXv5s40RoAKV3aukbIhAkaTqUCYMHMRI71u48nUyZxpFVvysz5DIoW/XuGC+deVkr5X1ISO28eRs1lnzM3sjfl5n1Oj+uLXDyPZlKpgIlfeYCT7W/h+sQ1LLzpJW78aSQhYW77amkelfKf5GS4/37re2Hv3vD551CkyBUXS0qCu++G776zdsAbMwZrhwKlVK7KOHWG7S3upu7WacwqeReNlv8flWpHXjyTtpNKBcyBORugd2/qpcQxt994On475OKDKDWPeYYeGZKPrFkDTZrA/lWHiavd3hoIeeGFi48IyeSid0qp3GUMjBu5lxI9r6d/ypf8+dhLlFky9eKBEKVUwKTuPsC+qjdSc9nnTKj2Ik32TqWR50CIUipg/nhvMQVaNqFi4nZ+e2YGbX9+5uKBEKWU/yQkQNu21kDIc8/B1Kk+DYQcPQrt21uzv/02vPeeDoQo5Q9n1+4grlILam6dyaSmY7jpwGeXDoQopQLmj+emUqJrS8JSk1j3zkI6TRniy9kklUNp1yWf+PxzGDoU2pb4gxnFexJ+4Ch8+611VIhSKqASE+Gd7gu4L/ZWIgukkfzVTEr262Z3WUoFrRMzlmD69aNEahKf9JzOwKk9deONUjYxGYbFAz6k1ZRHiStQnTPTpnNd17p2l6VU8Fi1Cm65BU6csA7v6Nv3iosYYw2APPggnD5t/X7LLQGoVakgFDd+DkWH3UZURhgzHpjLHe/fpBtdlbKJSc9gRafnaLlgFH9EtqDYz1Np3krPC5nX+bT7lYh0FpFtIrJTRJ70Mr2uiCwXkWQR+U/ul6kyk5YGjz0GAwfC8Jo/MOd0K8JD0+HXX3UgJJ/SPDrbvr2GsbXe4snYjpgyZYnauIpIHQhRyh7GsO/Jjyjcqz3H0oqz6PXfuGe6DoTkd9pOOlfy6WR+rTuENlMeZG2ZTpTc+RvVdSBEqcCZNAluuAEKFIDly30aCDl40Br46N/fui7IsmU6EKKUXxjD1kGvUX5oN/ZJVXZ8uYo+H+hASH6n/VbnSkw4xdrKPWm5YBQLqt5DjQMLqaoDIfnCFQdDRCQU+ADoAtQHbhOR+h6z/Qk8DLyZ6xWqTB07Bp06wZgxhpktX+GlTX2Qq6+29va59lq7y1N+oHl0tkVzElld9w4ej/8PR1rfQumdK5DatewuS/mZdmAdKjmZ7W2HUmX0AyyO7ETSwt/oMVw3uuZ32k4616Hf49lRvg037PiUhdc/Q9ODMyhWuZjdZSkVHNLTrSue33UXtGxpfV9s2PCyi2RkwNixUL8+zJ0Lr78Ov/0G11wToJqVX2i/1ZkyzpxjU8MB1P3sKeYX/wdF1y+l5e3V7C5L+Zn2W53r4IItHKl2HVfHz+Wnnh/Sftd4CpcqaHdZKpf4cmTIdcBOY8xuY0wKMBno5T6DMeaIMWYVkOqHGpUX69ZB06aw5tckdrW4g+7Ln4Y77oCFCyEmxu7ylP9oHh3IGJj4/B6KdW3FLcmTOfb4K8QsmeLTuZdV3qYdWGdK3RfPnqptqb34YyZVeZpGe2fQ6Ebd6BoktJ10oA3jliPNmlD13EZWDJ9K2yUv6fVBlPKn2FioWtX6/+RJ6N4d3nzTuuL5vHkQHX3ZxbdsgTZtrOurN2sGGzdaYyl6ZGXepv1WZzq7YQ/7K7Wi3sYpfH3NaG6I+5oq9QvZXZYKDO23OtD6l2dQtENzolJOsnr0L3Sefj8Soodo5Se+fAupABxwux3nuk/ZZPJkaNUKSiXHE1ezDdVXToZXX4UvvoCICLvLU/6leXSY8+fhzU7z6fFiU2oW2EfS1NlEv/UUejxz0NAOrMP8OXsFp2o3pfShDUzsNoUBO18muoxudA0i2k46zJKBH1PnvjacDylEwvcraPF6H7tLUip/i421Bj/27YOuXeHqq2HBAhg3Dt5/3zpFViZSUuCll6yjPzZtsq6vPn8+1KgRwPqVP2m/1WHiPltAWuOmFDu1n2n3zmbA708QVUi/RwYR7bc6iEnPYHmXF2n4bC/2FqzD2djVtHziBrvLUn7gy9YBb5/EJjtPJiJDRWS1iKw+evRodh4iqKWnw4gRcNttcHvt1fxGMwrv2ww//ABPPqkbX4NDruURNJM5FXfAMK7WGzw+vzNpZcoTtWk1hfp0trssFVi51oHVPObc3mc/oVC3NpxOjWTRq8sZNKuf7sUafLTf6hApZ1NYfNUD3PD5vawv1Z5i21dR65ar7C5LqfztwkBIYqJ1+/x5iIuzjgq5997LLrp8uXWm5eeegz59rKNDBg3Sr5j5jPZbncIYtgx9h5hBHUkghs0TV9FnXGfNW/DRfqtDJB05w+/V+tLyp+f5pdLdVNm7mOptKtldlvITXwZD4gD3d0BFID47T2aMGWeMaWqMaVq6dOnsPETQOnECunWzztX6cYdvGL/tBkILFrCuYNer15UfQOUXuZZH0EzmxLL551hTawAPxz3Bodb9KLtrOSG1dLe5IJRrHVjNYxa5nwIkJYWtN/+Lqi8PYWVEG84sWEW3J6+2u0JlD+232sUtk0c3HmZLhZu4cdNHLGw+gsbxP1K8Wgm7K1Qqf/McCHH31FPWdC/OnIGHH4bWreHUKZg5E77+GsqW9XO9yg7ab7WLWxtpEpPYeO3d1Bv/OAuL9SJy7XJaD6xpd4XKHtpvtYtbJhMW7yChSgsaHZjJT53H0HbPRIqWjbS7QuVHvuwvuQqoJSLVgIPAAOB2v1alLrJxI/TuDQf2ZbC6+39pMutFuP56mDoVypSxuzwVWJpHu8TGwuDBmE8n8PXSylz93C00ZxOHHx9NhTeH625zwStXByiVj9w2+Jhu3YiPqknd4xuYXGk4N618hdIxejhIENN20g5umczo3JWQ1MLUMudY9tDXtH13gN3VKRUcBg3yPhAC1v2DB8PevRfd/eOP1nVB4uKsy4m88ope8i6f036rHdz7rV27kRBakavO7eDbq1+i29KRFCqip3MNYtpvtYN7v7VTF4qkhhEuEax8cR6dn21vd3UqAK64tcAYkyYiDwJzgVDgU2PMJhEZ5po+VkTKAauBokCGiDwK1DfGnPZj7flfbCznbh3ME2cmkFH0OuKvH0ipWVOtjuxHH0HBgnZXqAJM82gTt8YyrUMXumcUQAoUIGnyHMr26Wh3dcpe2oENNI89XyUpifJJG5h33dP0W/qynhYryGk7aQOPTIaknKcEycQ9+3+0elEHQpQKiJ9/hpDLbFCNirIuAOJy5Ag8+qh1BEj9+rB0KbRsGYA6ld203xponv3W80nEsIPFnV+m/+yndX+6IKf9Vht49ltTk4kihVOvj6f1f3QgJFj4tMnAGDMbmO1x31i33w9h7VWgcknS7FhCe3WnUFoi30s3wqLKE7Z4D7z9ttVz1VYzaGkeA8yjsSyQkUwoKZhPviBUB0KCnnZgAyyTU4AI0HHjO7DkJmjXzp7alGNoOxlAmWQyBEPltx6FdjU1k0r5065d8O9/w/TpUK0avPgivPbaxZmMioJZs6BdO4yBzz+Hxx+Hs2fhv/+1rkmp+9gFB+23Bthl+q03Ln4FFrbSNlJpvzWQLtNvrfD8EGhSTjMZJHT/SYdJS4OfRsTS/u3uhGMFNMIkwd5d8Oqr8NhjNleoVBCJjcV0644kXdpYMmwoVCyvjaXSDmwgDR6c5VOAKKX8xwwchGgmlQq8M2dg1Ch45x0oUMD6nvjooxARYZ1O+cLGHreBkN274b77rINIWreG8eOhXj27X4gKNO23BlA2Tl2nlPIfc/dA7bcqwLcLqKsAMAZmzIAhNWJp93Z3ovAS0JdeyvTCd0qp3HX2LJzpefslAyF/udBYKqUC4vjMZRw8XTjzGTxOAaKU8h+TYVj2yDccPpia+UyaSaVyX0YGTJwItWvD6NFw222wfTs8+aQ1EALWjjqzZkGVKjBrFmk3tOPNN+Gqq2DlSvjwQ1i8WAdClPKnuM8WEH88PPMZtI1UKmAyzqfw293vc/rgZQ5w00wGFR0McYCVK6FNG+jVC0bFD6KQt4EQ0I2vSgVAaip89eJOfo4eQJGzhzCZzaiNpVIBcfb37Wyu15dSPVsTcuI4Pzd6HBMZdfFMbnu+KqX8a92YhWwu2pxW7w7gVHhptv1zNCZKM6mU3y1fDs2bW98Hq1a1vkROnAjly186b7t2sHcva4u3o3lzGD4cbr4ZNm+2Lph+ucuLKKWy73jsejZV6ULFQTeTmpjKoutHar9VKbsYwx/PfkdcsQZc98VD7CjUmK2PfGhl0J1mMuhoN8hGO3ZA//7QogXs25rE4gEfUr5UcuYL6MZXpfzGGJg94TDflnmQ/s/Xo2PqLOL++Rwyc6Y2lkrZIDXuMBtufICIJvWptHUe3zR4kXPrdnLzureQH2f9nUvNo1IBseOHjfxWtjvXPNaO4ucP8euQidQ89Tt1PnkCmaWZVMpv4uLgzjuhVSuIj4dJk6wrnl93XaaLnDplHSzSrBkcPAjffmtdVqSinvxIKb84t/UA6xoPpkT7a4jZv5LvWrxJ+K6ttFkySvutStlg+8eL2VK8JY1e7k+SKcjC4T9y7clfqDvmfiuDmsmgpoMhNjhyBB56COrXhyWzzzD35jfYI9W4YfK/kOrV4ZVXdOOrUgG0Yv4ZPq38Ajf+swa3nhxLXJd7iYzbScVP/mudc1kbS6UCxpw5y8ZbXyS5ck3qLhnPzPLD2DFnF7dufJaajQpZM3mcAkTzqJT/JKw+yJLa91C9TyPqHPmVhV1GU/LINq4fP5DQ8FBrJs2kUrkvKck6TXKdOvDdd/DMM7BtG9xxR6aHduzYAQ8/bA16jB5tXbJgyxZrBzyRwJavVDBIO3aStZ2fJKRebequ+5rptf7D8ZW76Lf838RU837qOm0jlfKfgwu2sKZSL2rf24ZiZ+KYN+BTqp78g7avdyUk1NUQaiaDnl5APYDOnbOucTd6NEQmHueHxu/Rdde7hPx8Ajp0gJEjrfNliViHi3i58J1SKvds25DCorvG0+uPF2nBEXY16U+Vz1+mWv3aF894obEcPNg6OkuzqFTuS0tj+5OfUvLd57kq9RDzival4Juv0HtIbe8bcFynAFFK+cep/adYO2A01y0fw3Wks+TaR2g4+Wna1irlfQHNpFLZExt7cR/TGGvwY/hw2LcP+vWD11+HatW8Lm6MdVH0//0PZs+GsDC49VbreupNmgT4tSgVJMz5ZDY88BGVP3uJRhknmFf6TkqPfYlb+lTxvoC2kUr51YlN8Wy77QWabfiEwhTmpzav0OKrR+hYPsr7AprJoKaDIQGQlmb1bZ9/HkxCAl/UfJue8R8RsuYc9O4NTz116WHOuvFVKb85FJ/BrIFTaPvz0wxlF3urtiVp4kxqtMn8dAPaWCrlJ8aw972ZhI4cQe1zW/ktvDUrn/6ezv9tSWio3cUpFXxSzqawfOBYrvrhRdqa4yytcjuVP3+Ztjd63xCrlMqB2Ni/d4Dr3h3GjLFOg7V4MTRsaE1v29broomJ8MUX8O671rVAypSBZ5+FYcMgJiawL0OpoJGRwbaXvqXwqyNpmLyHpVEdSH15NJ0ebaxHXyllg/NHTvP77W/QaMHbXEsqv9R/iAZfP0PnhtF2l6YcTAdD/MgYmDnTOl9r0pY9vF/2DXqHf0rI7lS47TZrEKRBg8wfQDe+KpWrzp6F7/+1gKsmjWBIxhoOlrqak+/NpuqAznruAKVscHjGSk4OHU6dw0vYHlKH7++eRpePehIZpXlUKtAy0jJY8e8pVPhwJG3SdvN7ifYcefd1Wt+pu5Yr5RfuAyFg/T90KBQtCmPHwpAheNsrYP9++OADGD8eTpyAxo2t66gPGCehr/oAACAASURBVAAFCwb2JSgVTPZ/Fkvyo09Q5+RqNoY1Yt0jc+n0ZkfCdKuaUgGXnpTC6qHjqPHVi7TKOMqimAGU/WQUHbpUt7s0lQfoNUP8ZOVK64xXI3pt4ZW4u9kVUotbTnxCyKCBsH27tcfP5QZClFLZFxsLVata/wOpqTDl6bWsKtWJuz+/mUoRR0kY/TkVDq+l+G1ddCBEKX/yyCPAqdU7WF+3P2V7taDY4e1M7TCW6ISN9Pmslw6EKOVvXjK5bsxCthZrTqt3B5AcVojVL82h8bGfqacDIUr5h+dAiLvUVKhd+6KBEGPg11+ta39Urw5vvgnt21sHkKxZAwMH6kCIUrnCSxt5NHYj66t0p/Kg9kScOsz0Pp9R7fgauo3RgRCl/M4jkybDsO6Z7zhYvAHNJz3E3kINWP3RKtrEf01dHQhRPtKP7tzgdp7XHRXbMXIk7P5uDf8t+Ard5AdIj0QeeRj+/W+oUMHuapXK39y+XJru3Vk9dDwJn8ym/5kvORVWkr0Pv03V0fdDRITdlSqV/3mc/iPlky/Y9H4sVy0dS3UK8kOjF2jy1b/pW7+w3ZUqFRw8Mhk34j0S3p9Ks6OziQ+tyK9DJtLygzv/vjC6Uir3JSXBP/7hfSDkwvTBg2HvXpKT4ZtvrFNhrVkDxYvD44/Dv/5lXfdVKZWLPNrIxA8nsOWduVzzx0QKUIRprV6n1dcP0auyfo9UKiA8Mnng/lGcHT+Za06vZFuBBiwe8SPXj+ry94XRlfKRDobklFs4kzt254OMVxgqc+jAXExEMWT40/DIIxCt56tTyu889rKTxESajrmDFMLZ3m8ktcY/QbHixWwuUqkg4eX0HwVu60tDQphT6T6qTXiOW24qZ2+NSgUTL5ms8Pw9FKcQCzu/RvMvH+b6kpH21qhUfpWRAUuWWBf5mDIFTp/OfN6oKP58awLvvmCdLevwYahXDz76CO66CwoVCljVSgUPL21k5KBbuZow5tR+lPqTRtK7WSl7a1QqmHjJZKW3HuOYRDP/tk9p88nd1InUnXdU9uhgSA6kzY9FenQnNNkKZ8G0RMbwKOlFi8PI15D777fO+aqU8r/YWEy37kjSxXvZCRAeGUrtB24GHQhRKjAyOf2HAISH0/2z/tBOB0KUCpjLtJGFIjJo+8R1oAMhSuW+LVusAZAvv7Qu9lG4MPTtC3feaU3v1euitjI9IorXW8/ihdvbkZICXbta+9V16KBndVXKb2JjMd27I176rWEFC9B9bHfQgRClAic2FtOtG5KUdMmkUhHn6HBvVdCBEJUDes2QLDpzxtqZZ9TNsaR27PbXQIi70NRkuO46HQhRKgB2b01h6rD5nOvQ65KNPBfIhdMNKKX8yiQmsfOdmSR36pnp6T9CU85rHpUKkFP7TrL0X19xvsOlAyEXyHltI5XKVUeOWOe1atYM6teH0aOt/7/8Eg4dsq52fvPN1s+sWZioKACSQqK4+fwsRi1rx9ChsG0b/PgjdOyoAyFK+UP66XNsfvl7kjv1uGQg5IKQZG0jlQqUE+sPsPLuD0i5uavXgRDQbTsqd+iRIT5ISIAZM2D6dPj15/N0SZ3ORAYRyXnvC7id51UplbuMgXWxJ9j53hwKx86g1ak59OU0yYSTIaGEmPRLF4qKggkTAl+sUkEg5dCfbH3rR9KnTqPO3p+oaRI5SxRhhBKK5lGpQDu4fD87355BkQXTuPrEIlqTxgkpQQFJIdSkXbqAZlIp37hdJ5J27S6elpRkfWH84gv46SdIT4fGjeHtt+G226Dc30dDGmMNdCxaBIsWtSO54CzeShzMU6Un0OOJdvzwT+vaIEqp3Je49wjb3pyJTJ9Gnbifqc95TlNY+61K2cEY4n7ayP73plFqyXTqnF1Dc+BgSEXKySHttyq/0cEQL4yBrVth2jRrAGTlSkMzVvFw0Yl8F/I1UZzElC4NJ9IgTcOplL+lpMDKr3dzePwMYlbPoHnyYhqTzvECZdnf/B9E/7MnMXfeBCtXXnpqnqgomDXr0i+tSqlsO7V+HzvenE7E3GnUPbKYhqQTL+VZXHUgoX170/ixthTetlTzqFQAmAzD9u/WkzB2OmVXTKNe0loqALvD67C0+b8p9c9eNPhnc0KWLNJMKpVdHhdxZdYsaNPGGtGYNAm++866DkjFivCf/1gX92jQALC+W27edGHww/o5fNh62JgYaNOpHetu3cukHhCqZ/1QKtcdX7mTnW9No8jP06h7YhmNMeyXKiyscx8Rt/amySPXE/rHEm0jlQoAk5rG9glLOf7pNCr/Pp2KqXsoj7A+sgVz271G+ft70aBvXUIWeTntsmZS5RIdDHFJT4cVK/4eANmxA2KI58kKk5hZeiKlj27BpEYi/frA4MFIu3ZWT1bDqVT2XWYPu1MnMlj5wSoSv5pO7W0zuCFjEwD7il7Fpg4jqPJgT0p1aEapELez/bVrZ+XvQi41j0plTWaZNIb4OX9w4P3plFoyjZpn19EU2BragLmNRlD07t40va8JnQu55bG85lGpHLlMG5l2Po0NHy7h9BfTqb5xOnXS9lILYVPhFizsMprKD/Wiepc6VHdfSNtIpbLHy0Vc6dgRSpa0TolVuDD062cNgLRtSwYhbNgAi961vi4uXgzHjlmLVqxonR2rbVtrLKVmTT0FllLZllk7mZHBvu/XEP/RNMotn0a1pM2UAjYVuIafrnueUvf05tpBDakc7hY+bSOVypnL9FtTTpxj85h5JH8zjdo7ZlEn40/OU5C1JW9iy01PUevxHlzTwuN6kppJ5UdBPRiSlAQ//2wNgMycCUePQuGw84yoP5O7Gkyk8pafkIMZ0Lo1vDIe6d8firldgFnDqVT2ednD7mDF5qx7ewEhM2fQ+OBMOnKYNELZEXMjG7sOocZjPanSoDpVLve4F3KZ2WkMlFLeeWTSTJvOjt2hHJ8wnSq/T6N86j7KIayNbM2P7d6k/P29aNS3JnUvd/UxzaNS2eOljTxbrxkb3ppL+vfTqb/nRxob64vk+jI3s7fz09Qd3oOrryp7+cfVTCqVNfPnQ8+ecN7j9MhpadYIx9NPkz5iJH/siGLRIlj4P1iyBE6csGarWhW6dbMGPtq0gWrVdPBDqVzh0U5mfP8DW7fAqc+nUX3DdKqkxVOBUH4vfCNbO99H5Yd6Ub9LFRpcLn/aRiqVPV76rWcqN2DL6zMJ/XE69Q/O5xrO8ycl+KNiN0zPXjQc3omWVYtc/nE1k8pPxBhjyxM3bdrUrF69OvMZLndO1hw4NS2W0CGDGV13Am+vbUdiIhQtYniwxWoGMZEaq74m5OQJa7edu++GgQOhdu3LP6ifalX5k4isMcY0tbsOTwHNpOcedkA6oaQSSgQpnAkpyq5aXYi8tSc1H+pCaHSJnD2fUpnQPLo9nkcmDSDAeQqyumRHzt7Ui9qP96B6izI5fz6lMqGZJNM2Mp0QwknlhJRgU7XuhPbpxdX/7kThcoVz9nxKXUaezGR28pieDrt3w8aNsGmT9f+F3y/jcGQV6oTv5dQp63bNmn8PfLRpA5UrZ+FFKXUFeTKPENB+6zmi+L10Z5I69abef7pRqVHJnD+fUpnQTOI1jxmE/PXv/pAqbK/bi6jbetH44RuILFogZ8+n1GX4mkmfjgwRkc7A/4BQ4GNjzGse08U1vSuQCAwyxvye5aov8HZO1isE9MwZ60LnF37i4y++nZAANfbHMvlcdwqRyFPLulO54+fcWGkPtZZNJGT+JoiIgD59YNAgaN/e95O2tmunF0tXARPwPEKWM5mRAcf2J3J882FObU0gcfchUvYfwiQcovSB32l8+KdLLlAXSjqECIcef4OyLz/MNQXDc1SyUoGSF9rIlBPnOL4xgZOb4zm7M4HUvfFkHEwg7Gg80Uc2U/30OkK4eOcIAdLDCnL+8++5/rau2S5XqUBzeiZNhuF03GmOb0yw2shdCaTutzqr0XFrqXd4IaFkXLRMKOkgwo5hb1Ht7Ye5PiKoD+5WeYjj8mgM7N9/6aDHli0XHf2RUqk6Zyo34NwNjaiw/DtC01IueapzRPFE9ARu7fL34EeFCtmuXKmAcFwmvUg+fpajf8RzamsC53bEk7ovHhPv6rce3Uz1M+sz7bdmfDWVG/p3zna5SgWa0zNp0jM4vesoxzcmcGZbPEm7E0jbH0/IoXhKxa+n1rEVhHj0W0PIID2kADv/8wHVRg2hcpgeEqmc5YrfpEQkFPgA6ADEAatEZIYxZrPbbF2AWq6f5sBHrv+zzss5WTO6dmftS7PYXLZdpoMd585d+lDh4VC+vHVhuv7RsYzc0Z2CWI8bZRK5d24/a8aWLeH//g/+8Q8oXjxbZSsVCAHPI3jPZOeubBvwPIcpS/rBQ8jhQxT48xCFTh+i2PlDRKcdogyn8dx/PAPBIJds5LkgNCONclPehzf+k+1ylQokR7SRXbqyZ+irHA0pR8o+q4EMO5ZA1Il4iiXGUyolgaLmNDFAjNtDnacgh0PKE2PiL/lCeUFoWjLFn3oAbtubrXKVCjRHZLJzV3bc9V+OSlnSDiQghxIIP55A1OkEiifGUzotgWIkUczjoZKIoACpmbeRJo1as9+FDx/PVqlKBZoT8mi6dOFU33tIPpNM+LaNFNq/mfDzZ/5a5FhEBXZGXMWmyPasC23AynNXsZl6nDtQGA5Y87RlCLOwdqi7IC08iuSvZvFZXz0rgMo7nJDJjC5d2T3kFY5KWWtHgPh4ChxLIOpkPEUTE4hOiacIZ6kIVHR7qEQiORIaQ0zGwcv2W4sMHwb992arXKUCzRGZ7NyVHbc/xzEpQ/qBeORwAgWPxVP4TDzFkxIonX6IYqRd0m89SjTFOXXJQMgFoRmp1PxmFIy+N1ulKuVPvuxWdh2w0xizG0BEJgO9APdw9gI+N9Y5t1aISHERiTHGJGSpGi+HVwGEnE+k8fD2VKUEKRREBEJCrAM3QkIgNARCinjcF2qdj1XOA1uT/z5xq6eICBg1Sk9vpfKKwOURMs9kynnqff4U9Vy3T0tR/ixQjtOFynE8+hoOR5eDcuUoUDmGqOrlKFanHKUalCOyUrR1ImUvjwlY192ZMCHLZSplI/vbyOTz1HjvMWq4bicRwZHQGE5Elie+5NXsKdWJjLIxhFYqT0S1GIrUKU/Jq8pTulZxqoRLpo8LaCZVXmR/JlPOU+eTEdRx3T5NEY4XiOFUVAxxFZqzJzoGysVYbWSNGIrWiSH66hiKViqGLFqoeVT5ie15lORkin/1IScpyu80YRMD2chVbAu7iiOlGxBepjjR0fz10zUa7na7bf20I2zjLOj793Uiw2bNoqR+f1R5j+2ZDEk+T80PHqem63YikRwJK8/JyBjiS1/DnlJdMeWsfmtkdavfWuqqGKJrFKNqmPZbVb5jfyZTzlNn4si/+q3HpRTHwstzOiqGo2UasLl0eSQmhvCq5SlUqzzF6sZQ+upyREcXRBZqHlXe5MtgSAX+2i8GsEYrPUchvc1TAbgonCIyFBgKUNnbCVQHD/YeIiAEKBGVStqt/QnP6inmvvoq82nnz1vPq6e5UnlDruURcpZJgLSyFcjYup2ixaMo6lv9f18Ey7PRjIry6bBppRzGEW0kQGrp8pxaupGS1YtTJVSo4usr0Eyq/MUxmUwrU57kDdspWqaQtpEqWAWu33qFPBYsU4KiP/5Cj2gYHA2FCmXxQuYV9SKuKl9wTBuZWro8Z3/bTPHKRakakoUwajup8hfHZDKtbAVStuyiVImClPK1es2jyqN8GQzx1jJ5HpfoyzwYY8YB48C6oM8lS0yYcNlRxZBZMwjPTpgGDNDRSpVf5FoeIeeZDPv6CygedYWSvfBsNLWxVHmXY9rIAt9MIrpWCR9K9kIzqfIPx2QybPIkwsoU8qFkD5pHlX8Ert96hTxGTp5A05xe4lavE6nyPse0kQW+mUSJqp4n3vGRtpMq/3BMJsO+/oKwEgV9KNmD5lHlQSE+zBMHVHK7XRGIz8Y8V3YhRFEeG1dzGiZ/Pa5SgRe4PIJ/s3PhsatU0RyqvCzvt5Gej6+ZVHlb/sik5lHlD/kjj0rlH/knk9pOqvwhf2RS86jyGF8GQ1YBtUSkmoiEAwOAGR7zzADuFksL4FS2rk8AlwY0txvL3H5cpQIrsHkE/2bnwh52mkOVd+WPNtL98TWTKm/LP5nUPKq8L//kUan8IX9lUttJlffln0xqHlUecsXBEGNMGvAgMBfYAnxrjNkkIsNEZJhrttnAbmAnMB54IEdV+WtUUUcrVR5nSx5Bs6NUJvJVG6lUPqCZVMo5NI9KOYtmUiln0UwqZQ8xxuspWf2uadOmZvXq1bY8t1J2EpE1xpicnrU412kmVTDSPCrlLJpJpZxFM6mUc2gelXIWzaRSzuJrJn05TZZSSimllFJKKaWUUkoppVSepYMhSimllFJKKaWUUkoppZTK13QwRCmllFJKKaWUUkoppZRS+Zpt1wwRkaPAvivMFg0cC0A5vnBKLU6pA5xTi1PqAN9qqWKMKR2IYrIij2XSKXWAc2pxSh2Qt2rRPOYOp9TilDpAa/FG28jAcEodoLV445Q6IH9nMq+t50BxSi1OqQPyVi15NY+Qt9ZzoDilDtBavMnPbSTkrfUcKFrLpZxSB+RiJm0bDPGFiKx2ysWInFKLU+oA59TilDrAWbX4g1Nen1PqAOfU4pQ6QGsJFCe9NqfU4pQ6QGtxch3+4pTX55Q6QGtxch3grFpym5Nem9bi3DpAawkUJ702p9TilDpAa3FyHf7ilNfnlDpAa3FyHZC7tehpspRSSimllFJKKaWUUkopla/pYIhSSimllFJKKaWUUkoppfI1pw+GjLO7ADdOqcUpdYBzanFKHeCsWvzBKa/PKXWAc2pxSh2gtQSKk16bU2pxSh2gtXjjlDr8xSmvzyl1gNbijVPqAGfVktuc9Nq0lks5pQ7QWgLFSa/NKbU4pQ7QWrxxSh3+4pTX55Q6QGvxxil1QC7W4uhrhiillFJKKaWUUkoppZRSSuWU048MUUoppZRSSimllFJKKaWUyhHbB0NEpLOIbBORnSLypJfpIiLvuqavF5FrbazlDlcN60VkmYg0sqsWt/maiUi6iPSzqw4RaSsi60Rkk4gs8kcdvtQiIsVEZKaI/OGqZbCf6vhURI6IyMZMpgfsPesPmsms1+E2n1/z6GstmslLpmsmA1NH0LWRvtYSiExqHgPDKXn0sZagy6RT8uhLLZrJ3KGZzHodbvMFTRvpSy2aydzhlEw6JY++1OI2X9BkUvMYGE7Jo4+1BF0mnZJHX2rJd5k0xtj2A4QCu4DqQDjwB1DfY56uwBxAgBbAShtraQWUcP3exc5a3Ob7BZgN9LNpnRQHNgOVXbfL2Pj3GQmMdv1eGvgTCPdDLTcC1wIbM5kekPesjes5qDLplDxmYZ1oJi+drpkMTB1B1UZmYb34PZOax8D8OCWPWaglqDLplDxmoRbNZGDWc1Bl0il5zMI60UxeOl0zGZg6gqqNzMJ60X5rgN+v/vpxSh6zUEtQZdIpecxCLfkqk3YfGXIdsNMYs9sYkwJMBnp5zNML+NxYVgDFRSTGjlqMMcuMMSdcN1cAFf1Qh0+1uDwETAWO2FjH7cD3xpj9AMYYO2sxQBEREaAwVjjTcrsQY8xi12NnJlDvWX/QTGajDhd/59HXWjSTl9JMBqCOIGwjfa0lEJnUPAaGU/LoUy1BmEmn5NHXWjSTOaeZzEYdLsHURvpai2Yy55ySSafk0adaXIIpk5rHwHBKHn2qJQgz6ZQ8+lpLvsqk3YMhFYADbrfjXPdldZ5A1eLuHqzRKH+4Yi0iUgG4BRjrpxp8qgOoDZQQkYUiskZE7raxlveBekA8sAF4xBiT4ad6LidQ71l/0Exmo44A5dGnWtBMeqOZDEwd7oKhjfSpFgKTSc1jYDglj9l5nmDIpFPy6Gstmsmc00xmo44gbCN9rUUzmXNOyaRT8uhTLUGYSc1jYDglj9l5nmDIpFPy6Gst+SqTYblWTvaIl/tMNuYJVC3WjCLtsMJ5vR/q8LWWMcAIY0y6NTBnWx1hQBPgJiASWC4iK4wx222opROwDmgP1ADmi8gSY8zpXK7lSgL1nvUHzWT26ghEHn2tRTN5Kc1kYOqwZgyeNtLXWgKRSc1jYDglj1l6niDKpFPy6Gstmsmc00xmr45gayN9rUUzmXNOyaRT8uhrLcGWSc1jYDglj1l6niDKpFPy6Gst+SqTdg+GxAGV3G5XxBplyuo8gaoFEWkIfAx0McYc90MdvtbSFJjsCmY00FVE0owx0wJcRxxwzBhzDjgnIouBRkBuh9OXWgYDrxljDLBTRPYAdYHfcrmWKwnUe9YfNJPZqyMQefS1Fs3kpTSTgakj2NpIX2sJRCY1j4HhlDz6/DxBlkmn5NHXWjSTOaeZzF4dwdZG+lqLZjLnnJJJp+TR11qCLZOax8BwSh59fp4gy6RT8uhrLfkrk8YPF1/x9QdrMGY3UI2/L9LSwGOeblx8cZTfbKylMrATaGX3evGYfyL+uaCPL+ukHrDANW8UsBG4yqZaPgJecP1eFjgIRPvpb1SVzC/oE5D3rF3vvWDLpFPymIV1opm8dJpmMjB1BFUbmYX14vdMah4D8+OUPGahlqDKpFPymIVaNJOBWc9BlUmn5DEL60Qzeek0zWRg6giqNjIL60X7rQF+v9r53gvU69NMZnudaBt56bRcec/aemSIMSZNRB4E5mJdvf5TY8wmERnmmj4WmI11tfidQCLWaJRdtTwHlAI+dI0QphljmtpUi9/5UocxZouI/ASsBzKAj40xG+2oBXgJmCgiG7CCMcIYcyy3axGRr4G2QLSIxAHPAwXc6gjIe9YfNJPZriMgNJPeaSb9//qckscs1BIQTsmk5jEwnJLHLNQSVJl0Sh59rQXNZI5pJrNdR0BoJr3TTGq/NdgzqXkMDKfkMQu1BFUmnZJHX2shn2VSjMkrp7tTSimllFJKKaWUUkoppZTKuhC7C1BKKaWUUkoppZRSSimllPInHQxRSimllFJKKaWUUkoppVS+poMhSimllFJKKaWUUkoppZTK13QwRCmllFJKKaWUUkoppZRS+ZoOhiillFJKKaWUUkoppZRSKl/TwRCllFJKKaWUUkoppZRSSuVrOhiilFJKKaWUUkoppZRSSql8TQdDHEBECorIZhEp57rdVkQW+uF59opIVdfvDUVkWW4/h1J5neZRqbxLROqLyGq32y+IyAu5/BxVRWSv2+2HReS13HwOpfILzaRS9hGR+0RkjNvthSLSNpefY5CITHS7/b2IdM7N51Aq2InIUhFp7Pr9ojYvF5/jr88HESkrIltEpGBuP49SeZ3mMX9wzGCI6499wvMPLCITRcSISE+P+8e47h/kut1ORDaIyEkROS4iP4hIhQC+hJwYCiw2xhwK1BMaY9YDJ0WkR1aXFcto13o+LiKvi4hcZv6bRGSriCSKSKyIVPH1sVwfLrGuZbeKyM2ZPMcE1/uhptt9b4rIDhE541r2brdp0a4PseOu98xyEWntNn2giKwRkdMiEueqK8xt+kIROS8iZ10/2zxqNm7TzorIs1ldz3bKaR49pl3yt3E4zWOA8+iafo0rc4mu/69xmzbWI0/JInLGo67ZrvfsIRF5/0JeReQOj2UTXbU1yeq6dgqxBtKSXK/nhIj8KCKV3KZPFJEU17o+IyIbReRVESnmNs8gEUn3WDfvu6YNdy1zRkT2iMhwO15nNr0EvBng5xwH3CkiZbK6oIiUFKu/ck5E9onI7VeY/zHXe/yUiHzq/hktIpNEJMHVbm0XkSEeyw4RkZ2uv/VPIlLey+OHu/IZ53H/ZbMvIre76j8nItNEpKTbtE0e77M0EZmZ1XXlZAHI5KMistv1t40XkXfErU/icJrJzDN5ufa4uIh8JiJHXD8veCwbKyJHXY/9h4j0yqQ+b+3x6yJywLXsPhF5OouryVFc+fP8TBokIr/aVZMTiEg48AzwRoCf+jVgVHYWlMv0Bb3MW9CVudOuDD6elccSkeoiMsv1mXxMRF73mD5ArI1P50Rkl4jc4DYtSkQ+dC13SkQWu02b4/E5niIiG9ymZ5pdERnpsWySiGSISHR21mcgSc635XQTkV/F+l5+SETGi0gRL88zUax+RHmP+18QkVS3dbdFRPq6TQ8Xke9cnxdGcnlQ0J/E+n54xhizNlDPaYw5DMRifS/Ossu1jV7mvdx3wMtuk3HNc7ms5uR7bysR+c31GbFeRK73WPZpEdnvqm2yiBTNzrryh1zIYzvxYdtqDvLYQkTmi8ifrs/DKSISk6srwU80j97zKFab/IlY/cozIrJWRLq4LXvFbaQicq2ILHZNOywij7juLyMiX4v1HeiUWNtxm2dSv+/bHo0xtv8AVYF04E+gv8e0icA2YKrbfWHAQWAnMMh1X1mgvOv3gsDrwAy7X5uPr38j0NrtdltgYTYfKyyz+4C9QFW3++8AZmXjOe5z/U0qAhWAzcCwTOaNBk4B/YEIrA75Cl8fC1gOvA1EAn2Bk0Bpj+e4HlgMGKCm2/3/BepiDfo1B04ArVzTIoA6rmkC9Ha9/y6sq/uBG4BwV11rgCfdHnshMOQy72fj7W+RF35yI49X+ts4+UfzaEsew4F9wGNYn98Pu26HZ/I6JgKfut2e7bovAigHbAAezmTZQcAuQOx+r+XgPboXuNn1ewTwKTDNY/287Da9GVYHaiNQyG09/JrJ4z8BXOvKdh3X32KA3a/bh/USg/W5FeF23wvAC9l8PK/5xfqM3Otx/3jgP9l4jq+Bb4DCruycAhpkMm8n4DDQACiB1Q695ja9AVDQ9Xtd4BDQxHW7DXDENU848BGwyMtzPO3Kb5zH/Zlm3/WYZ4AbXa/jK2ByJq9BgN3A3Xa/X3L5vefvTNYAkHQB+AAAIABJREFUirt+Lwn8Ajxu9+v2Yb1oJjPP5JXa4wnAFCDK9fp2AYPdpjfk7/5Ec1cGYzzqy6w9ruP2vqsAbAL62P1+ycH77K/8ud2XaZ6C5cf13prvcd9CoG02HkuAEG/3udb1RI9pO4CmWXyOrPYFXwWWuLJXz5Wvzr48lmv6LuBxoJArgw3dHruDa/4WrtdYAajgNn0SMBkoDYReyHUmdS4EnnO7fcXsus37AvCL3e8lH/52Vcn5tpzbgc6uz7wSwBxgrMdjFXKtr+PAcC/rapLb7U5AElDW7W/+KNbnYkJ2cmDj+v0RuMNjfe/N5mNd7rvpRZ8PQGtgYzae47Jto8e8V8rqlbbJZJpVcvC9F6uvdcy1bChwJ9Z31xKu6QOBrUAlrP7CdOAzu98rbu8Pv29bzWEeu7jWbVGszH8K/GT3uvNx/WoeveTR9X54wbU+QoDurvdHVbf1ZLy9Ztf0aKzvqne4nrsIUM81rTpWex3jyuNQVz4LezxGlrY92v5mchX9HLAU64v2LI9pE7H2KDvE3x8+3bEayF/x2Pjqml4Qq4O0OQc1TQQ+dD3PWVd95YAxWB+EW4HGbvM/idWpOoP1QXqL27SPgO/cbo8GFmB1IitjfTCEuU1vi9vGV9freRPY73ojjwUi3eaNA0a41tEX3u5zzbuXize+VnA9d8EsrptlwFC32/fg1rB4zDsUWOZ2u5DrOete6bGA2kAyUMRt+hIu3jgbBqzF6lhe9k0PzAD+7eX+EKCHa/kymSz7ODDT7fZC8u9gSK7kMSt/Gx9qmojmMd/mEeiI1QkTt+n7cX2p9VjuQserjdt9W4CubrffAP4vk+eNBZ63O2c5+cFjww/QFdjukZeXPZYpgvXl70HX7UH4uKEIeBd4L4f1DgfWA+eAT7A62XNcf8ufcX2euOaf4srKKawOTQPX/eHAOuAh1+1QrM+C51y37wZ+9njuF3Db8AqUB6YCR4E9uA2aueb9Dmsjx2lgSCb3VeXSDa93ALFZXC+FgBSgttt9X5B5B/Ur4BW32zcBhzKZt47r7/0P1+03gQ881oMBarjdV82VpS64DYZwhewDrwBfuU2r4XpdRbzU1QbrM7yQ3TnKzZ9AZhIo5crMhzmsVzN56XoJZCav1B4fA5q5TR8JLMnksa8DzgPXud3nU3uM1ffYADxhd45y+H6+7GDIFd5nE3HLJ65+m8fj/8eVl1NYg2UR2ay1quvvMRg4gNWHHYY1QLoea6D5fbf5a2ANfh53vSe+5O+B0RpYG7uudXuNx3BtPMHauPSMx/Mv5OKNKy2w+n4ngT88pi3EOsJjqeu9WTOT+wZx6WDIeLLY1yILfUHXtINAR7fbL+EaiL/SY2Hlz2ueXNOXAfdkMq0O1mdPUR//3ulAtUymX5Jdt2mC9V1moN0Z8+F15uq2HNc8fYANHvfd7crNI3hsFMRj46vrviO4drzyuD+OHA6GuJ5vClZbdAbrc7Q28JTreQ94vD8HY/WxzmDtFHKf27QRwAou3ilzE9YG/HBX1ip6vK/2ut0O4e/vvseBb4GSbvMarO90+7Ha8Evuc827kIs/A8KARKBKFtdNVtrGrObec5vM5bKak++93YFNHo+3/cJzYfVDhrtN+3/27jxe5np/4Pjr7di3VLRZ29wuSoukFa0q/dq1L7olKQqRtYRjT9YScXBV2tOi1K2jfRG5CreSFKlQZDm2c7x/f7y/ozHmLDhnvueceT8fj3kw3+93Zt5zZt7z/Xw/62lYLpcvbvlINnWr5FM+BvtOxEZbeD4W4XyMs38BcGXMe8+uMWQAQT1ZHt/XeqI6IrAXdY+FZZqsm7HC3VPABSJycMz+LVjF2bVRx0+NfRIRqSUi67Av6P1YC+a+aIUNL66KVQR8CswL7r+A/cBE/IC1ku2H9YCeFjXUqzNwnNiQ7TOxL/otap/ascBSVc3MIY7BWDIfjxU6q2M/chGHYK3Xtfl76FS8bbtQ1V+A7VihDhHpFgyFi3uLemh9rMAc8d9gWzy7HKuqm7C/Vf14+2Oeqz72t9mQzX6wVssP1KYZypaIlMMuNBbGbF/A39+vJ1V1VTZPcVbsY4GBYsOjP5b4Q21/CoaPpUkRGN4cJV/ykTx+NnvA87H45mN9YEHwGUQsyOZ9XIlVZnwQtW0kcK3YtAXVscrct+K8bm0sl+N9X4skESkPXIMV2rIVfG7vYHmxJ88vwWNif//21JVY7626WOPzm1jlXlWs0Ngh6tg3gaOBg7AcfwpAVbdhPbP6isg/sYJmCn9Px3Es1tspu/dSAngN+95WxwqD94nIBVGHXYr9nlSJvG4222ItBhpGvdbrOeTv68FhdYEsVf0u6nnynL/B/w8WkQOjXvcxEcnAGoh/xUZNgVWqRE+fF/l/g6hto7HPZHOc180p92N/V34gqFCO8x5uwRqjN2XzHou8gspJsanI1mOVnQ2BJ/YxVM/JcHMyt/Mx7J6z0fkaeU9bgM+xi+Yvo3bneD4OyhgbsUrBCtjFcrGUx+9ZblphvdYPxy60b93HsE7BcuoarGNPT+Bc7PNvJSJNI+FjlVCHYaMfamKVPpHf2geAp4LfnTSsUWJ28Njc8q861sO1P1ZGvR94UUSqRR12E1ZurYT1Ds1uW6zY/Mu2PCsi3YLD8lwWFJH9g79JTmXWnJ6rCbBMbEqrNWJTyhwbPHcK0AioJja15Aqx6VfLBY89JXjfDweP/Vqipn+JcTPW6PJjTPw55W7EmVgj9YvZPHdhkl/XjtHiXXvfgo3emw4cIyInxnugmIuxistFeX0Te+ESrMF8f6wSbhZ/j07oy67n6VVYpXNlrCL20aj4h2Llpl4icjRWKXijqm7Bfid2qOou05fG6IDNctEUy4u1wNiYY5pivyEX5LJtp+B6eAlBLgflkJxyuVbw0FzPjVH25BoQor4XecjVfbnujS03R7Y1yGa/YI0GR2cTdyIlqm41P/MxXr7vKc/HEPMxVvC9qxtn/08Sv460CfCniHwiNj3sa1HvIfa5j8e+T0uiNu9x3WPojSFic+/VBp5T1bnYD1S8+XmnAjeLza/cFHgl9gBV/VlVq2AXcr2wC4998bKqzg2++C8DW1R1qqpmYb2CToh67edVdaWq7lDVZ7HhwY2DfRnYxeJwrLWyfVQCVcFaJOMKKqLuADqq6p/BxfMA/v7xAtiB9b7Zqqqbc9gWz4YgBlR1kKpWye4W9ZiKWM+oiL+AikGssWKPjRxfKZv90c+V42PF5uO+k10rorMzDkv8WdEbVfU47Efweqw1fDci0ho70UbPef0ANlyrOjY39WsicmSwbw1W0VsbOCmIN7uL9UIlv/JxDz+bvPJ8LL75mFtc0W4BpsacpN/HTtLrsYqdL4lzjiCbi9Ii6pWggLoeq9DMy5zgK7EKj4gmMYWmJnEe0wcrK6TtY7yjVfX3oNHvQ+BzVf1KVbdi+Rydv5NUdUOwrw/QMPitQVW/wSpuXsYK5jcFvwGQS/5iv8vVVLWvqm5T1aVY79Xo/P1UVV8Jfjs257At1gas8TXyHlrmkL8tg8P25Hsf7/jI/3cer6rtgvtnAi9hDcdgFbCtROS44CLxQazXTHkAEbkc66nzch5eNzbOPL2PoLLuKqxXWnFUoDmpqk+ramXswmIcNjJxX3hOhpuTub3WW0A3EakkNu/xbQT5Gv2eguMvAmap6g7I2/lYVQcFjz0RqzyIjaWoeSU6d7DRxBF5+Z7lZlRQrvwTa1jJdi2LPOqnqltU9W1sdNYzqroqKh9PAFDVJar6TlB+XI2VXSMNJajqBKyM+zk2fUT0+i+55d+NwExVnRnk0jtY+emiqGMmq+pCVc1U1e05bIu1szwbxJlteTb4LsKe5V/FqP3xjs3tuWpgn/8orLLqDWCG2DorBwOlsPPVmdhnfQJWtxB5bIPg+Q4D7gGmiDUIx7qZOOe87HI3RqTzwMY4+wqN/KzLiXrO87D3/2DUtlpAc2wk6u/YqP5bYh7aKsj/TVhl7wBVXUfB+VBVZ6lVUj6PTZs2KMiL6UAdEYlc172hqj+oeR94m6AzRPD534xVor4KDNG/1yPILY/Bfu97quqKqPP0VbLr2hp9VHVTzDkz3rZY0demT+eSyz8Hj8n13Bglz3kfp04mt1zdl+veT4DDROQ6ESklIrdgo/Ei5+E3gdvF1kHYD6sbgpjzdKIlqm41P/NRRI7Dcn1f16j0fAw3H6P3lcLqP6eoauR7k1sdaQ3sO3QvNlvLj1hjW+xzV8bKrQ+r6l/Btr2qewy9MQR7w2+r6prg/tPsnkio6kfYF7oXNtwr2y9JUFCdghVqdltgUnZdUPfNHGKLvtDcHOd+pCCGiNwsIvOjCuENsB+OSExfYEOwBBsqFbGW7C+ywN5zeWBu1HO/FWyPWK1WQUwu2+KphA2N3hMbsQaEiMrARtVdKiezOzZy/IZs9kc/V26PHQH0jSRBdkRkKPZ5tIoXY3Ax8gx20dkw5rGXYQsBXhj1HUVVP9egYkBVp2BDES8K9m1U1S+Di4TfsULy+VKIFtXKQX7lY54+G/B8jJGs+Zjbc0ceWxMrsE2N2lYCa1R5CevdWhXrETI4zsvfjJ0bioPLggJqGew35n0ROSSXx1THptSI+Cym0LRLT3YRuQf7m10cFOZ2I7subt8jh9fOU/6KSIqIDBJbAHE9Nj0JROUv9hnWwSpxvo/anlv+1sYubKIrzHpgF1MRy+M8Lt62WJXY88rEPH3vczg+8v9djlfVrOA3ugY2tBtVfRd4COth+hP2d90ArBCRClhvr/Z7GWde38cV2Pfv/Wxep6gr8JwECL7zC9m1sncnz8mdCnVO5uG1OmCfw/fYXOTPYI39u1DV7ar6Jtb7M7Igap7Ox0ElwFfB6zyc07FFwGXRuQO0i9qXl+9Zbn6L+n8GUWXOaCKyMCr/chr1ldf8O0hsYd5fgvybxq65B9aw0wBr4Iw+V+cl/66O+bucgTWqROxL/u1reRayz7+NUfvjHZvbc23GplF7U22E2zBsCsJ/8vfoyNGq+mtwTTScvxuJNmMjufurNa69j03Ben70iwWVkodgo9h2k03uRh5bDptPvyiUWfO1LifoBPA0cJXuOkrvJmCxqs4P7j8FXB9UukU8F/wGlMcqrm8WkTv39A2JyJlReZxTb/XYvF2jf3cGiLy/SC5fKCKfiS0YvQ77PkVfmy7Dvkd12LUXeW55DJbLL0fl8WJserb8Opfmx7UpZJ/LebkGjFcnk1uu7vV1r6r+gY1C7YR9zi2wKUQj5+FJ2Hl5NlYmSw+25zRiIBESVbeaL/kYdPZ4E7hXVT+M9/qej7sozPkY2VcCa6zYhl0PAXmqI92MdX6eE9SbPQycFjTYRZ67HNYh5TNVHRj1snmue4wWamNI8GZaAU3FVrf/DRve0jC2UjowDZviJi9TnJTEhvPvVgGtqk+pasXgduHuD90zYlOvTMA+0AODQvg3RA2dE5G7sQvkldjitBELgCPiNdoE1mBfjPpRhfz9VDW6EB6v0jPetti4D8OGF30b3O8R9UOz2y3qoQuJGvoc/D+7H6Zdjg0qXY6MOj6n51qI/W0qZbP/HGBo1HcH4FMR2dn6LSIPY1PmnK+q67P9Y5hS2GiPyGNbYJ/rJar6dS6PVXYfShm9jxz2Fwr5nI+5fjYRno87Y0rmfFyITV0WnSPHxXkfN2Nzvy6N2nYANm3EmKBx8g9sFEN0z0ZE5HSsB1/ci9KiKqhkewkrZJ2R3XEiUhGbgiNuQTPO8bdhU96cozkMBVbVtlH5O2DPoo/reuzi41ysV3edSEhRxzwGvI5VIES/5wXEn5opYjnwY0xlcyVVjf6u7FX+YhUoO4cgi029kV3+Rhp9vwNKig3Bjshz/gb//z34zsdTEstvexOqY1X1aFU9CGsUKYn9Nh6N/Z0/DHL3JeDQIJfrkHvux/6uHIH9vkZXYkD8UV3FTkHlZIxdPtuY1/ecNIU9J3M8H6uNPr1BVQ9R1frYNdsXObzf6OfOcxkszmOLo9y+Z5vYtTdvbo2Y2VLV+lH5tze5HWsg9n0/Tm1k2I3sWp6tiFUCTAT6iEj0SLO85N+/Y/4uFfTvkRqQf/mXbXlW/m60zWtZEFVdi007l1OZNafnWpDd+wiee0UO7zOvU3DcArykuY/siJd/kc4Ds/P4WqHI77ocETkB64l9m1onjmg3Y2WRyOsMxyov4147BpWZb2JT5+wRVf0wKo+zmx4mz0SkDFbuGoYtIF0FG7EbncsXAadiPeyjR5Z+b7uleg4vsRyrlIzO5bJqI812vq04j8sxl4Pr4aMIcll27cAY7xaZ0mZPzo255n12dTJ5yNV9ue5FVd9X1ZNV9QCs8v8fBOdhtdF0D6lqHVWtETzul+AWigTXre5zPgZ1Nv/BRkr+O7sX9nzcGVOhzsdgn/D3OoRXavajR6Pfb+S1Ys/Lu+wPPrdXsByLbeTe03IvEP7IkMuwi8V62LC247HC04dYgsUahU098EHsDhG5QkT+ISIlxOY6HQ58pdaSWdAqYB/W6iCW1kTN6ysidbEpBG7Efki7is1zRlDJtHMKn1hqw7QmYPPYHRQ8X3XZs3lus9MMeE+DXkSqOiDqh2a3W9TjpgKdgjgOw35EJ2fzGi8DDUTkShEpiw1dWqB/D5fK9rnUeoPMBx4SkbJi03gcx99zp9bFkjny3QH7gX0ZQES6Yxfx58Umu4g0EZEzRKS0iJQTkQewpP082H821sJ9pdoogujHVhGRC4KYSorIDdh8ebOC/adEfRcPxL63s3UPWypDkG/5SC6fTQHzfCxi+Yhd7GUBHUSkjNiIBLBFQ6PtNt2AWm+EH4G7gnysgl2A/jfmsbcAL+qu6x4UeWIuxUbDLI6zv4yInIQVHtaSh+mugt+0AdhntTS34/NZJWwamT+wyqldKnNF5CZsaO2tWM/pKWKVQWDrL5wYfLfj+QJYLyIPBL/7KSLSQEROzoe4m2KFfABU9cIc8vfC4JhNWMNDXxGpINZgdynWmyaeqcC/RKSe2HzpvQjyQaz38LUiUjF4XxcA1xHkUJCzDYLvSy1seseRwYXkN1iDYiR3b8d6Vx0PLM9D7j8FXCLWc6sCNi/vS9G5JiI1sOH0RaGX6z4poJy8PeqcUw9bEDK2oqigeE4WQE6Sy/lYRI4UkQODx16IrdHQP9h3jFivxnJi03fciJVDI6Ousj0fB2XTO0Vk/+C72hi4m8R9n8KQ2/dsPnCRiBwgNprrvvBC3U0lrKfmOrHKl9hpREYCc1X1dmyqp3FR+2YSNaVWHNOw3+4Lgr9JWRFpFvxe76vY/Mu2PKt/N9rOJm9lwYip2Jzu+4vIMdg0tpPz+FzTsGkJzxVbd+A+rMNT5Dc7DWgf5PH+wf7I2kIfYAvKdg/KnadjZfidUzHL3yM7IvFEtueWuxFFpfNAftblNMBG27dX1ddi9p2KVWI3jnqdBmTT6z14TA2sN390JV6ZqPNR6eA7n4jOiqWxTiKrgczgN33nSCKxefMnYuWvW7C8jMw4sR2rMM4pl8cBqWKVy4hItaAcsq8aYwtD/xTE8lQuuRyZlifbc2Mcs8khVyWHOplATrm619e9wWufEORpZazifIWqRup7DgjO0xKUy4ZjPdPjTXmXKAmpW82PfAzOZ+8BY1V1XLzHFCDPx4LLx8ex79wlGjPaSHKvI00DLheR48VGGPXGRnCuC+6/gHVKvjlOnu1d3aPuwUr0+X3DTniPxNneChuOXBL7oPpn8/iPgFuD/7fHKsQ2BY+dDtTeh9h2eV0sGWZH3T8KyIy6n4r14IgMz3s/eExJrBDeLerYu4CvgTLB/buBx6P2N4t5rbLYxedSbC7qxUCHqGNXxMS+27Zg+zKgTtT9N4D/24u/jWBTavwZ3IYAErV/IXBD1P1zsTkGN2MJVmcPnqtO8JjNWI/5c3OIS4GjYu5vxS4iIrcewb6mWGXpBv6etuOsqMemA5kxj30z2FcNmBM8dh22SOp5UY+9Luq7+Cv2A3RImLmW6HzM7bPxfPR8JCofg/0nAHOD554HnBDzfKcGOVUpzmsdH8S1NvjMnwcOivnM1mGjHELPtX29Bd+dzcHfcANWmR39GU/GhqZuCP5mC7Fpw6pEHXMrVsCI9/w/YlNARH9W4/Yx3nOj7k/D5kWNzuf/BP+viE0JswGbzunmyHcJmz/0D+D0qMc+C0yIuv88cE3U/T4xr3UYNqz9t+D78lkktuDYaTGxx9tWByuMRn+/VmC9i/b0b3MAVim+CatcuT5qX63gb18raltkuP56rNAY+d2qhv3ORdas+Bq4I+pxVbAeN5Ey0kAgJZuYmrH771gdcsh9rKHz5+D5ZwAHxOzvjs3lG3r+FMSNgs/JtOBz3xS81lCg7D7G6zkZ/2+TkJwMjsnpfNwKG72agVXWXxC1759Y551IOXQOcHkO72nn+RjrCPcWdo7fiI2G6UHUub6o3WK/z/HyKZfvWdnge7se+53sSNRvYOzzx/sO7kGsdYLPo2TUthVAs5h87BX8vz5WNtoYfA86R2LDGup+Ifi9xXJ1CcFvDzbi/WfgsKjnnh3zWqcE39M/sYqhNyLf7+DY22Pij7ftVmwdkcj9k7FKs735+2RbFgRuABZG3S+DTVWzHsvBTnl9rmD/FcHfa33wvupH7SuFjXhbF3xnRhH1mxt8Lp9ivxOLiMk/7FrwJ2LyijzkLjZ9Yib7cN2UwNzLz7qcNGyNxeiy58Jg3zisQ1Ps4xtj1xYHYHkZXXb9NXhc+ajjl2H5F32rs5fvvQ9RvwPY7/myqPslg+evEdy/O/iersMa2KdH/i5YI/y4qMdeiP3+Hxjcv5igHiK4XyfmtUpg56Jvg+/WD9j6DJFjY39zdtsWbJ/Nrr8PYwmucffi7xP33Bjse5M8XgOSQ51MHnN1X657n8Gm2/wLO0dEX1vWDf7eGViud9qbv1Mhzsds61bJh3zEpu7VmM914z689z54Poaaj9j0YApsidkfKZPkWkeK1cv9gpXTXgNqBtubBs+dEfPcZ2bzfneWe3O6SXCwC5HYkJ+vsIq6X0WkGXah2CyfX2cZllDLRORYYLyqnpqfr+FcUef56FzRFfTOmgI0VlUVkT4AqtonH1+jDtZAWie43x4rrHXN4WHOJSXPSefCIyJtgHqqel9wfzZWpp2dj69xK1aevTW4/yIwUVVn5tdrOJfsROQjbNTMV7HnvHx8jdkEvw9io1HfxypC87LupXNJw/OxeMhuXnyXQGrT4tRL8Gt+jfW0ds5F8Xx0ruhS1UVYr9REvuboRL6ec0WJ56Rz4VHV8SG85pWJfk3nijtVzXYNsgJ6vVXYSCbnXAzPx+IhT2uGiEgLEflWRJaISLc4+7uIyPzg9o2IZMmuC7i5PbOM7Odx2xcjsKFgrgjzfEy4ZXg+OldUzSb/FyBdh+Wvc27PzcZzMql4ubVQmYyVa/PTfGxqOVdEeE4WeQV1zptM/v8+uDzwnCzSPB+LqFynyRJbVOw7bHGdFdjcltcFPb3iHX8J0FFVz87nWJ1Lep6PzjnnnHOuKPByq3OFi+ekc4WL56Rz4cjLyJDGwBJVXaqq27DFZS7N4fjrsMWGnHP5z/PROeecc84VBV5uda5w8Zx0rnDxnHQuBHlZM6Q6sDzq/grglHgHikh5oAVwTzb72wBtACpUqHDSMcccs0fBOlcczJ07d42qVtvLh+dbPgbHeE66pLaP+VhgqlatqnXq1Ak7DOcSznPSucLFy63OFR75cI70uh3n8pHnpHOFS15zMi+NIRJnW3Zza10CfKyqf8bbGSziNh6gUaNG+uWXX+bh5Z0rXkTkp315eJxte5WP4Dnp3D7mY4GpU6cOno8uGXlOOle4eLnVucIjH86RXrfjXD7ynHSucMlrTuZlmqwVQM2o+zWAldkcey0+ZMu5guT56JxzzjnnigIvtzpXuHhOOle4eE46F4K8NIbMAY4WkcNFpDSWgK/GHiQi+wFNgRn5G6JzLorno3POOeecKwq83Opc4eI56Vzh4jnpXAhynSZLVTNF5B5gFpACTFLVhSLSNtg/Ljj0cuBtVd1UYNE6l+Q8H51zzjnnXFHg5VbnChfPSecKF89J58KRl5EhqOpMVa2rqkeqamqwbVxUYqKqk1X12oIK1LlCLz0d6tSxfwuQ56NzeZSgnHTO5UEC81FEWojItyKyRES6xdnfRUTmB7dvRCRLRA4o8MCcK0y83OpcUvKcdK5w8Zx0LvHy1BjinMtFejq0bAk//WT/euWrc+HynHSu8EhgPopICjAWuBCoB1wnIvWij1HVoap6vKoeD3QH3s9p0Wbnih0/RzpX+HgnHueccy4hvDHEuX0VuaDMyLD7GRl+YelcmBKck94L3bkcJP4c2RhYoqpLVXUbMB24NIfjr8MXo3TJxMutzhU+6ensuMgbKJ0rLDZsgJXZLWPunEu4H3+Ebdvy7/m8McS5fRF7QRnhF5bOhSPBOem90J3LQTjnyOrA8qj7K4JtuxGR8kAL4MVs9rcRkS9F5MvVq1fne6DOJZyXW50rfNLT2XFxS0ps8QZK5wqLxx6Dww+H5ctzP9Y5V7BU4bLL4OKL8+85vTHEuX3RuvXuF5QRGRm23zmXOInPSe+F7lx2wjlHSpxtms2xlwAfZ9c4qarjVbWRqjaqVq1avgXoXGi83Opc4RI0UJbY7A2UzhUWmzfD8OHQtCnUrBl2NM6511+HBQvgxhvz7zm9McS5fZGWBuXLx99Xvrztd84lTloaWq5c/H0Fk5P51gvduWInnHPkCiD60rUGkN1EB9fijZMumXi51bnCxRsonSt0Jk6EVaugZ8+wI3HOqUJqqi2pdf31+fe83hji3L5o3py1g5/Yvctp+fLWfNm8eRhROZe8mjdnUcM4Z8mCy8l864XuU/K4Yqd5c5gxAyQmTQpQ8H0UAAAgAElEQVT2HDkHOFpEDheR0liDx6uxB4nIfkBTYEZBBOFcodS8OQwatPt2L7c6F460NLaV9AZK5wqLbdtgyBC4p346Z91Sx0dnORey9HT4/HMYcWk6pY6uk2856Y0hzu2jb8d/wHZKsqNs0BvdLyidC822tZs45IsZLKx4yt+9Xws2J/OtF7pPyeOKpV9/tS49ZcrY/QI+R6pqJnAPMAtYDDynqgtFpK2ItI069HLgbVXdVCCBOFdYzZwJlStDOS+3Ohe2P45rzv3yyO47PC+dC8W0aXDk8nQeXdIS+eknn67OuZClpsIV+6fzfxNaQj7mpDeGOLcP1n69ghO/nswHR99OiZlvQO3aXnB1LkTz2k3gwB1r2NDnEcvFgs9J74XuXHaysqB/f2jY0CpgE3SOVNWZqlpXVY9U1dRg2zhVHRd1zGRVvbZAA3GusPniC3jrLejRA97wcqtzYRs9Gppvn0VWuQreQOlcyLKyIP3BdGZKS0puDaav8/V7nAvNZ5/BjvfSmb6xJZKRvzlZMh/icy5pLb7jERqzg5qjukLzw2HZsrBDci5pZWVspc4Lw5hbsSmndDrdJrAq4JxU1UwRifRCTwEmRXqhB/sjla/eC90ln+eeg+++gxdegLPP9nOkc2Hr1w8OOADatYNKlTwnnQvRhg3wzqPf0IdXoMuD0KyZrRGSluYNIc6F4IOH0xn3S0vKEbOOT6Ty1RspnUuo1zql8wYtKbU9/3PSG0Oc20sblq7m+M+f4MOaN9C8xeFhh+Nc0pt771QaZ/7Ckk5puy1RUJBUdSYwM2bbuJj7k4HJiYvKuZDt2GEVr/Xrw+WXhx2Nc+6rr+yisV8/qFSJt96CKlWgSZOwA3MuOT3+ONy9fgBZ5SuS0qEDHHigN1A6FxJV+Meg1lSIbQiJyMiwxkrPUecSYsECuOPT1pQvoJz0abKc20tf3z6Csmyh2iPdwg7FuaS3Y1smh04dxNdlG3Hag+eGHY5z7sUXYfFi6N0bSnhx07nQ9esH++0H7duzbRvceSfce69VADnnEmvzZnhlyHdcw7Ok3NPOGkKcc6F54w24YXsamaXLxz+gfHkbteWcS4iBA6Fd2TS0XMHkpF+dOrcXNv/2Fw1mj+Hjg66gwdX/DDsc55LeV92epea2pfxxZ09KpCRwWIhzbneRUSHHHANXXQXAqlXwxBOwbVvIsTmXjBYsgJdfttaP/fZj8mT4+Wfo04eEjqR0zplJk+D2PwZB6dLQqVPY4TiX1FRtkeZldZrbCMqSMRPo+Do+ziXU99/bbMvHdmiOdLl/9wPyISe9McS5vTD/jrFU1vWUT+0ZdijOJT3N2kGVcQP5tlR9zhjyf2GH45ybMQO+/hp69YKUFACGDrVlCn78MeTYnEtGqam2Rsi997Jtm9095RRo0SLswJxLPtu3w1MDfuJm+Tcl2twBBx8cdkjOJbX0dFuouWtXKHl8Ayu7BuVXbwhxLvEGRfoK3LcDXnkFata0XIR8y0lvDHFuD21bu4m6Mx/l0/0v5MR/nRB2OM4lvQWpr3Lk5oWsuKkHJUv7ac25UKlC375w9NFwzTUA/PYbjB0LN94I//hHyPE5l2wWLYLnn4f27eGAA0hL81EhzoVp2jS4YeUQSqQI0rVL2OE4l/QGDIBDDrHlBxg+3IYxT5wItWt7Q4hzCfbzzzB1KvzrX3DwF6/Z6ObUVMvFfMxJX0DduT00r90EmuxYAz16+kWkc2FTpcywVJalHMHpI1uFHY1z7vXXYf58mDx55zQDgwfbdWXv3uGG5lxSSk21XnQdO+4cFdKkCVxwQdiBOZd8srJgYv9feVcmIrfear1dnXOh+fxzePddG8FcNuNPGDPGOvPccovdnHMJNWyY/du1i8JV/eHII+G66+y6ci8XS4/HG0Oc2wNZGVup88Iw5lY8iyadTw87HOeS3qKR71Bvw5e8c/V46lT0U5pzoYqMCjniCLjhBgBWroTHH7fryaOOCjk+55LNd9/B9OnQuTNUrUraE7B8OUyY4KNCnAvDiy/CZUsfoVSJTKR7t7DDcS7ppabC/vtD27bA0JGwcSP09KnQnQvD779bGfWmm6DW4lnw5Zfw5JO7r+OTD7zmyLk9MPfeqTTO/IXv75vkF5HOFQJZ/QawskR1Tht3c9ihOOfeessKrRMn7iy0DhxoPWF79Qo5NueS0YABUKYMdO7M1q1/jwo5//ywA3Mu+ajCY33XMFMet16uRxwRdkjOJbUFC+C112zayIpZf8HIkXDFFdCgQdihOZeURoyArVuh2wMKt/WDWrWsZaQA5GlydRFpISLfisgSEYnbhUFEmonIfBFZKCLv52+YzoVPt2dy6NRBfF22Eaf3OS+0ODwfnTPfT/6YY/98n69bdKHCAWXCDse55KYKDz9sc7kGhdbly2H8eJuD+fDDQ47PuWTzww+2OEHbtnDwwaSlWU4+/HBiR4V4udU5M3MmnLtwBOXYTIke3UOLw3PSOTNwIFSsaEtqMXo0/PVXKHO6ek46B2vX2hqTV18NdVfOhk8+gQcesJXUC0CuI0NEJAUYC5wHrADmiMirqroo6pgqwGNAC1X9WUQOKpBonQvRV92f48RtS1nS4RFKpIQzLMTz0bm/beyeyhqpSuMnbg87FOfcf/5jEy8/8QSUKgVYp3RVn23AuVAMHGgjtLp0YetWy8dTT4XzEtifx8utzhlVGPnwOl6Q0ejlVyL16oUSh+ekc+b77+G55+D+++GAUhvg0Ufhkkvg+OMTGofnpHNmzBjYsAF69AA69oNDD4Xbbiuw18vLyJDGwBJVXaqq24DpwKUxx1wPvKSqPwOo6qr8DdO5cGnWDvZ7bADflqrPGUP+L8xQPB+dA5a9NI8TfnuTuWd2ZP8aFcIOx7nkFhkVUrPmzsUmly2z2bJuv90GizjnEuinn2DKFLjjDjj0UCZNslEhffokfK0QL7c6B8yeDSfPGUtlXU+J3qH2EPCcdA4YPNj67nTsCDz2GPz5ZyijQvCcdI6NG22KrJYtoeHGjyE9Hbp0gbJlC+w189IYUh1YHnV/RbAtWl1gfxGZLSJzRcQnb3fFyoLUVzly80JW3NidUmXyNLtcQfF8dA5Y3Xkg69iPEyfeHXYozrn0dPj4Y+jWzdYnwNYmEAl69zjnEmvQIChRAh54YOeokNNOS+yokEC+lltFpI2IfCkiX65evboAwnWuYAzvu5HO8ihZF16c8J7nMfItJz0fXVG1fDlMnWoddg6ptAkeeQRatICTTw4jHM9Jl/TGj7f2yB49gP79oVo1aNOmQF8zLwuox+s/pHGe5yTgHKAc8KmIfKaq3+3yRCJtgDYAtWrV2vNonQuDKmWGpbIs5QhOH3VN2NHkWz6C56Qrmn55dzEnLXuRd07uwQVH7Rd2OM65vn3hsMN2DmX+4QdIS4N27aBGjZBjcy7ZLF9uw7L+9S+oUYNJj8OKFTBpUsJHhUA+l1tVdTwwHqBRo0axz+NcofTFF1B39hMcwB8Q7qgQyMec9Hx0RdXQoTaouUsXbHrX1avDGhUCnpMuyW3ZAsOGQfPmcGrJOfDWWzbVa4WCnf0jL13cVwA1o+7XAFbGOeYtVd2kqmuAD4CGsU+kquNVtZGqNqpWrdrexuxcQi0a9R+O2fAl31/RjbIV89J+WKDyLR/Bc9IVTSvuHsRmytFg/L1hh+Kce/99uz3wwM6hzP3729QD3eIuAemcK1BDhlgtT7duO0eFnH46nHtuKNHka7nVuaJoSN8tdJFhZDY7xxbuCZfnpEtqq1bBhAlw441Q+6DN1jJyzjk2fDIcnpMuqU2ZAr/+GqwxmZoK++8Pdxf87B95aQyZAxwtIoeLSGngWuDVmGNmAGeKSEkRKQ+cAizO31CdC0dW31RWSnVOfbxQzDbl+eiS2uo5yzjp26f4pH4bqh/vDXjOha5fPzj4YFubAFuQcupUuOsuGyzinEugX3+1Wp5bboHatZk40UaFhLBWSISXW11S+/prOOiNSRyiv1HyoV5hhwOeky7JPfoobN0adNh58kn47bcwR4WA56RLYpmZtn7PKafA2VUXwIwZcN99UKlSgb92rt3cVTVTRO4BZgEpwCRVXSgibYP941R1sYi8BSwAdgBPquo3BRm4c4nw/eSPOfbP95nV4lEuOLBM2OF4Prqk932bIZxECkeNuz/sUJxzH38M775rcy2XKwfYjFllythAkbCISAtgJHaefFJVB8U5phkwAigFrFHVpgkN0rmCMHSoXVl2786WLX+PCjnnnHDC8XKrS3ZD+m8jVQaz/eTTKNU0/NOM56RLZmvXwtixcPXV8I86W60W9qyzIMTc9Jx0yeyZZ+DHH23xdEntb40g7dsn5LXzNOePqs4EZsZsGxdzfygwNP9Ccy58G3oMYI1UpfGEO8IOZSfPR5es1i76lRPnT+KjI2/lnDNi15VzziVcv362wN2ddwLwv//B009D5842WCQMIpICjAXOw6YVmCMir6rqoqhjqgCPAS1U9WcROSicaJ3LR7//DuPG2dwfRx7JxLHwyy82/UBIo0IAL7e65LVkCZR5fhq19GfoMy7cRIziOemS1dixsGFDsEjz5Ml2kpw8OeSoPCddctqxw5YGOfZYaHnkYnjhBeje3abJSoC8TJPlXFL66ZWvOPHXmcw9syP71yjYxXucc7lbfPsjlGI7NUZ1DTuUXYhICxH5VkSWiEjcVRJEpJmIzBeRhSLyfqJjdC7fff45zJoF99+/c4G7vn1tgEiXLqFG1hhYoqpLVXUbMB24NOaY64GXVPVnAFVdleAYnct/jzxic3/06MGWLXaBecYZcPbZYQfmXHIaMiCTbgxk+7EnQosWYYfjXFLbuNF6n198MTSst91Okk2ahDd00rkk98orsHixNU6WGDTALiLvuy9hrx/6atDOFVarOg6gCpU5cWLBL97jnMvZhmV/cNyn4/iw+nU0u+jIsMPZyXuhu6TVrx8ceCC0awfAwoUwfbrNwVwt3OV8qgPLo+6vwOZWjlYXKCUis4FKwEhVnRr7RCLSBmgDUKtWrQIJ1rl8sWYNPPYYXHst1K3Lk2Osw+vUqYWmM7pzSWX5ctg89XmO0iXw8EueiM6FbPx4+OOPYJHmf/8bfvoJHn/cc9O5EKjaWulHHQVXn7AEbngaOnZM6EWkjwxxLo5f3l3MScte5LNG91DtqP3CDse5pPf1HaOoyCYOHNY97FBieS90l3zmzoU33oBOnaBiRQAeftj+27lzyLFBvKtajblfEjgJuBi4AOgtInV3e5DqeFVtpKqNqoXcwuNcjh59FDIyoGfPnaNCzjwTmjcPOzDnktMjQ3fwQFYq2+rWh0tji4XOuUTauhWGDbNz4qknZ1otbKNGPmLLuZC8/TbMm2ed6FKGDoJSpWy2gQTykSHOxbH8nsFUoRwNJiRumJZzLr4tq9ZT791RfFTtMs64tn7Y4cTyXugu+fTrB1WqwD33ALBgATz/PPTqZYNFQrYCqBl1vwawMs4xa1R1E7BJRD4AGgLfJSZE5/LRn3/C6NFw1VVQrx5PjoGVK63jq3d4dS7xVq2C356YQQMWwkNPQQnvf+pcmCZPhl9/tdGSPPMMLF1qnQj8JOlcKFJToWZNuOmsn6DtFGjbFg45JKEx+JnZuRir5yyj0f+m8Un9NlQ/3nuCOhe2r9o8ThVdR7l+PcMOJR7vhe6Sy/z5MGOGDWWuXBmAPn3sv506hRtaYA5wtIgcLiKlgWuBV2OOmQGcKSIlRaQ81oC5OMFxOpc/Ro2yFWF79do5KuSss3xUiHNhGfGocv+2VLbVPgpatQo7HOeSWmYmDB4MjRvDOc2yoH9/aNgQLrkk7NCcS0offmi3Ll2g9Igh1ijZNfFrwvrIEOdiLGkzhJMowVHjEjtMyzm3u+3rN3PUa8P5fL/zadymUdjhxOO90F1y6d/fWj46dABsiPPLL1uDyP77hxsagKpmisg9wCwgBZikqgtFpG2wf5yqLhaRt4AFwA7gSVX9JryondtLf/1lK8JefjkcdxwTRtuokGnTvMOrc2FYtw7+N2oWjZgLD06Ekl7d4lyYpk+HH3+0U6W88Dx8950NZ/aTpHOhGDDAlga5/aKV0GUitG5tw0QSzM/OzkVZu+hXTpg/iY+OvJWzz6gedjjOJb257SbSZMcqlnTvWVjLrDt7oQO/YL3Qr485ZgYwRkRKAqWxXuiPJjRK5/LDN9/Aiy9C7942TRbWCFKlCtxXiGaVVNWZwMyYbeNi7g8FhiYyLufy3ejR1iDSu/fOUSFNm/qoEOfCMma00jmjH9sOqUnpG28MOxznktqOHXZebNAAWl60A47vD/XqwRVXhB2ac0lp7lx46y3Ly3JjhtrQrQceCCUWbwxxLsriO4ZzCtupPiqchHTO/S1r8zZqPTuEryqcTpMuZ4YdTlzeC90llf79bZX0oOVjzhx47TXbvN9+IcfmXLLZsMHmPG/ZEk44gfGjbE70p58OOzDnktPGjTBn2Pv04hPoNQZKlw47JOeS2iuvwKJFdl4sMeNlWLgwuOOrBTgXhgED7Jrx7qtXwbFPwI03whFHhBKLN4Y4F9iw7A+O++RxPqx+Hc0uOjLscJxLevM6TePkzOX80OUJpEThHBYC3gvdJYnFi+G556BbNzjgAAAeesj+G8yY5ZxLpMces8XTe/dm82YYNMhGhTRrFnZgziWnCRPgnvWpbDvwEErfdlvY4TiX1FSt4vWoo6DV1QqN+kHdur6Oj3MhWbQIXnoJevWCShOGw5Yt0L17aPF4Y4hzga/vGMVpbOLAYeElpHPOaGYWB00axMIyJ3Ja3xZhh+OcS02F8uV3rpL+6afw5ptWAVupUsixOZdsNm2CYcOgRQto3JgJPirEuVBt3QrvDfiMjvwHug+DcuXCDsm5pPb22zYlz4QJkDLzNfjvf2HKFEhJCTs055LSoEF2KXnfTX/ASWPhmmvgH/8ILR4fH+YcsGX1Buq9O4qPql3GsdfWDzsc55LeVz1foPa271l1ew9SShbeUSHOJYXvvoNnnoF27aBqVcBGhVSrBnffHXJsziWjceNgzRp48EE2b7a5l5s181EhzoVl8mRosyaVbZUOgDvvDDsc55JeairUqAE336TQr59NxXN97LKOzrlEWLrUOuy0bQsHPjXK5pXs2TPUmHxkiHPAvDaPc5quo1y/cBPSOQe6Q6k0ZgBLSh7DGY9cHnY4zrkBA6BMGejcGYAPP4R33rGO6RUrhhybc8lm82YYOhTOOQdOPZXxI+G332D69LADcy45ZWbCq33n8wavo136+YnRuZB9+KHdRo6E0umz4Msv4cknoaRXfzoXhiFDbFDW/Xf8BU1GwuWXQ4MGocbkvwYu6W1fv5mjXx3O5/udT+M2jcIOx7mk982g1zk2YwHv3jyFo8r4AEbnQvXDDzBtmi0McvDBgI0KOfhguOuukGNzLhlNmAC//w7PPbdzrZDmzW29EOdc4k2fDresHMD28pUp1f6esMNxLukNGGCjl2//l8J5faFWLbjpprDDci4prVwJaWnQujUc+uIY+OsvWzgkZN4Y4pLe3Lsn0WTH7yzp3hPx2XicC5cqJQen8nOJOpw+5rqwo3HODRxoPem6dAEgPd1uI0bYvK/OuQTasgUGD7aWj7PO4okRNirk2WfDDsy55LRjBzzbZzEzeAG5rwdUqRJ2SM4ltblz4a23rEGk/Gfv2SJ3jz0GpUuHHZpzSemRRyArC7rdsxGaPQoXXwwnnhh2WN4Y4pJb1pbt1Jw+hK8qnE6TLmeGHY5zSW/x4+n8c/3nvH3549SqVCrscJxLbsuW2WKTd90Fhx6Kqo0KOfRQaNMm7OCcS0KTJlkXu6lT2bzZ2kXOPhvOOivswJxLTjNmwNU/DGRHmXKU7Hhf2OE4l/QGDID99rNl7vi/vlC9Otx2W9hhOZeU1qyxZe6uvx7qvDUO/vijUIwKAW8McUluXqdpnJz5M0u7jENK+LAQ58K27aFUfpVDOfWJW8MOxTk3aBCUKAFduwLw3ns2B/Po0VCuXMixOZdstm2znDztNDj7bMb5qBDnQqUKkx9cyos8TYm77oWqVcMOybmktmgRvPSS1bXu998P4IMPbOGQMmXCDs25pDRqFGRkQPf7NsNFw+Dcc6FJk7DDArwxxCUxzczioEkDWVjmRE7r2yLscJxLekumfUbDNe/x9vnDOL9a2bDDcS65LV9uvdBvvx1q1EAVHnwQatSwTc65BJsyxfJywgQyNouPCnEuZG+/DRd9MxhKlqREl85hh+Nc0hs0yKZwvfde4Lp+tsDdHXeEHZZzSWn9eutAd8UV8M+Pn7T17gpRD548rUwrIi1E5FsRWSIi3eLsbyYif4nI/OD2YP6H6lz++qr3i9Te+j2rbu9BSsmiMyrE89EVV391G8CfHECjCXeGHYpzyS09HerXt8nQu9lp5u234ZNPoGdPKOttlc4lTno61K4NvXtD48Zw/vk88YRdU/bpE3ZwufNyqyuuJjy0gtakIf/6Fxx2WNjh5JnnpCuOli6Fp5+GO++Eqt9/Cv/5j613VwSGMntOuuLoscdg3Troef9Wm9f1zDNtzbtCIteRISKSAowFzgNWAHNE5FVVXRRz6Ieq2rIAYnQuf6Wno7e25qDfS7Kk5DGc8cjlYUeUZ56PrlhKTyfzmhs4afWvvH36w5xfq2LYETmXvNLTbWG7zZtt4fQffkBr1uLBB6FWLZ922bmESk+Hli1tjgGADh12jgo55xy7rizMvNzqiquPPoIzPx9KSgklpXvXsMPJM89JV1wNHQopKdC5M3BHP5u2rm3bsMPKleekK44yMmD4cGjRAk78egr88gukpYUd1i7yMk1WY2CJqi4FEJHpwKVAbHI6V/gFF5WSkUENYN753ShVJk8DpAoLz0dXvAQ5WTIjAwUa3XF82BE5l7wiFa+bN9v9zExo2ZLPe73OF180Z8IEKF063BCdSxqxDSEAqam8seJUfv+9OS+8EF5oe8DLra74SU/nHxfeTCNWoTfcZCO3ig7PSVfsrFxpM7veeitUXzkH3nwTBg6EChXCDi0vPCddsTNxIqxeDT27bofbBtrI5nPPDTusXeSlFrg6sDzq/opgW6xTReS/IvKmiNTPl+icy09xLipP+HCUbS86PB9d8RGTkwIc0O66opaTzhUP8SpeATIyaNizJdcdks4tt4QTmnNJJ4d8vPjxlnQ+MZ0zzggntD3k5VZXvKSnk3VRS6ptXUEZtlHy3GZhR7SnPCddsfPII5CVBQ88APTvD/vvD3ffHXZYeeU56YqVbdtgyBAbvXzGT0/BsmU21asUrqUJ8tIYEi9ijbk/D6itqg2B0cArcZ9IpI2IfCkiX65evXrPInVuX2RzUSmbM2x70al8zbd8BM9JF6IcKnqKWE46Vzy0br17PgbKaQbjt7emVKkEx+RcssohH8uTQf9fWic4oL3m5VZXfARl15Qtf3fi4a67ilqZ1et2XLHy++/wxBNw3XVwxPr58Oqr0LEjVKoUdmh55TnpipXJk2HFCujZLQsGDIDjj7cpmAuZvDSGrABqRt2vAayMPkBV16vqxuD/M4FSIlI19olUdbyqNlLVRtWqVduHsJ3bQzlcVJKRYfuLhnzLx2C/56QLR/HJSeeKh7Q0KFMm7q7NUp5y0wvXPK/OFWtpaVC+fNxdW0qUp+wzRSYfvdzqiofi04nH63ZcsdKzJ2zdah3P6d8fKleG9u3DDmtPeE66YuOvvywXTz8dzl/3HHz/PfTqVehGhUDeGkPmAEeLyOEiUhq4Fng1+gAROUTE3p2INA6e94/8Dta5vZbDRSXlyxe6xXxy4Pnoioe0NLR45KRzxcPpp8NBB+1WWN1EeT7q9jop5zYPKbA9JyItRORbEVkiIt3i7G8mIn+JyPzg9mAYcTqXrebNYcyY3TZvojxLRrxu+4sGL7e64qH4dOLxnHTFxty5tlbIvfdC3W3fwIsvQocOUKVK2KHtCc9JV2z07w/1V6Xz7g+1kZ49oF49uPzysMOKK9fGEFXNBO4BZgGLgedUdaGItBWRtsFhVwHfiMh/gVHAtaoaO7TLufA0b87miU/vNt6Q8uXh9aJzUen56IqN5s35/uL7dt9exHLSuWJj1ChYvhxSU3d2Htgs5WlX83XO7ld08lFEUoCxwIVAPeA6EakX59APVfX44NY3oUE6lxtVmDYNKlaEcuUAyKA8fU56nQbti04+ernVFRtpaWwvXfQ78XhOuuJC1RpBqlaFPk3T4ZRToGxZuC/O9WUh5jnpiovvvoP5j6bzZsmWlPntZ1sr5LLLoERexmAkXsm8HBQMxZoZs21c1P/HALt3X3KuEJn/yH9ojCCly1Bi25YiW+nq+eiKg21rN1H5pSn8WKoudUqtQDIyimxOikgLYCSQAjypqoNi9jcDZgA/Bpte8spXV6isXAkPP2xTfXTvDk2asKlVa1quSaPN4OakpIQd4B5pDCxR1aUAIjIduBRYFGpUzu2JF16A996DsWPhn//krytbc9naNFJHFa3zI3i51RUPfzZszqCSgxmyLWb6nSJYdvWcdMXBs8/Cxx/D653TqdjqItiyBUqWhAULilQ+guekKx4m35LOjKyWlCFqFOWIEXDuuYUyJwtnE41z+Wz5m99w8peP817ddpR4aybUrl3kCq7OFSdzrx7EIVm/8PugNOT114tsTnovdFcsdO0K27ZZgRXIOqs5jaouY1W95rRqFXJse646sDzq/opgW6xTReS/IvKmiNSP90S+EKULxaZN0LmzLTh5551satyco0suo/T5zTnttLCDcy459e2zg6szppC534E7R2sVxYYQ54qDjAzo0gXuOCqdix5vaQ0hAJmZRW0NH+eKhS8Gp9Pzs5aUp+isq5WnkSHOFWmqrL3lPipQmQYvPgwNDrQhW865UKyes2xyhC4AACAASURBVIwT3h3K7MOup1mnoGan6Oak90J3RdsHH8BTT9nidkceCcD06fC//8Fzz1HURoUAxFuhL3YqgXlAbVXdKCIXAa8AR+/2INXxwHiARo0a+XQELjEGDrQp655+GlJSGD4cVq+GPn3CDsy55LRoEWwcM5mT+RLGToPDDrM1QtLSvCHEuRAMGQJHrUjn8TItka3ZVL56Q6VzCbF9O1Tv1ZoKsQ0hEZF1tQpZfY+PDHHF3oL+r3Lc6neZ07IvhzY4MOxwnEt6P7XqQhYp1HpmcNih5Afvhe6KrsxMaN8eatWy6bGwAu3DD8Oxx8KVV4Yc395ZAdSMul8DWBl9gKquV9WNwf9nAqVEpGriQnQuG0uWwNChcOONcMYZ/PgjDBgArVrBqaeGHZxzyUcVetz9FwPozvaTT4Prr7cK1mXLvKLVuRD89BMMHgzPlW9NSmxDSESk8tU5V+DGjoUbM9PILFO01tXyxhBXrGVu3ML+/Tvxban6NH2mbe4PcM4VqG+fmE2jZS/w0endOOKsGmGHkx/2pBd6Q2A01gt99wepjlfVRqraqFq1avkcpnNxjBtncysPH75z0fQRI+D7720d9UK63l1u5gBHi8jhIlIauBZ4NfoAETlERCT4f2OsPPxHwiN1LlbHjlC6tHV7BTp0sCnQhw8POS7nktRrr8GZs/tSjdWUGjcaJF6xzzmXKF27WhrumJhm58t4Cmnlq3PFTWTkctkWzUn595TdDyjE00kWzctc5/Jozo0jqLltKat6jKRsRZ8Vzrkw6fZMSnS6l59L1KbJC/eHHU5+8V7ormhavRp697ZF7a64AoCff7YC7SWX2K0oUtVM4B5gFrAYeE5VF4pIWxGJ9Iq4CvhGRP4LjAKuVVWfBsuF6/XX7fbQQ3Doobz6qt3t0weqxxtv6JwrUFu3wph7/kcHRqG33Q4nnhh2SM4ltQ8+sClcH3gADv6/U2C//XZvoCzEla/OFTe9e9tSd8OHg7z2qvXgKVvWdhbyXPTGEFdsrV24kmNn9OejqpdxxkPnhB2Oc0lvzp1PcnTGApbcOYz9DikXdjj5xXuhu6KpRw/YuBFGjdp5IXnvvTYlyKhRIce2j1R1pqrWVdUjVTU12DZOVccF/x+jqvVVtaGqNlHVT8KN2CW9LVvgvvvgmGOgQwcyMmxUSP369q9zLvFGjlA6Lb8PKlSgxMDUsMNxLqllZVk5tWZNWzydgQOtY8+jj+4c3VzYK1+dK07mz4fx4+Gee+Cfaz+Bf//bknPmTKhdu9DnoneVd8XWd1f14Hi2U23KMB/R7FzINq1Yy1FTejG3YlOajS6aCxHEo6qZIhLphZ4CTIr0Qg/2j8N6od8lIpnAZrwXugvbF1/AxInQuTP885+AlVdfecWuLevUCTc855LO8OHwww/w9ttQujQD+tq86O+/D6VKhR2cc8nnt9/gyz6v05VZkDoCfPpS50I1aZJVvk6fDuV//cHW17rhBmshOe44WyMkLa1QV746V1yoWh+eAw+EB3tmwQXtbRhzjx5QsWKhWyw9Hm8MccXSD898wSn/m8KsE7pxwUVHhh2Oc0lvwZUP03jHWlJGj6BESvFqnQymvpoZs21c1P/HAGMSHZdzce3YYV14DjnExjZj60y2bw/16kGnTiHH51yy+fln6N/fpqs77zy++87qeG66Cc46K+zgnEtODz6wlQFbOrL1qHqUadcu7HCcS2rr1lkd65lnQqtWwKUdradAsL4WzZsXicpX54qLF16wDjvjxsH+L02EefPg6aetIaSI8MYQV+xo1g62te3Ab3IIjV7qEXY4ziW9X95ZxMlfjCH9qDs499bjww7HueSWlgZz5sC0aVC5MmD1sMuWwezZ2a9F6ZwrIPffb13shg9H1doqy5WzBhHnXOLNmQMHTH2Uo/gBHnvbh2c5F7K+feGPP2DkSJA3Z8Jrr1lDyGGHhR2ac0ln82YrujZsCLdfuRaO6WG9d669NuzQ9og3hrhiZ17npzhp/ef858bJnFunUtjhOJfcVFl9U0cqUJF6L/QLOxrnktvatdCtG5xxBlx/PQCLF8OwYXDzzdC0acjxOZds3nsPnn/eanpq1+aF5+Gdd2D0aDj44LCDcy75qEK/tr/wjPRn+8WXUeq888IOybmk9r//2Tnx9tvhhHpbodW98I9/2PRYzrmEGzbMBjVPnQopDz9o15dRa1AWFd4Y4oqVrX9spMaYB1hQrjHNJt4UdjjOJb2vB77O8b+/zawLR3BBQ59v2blQPfgg/PknjBkDIqhCu3Y2otl7oTuXYNu32/x0hx8OXbqwYYPNv3zCCXDXXWEH51xyevppuHpeN8qUzKTkyEfCDse5pNepk62L3r8/tr7WkiUwa5YPZXYuBMuX2/qSV18NTfdfAI89Bm3b2jCRIsYbQ1yxMveqgZyW9Ss/DXqJkqVLhB2Oc0ktK2MrlR/uxJKSx3DWdJ9v2blQ/fe/VmC9666dBdannrKpscaNg4MOCjc855LO2LGwaBHMmAFly/JwL1i5El58EVJSwg7OueSzcSM8d98nzGAa2rUnHHFE2CE5l9RmzoQ334RHHoGDti63FpHLL4fzzw87NOeSUrduNoJyyGCF1h1g//2hX9Gc/cNri12x8funSzlx9iOk17iJxh2ahB2Oc0nvixtHUXvbElZ2HUG5yj7fsnOhiSxEcMABNh0PNqK5c2do3BjuuCPk+JxLNr/9Bg89BBdeCJdcwjffwIgRNg1IEy/COheKIYN20HtNB7ZWq4706B52OM4ltW3boGNHmxHrnnuALl1gxw4bHeKcS7iPP7bRk126QJ0vnrMV1FNT7fqyCPKRIa7YWH7t/VSgJIdPHxh2KM4lvXX/+40Gr/TjkwNacmb/C8IOx7nk9vTT8NFHMGHCzgJrz56wZg289RaU8K4xziVWt262AuWIESjC3XdDlSowaFDYgTmXnJYtg1WD02jEXBj5NFSoEHZIziW10aPhu+9sdEjpj9Ph2WehTx+oUyfs0JxLOjt2QIcOUL06PHDPJjjpfpvX9fbbww5tr3ljiCsWFo95l0Y/v8yss1K54PTqYYfjXNL79soenKBbqDJpeFFbS8u54mX9erj/fjj5ZLjtNgC++MKmxmrf3sqxzrkE+vRTmDLFGkTq1mXav+GDD6yt8sADww7OueT00L3rGJbZna0nn0GZa68NOxznktrvv9tA5osuggvP3Q4ndrBGkK5dww7NuaQ0eTLMm2dTLFcYNRBWrIDp04v0vK7eGOKKvB3bMinV9T5+Sjmc017oFHY4ziW9pc/O4ZRFabzdsAvnX3p02OE4l9z69bMpeWbMgBIlyMqyZUMOOaTITvHqXNGVlWXzfVSvDj17sm6dtVU2abKzrdI5l2Dp6dDw1b5UlTXIE7PwXjzOhatXL8jICGbEeuwx+OYbeOUVKFcu7NCcSzrr10P37nDaaXBd4x+g9VC48UY4/fSwQ9sn3hjiirw5dzzBKZu/Ib39S9SuVjbscJxLarpD2XLnvaySgzjxpV5hh+Ncclu82BYi+Ne/bHEQ7Jpy3jzrzFO5csjxOZdsnnzSEvCZZ6BiRXq39+nqnAtTZiaMbLuY5xlNVus7KOnDJZ0L1bx5MHFisF5Ild/hwQfhggvg//4v7NCcS0r9+8Pq1TZlnXTqCKVLw+DBYYe1z/JU7BaRFiLyrYgsEZFuORx3sohkichV+Reic9nb+NMf1P13b+ZUPpumj14WdjgJ4fnoCrOvuj5Dvb8+Zf41A6l6hNe0OhcaVZvctWJFGGhraf36q/W2O+88aNUq5PicSzZ//AE9ekDTpnDNNcybZ42T7doV7+nqvNzqCrMnJyh3fXcfWr4CJQf1DzuchPCcdIWVKtx7L1StCr17Y93RN2+GkSOL9Ygtz0lXWH3/vfWra90aTlr1Jrz2miXnYYeFHdo+y7UxRERSgLHAhUA94DoRqZfNcYOBWfkdpHPZ+frKPlTWvyg9dgQlUorvCTLC89EVZlv/3MRhI7ryTdmTaD751rDDcS65vfwy/Oc/NhdWtWoAdOoEW7fC2LHF+prSucKpd2/46y8YPZodKrRrZ6lZnKer83KrK8zWroWPH3iVC3ibUgP67jxXFmeek64we/ZZ+OgjSE2FKv/77P/Zu+8on64tgOPfOw1DdCHRI0r0MnodRB1EEL1FiRIlOlGSqBEtOhGjkyCE0cvovSVCEIToRkIwvZz3x0HmMRKRmd/5zdz9WSsrmfndeHutrP1+556zz97g6/voikhu06HFGclJ4cx69YLEiWHksDDo2RNy5dJ/TwBe5GZICeC8UuqiUioMWAbUi+G5bsBK4HYsxifEc13Z8BPFj87AP1cnCrUoYDocR5F8FE7r6HtjyBB5jcCRX+KeSPp9CGFMUJB+eSxYEDp1AmDLFt0aa8AAyCmjfIRwrOPHYdYs6NoVChRg7lw4eBC++AJSpjQdXJySdatwWiOHhPDJg16EvJEXq0tn0+E4iuSkcEpBQdC3r74p+X7rR/O1Xn9dX2lO2CQnhVPauBH8/HQtT4Zlk+DcOX1NxMPDdGix4kVmhmQErkT7+SpQMvoDlmVlBOoDlYHisRadEM+jFH+07klSkpNv5Wemo3EkyUfhlAIOX6Loti/Y8XozKvWK38O0hIj3xoyB336DRYvAzY3QUL0H++ab+jBECOFASulNnTRp4NNP+f13nYcVKuj5kwmcrFuFUzp9GhJNn0gOLsKsLeDubjokR5GcFE5p7Fi4ehWWLAHX+XPh6FH9wyuvmA4trklOCqcTHq7r6t58E7o3vA4Fh0OdOlCzpunQYs2LHIbE1EhBPfXzJKC/UirS+pu+C5ZldQQ6AmTJkuVFYxTiGT8M/55CAdvY5DOF6vnTmA7HkWItH0FyUsSeS+/1JS+uZF0W/4dpCRGvXbig3yibN4fy5QH94y+/wKZN+qqzEMKBFi2Cffv0RNiUKRnYEe7ds027Olm3CqejFIzofI3ZaiShteqTqGpV0yE5kuztCKfz2296HnPjxlA+3x9Qf6CuGGjSxHRojiA5KZzO9Olw5gysWQOJhvaHsDCYONF0WLHqRfqYXAUyR/s5E3D9qWe8gGWWZV0CGgLTLct6Zpq1Umq2UspLKeWVzgY9OUXciHgYQuoRvTnrno+KSzuZDsfRYi0fQXJSxI4zM3dQ/NIK9pQdQPbymUyHI4S9ffSRrnAdOxbQZyMjR+qB6dWqGY7NQWQQpXAa9+9Dv35QogS0acPBgzBnjm63nD+/6eAcQtatwun4+UGtXf1J7BZBoqnjTYfjaLK3I5xOv37672PHonvy3L0LU6bYomIAyUnhZAICYNgw/d7ok2qvLurp0wdy5DAdWqx6kcOQw0BOy7KyW5blATQB1kR/QCmVXSmVTSmVDVgBdFFKrY71aIUADjefRObwiwQMmkTiZC9yuSlBkXwUTkVFROLauwdXXLJQemUf0+EYIRuvwmmsWwdr1+oV7OuvP+nO4+GR4Ip5nksGUQqn8tlncOsWTJ1KpHKhSxd47TWdojYh61bhVEJDYVHnvbRgMVbfvpA9u+mQHE1yUjiVXbv04PT+/SHLHydg5kzo0kXPvbMHyUnhVIYMgYcPYdL4SKzu3SBTJhg0yHRYse4fd5KVUhGWZX2Ifll0BeYqpU5ZltXp0ecz4zhGIZ7446frFFgzgr1p61F2mK2uNAOSj8L5HO74FSWCfmR7p2+pnD6J6XAcLtrG69voyp7DlmWtUUqdjuE52XgVcSckBHr0gDx5oHt3AFau1MPvJk7UMyht4skgSgDLsh4Pojz91HOPB1FK72URN37+Gb78Etq1g+LFmTkNjh3Tmz4JvwW6JutW4WymTIqk37XuBKfNRJKP7TdES3JSOJPISL10zZwZ+vVVUP1DSJ1aFxLYhOSkcCYnTsDs2fpV8q29c+D4cVi2DJImNR1arHuhsnql1Hpg/VO/izEplVJt/ntYQsTsl4YDKUw4aeePt8mtyWdJPgpn8fDKXd6cP5ijySpSaaptLzvIxqtwDhMm6J5YmzeDhwcPHuhWPIUL69shNhJrgyil97J4aUrpN8lkyWDUKG7dgo8/hqpVoVEj08E5lqxbhbO4eRMuD5tLMY7BlKUJcnPnRUhOCmcxd67efF22DDxXLYa9e3UvyVSpTIfmUJKTwhkopd8dU6eGT7r/ASU+hooVda/lBOhF2mQJ4RTOLz5IybML2Fm0F7lrJax+dULERz82/JQUUXdxnTIJF1ebnk7GvPGaMfoD0TZe/7ayx7KsjpZlHbEs60hAQECsByoSsN9+gxEjoEEDePttQLfhuX4dZswAN3t1lPxXgyj/7g+S3svipX33HWzdqvMyXTr69YOgIJg61S4t0IVwPiP63GNo6CCCvcrrSc1CCGPu3dNFAuXKwXs17kPfvlC8OLRtazo0IWxp5UrYuVMvXVNOGKpn90yenGAXrvZ6PRbxloqMIqxLD25aGSi2MuH1qxMivrm25TQlDk1lx5sdqNKmsOlwTPpXG6/W3ywmlFKzgdkAXl5eT/8ZQjzL31+/NGbLpn8erwfB/vCDXrt26AClSpkLz5B/M4gSIC1Qy7KsCOm/LP4zf39o3VoPJihYED74gN27YcEC3W45d27TAQphT0eOQM7Fn5DG+gOXrxLu5o4Q8cXw4XDnjm7nao0Yrq9uff89uEi9thCOFhysZ6QXLAgdSvwAXWck+Nk9chgi4oVjvRdT7P5BtraYR9VsNmm0LISzUoqAFh+RlGS8tWK46WhMk41XYYa/P/j46HLzy5ehTRvImpWoKOjcWV9xHj3adJBGPBlECVxDD6JsFv0BpdSTibmWZc0D/CQfxX8WPScBBg0iXLnRpQtkzaorYIUQjqcUTOxwmvlMJaJNBzwK27qIRwjjzp7VRTvt2kFRzzMwaZL+oUQJ06EJYUvjx+vXye3bFK49u+lWdZ9+ajqsOCWHIcK5+fujWrUm+/VATiYpTqWvW5qOSAj7elSFfqFKBwrf3symGhOpXsj2rWNk41U43tObrgDffgutWjH3gjf798O8efpAxG5kEKUwIqacHDSI1WcL8tNP3qxeDZ6e5sITws6WLlG0OdGDSM9XSDR2hOlwhLC9jz7S34kjhito2U3P7xk1ynRYQtjS1au6gK5BA/C+/Q3s3g2zZiX4F0k5DBHO69GLpRUURGrgVrvPcPOQa5NCGBFtoyf73CFcc8lMhW+6mo7KONl4FQ4X06YrQFAQqrYPa938qFDBm1atzITnDGQQpXCov8nJ2jN8GFDSj7p1vc3EJoSd+fsT1botV++1oxlbiRo9GdKmNR2VELa2fj1s2ADjxkH6fav0fK3Jk+HVV02HJoQt9e8PkZEw7pOHUKMPFC2qb2olcHIYIpxTDC+Wb83tB+/mBW95oRTCoZ7KRxcUGVxu43p0j+QjsvEqHKxt22c3XR+xgoOYTFseTr8k7dCFcJS/yUlPgvjsSlss65JjYxLC7h6tXV2CgujDMEIyZCNxl86moxLC1sLC9K2QXLmgW7sgKNwLChTQ/V2FEA63dy8sWQKDB0O2JaPg2jXdbcDV1XRocU7K7IXz+ZsKO3x89OdCCMd4Tj66RoRKPgphgq8vJEkS40eBeLKpiS/58jk4JiHszNcXEieO8aMwd0/cF/k6OCAhbC6GIp7Ed2/o1h9CCGOmTIFz52DiRPCY+LkeUjBlCrhJjbYQjhYZCT16QMaMMLDReT04pGVLKFPGdGgOIYchwvn8TYUdQUH6cyGEY0g+CuFcvL2hUqVnfh1sedI+vR/N58htLSEcqnRp/Sb5lGDLE9b6yQ1KIRzpeUV1oVLEI4RJP/8MQ4ZA7dpQK89F+PxzaNoUKlY0HZoQtjR2LBw9Cl98AZ4ffwQeHjovbUIOQ4Tz8fVFPafCDk9PXYEnhHAMX9/nT32VfBTC8ZYu1c2WW7R4kpvh7p7UUn40ne1N0qSG4xPCbvr1gwsXYOTIJzkZiCcnR/vhUV0OQoRwKCniEcLphIZCs2ZQzd2f1T9k09Xnbm56F1YI4XCHDsHQofBpJX+a9EgPfn76F6+9Zjo0h5HDEOF0osqW57LrG6inP/D01EkqFXZCOI63N7cHfyn5KIQzuHABPvgAypbVB5F+fkRkzEpdFz9eqeNN3bqmAxTCZtas0S0+evaEQYO4OcePy2RlbHk/SvSX70chHM7Xl8jEUsQjhDMZNAhSnvBnRagPblcvw759+nQkhluVQoi49eCBTr8Gqf0ZctAHK+A2WBYUKmQ6NIeSwxDhdA76DCdb4GmO1Rz8V0W6bLwKYUT4/WAeDp/IXVIRlfjRnALJRyEcLywMmjTRA+2WLNEVdd7evFfiEjtdvJk82XSAQtjM1au6yrxIERgzBoDO33qT1/MS7RfL96MQJjzw8mZYsvFSxCOEk9i8GY5N8Gejmw9uodFubS1eLG3rhDCge3fIetGfxX/6YAU/ykmloH59W+WkHIYIp3Lu692U2DKC7ZlbU3TdcL1ozZpVFq9CGHK0cl/eCD7NT4OW4rJ+neSjEKZ8/DEcOQJz50KWLACsWwerVulbzdmymQ1PCFuJiNBldWFh8M03kCgR8+bB6tUwbBhkzmw6QCHsqW+nB7S+M57wlOkgiRTxCGFSQADMauLPesuHRBFPta8LCpI5PkI42DffwKV5/mxw9cE11N456WY6ACEeC7x2j2SdWvCba3YK7ZqCZaEXrZcumQ5NCFv6afRaSh2dxuZ8H1FtZHX9S8lHIRxvwwYYNw66dNFVO8CtW9C+PeTNC716GY5PCLsZMQJ274YFCyBnTk6d0unp7Q29e5sOTgh7WrYMSi/5kBzWRVzW7NCHlm3b6tZYchAihEMpBe+/D1PvtiUJ/zDHR94vhYhzly/rbss/e7TFI0xyUm6GCOegFKcrdCJdxHXufLmENNleMR2RELZ29/QNXhv8Pj97FKLMztGmwxHCvm7cgNatoWBBGD8egMhIXZR+757e/PHwMByjEHaycycMHw6tWkHLlgQGQqNGkDy57mDn6mo6QCHs5/Jl2Pr+ElqzAD4eDOXL/1VUJwchQjjc9On6QtaRrr5/3dJ6mszxEcIhIiKgRQuIigI111e3W46JjXJSDkOEUzjaYwHFL37DtvKfUrxrCdPhCGFrKjKK37xbkyQqkMhFS0mWJpHpkISwp8hIvXINDNSnHokTA/Dpp7B9u37RLFDAcIxC2Mnvv0Pz5pAjB0ybBkDXrnDmjG5/niGD4fiEsKGICOjb4CITgjsRUqwsLsOGmA5JCFs7dQr69IGaNeHdKd76cPJp0r5OCIcZPRr27NHvjq+nj9RfnE8fiNgsJ+UwRBh3c895ck/pytFkFam8qb/pcISwvUPNJlHo9hZ2159I/kZvmQ5HCPv6/HN96jFlCrylc3HTJt2hp21b/ZcQwkGU0kkXEKAPJ5MlY948mD9fz+2pUsV0gELY05jh4fQ62ozEni4kXrn4+RWvQog4FxICTZvq25K+vmAtXKCnqLdsqTdbwXabrkKYtH+/LqRr1gxaVLutc/Gtt2DNGlvnpByGCKMiQ8K5V6sZYXiQym8hHkmkt4AQJl1adZwi3w5gb9p6vL28o+lwhLCvffv0DmuTJk9OPa5e1RdF8uWDqVMNxyeE3UyZAmvXwtixULTo/80JGSKF6EIYsW8fuA7/hFIcxMN3NmTNajokIWytf384eVIfhKT/85z+oixfHubO1ZutWbPabtNVCFPu39cXmjNnhulTo3Tr5bt39ST1mjVtnZNyGCKMOlRzGHkeHOZE59m8UTGz6XCEsLWwu4Gops343UrHG9vn4OJqmQ5JCHu6e1eX1WXNCjNngmURHq7PRUJCYMWKvwp5hBAOcPw49O0LPj7QvbvMCfkXLMuqYVnWWcuyzluWNSCGz+tZlvWjZVknLMs6YllWORNxivjnzz9hyrv+9FejCWvxPrz3numQ4gXJSRFX1q+HyZOhe3eoVSUUGjeGRIl0H0k3N5nj8xySkyKudO0Kv/2mUzCF7yTYuBEmTPirz7KNc/KFDkMkOUVcODtrByV3jGFbtnZ4T2toOpx4Q/JRxJVjlXqRNfQsFz5ZwGsF0poORwh7Ugrat4fr13UrnhQpABg0CPbuhTlzIHduwzEKYScPHugNnXTpHvX8sGROyAuyLMsVmAbUBPICTS3LyvvUY9uAQkqpwsD7wBzHRiniq/7t7jDuVgtCs+TCY+Zk0+HEC5KTIq7cuqUvMhcooLu80q8fnDihvzczS9Hr80hOiriyeDEsWqQbDZRJdBQGDIB33oHOnU2H5hT+saFmtOR8G7gKHLYsa41S6nS0x7YBa5RSyrKsgsC3QJ64CFgkDA9/+4MUXVvwq1tOiu6ahCUF6C9E8lHElR8+WUWpH2ezqVA/qg+VxudCGDNrFnz3HXzxBRQvDsD338O4cbrTQOPGhuMTwm4+/BAuXNDze9KmfTInZNgwmRPyAkoA55VSFwEsy1oG1AOerFuVUg+jPZ8UUA6NUMRLixYqaq5sR3rXO7it9oOkSU2HFF9ITopYFxUFbdroljzbt0PizWv+uiJSt67p8Jyd5KSIdRcv6jOPsmVhULcHUKIJpE8PX3+NbL5qL3Iz5ElyKqXCgMfJ+YRS6qFS6nFCSnKKv6cUZyp0IHXkbf6cvoRUmZOZjig+kXwUse6Pk9fI/Fl7fkpcjPI7hpsORwj7+vFH6NkTatSAXr0A+PVX/YJZrJi+1SyEcKCFC2HBAj0UpGJFmRPy72UErkT7+eqj3/0fy7LqW5Z1BliHrnoV4rkuXoRjHWZQjzW4fD4GihQxHVJ8IjkpYt2UKbr7zvjxkC/5FX1FpEgRPWNL/BPJSRGrIiL0jEkXl0cd6rp30V+cS5ZA6tSmw3MaL3IYEmvJaVlWx0dte44EBAS8TLwiATjc6Wu8Ln/H9sojKdqhmOlw4ptY6jARWwAAIABJREFU/bKUnBQqIpKrlVuSSIXgumwJnik9TIckhD0FBuqhIKlS6bJzFxdCQ3ULdKVg+XLddln8M2knKWLFL7/osrry5WHwYJkT8nJiKj98pkhHKbVKKZUHeAd4blWGrFtFeDgMqf8TI0N7E1yxBi4f9TAdUnwTazkp+ShA1/H06wd16kDnDhF6WnNYmB7QLAvXFyE5KWLV8OGwf78eO5l154K/emWVL286NKfyIochsZacSqnZSikvpZRXunTp/l2kIkG47n+WvLN7cDh5Faqs7206nPgoVl8qJSfFwUbjKHjHn73vTeaterlMhxMvycariBU9e+ohBAsXwquvAtC7Nxw5os9Gsmc3HF88Ib2XRawIDdWHk9EGv8qckJdyFYjeLD4TcP15DyuldgE5LMuKcXCZrFvF6KHBDPyxCaRIQZJv5unSV/FvxFpOSj6K4GBo2lQXm3/9NVgjhsPu3TBjBuTMaTq8+EJyUsSa3bthxAho3RqaFD2nrzNXqACDB5sOzem8yOohVhexwr4ig8N4ULcZISQh3fr5uCeSxetLkHwUsebit0cotnowu9I3pOoSuW37MmTjVcSKb77Rk9EHDoSqVZ/8ato0fSBSr94//PsiOmknKf67AQPg2DGYOxcyZ34yJ2ToUJkT8i8dBnJalpXdsiwPoAmwJvoDlmW9aVm6gbVlWUUBD+B3h0cqnN7u3ZB2TB/yc4ok38zX/c/FvyU5KWJNnz5w+rTuJpnuJ39dkt66te7RI16U5KSIFffu6dTLnh2mjAvVJ5WPi3rkOvMz/nGAOtGSE7iGTs5m0R+wLOtN4MKjgc2SnCJGB6sNpszDY/j3WI132Wc6O4kXI/koYkXInYe4tmzGbZcM5N4xGxdXGaT1kmTonfhvLl6Ejh2hdGn45BMAzp6F9u2hTBkYPdpsePFQTO0kSz79kGVZ9YHRwKtA7Zj+IMuyOgIdAbJkyRLrgQon5ecHkyZBt25Qr57MCfkPlFIRlmV9CGwCXIG5SqlTlmV1evT5TKAB0MqyrHAgGGgc7bBSCADu3oX59Vczh+mEdeuNR/XqpkOKlyQnRWxZswamT9dFO28XDoDCLfRtkKlTTYcWr0hOitigFHTqBNevw9698MqogbqoZ/VqyJTJdHhO6R8PQyQ5RWw4PXkrZfZ8wdY3O1FlopS4vizJRxFbTlTqQYmw8xwc7U/pPKlMhxOfycareHlhYbpqx8VFDyFwdycoSM8lSJRI3w5xdzcdZLzzwu0kgVWWZVVAt5OsGsMzs4HZAF5eXvI9agfXrkGbNlCoEIwdK3NCYoFSaj2w/qnfzYz2z58Dnzs6LhF/KAWDWl3l89/bEZinKEnHjTIdUrwmOSn+qxs3oF07KFwYRg6PgoZt4M4dWLcOkiUzHV68Izkp/qsFC/R748iRUOLOepg4Ebp2lfYCf+NFboZIcor/5MGvd0jTqxW/uL9F8V3jsaQA/T+RfBT/1YlB31Lq1Fw2en1MjQEVTYcT38nGq3h5gwfDoUOwYgVkywboYvSffoL166WQ5yX963aSlmXlsCwrrVLqTpxHJ5xXZKTuLxASot8oEyemaxs9J2TLFpkTIoQpC3wjec+vJa94hOLx/VLw8DAdkhC2FRWlO2EFBsLSpZBoxiS9aJ0yRZ+OCCEc6vx5+PBDqFgR+re8DkVbQ8GCMG6c6dCcmgxtEHFLKc5VaEfKyN8J/GopKV7zNB2RELYWcPQ3so/pyA9JSlJx2zDT4SQEMsdHvJxNm+CLL/Sd5gYNAJg3T48o+PhjqFHDbHjxmPReFi9n1CjYsUMP68mdW+aECOEEfvkFfu30Od7swG36FMiVy3RIQtjaxIm6QGDSJMjz4LCesVWvnq5CF0I4VHg4NGumOwksnBeJa5uWEBQEy5ZB4sSmw3NqL3QzRIiXdajdLEpcXcPG6hOp0bqQ6XCEsDUVEcmtt1uQVUWSZOVikiSX/juxQOb4iH/vxg1o2RLy54cJEwA4efKvuQSPRoeIlyDtJMVL2b1bJ17z5tCqlcwJEcIJhIXBqLoH+Cp8KEF1GuP5fhvTIQlha8ePw8CBUL8+dGh8H4o20dcm585F2n8I4XiffAKHD8Py5ZB56VjYvh3mzIG33jIdmtOTwxARZ65uPk0B3484mLI6Vdd0Nx2OELZ34J3RlL67my0t5vN2zRymw0kQZONV/GtRUdCqFTx8qKvQkyThwQM9lyBFCplLEBuknaT4V/74Q5fVvfEGzJhBYJAlc0KEcAKj+v/JkDPNCE2XiaQLZspmqxAGBQbqMXevvgpfzVZYnT6Ay5f1WjZ1atPhCWE7O3bA6NF6fk/DjPuhyRBo3Bjef990aPGCHIaIOBHxMISg+s1IZL3C65vn4eYhHdmEMOn8ogMUX/cJO15vStX5LU2Hk6DIxqv4V8aOha1b4auvIG9elIKOHXUrkG3bZC6BEA6llH5pvHUL9u+HV16ROSFCOAH/7YpckzqT1foN19W7IGVK0yEJYWu9esG5c3oJm2aNr27DM2IElCtnOjQhbOePP3STgZw5YdIn96BcU8iSBWbNksKBFyQ71CJOHK46kFxBP3C6jy+Zi8ubpBAmBd+6T6L3m3HDJRP5ds7AcpEvSCEcyt9fD0ifOlUPTX/vPV3GA8yc+df7ZKVKRqMUwj4e52TPnvD99/D551CsmMwJEcIJ/PEHfN9gAc1YSuTgT6BMGdMhCWFrq1bB7NnQrx9Ufu1nPa25cmU9L0QI4VCPC+lu3YIlixXJenWEa9dg6VLdZkC8ELkZImLdT+M3UvrgJLbk6cbbY2ubDkcI2/ux4od4hV/myPhdlHxTviCFcCh/f/Dx0cPsunfX/QVmzwbL4uhRvRdbsyb07286UCFsInpOTp4MJUtCz54yJ0QIJ6AUDG36C2PudeVBsYq8Mmyg6ZCEsLWrV6F9eyhWDD4bGAzlG0OyZLBwofSRFMKAuXNh5cpHdTzH5+iBIWPG6PWseGFyM0TEjkcVdg8Xfser/dpw1iM/pXaNNR2VEPb1KCfPvfcxJc8uZGupIZTsVdZ0VELYS/RNV9C7PH/+CceOce+enhOSPr1+n3SRFZkQce/pnAT48UeCN+yQOSFCOAHfWWG02dwU1yQevLJKNluFMCkyUo+5Cw3V340eA3vDyZP6CuXrr5sOTwjbOXtW19ZVrgx9ap2GHj2galXo29d0aPGO3AwR/120F8skrRrhgSu35m3llXSJTUcmhD1Fy8mcl0dxPlE+Km0dbDoqIewlpk1XgJAQlI8P44v4ceWKN7t3Q5o0ZkIUwlael5PBwbjU9SFDpB9TtnrLnBAhTPD3J7xFW165WQovjhK18DvInNl0VELY2rhx+qvz668h18mVMGMG9OmjrzQLIRwqLAyaN4fEiWHBrGBc3m2ib2ktWCBVdS9BDkPEf/PUi6UrUeDqSoEMAYYDE8KmnspJC3iDi7gc2q17fwghHKNt22c3XR+xgoJot7ctaSZeolQpB8clhF39TU4migziuxRtSVnlkmNjEkKAvz/Kxwf3oCAacZngqj4kaVDfdFRC2NqRI3rMXaNG0Nb7EhRpB8WLw8iRpkMTwpaGDIGjR/UMn4wT++hbWhs2wGuvmQ4tXpLjI/HynlNh5xoZrn/v728oMCFs6jk56RIaLDkphKP5+oKHR4wfBeLJ3HK+9Ojh4JiEsDNfX3CLuQ4sxMWTV1b4OjggIcTjtasVbe2aZO82WbMKYdDDh9Csmd5jnTU1HKt5M93qddmy565thRBxZ9s2GDsWPvgA3lGrYPp06N0batQwHVq8JYch4uX9TYUdQUH6cyGE40hOCuE8goIgIuKZa8tBlicdX/Oj11pvLMtQbELY0ZEjOiefOhAJwpOgb/1wrSq3J4VwqL9pXSdFPEKYER4OTZrAhQuwaBGkmjgU9u+H2bPhjTdMhyeE7Zw5A1Pe9eeqWza+LL0M2rUDLy8YNcp0aPGaHIaIl+fri0qSJObPPD11BZ4QwnF8fYlyTxTzZ5KTQjjOrl3QsCEULgzff6/zD119Xt/Nj95+3qRMaThGIezkq6+gXz9o3Fi3FHiUk4F4cmacH6kbyEGIEA4nRTxCOJWoKHj/fQhc58+9lNmocGAsjBkD7dvr708hhENduQJDy/uz5L4PGSMuk+j95rpgYOlSuaX1H8lhiHhpYYVLcMnlDdTTH3h6gp+fzCcQwsEuXE9CaDhE8VS5ueSkEI5z9KiuaM2WDTZu1P/s58e9lFmpGeXHu1O8KVrUdJBC2MiyZbqvQK1aeshk1aqs7+rHJbKyvJUfRXvLd6MQJvzQ05fw540wlSIeIRxKKd115+oifza7+/DKH5ehf3/ImhW+/NJ0eELYzp07MLisP/Pu+ODJo8KBqCj915UrZoNLAOQwRLyUyJBwTuVrRJbAnzle75MnFXay6SqEGVc3nyZVy9rcdM3EnenLJSeFMOHnn3Xv1tSpYcsWSJcOgHVB3qS5f4nXm3nTsaPhGIWwk3XroGVLKF8eli8HDw9WrYK6E7zpUPUSLefKd6MQJpw4Ad8MOI47ESjXpw5EZO0qhMONHg0nJvmzyc0H9/BoN7Zu3YKDB80FJoQNPXgAQ8r5M/1KtIOQx8LCpJVkLJDDEPGvqcgojhVsQ5EbG9jacBZFVw/TC9asWWXhKoQBAUcu41arGmF4ELZ2M692biA5KYSjXboEb78Nrq76ICRTJkD/Y4MGUKQIzJqFzAkRwlF27tTt6goVgrVrwdOTjRt1p4/ixeG773S6CiEc68IFmFfRl1GhvQmq1RBr4wYp4hHCoFmzYMvH/mx09cEj4qmN15AQ2XgVwoFCQ+Hdd2HA2bYkffog5DFpJfmfyWGI+HeU4mCZnhT/ZQkbKoym+vL2+vfe3nojSBauQjjU/QsBBJarRuLIh9yav4ncNR8NtpOcFMJxbt7UByGBgbB5M+TMCcCOHVC3LuTJo3+dLJnZMIWwjSNHoE4dyJ5dt6tLnhx/f6hfH/Ln12NDXnnFdJBC2M+NGzC2zGrG329PYJm38fxuEVStKkU8QhiyYgV07gzLkrQlUaRsvAphUmSkvtC8dSucGeALMqM5zshhiPhXDviMoNShKWzK14sa/v1NhyOErYUEPOBG4ZqkD/2NM1/4UahlQdMhCWE/d+9C9epw/TqsXw8FdR7u3asL6XLk0LdDUqc2HKcQdnH6tG5XlyaNTr60adm7V5+N5MihDyZTpjQdpBD2c/cuDC27jcm3GxOcvzhJN30HiRLpD6WIRwiH27oVmjeHsmUhxUpfcHeP+UHZeBUizikFXbvqrq7jx0P1nnkhVapnH5QblLHihQ5DLMuqYVnWWcuyzluWNSCGz5tblvXjo7/2WZZVKPZDFaYden8GpdYPZXvm1lQ59gWWi/T6MEHyUQBEPAzhXN53yPHwBIf6rqBUn3KmQxLCfgIDoXZtOHMGVq+G0qUB3Vq5Zk3ImFG/aD4aHSKEiGu//qpvabm76+TLmJEjR/Ts9Mf5mDat6SDtRdatAnRhed9Kh5nw6zuEZ8tFsp3r5bqkIZKTAuDwYXjnHcidW3eSTHz7NwgPf7Z/pGy8xjnJSQEwdKhuWTdgAPRqexeqVYN792DKFGklGQf+8TDEsixXYBpQE8gLNLUsK+9Tj/0KVFRKFQSGA7NjO1Bh1vEB3+Dl25W9aepQ5vQc3DzkUpEJko8CQEVEciJ/cwre2c72VvOoOLa26ZCEsJ/QUN1z5+BBWLpUb8ACx47piyKvvgrbt0OGDIbjFMIurl/X7XaCg/WNkBw5+PFH/S6ZJg1s2yb56GiybhWg91d71zzNmB9rYr2ajmR7N8l1SUMkJwXoGp6aNfVaddMmSLltJbz/vv4OXbdONl4dSHJSAHz5JYwYAe3bw6hBD3UVz+Niuw8/lFaSceBFdrRLAOeVUheVUmHAMqBe9AeUUvuUUncf/XgAyBS7YQqTTk3cTL7PW3IiWTkKnPqGxMncTIdkZ5KPdqcUh4p1wuvyd2yoPolq81uYjkgI+4mIgGbN9Ibr11/rKXfADz/oM5FUqfRBSMaMhuO0Kamws6Hff9enHrdv6xkh+fNz5oze1/H01AchmWQ1ZIKsW20uKgr6vXeJj3dVI0lyd5Lt2wKvv246LDuTnLS5K1f0WtXNTS9jX/thIzRtCqVK6Y3X6tVl49WxJCdtbtEi6NlTv07OnBSCVf8dfXVr2bInxXbSSjL2vchhSEbgSrSfrz763fO0AzbE9IFlWR0tyzpiWdaRgICAF49SGHN+0QGy9arPBY+8ZD6+luTpnzPARzhKrOUjSE7GRwcqD6Lkj3PYWOxjamzoYTocgWy82k5UFHTsCN99BxMnQps2gB5T8Hjjdft2yJLFbJh2JRV2NvTggS5xPX8e1qyBEiW4cAGqVAEXF52P2bObDtK2ZN1qY0rBsE636LL6bdIkDiTp7k16cI8wSfZ2bOzOHV03cP++rhvIcW2X3oHNl0/fCEmaVD8oG6+OJDlpY+vXQ9u2OtUWz4/AtUVTXcEzd67uQCDizIschsQ0GELF+KBleaOTM8bJ2kqp2UopL6WUVzppoO30rm4+TepWtbnt+hrJ9mwk3ZspTIckYjEfQXIyvjnYeAKldoxha44PqHZwOJaM7TFONl5tRino3VsPkRw2TJfxAOfO6Y1Xd3fZeHUCUmFnJ8HBULeu7k+3fDl4e/PbbzofQ0P1jJBcuUwHaWuybrWxCUPv8e5XNcjqdo3EW9dBwYKmQxKyt2NbDx7ozjuXLukZIYUjjoCPj74BsnkzpExpOkS7kpy0qb17oWFDKFQIVn8XReIu7+vbWZMnQ6tWpsNL8F6k39FVIHO0nzMB159+yLKsgsAcoKZS6vfYCU+YEnDkMm61qhGGB+F+m8leXJosOwnJR5s62n0+Jb/tze70DalwchournIS4iSebLwCWJb1eOP19OMHlFL7oj0vG6/x2fDhMGkSdO+uD0OACxegcmV9YWTHDsiZ02yIIsYKu5J/8/zfVtgBHQGyyFUf5xMeDo0bw86dusdAnTrcuKEPQu7d0weT+fObDtL2ZN1qU19PDaLEiDoUcDmFy5q1WGXLmA5JaJKTNhQaqi+AHDsGq1ZBhTSnoGINPbtnyxaQjXOTJCdt6ORJfRaZOTNsWK9IPqQHLFyo3zW7dTMdni28yM2Qw0BOy7KyW5blATQB1kR/wLKsLMB3QEul1LnYD1M40v0LAQSWq0biyIfcmr+JXDXeMB2S+Ivkow39OHIthaa041CKqhQ9vQiPJK6mQxJ/kavNdjF5sj4Aad1at8eyLC5f1gchISG6Av2tt0wHKZAKO3uIitIt6tauhWnToFkzAgJ0q7qbN3X7j6JFTQcpkHWrLa1cFk6Gbo0oy15YsBCXmtVNhyT+IjlpM5GR0LKlXqfOnQt18l7Qcwg8PGSglnOQnLSZixf1aJ6kSfWlrHRThsLUqdCnD3z8senwbOMfb4YopSIsy/oQ2AS4AnOVUqcsy+r06POZwFAgDTDd0n1bIpRSXnEXtogrwbcfcL1wTbKEXuHHLzZTqqVcZ3Ymko/2c27OLnIOfo+fExflzR++I2nqRKZDEv/vZTZey8X0uVJqNo9aaHl5ecX4ZwhD5s+HHj1079Y5c8DFhatXdX/X+/d1BXqBAqaDFI9IhV1CpxR07QpLlsDo0dC5M3fv6r2dixf1QUipUqaDFCDrVjvatiWK8OatacB6wibPxKN5Y9MhiWgkJ+3l8dfl8uUwfjy0qnwVylfVV0V27ZIZPk5ActJebt7Uc3tCQ2H3bsi6fByMGAHt28PYsUgfdMd5kTZZKKXWA+uf+t3MaP/cHmgfu6EJR4t4GMK5fO+Q7+EJ9vb9nop9YtyvE4ZJPtrH5e9PkKFjHa65ZSPtofWkzvqK6ZDEs2TjNaFbvRratdMl50uXgpsbN27oGyG//64r7YoUMR2kiOZJhR1wDV1h1yz6A1JhF88NGgQzZ8KAATBgAPfvQ40a8PPPen56xYqmAxTRybrVPg4fUlyo3Y2OUUsJGjoaz24fmA5JxEBy0j6GDoVZs/TXZa8Wt6Hi23rxun27HpounILkpD38+ader964oS9l5d37FfTtC++9p9e1chDiUC90GCISPhURyYn8zfG6s50trRby9tjapkMSwtZu7jlPkndr8MBKjsuWTbxWIK3pkETMZOM1Idu2Tc8kKF5cN1lOlIjbt/VMguvX9dXm4sVNBymikwq7BG7MGP1Xp04wahSBgVC7tu6DvnKlbjsghHC8M2dgZ6Vh9AmfzsNOfUj2SYzdB4UQDvLll38VnI/qdw8qV4fLl2HTJvCSJY8QjhQcDHXrwunTusNrqcvfwAcfQM2aelaIq7RBdzQ5DBGoKMXBop0odfk7NtaYRI35LUyHJISt3T19g/DK1fBUEQR860++SjK411nJxmsC5O8PbdvqSp3+/SF3bli3DpIl4/ff9QWRS5d0K54yMg/WKUmFXQLyOB99feHsWRg4EJo1g2nTCAm1qFcP9u3Tl7bq1jUdrBD2dOUKfFN6IsOCh/Nno3akmC6tPoQwadEi6NlTD02fOe4hVs1acOqUvj5Zvrzp8ISwlYgIaNJEt8VauhSqR66HFi10Lq5Yoef3CIeTwxDBgSqDKH1yDhu9Pqb6+h6mwxHC1gKv3uX34tXJEH6bM9O249VQJjI7O9l4TUD8/cHHB4KC4MMP4fXX9fWP1KmfzCQ4dw78/KBCBdPBCpHARc/HGjUgLEz/PG8eYREuNGyoL2/Nn687DAghHO/OHZhWcj5j7vXiXpUGpFw6Sw5ChDBo/XpdQ+DtDYu/DsG1wTtw8CB8+63+LhVCOIxS0KGDPoecNg0av7YLqjeAQoX0FRFPT9Mh2paL6QCEWQffG0/pHWPY+uYHVDswXNauQhgUdi+ISwXqkCXoDCeGrcarSwnTIQlhH9E3Xh+7exd+/vnJTIJTp/QIkapVzYUphC08nY9hYeDiAl27EmG506yZvrA1cya0amU2VCHs6uFD+LzMakbcaMfdYlVJuW6xtPoQwqC9e6FhQ73Punp5OInbNNFVA3PnQoMGpsMTwlaU0o0G5s2DTz+FLiWO6LVt9uy6xUDy5KZDtDU5DLEbf3/Ilg38/TnSbT4ll/dhd/qGVPhxGi6uchIihMM9ysmoTVs4lbcRb93bx+5OSyj3iey2CuEwMR2EAAQHo2r78HEZf44d0zeZpahOiDj2vHyMikI1aMDnNfxZuRImTtTtloUQjhcaCp9V2s6IXxpzP5cXqXbouVpCCDNOntRfnZkzw4Z1USTv3ga+/x6mTIHWrU2HJ4TtjB0L48frZgNDGpzWL5Fp0sCWLZBW5sGaJm2y7CTay2VU9ZoUCQ/nUIqqFD29CI8kUsUjhMNFy0lVsyZFVCSb6s+k+oyGpiMTwl7atn124/URKziIPqfaUmnFJerUcXBcQtjR3+VjUBDNt7XFGnmJnj0dHJcQAvz9UW3asjBtf4Yc60dQxpyk3qfnagkhzLh4EapXh6RJYfMmRbpPusKSJTBqlN6JFUI41Jw5MGAANG0KX/b8FavC2+DuDlu3QsaMpsMTyM0Q+3iqys4lPBQLyDPzI5KmlioeIRzuqZx0VZFEuLhTvVsuw4EJYTMREVCy5HM/DsST8x/7SncBIRzlyy91S6wYBOLJ9ha+DBrk4JiEEPogxMcH67fLtDvWBStZUlId2qwrXYUQRty8CdWq6dtamzcpsk7vr3tI9u8PAweaDk8I2/nuO31zuUYNmDf6Bi7VqkJwsL4RkiOH6fDEI3IYYgfPaTfgQhTJ2zXSnwshHOc5OekWFa5/LzkphGP8/jvUrKmHStar98wQu0A82dPfjyojvA0FKITN/PAD9OqlBzB7ePzfR4F4Mr+hH20XSD4K4XCPD0IerV0tIFnEn3D2rNm4hLCx69f1huuNG3qOVt7Vo+CLL6BzZxg92nR4QtjO2rX6NkjJkrBi1u941H4bbt/WM0Ly5zcdnohGDkPs4G/aDRAUpD8XQjiO5KQQ5p04AV5esGuXHiy5ejX4+aEeHYgE4smO3n5UHyMbr0I4xNKlULo0hITAnj36xTFaPs6u40fnb72xZMSdEI7l74+q/ddByBMhIVLEI4Qh+/dDsWLw+ll/7iTLRqnF3WDwYGjZEqZORb4shXCcqCgYMQIm1vXnV7Kxsds6kjasCefPw5o1UKKE6RDFU+QwxAYip88i0nrOTBBPT/D1dWxAQtjcne6fEsVzFqiSk0LEvaVLoUwZCA+H3bufHEAGlfTmk2J+XCIrW7r7UXucHIQIEeciIvRtkGbN9AHl0aNQqhRhZb2ZUl3n49TqfvRYLQchQpgQ1qItVrAU8QjhLObMgYoVoYqLP374kOT2ZX0AUq6cLvB5TqtJIUTse/AAGjWCbUP82eDqw+thl0neoq5ezy5fDt7yPumM5P8lE7g/frrOuabDnswj+D+enuDnJ8kphAOdHO2HR5/u3Cc5ke5PzeuRnBQibkVEQJ8+/7/p+qhS5+xZfaV5+B5vvp90iXe+lDwUIs7dvg1vvw0TJ0K3brBtG2TIwNWrUKkSdF/lzaQel+izzlv2doQwYO3KMLbcKvj8B6SIRwiHCQuDLl2gQwfoWcifhXd9cAmJdlB57Jgu8hFCOMSFC/pS871V/mx29yFR5KN8jIoCNzdIlsxsgOK55LUiATu/cD8RhYuR+f5PbOuyEretm/7qhy6brkI4lIqM4oDPCPINqssVjze5s+1HXDdtkJwUwlHu3NGNlcePhw8/1Juu6dMD8M03+mzk5k3dmadHD8OxCmEHhw7pHh8HDsCCBTB5Mri7s2ULFCkCJ0/qcT6TJoHrcy44CyHiRlQUjO99ndQNvakduZbAOo2fmasla1chHOfmTahSBWbMgFlN/Pn8tM+zN7aCgqR1nRAOsmmTfn/M8Zs/mz18cA9/Kh+tlMC+AAAgAElEQVTDwiQfnZgchiRQRzrNIUurigSSlIuLD1Bl2rt6oernB1mzysJVCAcKCXjAsRyNKLVuCDszNifTpT28WTmL5KQQjnL8uF6t7tmjK1inTAF3d0JDoWtXaNIEChbUj1WrZjpYIWzg66+hfHl9yrF3L7RsSVQUDB8O1avrc8ojR3TbASGEY92/DwMr7aPZhGJ4uZ0gbOE3JF2zTK9VpYhHCIc7fPivC81Ll0LHva2fneHzmLSuEyJOKQVjx0KtWpAlC6xI3hbXUMnH+EYOQxKYyOAwDhbtjNesDhxLWRnPnw5TsFn+vx7w9oZLl2ThKoSD3NxznmtZS1P48mo2VptAxcsLSJEhyV8PSE4KEbeWLIGyZSEyUrcOaNMGgF9/1b+ePh1694YdOyBTJqORCpHwhYZCp07Qvr1ueH70KBQtyu+/Q+3aMHQoNG8OBw9C7tymgxXCfs6dVUzMPZPhuyuRJI0nHkcP4NHiPf2hFPEI4XDz5+vaATc32LcPmhQ+8/fD0aV1nRBxJjAQmjaF/v2hYUPYt1fh3rjB8/8FyUenJYchCci9Mzc5k7EyJY/PZGOh/hS9vo70eVKZDksI2zo1YROJKxQnVfAN9g/bRI1NH+HiKtNfhXCIx0OZmzeH4sV1mXnx4gCsWQNFi8L587B6NYwbB+7u//DnCSH+m2vX9CCQWbNgwADYsAHSpOHwYZ2P27fr9h8LFkDSpKaDFcJ+Nq4O4UCBDgy72ZkHJaqS8pcjWAUL/P9DUsQjhEOEh+u2rW3aQJkyehlb+PwKvZYNDtaLV2ldJ4TDXLqkC+m+/RbGjIFl80JI2qM9TJig8zJJkv//FyQfnZochiQQF5YdJiS/F9nvHmNru6XUODEGjyTSYFkII5TiYIOx5OldixvuWbiz8QjlPqlqOioh7CMgQPe7ejyUeetWSJ+e8HDo2xfq1YMcOfScyXr1TAcrhA3s3q3ng5w8CStWwOjRKBdXZsyAcuV0keuePfrSyN8VvAohYp9SMHXAVVLVr0ir8K+51/Vj0uxbC6mkqE4IEwICdMvIyZOhZ0/YvD6CtGP66N6R+fPrBWzv3tK6TggH2b5dt6q7fBnWr4f+jS9hlS8Hc+fCkCGwfz+sWyf5GI/IYUgCcLT7fDI2LU+Ycues736qzmliOiQhbCvsbiCHczal5Hf92ZOhIRku7CNX9eymwxLCPo4d06vVfftg3rwnQ5mvXtXr0XHjoEsXvfH6xhumgxUigVNKz+ipXBmSJ9dD0xs0IDAQWrbUuViliu6W9ejilhDCgR4+hGHeu2j0eTEKup0mdMlKUk4doef5CCEc7vhx/X24b5++KTmx/03calSF8eP1oLudO//q6yqt64SIU0rBpEm6xi59er2MreGyWRf4nD+v2w189pn+zpR8jFde6DDEsqwalmWdtSzrvGVZA2L4PI9lWfstywq1LKtP7IcpYhIVGs6Bkj0oNqUNJ5OXxf3EYYq0KWQ6LBHHJB+dV8DhS1zOXJZiF75lQ6UxlLuyjFSZpNeHEA6zaJG+v6yUPu1o3RqAzZuhSBE4cUKPEJk2DRInNhyrEAldUJDOwe7doWZNPQE2b17OnIESJXQuDh+u3xfTpDEdrIgrsm51XhcvKKbkmsKQnVVwT5eSxCcOkqjpu6bDEnFMctJ5LV3615i7PXug5Rt7dR/JQ4dg4UKYOhU8PP7/X5LWdfGe5KRzCg7Wy9iPPoI6deDAvihyLh8FNWrA66/rdW2dOv//L0k+xhv/eBhiWZYrMA2oCeQFmlqWlfepx/4AugPjYj1CEaMHFwP4KWN1Sh2azKa8H1Hg2iZeK5DWdFgijkk+Oq+fp2/HtZQXaQMvs2fgemr698fVTXp92IEsYA3x94ds2fTfw8P1SrVlSyhZUjdW9vIiMhKGDdNr1gwZ9K+bNjUduIhrkpOGRM/Jx42VFy2CTz/Vw3lSpODbb3XFa0CAPqQcPBhc5J56giXrVue1zS+Yg3nbMPBGd+6WqknqXw5h5Xv6P41IaCQnnVNEhG7j2qyZvtx85LDCa99kPWfL0xMOHIAWLUyHKeKA5KRzunIFypfXZ5CffQYr5/7JK63fhY8/hiZNdE7mzGk6TPEfuL3AMyWA80qpiwCWZS0D6gGnHz+glLoN3LYsq3acRCn+z6VVx/F47x1yRdxiS8sFVJvfUvor24fko7NRioPNvqTYsj5cdM9N5KrVVKgrX4x2EW0B+zZwFThsWdYapdTpaI89XsC+YyDEhMnfH3x8dOV57dqQKxf88IOuQH80Df3WLT07fds2XdUzffqzcyZFwiM5aUj0nKxZU1euurjA2rVQuzZhYXqjZ/JkKF1aD5983OVDJGiybnUySsFXgy9TbNS7VOEYf3T/hFcnDpFTSfuQnHQyf/yh91a3bNFdsCZ89hCPDzvqayJ168L8+ZAypekwRdyRnHQyu3ZBw4YQEgLffw91c5yCUu/ChQu6Z1b37jLgLgF4kVVPRuBKtJ+vPvrdv2ZZVkfLso5YlnUkICDgZf4I2zvWZwmvvlsWFRXFqZl7eHuBHITYTKzlI0hO/lfh94M59FZrSi77iAPp6pDm3AHekoMQu3mygFVKhQGPF7BPKKVuK6UOA+EmAkxwom+6gr7D/MMPMGAAfPkluLuze7dui7V3L3z9tR4dIgchtiE56WhP52RoqB5EMHUq1K7N1atQsaI+COnRA3bskIMQG5F1qxMJCoJRVbdTf5QXedzOE7zse1J/OUwOQuxF9nacyMmT+rbkzp3w1Vcwtfs5PCqUgm++gVGjYNUqOQhJ+CQnnYRSuniuShVIlUp3p6sb8q3uOvDnn3qKeo8echCSQLzIyiem/9LqZf7HlFKzlVJeSimvdOnSvcwfYS/R2g1EhUWwv1xfio5vzpmkXqhDRyj2gZfpCIXjxVo+guTkvxK9/Qdw5/gVLmQsT4mzC9lY5jNKXV1JmmyvmI1RmCALWEd6etM1usmTidrmz9ixuk1rsmT6BvP77zs+TGGU5KQjPS8nlYIPPuDIF/4UKQI//aRvg0ya9Gy7c5GgybrVSVy+pJiRawIDtr+NlS4tnicPkaRxXdNhCceTvR0nsWKFvikZHKyLBNqnWaV7ZN26BZs2wcCBclBpD5KTTiA0FDp00LezqleHQ/siyPNVb2jcGAoWhGPHoEIF02GKWPQi/+96Fcgc7edMwPW4CUc88fjl8vJlVO3aXExfitJ7x7ElV1feur6NTMXSm45QmCH5aEK0fMTHh996TwKvYrz+8Bw7eq2hxt4huHnIYtWmZAHrSG3bxnwQAhAURECdtvTvD+++q+eDFCrk2PCEU5CcdKTWrf82J9P2a0v69DofGzVybGjCKci61ZRoRTy7NgZxJE9zel/rTUDpeqQ9fxArT27TEQozJCcNi4zUYwcaNYICBeDIgQhKfz9AL17z5IGjR6FqVdNhCseRnDTs+nU9nufrr/UsuzVf3SJFg6owYYI+HdmxQw9MFwnKi8wMOQzktCwrO3ANaAI0i9Oo7O6pKjsrOJgcwUc5XKkPVbd/Ibey7E3y0dGernoNCiLzhI+47pKJWyt2UalBHrPxCdNkAesox4/rO8uXL8f4cZDlSYswX6ZM0etW+a60LclJRwgLgxkzdNuA5wjEkyVVfTm4GpImdWBswpnIutWEaGvXiOq1eD08I+W4SEDPkWQYP0Cqze1NctKge/f0HPR166BdO5g27DaJWjfROdupk74+mSiR6TCFY0lOGrR/vz6HfPBA39ZqkPEAeDWAu3dhwQJo2dJ0iCKO/ONKSCkVAXwIbAJ+Br5VSp2yLKuTZVmdACzLymBZ1lWgFzDYsqyrlmUlj8vAE6zntBuwgOKHpmPt8DcTl3AKko8O9jf5+LrH7+RLfcNMXMKZPFnAWpblgV7ArjEcU8Jy5YquPi9WTP9zt27PDAAJxJN2r/oxcp83H34oByE2JzkZl5SC5cshb17o2VM3O581K8ac3NbTj4GbveUgxMZk3WrAU2tXt/AQcnCBsE9GkW7iIDkIsTnJSXN+netPYLpshGzwZ/p0+KrdARKVLqp3Y+fN0wUGchBiO5KTZigFs2frmXaennBgv6LB7Rm6FVbixDov5SAkQXuRmyEopdYD65/63cxo/3wTXXkn/qt/aAFC27Zw6ZJDQxLORfLRgf4mH62QYMlHgVIqwrKsxwtYV2Du4wXso89nWpaVATgCJAeiLMvqCeRVSt03Fnh8cP8+fP65vqKsFPTrp/snp0gB9eujavtgBQcRiCcjS/kxbZ03qVObDlqYJjkZh/buhT599DCe/Plh/XqoUQMsi8g3chJVywf38CCCLE+uTPOjbmdv0xELJyDrVgfy90f5+GDFUMSTeOxwqFBSD9UStiY56Vg3b8LSjv50XOtDUoLYlMgH1zPtoccMyJRJb7oWLmw6TGGQ5KRj7d4NfftCkoP+XEncliSjZ5J8/DKYPx9q1YJFi3Q3ApGgvdBhiHCMW/sucDc0O3mIuQUInp7g6+vYoISwK6W4WLk92XyH4hJTu3nJR/GILGBjWUQEzJkDw4bB7dvQrBmMGgVZswIQEgIzf/BmVyI/Jga3ZX9HX0bM8JZiV/GE5GQsO3cOBgyAVavgtdd0frZpA66uREXByhUwdKg3GcL9WJa4LYmX+pLnHdlwFcKRlILg91rjKUV1QjiFhw9h3Dg49Lk/y0P0QQiAa2gQTJ4MJUvChg2y6SqEg/z8s17OrlkDjdL6s9jDB/eQIGhSS3+JDhsGQ4fKDUqbkP/KTuDBxQD2F+9O6rJ5yHzzEIfytEQlSfL/D3l6gp+fVPMI4QDnFx3gpzQVeMN3CDdcMhHp9tSVZclHIWKfUjqvChaEzp0hd244dAgWL4asWZ+MKHjzTfjoI/izqDe3Dl6iySw5CBEiTty+DR9+CPnywZYtMHw4/PILtGuHcnFl/Xrdve699/R7Y7eV3rwadIkUchAihEMd2h3K5DcnE3bn+TN8pIhHCMcID4eZM/V6deen/qwK/+sg5P+cPAknTjg+QCFs5vp16NhRX2resQMWtfPnm0Af3MMe5aVSukVdxYpyEGIj8l/aoLB7QeyvMxLezEHxI9PZmaMdd/afp8TPC7DWrfur/7JsvArhEDd3neNItoa82bI0ae+dZ/O7M0l97yKumzdIPgoRl44fh6pVoU4dfTNk1SrYuROKFyciQu/f5M4NXbroCyLbt8O2bVCihOnAhUiAgoJg5Ei9kzNzJnToAOfPw+DBkDQpO3dCuXJQu7buZrdgAfz4ox5AKfN6hHCcX85G8WXJxaSrkIceF3vwMLcXkVNnPDPDR9au4n/t3Xl8VNXBxvHfSQIkgQCyBhCQLSxFsRjckCWirBGwVVuXV4uCWpVqq22ttVRbtfRtba1S94qvrSJaKsSAoEhwQwQKFZGdsIhJWAQNEMh63j9OKCGZwCRk7tzMPN/PZz4Q5iZ5ZpzHe2fOvedI6FnrDl/79nXn9KSkwPzkCTQqPcnVWiISEvn58KtfQY8eblmeyZNhx/9lce3LozGHK/WysNCtt5WlNZqjhQZDwsAWl7D8h39jX6seXJB5P5+2HMb619dwyean6Xx+O7dRWpo7aO3cWQevIiGWv2kXH59zO62G9KHn9gUsuPBBGm7bxPBZt5CQFKc+ioTKzp3HFkf/9FN44gn4/HMYP54ya5gxw63TfOON0LKlm03gww9VQZGQKC11I48pKW7g4+KLYc0aePJJaNuW5cth+HAYOtTNtPPUU27Kgf/5H4iNDXd4keixe5flr2MXUNCrP3cuu4745OYcnr2A09ctJPb2W92xqk7iEfHMkiXuJIHvfMftD+fMgff+9RWNhpxf/Tfpai2RkCgqgmnT3Dk9Dz3kzrVbtw4eu2sbza67zM25HIgGKKOKBkO8ZC2f/S6Trc36MeDpiexq2Imlf/iAgbvfoO8Vvapun5bm3m3q4FUkJAq/OsjHo35DTEp3Ulc+y+KUW9i/bDMjPppCi05Njt9YfRSpnawsOOOM48+0OXDAfdjaowfMnOkWR9+yBe64AxvXgDfegH793HIhjRq5M+2WL//vWs0icioCdXLBAujf3408dugA778Ps2dDr16sWQOXX+6uxFq5Eh591F0ocuut0LBh2B6FSNQ5dAiev3U5aztcwu1vjqRDUj5f//Vl2n35bxLGDT+2g9RJPCKe2LDBDYAMHAjZ2fDss7D6w3zGrnoQ07ULvPaaO4sgPv74b9QgpUidsxb++U83u+vkye7PZcvg1b/sottjk93JPkVFEFfN0tkaoIwqGgzxSPary1jTaihn3ncZFBWz6PZZ9M1fwvn3XKQPdkQ8VlZUwrKJz/BN2x5cMP/XrGwzgk1vfM4lG/5KpwFtwx1PJHJkZblLjrdvd38uXAjPPONO1Xn4YfcOcv16mDoV27QZ8+ZBaqr756IimDHDXTAyfrwGQUTqROVOPv+8+6Bm5Ei32uvMmbB0KQwaxObNcN11bhmfRYvgN7+BrVvhJz+BykvbiUjolJTAzIc28W6rq5j4zLl8O3Y1u375OK32rqf5bdcEnuNcJ/GIhExenpsKq+KSWps/O8yk/EeJS+kKDzwAl17q1gVZsADmzdPVWiIh9MEHcMEFcOWV7kS6uXNh0b++ZsCc+6FbN3c58w9+4EYt335b00kK1QyJSV3ZtWQLO667jwFbX2O3acOCsX9l8N8n0bVpg3BHE4k+1rL6oQySHrmXc4+sZ1XiQLY+/C8G33VBuJOJRJ6jH7oWlM/JWlDgPnS1FgYNcgecAwYA7oPW+++Hjz92J6y/+CJce231J+6ISC0E6uSkSZCUBH/+s/tkp1Ejdu50H+z87W/uyo+f/Qx++lM3VZ2IeMdaePulPPbd9Ruu+Po5imMasWPCFDo9djfNmjYNdzyRqHPwIPzxj+5WWOiukJzyi2LaZL4A/X7jVmoePtzNzVN+jAscu1prwgR35rk+cBWpE+vWwb33QkYGtG/vjl1vuLKA2KemwXVTYf9++N733Bk9KSnum04/3fXx6DGxBkKikq4MqQsBphvI37KHJQN+RIuBveizNZMF500hNnszI+bcRoIGQkRCK0AnN/9jKWtaDuasKeMpLbFk3TmbfvkfcJ4GQkTqXuUPXY+y1p2u88ADMGAAH33kliUYNgx27HBrNW/Y4JYR0UCISB2qrpPgTjvv14/d3zTixz92F25Nn+7GRrZsgalTNRAiElIBjltXLMrn/zpP4aIfdOOKr5/ji5E3k7BzM51eeBA0ECLiqeJid4zavTs8+CCMGgVrPytl2gUv02ZIbzcqcrTDCxYcPxBylK7WEqkzOTlw883Qt6+r3SOPwKa1xdxY9DSxPbvDz38O553n5nd99dVjAyFHaTrJqKePGk5VxTeX6ekUv/pPVjyzkr7zfs+5toDF3SeS8o9fM+K8duFOKhIdKnXyq4efIvuxDAZsn0WeSebt7z7D4BdvpHsT/e9PJCRKSuD73w/8oStAYSGF197I5d/exltvQZs28NhjcMstVadUFpE6sGaNm2uuuk4ePsz+yyfQtWQbhw+7wcgpU9znOiISYpWOW7+c9i8W/GUDl336W1LZy+ZzrqLzSw/RtU+PcCcViTrWuuWz7r0XNm50FzbPfsNy/u4MuPJ+t3/t1899mDp6tOZ0FQmx/Hz4wx/gT39yg5R33AH331dG60Uz4ZxfubN4LrzQDYAMHnziH3Z0gFKikj4NPBUBphuIGzuaC4APW42n+dO/45LvBlgYXURCI0AnW/z4BhKIZ8GFDzJgxk8YXnlhdBE5dda6Oa5mzHCLRe7eXe2mR2ITGZU3ndWfuDPO77gDGjf2MKtINNi+3fXxlVfcnOUxMe5WVlZl0wIS+c430xlzlTvjtZcOXUW8EeC4td2No7gRy9Yz0mj84u/pPiTAGeYiEnJLlrgpIpcsgd69Yc4cuKzxIsyP74NPPoEePdwHrldeGXjdHhGpM0VF8OyzbrarPXvczFcPP2TptmEejPilW2TyrLPgzTdhzBgNTMpJ6f/atVXNdAMGKG3QiIEzf0RfDYSIeOcEnYyPN4x4aBAtNBAiUnesdQee994LXbrAwIFuMebBg2HWLJg/v8ridIdI5IpGmaQ9mMbWre4KZg2EiNSRvXvdApGDBrnLOn7xC7ceyLRpkJsLCxcG7ORvz8vkTyvTmDlTAyEinsnKwgY4bo3BYhs2osvf7idRAyEinioqguX/m8XuxDP45cAssrPdB7Crn/uEsY9fgrlkmJuf5/nnYe1a94msBkJEQmb3bph7TxZ7Gp/BrMlZ9OkDy5bBq7d/QLcJg93nPwcOwMsvw6pV7msNhEgQdGVILez6cBPNxnyX+MOBpxuILS6EGyfokisRD9jiEjY8/wFn3DWO+KLAnYw5ctgtWKdOipy6LVvcGeczZrg3grGxcOml7lSd8eOhadP/jpOs+X4m330xnYSyAgpIZMY1mbz0RBotWoT7QYhEiIMH3emqr7wCb7/tpqnr0wcefhiuvtoNVAJ5eTBvaxu29c/k3g/TSaSAIzGJbH0sk99N1jzJIl4pLYVlb+/nzO9eRZNq3kuaokK48UYdt4p44Jtv4K233K70QEYWMwvSaUwBCxqkU/arx4mf+ybcPAdat9a8riIe2LTJ9XH2bGj4URZv4jr5TqN0Yq95DPPAbJg3D9q1cycB3XQTNNC6zFIzGgwJgi0tY9vry8l5eg7tP5lNlyPrACjDEIOt+g2JiW7lSREJiaJ9B1n75wUUvjabnpvm0svup4gGlBJLLKVVv0GdFAlOVpYbOJw+/fiF5HJyYOZMNwCyfLn7t0GD4Mkn4YoroHVrDh6Ed9+FuXPd8emXXwKk8WFKJlN3TcC+MJ2J39GHriJBq66PRUVu4OOVV9y7xYIC6NgRfvITuOYaOOssyqxh1SrIfMlNZb5ihfvW009P47TLMrl12QTiX5lO34vVSZFQO3wYPvp7NnteyOD0lRlcUPw+cZRicVcwV6HjVpGQ2rkTMjLcLjQry609ML5ZFrMK02mEG6RsWFwAt090lzA/9BDceSc00SwDInWtrMy9vZwzx93WrnX/flO3LJ5skO66CMQVFsAtN7seTp0KkydXueJZJFgaDKlGaUEh659cRP7f59D18wy6lObSkVhWJQ1h07BbOePOcfSIzYbLKl3enJjo3nWm6c2lSF3K35jH+j+8SdzcOfTJXcjZFPIVLVjV6TIYN56z7hlOyy3Lqk6VpU6KBKfSIq688grs2uUGQN57z02L1b+/W7Xue9+Djh3ZsgXmznADIIsXu89ok5Jg+HA3XeuoUZCcnAZsC/ODE6lnKvcxIwMaNnTTALz+OuzbBy1awPXXuwGQgQM5dDiGhQshc5rrZG6umyng/PPdhSLp6XDmmWCMOikSant3l/HJE8s4/FoGfTZlcIn9HIAvmn2LjUN/Rqc7xtLEHIKxY3XcKhJi1rq1zo9+2Hr0BIEePdwYxw0dF/Gtn4/BlB6p+s1lZW5BZg2EiNSZwkJYtMj1MSPDHbPGxrrZlm+5Ba5qnUXyTWOg+HDVby4thXPP1UCInJLoGwyp7iw7oODL/ax7dB5lb8yh9/a3+JY9yEEas6rtKNaMGkfvu0czoG/FuT06u4PVo29WdfAqUjMn6CNA3uL1ZD82h2aL59D7m6Wci2V7TBc+6PtDmlwzjrPvuIi0pAr/G+uUpk6K1EaARVwZP979PSUFpkyBq6+mqEtPPvwQ5j7mPmzdsMFt0rOnWwh9zBi46CL3ma2I1FKgPl56qfs0JzERxo1zAyDDh7MtpyGZmTD3EfdthYXQtCmMGOF+xKhRbmYPEakDJzluzV5TwOo/LSTurQxS8zIZwy5KiGVLh8GsT59I1zsvo2Pvbsd/k45bRUKipAQ++ujYAEh2tvv3886DRx6By0cepmfuYsxb8+Dup903BHJY0y2L1IX9+93sAXPmuKnpDh50F16NHOnedo6+tJgW65e4dSfvedRdshWIOil1ILoGQyqfZZeZyVfNu7Hpj3NIeHsOffa+xzmUsMu05ZNu19DginGc/eOLGdTmBHNCppV/+HqCA2MRCSBAH+3gIWS/spRdz86h/fI5nFG4gWRgTaP+LLzoQdpMGseZ15xJ57gTLIqlTooEp7AQVq92Z5pPm+bOsqksPp59Dz/F7PyLmXsfvPOOW6OuYUMYOhRuu80NgHTrVvVbRaQGrIUdO+DFF910HJU/lLEWGjak9NXX+fi00WRmQua98Lk72ZyUFNfH9HQNSIqERKDj1qFpfLogj23TMmn2fgbnH3iHrhzhQExTtvUZRcHVY+ly2yh6tjit+p+r41aROlNQ4GaRnD3b1eqrr9z+cNgw+NnPYPy3t9N2Rfl8rr9d5D5UTUiA1FRYudJd4lyZpq0TqbUdO9yVH7Nnu4kGSkqgbVu3rN24cTCs+3biF8+HWfPhtnfdG824OLf+3bp1gQdE1EmpA/4dDDnJmTe1+nmVzrIru3gYLbG0BDbF9WJx/7tpdsN4zr75XIbFxwT/s9PSNCopka8uOxmgj6XDhnPAJNGtbD+diGNVs6FsHDmZrneOpW9aR/rW5OerkxLpatrHoiL3qemKFcdun31W/Rk3Rx05Qv6VN3IT2+jQwR24jhkDF1+s2QJEjlPTTubluR4uX37szz17Tvw9RUV8Of42BpVtIy7OTSVw002ukykpdfMwRCKCB+8jSy4ZQbbpxtml6zkbyGvUmfUXTSL55rG0+95gzqzJiKSOWyXS1XUnK/zc0usnsODq6TyzIY2334YjR6B5c7dvHD+mmNHNPiIxay48Pu/YYgRdu8LEiTB6tDu7Jz6+as9BV2tJ5ApFJ7OysBMmsOX+6bySk8bs2bBqlburVy+4+24YP/II5x55n5i358M9b8H69W6DTp3cVc8jR7o3mk2bqpMSUkENhhhjRgJ/AfB+hhMAABBYSURBVGKB5621Uyvdb8rvHw0UAD+w1q6sdaoAZ94E+2Iv/voQe1fn8PXaHA5tzqVoWw5N131C73WziLXHn/Uag6U0pgE7pjxH9yk30OMEJ5uL+IXnfYTad9JaDm7/ir2rc8hfn8Ph7Fwar/qQ3stfItYef9ZrrC0hyeazcvQv6fCnezi3Z/NTiiziFd/tI0tK3Ju9igMfn37637PdbPPmFJ2Zyv7r7ianXSrf7C3ioukTaVBcUOVXHY5J5KMJ0/nPZDjrLLf+gIjf+a6T+/Yd6+LRwY+dOwGwMTGU9erDwUFj2N1pAPkH4KyXfhqwjwUk8vIl03ltoluXp1mzWicW8Yzv+ngC1kL+/lJ2f76Hr9fncXBzHonLsjjn/T8TV3b8yQNxZcV0ZyObBk2g1W/vInnwmSRrJyn1QH3qZGmpO08gN/fYLSfH/dlydRb3LUknwRYw5A/pvNQmk0mT0rjyolwuyJ9P3Py5cOs7kJ8PDRrAkCHHBkBSUqoe1B69SkvT1onH6lMnjxw5vo9Hb03/ncWd76QTX1ZAu0npLCaThAvT+P1UyxX9NtF143w3/dXji90VWY0auU7ecosbAOnZU50UT510MMQYEwv8FbgU2AksN8ZkWGvXVthsFNCj/HYe8FT5nzUXaJ7k9HQKX36dXUk9+GZ9Loc251C8LQebm0uDPTkkfJ1Ls0M5tCrKIckeoB3QrsKPLAOqu84jtqyYLtN/Db++oVZxRbzkeR8hYCdtejoHn36ZXY27kr8hlyPZOZR8kYPJy6XR3hwa5+fQ/HAurUtyaUIxwZ5AHksp/T//B/R8qNZxRbzki33k6NGU/eguCvcdwi5fQaP1/yG20C02d6RhEtmnncOadj9ieVkq7x1KZcW+rtgPDHxw7McOJZm5pJPIsQ9gbUIiCXMzuVYHnFKP+KKTo0ZRev0EjuTtJ3bVCuJ3bvnv5rua9WBD0mBWdU7lo6IBZO0/m71rm0CFdEPpTSbpNK7Qx9L4RBq9mckvLlEfpf7wRR/T07EZb7KvyznsXZNH/sY8CrLzKP4iD5ubR9zePBK+ySOpII9WRbm0Yg/NKAvq18VQRo8di2DIC7WKK+I1v3SyZHYmub3SAn6oWnHAY/fuwLO4XtYki0cPuYEQgMYUMGPfCMz8M+CJTW6j9u3hqqvcJSLDhkFS0snzato68ZhfOnn49Uy+6H7yTn79ddUfOSwmi4yydOI51sd3G47CtB4Jz6yGrVvdhikpMGmSG/wYMiS4BdDVSQmRYK4MORfYbK3NBjDGvAqM47i3bYwDXrLWWmCpMaa5MaadtTa3RmkCXQYFUFBAo8vH0KnS5oeJZ3dse/YntOPLlmeR3WIkNrkdsR3bE9+lHUk929PyzPa02bkSxl9W9eeC5puT+sa7PkK1nTQFBSRdfzmVDyn3cRp7G7YnP7Ede0/vybpW7aF9Oxp0ak9i9/Y069WOdgc20uSG72DUR4kM4d9HHjlCzP9OBeJZwQBWcCsrSGUFqew03WmbEENyspuftX8yjC7/e3Iy//33tm3TSFx2/Jk3RmfeSP0U/k4WFhL73NMcoA0fMogVTGQ5A1hJf2LjTiO52bH+3ZB87O/HbmkkfJoJY4/1MVZ9lPop/H0sKIBLhtESaFnpW4powFdxbfkmIZlDrTuS3WIA2W2Tie2QTEKXZJJ6JNP60FYS75yEOXy46u/UcavUP/7o5PBLyeZC9tAGgFblt9RGbsaqhHiIT4D4HhW+Pno7sJvYpUug0qwfpqQYtmxx80dOPoVLmjVtnXjLF51sMOZScss7GQd0BDqb8h4e7WBLiO9wfCcTD+6mwYolGCr1sajQrZR+4YXw05/CiBFuerraUCclBIIZDOkAfFHh651UHYUMtE0H4LhyGmNuBm4G6NSp8tAGbrQv0Aek5Y40acln971K017tadm3HS26NqdzrKHzyR5B74uPv7zqKF1mJfVPnfUR6qCTSa1Y98hsmvVuT+szk2nRJoEWJ30IXaCl+igRwzf7yOLT2pD39PukJkN6+SBH06Y1eB+oM28kMvimk41bJJDw0j+5MhnuaAtt2tRgYfNh6qNEBO+OW0/QRwMcSTiN/9z0BI27JdOsZzItv5VM49NPo11MzHEzClR1IXRvr+NWiRS+2EfGUcpFsUs51CGFBnEQ18CtmRzwkLW4/Hag/OuNGwNfLgJQVgYLF8Lzzwe+X8R/fNPJQbFLKeiYQlyc62NsbDWdPFJ+gxP3EeDLL+GHP6z+fpEwCWYwJNDr39ZiG6y1zwLPAqSmpla5n+nTA49UAiQmEp/xOgNqe8Cp+eYkMtRZH6EOOjnnNb6dNvAkkQNQHyVy+GYf2XTWi1x1qhXSmTdS//mmk0n/nM6YU+mk+ij1n3fHrSc7Zs2cxfl6Hynim31kbGYmTWvToerObi//ubpaS+oZ33QyJjOTJjXtpPoo9VR1S2lUtBN3ldRRpwM5tdjm5I4eaFaeO66uDjiP/vzOnXUAK/WVd32E0HZSfZTIEDn7SJHIoE6K+Efk9FHHrRIZ6n8nte+VyFK/O6k+Sj0VzGDIcqCHMaaLMaYh8H0go9I2GcD1xjkf+KZW6xNA1TLVdYmOnmWnUkr95G0fIbSdVB+l/ousfaRI/adOivhHZPVRx61S/0VGJ7XvlchR/zupPko9dNLBEGttCXAHsABYB7xmrf3cGHOrMebW8s3mAdnAZuA54LZTSqUzb0QCCksfQZ0UqYb2kSL+ok6K+If6KOIvEdVJdV0iQMR0Un2UesZYG3BK1pBLTU21K1asCMvvFgknY8y/rbWp4c5RmTop0Uh9FPEXdVLEX9RJEf9QH0X8RZ0U8ZdgOxnMNFkiIiIiIiIiIiIiIiL1lgZDREREREREREREREQkomkwREREREREREREREREIlrY1gwxxuwBtp9ks1bAXg/iBMMvWfySA/yTxS85ILgsna21rb0IUxP1rJN+yQH+yeKXHFC/sqiPdcMvWfySA5QlEO0jveGXHKAsgfglB0R2J+vb8+wVv2TxSw6oX1nqax+hfj3PXvFLDlCWQCJ5Hwn163n2irJU5ZccUIedDNtgSDCMMSv8shiRX7L4JQf4J4tfcoC/soSCXx6fX3KAf7L4JQcoi1f89Nj8ksUvOUBZ/JwjVPzy+PySA5TFzznAX1nqmp8em7L4Nwcoi1f89Nj8ksUvOUBZ/JwjVPzy+PySA5TFzzmgbrNomiwREREREREREREREYloGgwREREREREREREREZGI5vfBkGfDHaACv2TxSw7wTxa/5AB/ZQkFvzw+v+QA/2TxSw5QFq/46bH5JYtfcoCyBOKXHKHil8fnlxygLIH4JQf4K0td89NjU5aq/JIDlMUrfnpsfsnilxygLIH4JUeo+OXx+SUHKEsgfskBdZjF12uGiIiIiIiIiIiIiIiInCq/XxkiIiIiIiIiIiIiIiJySjQYIiIiIiIiIiIiIiIiES3sgyHGmJHGmA3GmM3GmHsD3G+MMY+X37/aGNM/jFmuLc+w2hizxBjTL1xZKmw3wBhTaoy5Ilw5jDFDjTH/McZ8box5LxQ5gslijGlmjHnTGPNpeZYJIcrxgjFmtzFmTTX3e/aaDQV1suY5KmwX0j4Gm0WdrHK/OulNjqjbRwabxYtOqo/e8Esfg8wSdZ30Sx+DyaJO1g11suY5KmwXNfvIYLKok3XDL530Sx+DyVJhu6jppProDb/0McgsUddJv/QxmCwR10lrbdhuQCywBegKNAQ+BfpU2mY08BZggPOBT8KY5ULgtPK/jwpnlgrbLQLmAVeE6TlpDqwFOpV/3SaM/33uA35f/vfWwD6gYQiyDAb6A2uqud+T12wYn+eo6qRf+liD50SdrHq/OulNjqjaR9bgeQl5J9VHb25+6WMNskRVJ/3SxxpkUSe9eZ6jqpN+6WMNnhN1sur96qQ3OaJqH1mD50XHrR6/XkN180sfa5Alqjrplz7WIEtEdTLcV4acC2y21mZba4uAV4FxlbYZB7xknaVAc2NMu3BksdYusdbuL/9yKXB6CHIElaXcZGAWsDuMOa4B/mWt3QFgrQ1nFgskGWMM0ARXzpK6DmKtfb/8Z1fHq9dsKKiTtchRLtR9DDaLOlmVOulBjijcRwabxYtOqo/e8Esfg8oShZ30Sx+DzaJOnjp1shY5ykXTPjLYLOrkqfNLJ/3Sx6CylIumTqqP3vBLH4PKEoWd9Esfg80SUZ0M92BIB+CLCl/vLP+3mm7jVZaKbsKNRoXCSbMYYzoAlwNPhyhDUDmAFOA0Y8xiY8y/jTHXhzHLNKA3kAN8BtxprS0LUZ4T8eo1GwrqZC1yeNTHoLKgTgaiTnqTo6Jo2EcGlQVvOqk+esMvfazN74mGTvqlj8FmUSdPnTpZixxRuI8MNos6eer80km/9DGoLFHYSfXRG37pY21+TzR00i99DDZLRHUyrs7i1I4J8G+2Ftt4lcVtaEwarpwXhSBHsFkeA35urS11A3NhyxEHnAMMAxKAj40xS621G8OQZQTwH+BioBvwjjHmA2ttfh1nORmvXrOhoE7WLocXfQw2izpZlTrpTQ63YfTsI4PN4kUn1Udv+KWPNfo9UdRJv/Qx2Czq5KlTJ2uXI9r2kcFmUSdPnV866Zc+Bpsl2jqpPnrDL32s0e+Jok76pY/BZomoToZ7MGQn0LHC16fjRplquo1XWTDGnAU8D4yy1n4VghzBZkkFXi0vZitgtDGmxFo72+McO4G91tpDwCFjzPtAP6CuyxlMlgnAVGutBTYbY7YCvYBldZzlZLx6zYaCOlm7HF70Mdgs6mRV6qQ3OaJtHxlsFi86qT56wy99DPr3RFkn/dLHYLOok6dOnaxdjmjbRwabRZ08dX7ppF/6GGyWaOuk+ugNv/Qx6N8TZZ30Sx+DzRJZnbQhWHwl2BtuMCYb6MKxRVq+VWmbMRy/OMqyMGbpBGwGLgz381Jp+xcJzYI+wTwnvYF3y7dNBNYAfcOU5SnggfK/twW+BFqF6L/RGVS/oI8nr9lwvfairZN+6WMNnhN1sup96qQ3OaJqH1mD5yXknVQfvbn5pY81yBJVnfRLH2uQRZ305nmOqk76pY81eE7Uyar3qZPe5IiqfWQNnhcdt3r8eg3na8+rx6dO1vo50T6y6n118poN65Uh1toSY8wdwALc6vUvWGs/N8bcWn7/08A83Grxm4EC3GhUuLJMAVoCT5aPEJZYa1PDlCXkgslhrV1njJkPrAbKgOettWvCkQX4LfCiMeYzXDF+bq3dW9dZjDEzgKFAK2PMTuDXQIMKOTx5zYaCOlnrHJ5QJwNTJ0P/+PzSxxpk8YRfOqk+esMvfaxBlqjqpF/6GGwW1MlTpk7WOocn1MnA1Ekdt0Z7J9VHb/iljzXIElWd9Esfg81ChHXSWFtfprsTERERERERERERERGpuZhwBxAREREREREREREREQklDYaIiIiIiIiIiIiIiEhE02CIiIiIiIiIiIiIiIhENA2GiIiIiIiIiIiIiIhIRNNgiIiIiIiIiIiIiIiIRDQNhoiIiIiIiIiIiIiISETTYIiIiIiIiIiIiIiIiES0/wfRD+DleyrHlwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Attention, les deux listes suivantes ne donnent pas les mêmes valeurs que la troisième\n", "# yy_tmp1 = [sol_exacte(t) for t in tt]\n", "# print(f'{yy_tmp1=}')\n", "# yy_tmp2 = list(map(sol_exacte,tt))\n", "# print(f'{yy_tmp2=}')\n", "yy = sol_exacte(tt)\n", "# print(f'{yy=}')\n", "\n", "uu_EE = EE(phi,tt,y0)\n", "uu_AB2 = AB2(phi,tt,y0)\n", "uu_AB3 = AB3(phi,tt,y0)\n", "uu_AB4 = AB4(phi,tt,y0)\n", "uu_AB5 = AB5(phi,tt,y0)\n", "uu_N2 = N2(phi,tt,y0)\n", "uu_N3 = N3(phi,tt,y0)\n", "uu_N4 = N4(phi,tt,y0)\n", "uu_EM = EM(phi,tt,y0)\n", "uu_RK1_M = RK1_M(phi,tt,y0)\n", "uu_RK4 = RK4(phi,tt,y0)\n", "\n", "uu_EI = EI(phi,tt,y0)\n", "uu_CN = CN(phi,tt,y0)\n", "uu_AM2 = AM2(phi,tt,y0)\n", "uu_AM3 = AM3(phi,tt,y0)\n", "uu_AM4 = AM4(phi,tt,y0)\n", "uu_BDF2 = BDF2(phi,tt,y0)\n", "uu_BDF3 = BDF3(phi,tt,y0)\n", "\n", "uu_heun = heun(phi,tt,y0)\n", "uu_AM2AB1 = AM2AB1(phi,tt,y0)\n", "uu_AM3AB2 = AM3AB2(phi,tt,y0)\n", "\n", "\n", "figure(figsize=(28,12))\n", "\n", "subplot(3,7,1)\n", "plot(tt,yy,'b-',tt,uu_EE,'r-D')\n", "err=norm(uu_EE-yy,inf)\n", "title(f'AB1=EE - max(|err|)={err:g}')\n", "\n", "subplot(3,7,2)\n", "plot(tt,yy,'b-',tt,uu_AB2,'r-D')\n", "err=norm(uu_AB2-yy,inf)\n", "title(f'AB2 - max(|err|)={err:g}')\n", "\n", "subplot(3,7,3)\n", "plot(tt,yy,'b-',tt,uu_AB3,'r-D')\n", "err=norm(uu_AB3-yy,inf)\n", "title(f'AB3 - max(|err|)={err:g}')\n", "\n", "subplot(3,7,4)\n", "plot(tt,yy,'b-',tt,uu_AB4,'r-D')\n", "err=norm(uu_AB4-yy,inf)\n", "title(f'AB4 - max(|err|)={err:g}')\n", "\n", "subplot(3,7,5)\n", "plot(tt,yy,'b-',tt,uu_AB5,'r-D')\n", "err=norm(uu_AB5-yy,inf)\n", "title(f'AB5 - max(|err|)={err:g}')\n", "\n", "subplot(3,7,6)\n", "plot(tt,yy,'b-',tt,uu_N2,'r-D')\n", "err=norm(uu_N2-yy,inf)\n", "title(f'N2 - max(|err|)={err:g}')\n", "\n", "subplot(3,7,7)\n", "plot(tt,yy,'b-',tt,uu_N3,'r-D')\n", "err=norm(uu_N3-yy,inf)\n", "title(f'N3 - max(|err|)={err:g}')\n", "\n", "subplot(3,7,8)\n", "plot(tt,yy,'b-',tt,uu_N4,'r-D')\n", "err=norm(uu_N4-yy,inf)\n", "title(f'N4 - max(|err|)={err:g}')\n", "\n", "subplot(3,7,9)\n", "plot(tt,yy,'b-',tt,uu_EM,'r-D')\n", "err=norm(uu_EM-yy,inf)\n", "title(f'EM - max(|err|)={err:g}')\n", "\n", "subplot(3,7,10)\n", "plot(tt,yy,'b-',tt,uu_RK1_M,'r-D')\n", "err=norm(uu_RK1_M-yy,inf)\n", "title(f'RK1_M - max(|err|)={err:g}')\n", "\n", "subplot(3,7,11)\n", "plot(tt,yy,'b-',tt,uu_RK4,'r-D')\n", "err=norm(uu_RK4-yy,inf)\n", "title(f'RK4 - max(|err|)={err:g}')\n", "\n", "subplot(3,7,12)\n", "plot(tt,yy,'b-',tt,uu_EI,'r-D')\n", "err=norm(uu_EI-yy,inf)\n", "title(f'AM0=EI - max(|err|)={err:g}')\n", "\n", "subplot(3,7,13)\n", "plot(tt,yy,'b-',tt,uu_CN,'r-D')\n", "err=norm(uu_CN-yy,inf)\n", "title(f'AM1=CN - max(|err|)={err:g}')\n", "\n", "subplot(3,7,14)\n", "plot(tt,yy,'b-',tt,uu_AM2,'r-D')\n", "err=norm(uu_AM2-yy,inf)\n", "title(f'AM2 - max(|err|)={err:g}')\n", "\n", "subplot(3,7,15)\n", "plot(tt,yy,'b-',tt,uu_AM3,'r-D')\n", "err=norm(uu_AM3-yy,inf)\n", "title(f'AM3 - max(|err|)={err:g}')\n", "\n", "subplot(3,7,16)\n", "plot(tt,yy,'b-',tt,uu_AM4,'r-D')\n", "err=norm(uu_AM4-yy,inf)\n", "title(f'AM4 - max(|err|)={err:g}')\n", "\n", "subplot(3,7,17)\n", "plot(tt,yy,'b-',tt,uu_BDF2,'r-D')\n", "err=norm(uu_BDF2-yy,inf)\n", "title(f'BDF2 - max(|err|)={err:g}')\n", "\n", "subplot(3,7,18)\n", "plot(tt,yy,'b-',tt,uu_BDF3,'r-D')\n", "err=norm(uu_BDF3-yy,inf)\n", "title(f'BDF3 - max(|err|)={err:g}')\n", "\n", "subplot(3,7,19)\n", "plot(tt,yy,'b-',tt,uu_heun,'r-D')\n", "err=norm(uu_heun-yy,inf)\n", "title(f'Heun - max(|err|)={err:g}')\n", "\n", "subplot(3,7,20)\n", "plot(tt,yy,'b-',tt,uu_AM2AB1,'r-D')\n", "err=norm(uu_AM2AB1-yy,inf)\n", "title(f'AM2AB1 - max(|err|)={err:g}')\n", "\n", "subplot(3,7,21)\n", "plot(tt,yy,'b-',tt,uu_AM3AB2,'r-D')\n", "err=norm(uu_AM3AB2-yy,inf)\n", "title(f'AM3AB2 - max(|err|)={err:g}');" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Méthode 2**\n", "\n", "La deuxième méthode fait appelle à la notion de dictionnaire, elle est compacte mais peut-être plus difficile à comprendre. On crée \n", "- une liste avec les noms des schémas,\n", "- un dictionnaire avec comme clé les noms des schémas et comme valeur la liste solution approchée\n", "- un dictionnaire avec comme clé les noms des schémas et comme valeur le maximum de la valeur absolue de l'erreur." ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABkUAAAK7CAYAAABMP4gqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd5hTZdrH8e9NFRBFbIgiWLB3WXH3tbGrKyrWVdcuqKtYUGyIIIrK0BEsIKgIVizYUOw62HBdwIJiQxEQBARRep/n/eM+IyFkCjMhJzP5fa4rFyTn5OSeJHfOc55qIQREREREREREREREREQquypxByAiIiIiIiIiIiIiIpIJahQREREREREREREREZGcoEYRERERERERERERERHJCWoUERERERERERERERGRnKBGERERERERERERERERyQlqFBERERERERERERERkZygRhEREREREREREREREckJahTJQma2tZl9Z2abRPdbm9nwjfA6IeH/J5nZU+l+DZHKwMxqmtnXZtYgun+UmY3ZCK8z1cyaRP/fz8zGpvs1RCoD5aRI9lA+imQX5aRI/Mysh5m1T7j/Z76k8TW6mlnXhPv/M7O90/kaIpWB8lGKUqEbRaIv8jIzW5xwuy/a1trM1iRtW2xmDeOOuxQ6AsNCCMsz9YIhhFHAPma2X3mPZWb1zewFM1tiZtPM7Jxi9t3HzN4ws3mJjTQJ2x83s1lmttDMvjezSxK2nZv02S41s2BmB0fb65nZI2b2a3TrmnTsJmaWHz3vWzM7uogYh0XH3bXMb0olYmZjzOx3M6uZ9PhwM1sZfRaLzGyCmR2ZsP0EM/vQzP4ws9lm9qCZ1c38X1AmlwLvhxBmZ+oFQwgTgT/M7MTyHiu6OH44yqPZZnZdCfufE+XuEjN70czqJ2zra2aTo8/4WzO7IOm5J5rZV9H3YKyZ7ZW0fWczeyV6/jwz652w7SozG29mKyypITjK15CU810StreI8nmBmU0t2ztVMZUjJ1uY2ZdRTv4W/W5vn/m/oEyUk2u3lZSTD5h3tCgws9ZJ2wYn5dQKM1uUsL3InEw6zm1Rfq53HjWzGlFcM0p+Zyq+suZj0r4VrdyhfFy7rch8NLPdzOwlM5trZvPNy7+7J2wvskwcxTg0et1FZvaZmR1XRHzr5aOZ3RidmxeZ2U9mdmNZ3quKqBznyKOi383E38gLM/8XlIlycu228pwjzcy6mdlM8/LlGEuo4CruHGlmh5rZW1GuzzWzZ81su4TtXc1sVdL3a+eyvWMVk3ldzhwzq5Pw2CUWNeCZ2TZmNsLMfone/4/MrHlsAW8AM9sauAAYkuGX7gvckY4DFZdXKfYtsl7FzLYzs1HR5xisiIpo8zqkuWb2YdLjIYqhME8eSthWZI6WdN40s72i/P09ur1tSdetuaSkfIzu50ef0UIz+8LMTo4l2A2kfCx9PloJ518rpq7HUtfBH5Vw3GLLsWZW28wGmZeDF5jZ++V600qpQjeKRE4MIWyacLsqYdvHSds2DSH8ElukpWBeYL8QeDxNx6tWmsciI/BCdHkNBFYC2wLnAvdb0S2kq4BngIuL2N4DaBJC2Aw4CehmUaNHCOGJxM8WuAKYAnwaPbc/UBtoAhwCnG9mbRKOPQL4DNgS6AyMjH4w/2RmhwG7lPYPr+yiH83DgYB/Hsl6R5/F5sD9wPNmVjXatjnQDWgI7AnsAPTZyCGny2XAY+k40Abm5BPRa5dXV6Ap0BhoAXQws5ZFxLc3XmA4H8/hpcCghF2WACfin+eFwN1m9rfouU2jmNsC9YCXgVGFf5+Z1QDeAt4FGuDfgcTful/w78jDxfwt9RLy/s6kuB4GcqaiB8qdk18Dx4YQ6uF5OTnapyJQTq5VZE5GvsDPj5+SJITQNuk8OgJ4NmGXEnPSzHYBTgdmFbHLjcCvRT2/MilnPhYeoyKWO5SPaxWXj/WAUcDu0XP/B7yU8NziysTVgJ+BI6NjdwGeSXExW1Q+Gl4hsAXQErjKzM5K9TdWJmnIyV+SriMf2dgxp4lycq0ynyOBM4CL8O9QfeBj1n1fiztHbgE8gF+HNgYWAcOS9nk66fs1JdXfWMlVA64pYtumwDjgYPz9fwQYbWabZii28mgNvBpCWFbeA21gDo4CWlhCA1wZX7OkvEpWXL1KAfA68K8SXrYX8E0R2/ZPyJNLEh4vLkdLOm/+gp8v6wNb4e9drs+cUlw+Em3bLqqbuxR4vLzftQxpjfKxtPnYlSLOvyXV9USS6+DHRI+Xphz7AJ6Pe0b/XlvM35g+IYQKewOmAkcXsa018GEaX2sMXugZCyzGvwBb4l+KhfgJu0nC/nfjH/pCYAJweMK2V4F+CfefBh6O/n8E8EOKv2V4wv3NgaH4Bc/MKK6qCft+hDcIzI+2rfdYtG9Iep3/A34q5/tUB28Q2S3hsceAniU8b9fkeFLss3v0N59ZxPZ84LaE+/OAvyTc7wR8EP1/N2AFUDdh+wdA24T71fAfk/3wi6ld4/7Ox30Dbo2+S3cBryRtG1743Yru147et4ZFHOs04MtyxDIcPxm8FuXkR3hF+wDgd+Bb4MCE/TsCP+IXJV8DpyZsux8YmXC/F/AOXomwI7AMqJaw/ShgTML9mnhPgOnAHGAwUCth3xnATcDsKB/Weyzadyrr/o5sH712zXJ+bjOBfybcvxN4qoh9uwNPJtzfJcrpukXsPwq4Pvr/VcDohG1Vovj/Ed2/tDAHS4i3Gwm/edFjTaLvU7USnns0MDXuXMnULV05GX2HewBflyMW5WTp36uM5GTS4x8CrYuJqU70WRyZYtt6OZmw7TXgeFKUyYCd8Avc44AZcefLxr6VNx9JY7lD+Zjd+Rhtqx99zlsmPV5imTjabyLwr6THiszHpP3uAe6NO2c29q08OVn4PUxjLMrJ0r9XWXGOjP7eZxLu7w0sT/HcIs+RCfscBCxKuN8VeDzuHInzFn1/OuL1E/Wixy5J/K6meM5C4OAyvl7h97gD3lljFnAK/pv5fRRHp4T9D8Er2f+I9r0PqBFt+xte19Aour9/tN8e0f13gfNS/L2J+dIK+Dx63lhgv6R9b8J/51fg5YNUj3UFuia9zlvAheX8bEqdV5SiXiV6rBr+G9skxTH+Gr3XbUiqw6OY8lBpczRh+3rnzYTYrgSWxp0Xcd02NB+j/FgOHFLG11M+lv69ylg+Usz5l5Lrelon528Jf9ef+YjX9S4ENsv0d78yjBTJpLPw1rnt8S/ix3iPj/r4Rf9tCfuOAw6Itj0JPGvRGiF4a/b5ZvZ3MzsX+AtrW2T3Bb4rIY5HgNX4RdOBwD/xH6xCzfERE9sAecU8luwboImZbQYQDV36o4jbxCKOsRuwJoTwfcJjX+AnqDKJ4liKXyzMwhuVkvdpjDcoPZq8Ken/+0T/3xuYEkJYlLA9Oc5r8aHnRf2tuegCvCHwCeBYM9s21U5RL7sLgJ/wi61UjgAmlTOeM4Fb8N4dK/Cc/DS6PxK/CC70I96LZHPgdtbt2XA9sF805O9wvJfmhcF/offFvyuri4mjF/7dPwDPy+3xC/FCDfDfgsasHY2V6rF1hBBm4j1Hdwcws47F5OQfqY5hZlvgowC+SHi4uJzcO3HfEMKPRA2dKY5dC//9KvwcjfVzLjHvDgWmmtlr0bDIMWa2bxFxFGWamc0wn15mqw18bmVUrpw0sx2j784y4Aagd6rnbwDlZHbl5Ib4FzAXKPVQZTM7A1gZQljvvBy5F++QUO6eWRVEec+R6S53KB+zOx+PAGaHEH4rYnuRou/WbonHLkU+Fu5n+Gdd3jJYRVDenNzGfDqRn8ysvyVMK1JGysnszslkTwG7mk99Vx0fafJ6KZ+bLNV1z4nm02tNMrPLy3jcim483vn0hpJ2NLMDgBrAD+V4vQbAJqz9zj8InIePRjkcuNXWTmO2Bj8vb4VX2v8DH1VECGEs3nP7keh79RhwSwjh2+i5xdbpmNlB+Aijy/COtkPwHteJ0/ydDZyAV1CvLuaxZN/glcJ/lvOLuRU1zXmp84rS1asUKfr9HYhXuIYidnvffCqf55N6lpc6R1OdN6PH/8Ar9+/FK59zWYn5aD4N9nLgk2jf8eV4PeVjFuVjKc6/JdX1ABwY1fN8b2ZdrIhRNCnysTkwDbg9ev6XZlbS6LL0yHQrTDpveOvcYrw1r/D2n7C2lWp10rYfy/FaY4DOCff7Aa8l3D8R+LyY5/+OD/srvH8aPpJkHnBYwuOdSeoJQ8JIEXy41Aqi3jzRY2cD+Qn7Tk/x/OkpYgpJ96vjJ6Idy/E+HY5f4CU+9h+K6fER7VNsrzigKnAYfiFRPcX2LsmvgU/L8zxQNzr+j8CKaNv5wH+T9s9LeJ8b4QWuzQvfK3J8pEj0/q8Ctorufwtcm7B9OF6gKCxYLAfOLeJYx0Q5sVs54hkOPJhwvx3wTcL9fYE/inn+58DJCfcPwXskTAPOTnj83BTflaMKv2/4iWAJsEvC9r8SjbqK9l0JbJL0/HUeix6fSurW+iPK8T41ir6/ia9/DEWMpsB7Gib3JJgJHJVi30fwgqdF9/eI3ouj8IuWLvgQzZuj7W9G36Hjou034o21NZKOm2qkyKZAM7xXw7Z45cEbKWLKmZEiac7J+nhvl0PLEY9ysnTvU8ZyMmlbSSNF3iGpd1PCtqJycjKwU8J7dXTC9lOB1xPe30o9UqS8+Uiayx3Kx6zPxx2i552dYltJZeLqwNvAkITHis3HpOffjl/klqs3f7bf0pCTDYC98J6QO+ENxkPKEY9ysnTvU9acI/Gy6t1RPKvxRrOdUjy32JEi+Oi/+aw7c8ReeOVTVbyX8yxS/B5U5lvh7xReobYA2JoieqYDmwFfEl1TlPH1jsI7aRTOsFE3+mybJ+wzATiliOe3B15IuF892v/L5O8V/tuzR4q/t0n0//uBO5O2f0c0Wjfa96IUz09+rCvr90zPI5qFpBzv1YbkVbH1KgmPFdUz/Vrg/uj/rVl/pMgRUS7Ww0cHfEU0Em4DcnS982bS9jp4BfsJcedFXLcNzMfq+PX8teV4PeVj6d+rjOQjJZx/KbmuZ2e8vFQFL9N8TYrf7FT5iHeiC9F7WAOfZmsxsOfG/u5XhpEip4QQ6iXcHkzY9t+kbSnnaDazTrZ2IZjBxbxWYs+hZSnu/zm/pZldb2bfmC8Q8wfeyyexV/MreCHouxBC4mJSv+M/CEVpjH+JZiX0shmCjwAp9HOK56V6LFnh66bsuVNKi/FCS6LN8KHfZRZCWBO9TzsAqXrSXIAXdBNdjX8uk/E5m0fgQ/RKE+cA4I4QwoLyxF3JXAi8GUKYF91/MnosUd/g6xPUwiuw+9j6CygdGj339LDuiKLEfc5NyMnXiolpQ3LyAjP7PCFv9iEhJ0MI/8Mr6A2f07tQSTm5NT7lwoSEY78ePV5obghhedLzUj2WSl3Kn5Ow7ve9uJwsVQ6bWR/8PTwzRGey4L0xLsQLrLPw9/dr1ubdMryg+1oIYSU+dcOW+LyRxQohLA4hjA8hrA4hzMF7E/3TopFtOSotOQkQQpiP/4a+lKpHh3JyHRUmJ0vLzBrhhc/k0ZbFuR2fQuWnFMerg486archcVRw5c3HUpc7lI/rqHD5aD6v85vAoBDCiA0J1syq4D0gV+LnwUJF5mPS86/Cy8wnhBBWbMhrV0DlyskQwuwQwtchhILofe2Azz+/HuXkOipcThbjNnxkSSO8N/PtwLtmVruUz8fMdsWnTLsmhPBB4ePRd+uX6Bp3LF6xm/L7VdmFEL7C60Y6ptoe9fx+Ga/b6VHUcWzdxX13LGK330IIa6L/F45iTZmH0eiDV6IRCgvxUQSJObgKb+zcB58aPfF7VZo6nesTe4nj37OGCfuUp06nPDkIG1anU+b6HzNriNfZdC5qnxDC+yGElSGEP/DZVXZi7bVjiTlazHkz8TWW4NMIPmpm26TaJ1eUlI/RPqtCCK/hIzBTrdelfFyrwuQjJZx/S6rrCSFMCSH8FJWbvsQXmV/nvFZMPi7DG6+6Rfn+Hr48wj9LEXe5VIZGkXILIXQPaxeCaVve45kPY74JHyK9RVTYXsC6Q43y8KFU25nZ2QmPTyT1MKhCP+MjRbZKaOzZLISQOBwqVUGvNIW/PfFWwIXR3zE46ccs8VbUsOPvgWrmi/AU2p/0DdGvRtICpGb2f/gP1sjEx0MI80MI54YQGkTvTxV8UUuieHY2s8Qfx8Q4/4FfGM02s9nRYx8XM6StUosKo2cCRya8J9cC+5vZ/sn7B/cVPl/yCQnHORCfy/eiEMI7Rb1eCOGJhJxcrwK3DPE3xodjXoXP3V0P72ViCftcic+x/At+4VtoIv5dKWoBrXn4j/jeCTm5efCFO//8k1I8r8ScjAqKNYiGeyY14K53S3WMEMLv+Ekr8XMqLicnJe5rPmS1Jp7bhY/djvcO+Wfh70XC640MIewTQtgSL6g2xqcTBH8vN6iythiFx7Fi96qk0pWTSarhDezrNTQpJ/+MqcLlZCldAIwNG7bI6z+AqxO+f43wBfNuwhfoawJ8EG17Hi/vzLakhaErgzTlY6nLHcrHP2OqcPloPjXBm8CoEEJR09kW9fcavqbgtvgczKsSNheXj4XPvwiv5PhHCGEGldhGOkcGiihzKCf/jKnC5WQJ9scXQ58RvFPOcHwB9b1K8+Toc3wb74Fc0sL3RX6/csRt+OwS2yc+aD59zYt4r+jLijtAWHdx3+lpiOl+fIRZ0+ALS3di3RzcPop7GNDP1p1qpzR1Onlh3Q68tcO6DeXlqdP5Iopxx+Jy0Hwq91RKzKukfYurVynOIcB2wNfR7/TdwCHR73bVIp6TmCvF5mgJ581kVfAG4+2L2SdXpMzHFNarmyukfPxThcnH0px/S6jrWe+QrPsZFZePsS1ZoEaRjaMuPnxvLt5AcCsJlUxmdgS+iNQF0e3eKInBK+3rJdxfRwhhFn4x1c/MNjOzKma2i5kdmYa4j8R7shS+VtukH7PEW8o56YK3sj8P3GFmdcwbLE7GWwPXY24TvACNmW1S+ANmZtuY2VlmtqmZVTWzY/Gpwt5NOsyFwHNh3XnziN6XLaPnHofPf9stivN7fBj6bdFrnooPbX4uevpu+A/AAdENfIq0F4p/CyutU/B5HPdi7XuyJ75o0wWpnmBme+BTF0yK7u+D90RrF0J4OQMxJ6qD/yjPjWJpQ8Lch2a2G/7dOA8fctjBfN5aooqDyXihbT0hhAL8wrW/RT1LzGz76PtaXkcB74aoN2dYtwF3vVsxx3kUuMXMtog+l//gPSlSeQKf4/hw897edwDPF+aXmd0MnAMcE1LMg25mB0c5tzU+iu3lsHY+z8eBQ83s6Kig2x6/OP8mem616PegKlA1ys1q0bbmZrZ79Ju3Jb5I7JgQ9aqOHt8EH0ln0XNrlPQGV2DpyMnTEt7TrfG5zD8LPmpkY1NOZi4na0S5YUD1KDeSy38XpHr94nISr4Tdh7Xfv1/wCouBeOVdo4Rtl+A9vw6gdL2qKppy5yPxljuUjxnIR/ORjW8AH4UQ1uuBWVyZOHI//r06MYSQvE5PcflIdKHdPYprQxo/K6p0nCOPiiowzHw0XU985HkmKCez4xw5DjjDzLaNykrn4+XMH6LnFldu3R6/Zh0YQlhvJgozOzn6+8zMDsF7y2fq+5V1Qgg/AE/j7wMA5mtEjMQb8S6IvruZVBdf+Hdx9D38c7YKMzP8OzkUX9NnFr4gcaFX8bqVojwItI2ub8y83uQEW7cic4NF54yD8cWdCSFMLy4HQwhPFHGoYvMqUSnqVYjypPB8VtPWrrX7Gt6JpvB3+lbgM+CAEMIaM9vbzA6Iri03xaewn0l07UgJOUox500zO8bMDoyOvRl+HfR7wrFzVhH5uIeZHWdmtcysupmdh09t9l6GwlI+bvx8hBLOv1ZMXU/0/dg2+v8e+PRaiee14sqx7wPTgZujc+v/4WWKN4p4T9InbOT5uTbmDZ/HbRk+zKfw9kK0rTVeGF6cdPtLGV9rDHBJwv115g7F59/7Ifp/VTwhF+IJ2YG1c/RtFv3/rITn9sIbOgrn5e8D3JSwvXXSa22Of6Fm4CNQPis8HqnnYVzvsfDnbDfr3P+ShHVPyvG51Md7dCzBv9jnJGzbMfocdozuN8EL/Ym3qdG2rfEf2T+i9/JLojVjEo63SbT9HyniOBO/KFyK/zAcm7S9SfS5LsN7NKWce7nwvSKH1xTBGzP6FfEez8Z7CQzHh8EtTvjsuwNVon2H4XMOJubjpHLENBwfXld4f505L/E5uVcn3M/D5/Odhxd63oueUw1vjOyYsO/l0fetZnT/SqK5TqP7RyW91ibR3zol+q5+A1ydsO+MpNjXeyx6fCrrzus4GjgpDZ9fTXzxsIV4xeR1SdsXs+48x+dEn98S/ERWPykXViR9jp0Stn+ID7Gcj58o6yS91ml4QXVhlH97J2zryvq/B12jbWfj88QuwX9XHwUaJL2nyc8dU573LZtvpCcn2yW8p7PxxQoblyOm4SgnszEnx6TIjaMStv81Om7dFHF2TfHcrkX8TVMpeg2DlO9vZbmlIx9TPLdc5Q7lY/blI96JJ0TPS9xemjJx4+j+8qTnFrVO1Dr5iP/Wr0p67uC4c2dj3dKRk8B1eOXbUrwx915S/E5uQEzDUU5mVU5G28ekyLujEt6ngXi5cyHwKdAy4bldUzy3a7Tttuj+OnURCc8dAfwWPf5t4fufSzfW/51qhP/GjYnuHxm9h0uT3sfDy/h663yPST2n/ofAedH/j4g+m8V4g+odRHUq+DROE4nWRcRnrZhbGBs+rcwM1l0HNjlfWuKV+n9E37FniX5jkt+bYh7rSkK5DDgDryxNx+dTXF4NJuEcQgn1KinyJBTxmq1JqLcC/h4dbwnwK17H1DRhe5E5Sgnnzei9Kvx85+IV5/vFnRdx3UqRj3vii6svir6z44BTy/F6yscNe78yko+UfP4tsq4Hnxp9ThTjlOgzqh5tK7Eciy/o/nH0/K/L8/3akFthJbxkkajV7QPgwBDCMjNrjRfOWqf5dUIIwaL/nwicH0I4M52vIVIZRK38n+GNb7PM7Cj8hHdUml9nKp7rU81sX+CBEMJf0/kaIpWBclIkeygfRbKLclIkfmbWHfg1hDAguj+VKF/S+BpdAUIIXaP7nwAXB58OUEQiykcpSlFzjUqMQghzgT0y/Jov4wuYiUiS4NMAlGr+4DS+5pd4D24RSaKcFMkeykeR7KKcFIlfCKFTDK/ZPNOvKVIRKB+lKKVaU8TMWprZd2b2g5mlmgP3RjP7PLp9ZWZrzKx++sPNWZ/jQwXT7faNcEzZyJSPWWEqRc9tXB4D8CGbUoEoJ7PCVJSTElFOxm4qykeJKB+zwlSUkxJRTsZmY+TLmOgmFZhyMhbKRwEoefos88VwvweOwedhGwecHUL4uoj9TwSuDSH8Pc2xiuQ85aNIdlFOimQX5aRI9lA+imQX5aRIdlFOisSrNNNnHYIvID4FwMyeAk7GFz5J5Wx84bBibbXVVqFJkyalDFOk8pgwYcK8EMLWZXz6RslHUE5KbipnPoLOkSJppZwUyS4qt4pkD50jRbKLclIku2xoTpamUWR74OeE+zOAlHOjmVltoCVwVRHbLwUuBdhxxx0ZP358aeMUqTTMbFo5np62fIz2UU5KTitnPoLOkSJppZwUyS4qt4pkD50jRbKLclIku2xoTpZmTRFL8VhRc26dCHwUQpifamMI4YEQQrMQQrOtty5PY6pIzkpbPoJyUiQNdI4UyS7KSZHsoXKrSHbROVIkuygnRWJUmkaRGUCjhPs7AL8Use9ZlHLIs4iUifJRJLsoJ0Wyi3JSJHsoH0Wyi3JSJLsoJ0ViVJpGkXFAUzPbycxq4Ik4KnknM9scOBJ4Kb0hikgC5aNIdlFOimQX5aRI9lA+imQX5aRIdlFOisSoxDVFQgirzewq4A2gKvBwCGGSmbWNtg+Odj0VeDOEsGSjRSuS45SPItlFOSmSXZSTItlD+SiSXZSTItlFOSkSLwuhqOnqNq5mzZoFLfwjucjMJoQQmsUdRzLlpOQi5aNIdlFOimQX5aRI9lA+imQX5aRIdtnQnCzN9FkiIiIiIiIiIiIiIiIVnhpFRNLk8cfh7ruhoCDuSEQkBLj6avjoo7gjERGA77/3nJw7N+5IRARgyBB48EE/X4pIvAoKoG1bmDAh7khEBGD8eLjpJvjjj7gjERGAZy7PZ/HWTSA/P63HVaOISBqsXAmdOsGzz4JZ3NGISH4+3HsvfPll3JGICECvXl4Bq44DIvFbvNjLrS+/rHKrSDZ44QVvqPzhh7gjERGAl9rnc2WfJlT/ML0VsCKy4f54IZ8TBrdi03nToFWrtDaMqFFEJA0efxx+/hk6d9bFpUg2yMuD7baD1q3jjkREpk+HRx+F//wHtt027mhEZMgQmD/fy60iEq8QvNy6225w+ulxRyMiPz2cT8ePWrFjmEadf6e3AlZENlB+PrXPbEUdlvr9pUvT2jCiRhGRclqzBnr2hAMPhJYt445GRP77X3j3XbjhBthkk7ijEZE+feDIgnzuer6JLixFYrZ8OfTtC9cdmE/zfzdRTorE7PXX4bPPYMDJ+VTdpYlyUiRO+fk0vHTjVcCKyAbIzyec0Ioaq5eu+3ga81KNIiLlNHIkTJ7s0xBolIhI/PLyoH59uPTSuCMRkTlz4Psh+Yy2VlSbmf4hzyKyYYYNgz1m59P761YwTTkpEqfCUSJnbp1Py4HKSZFY5edTcHwraq7ZeBWwIrIB2rTBli1NvW3pUmjTptwvoUYRkXIIAbp3hz32gNNOizsaEfniC3jlFWjfHjYdlw9NmqgAKxKjl9rn8/yqhAtMXViKxGbVKnj/9nxerdKKqiuUkyJx++ADqP5RPo//0QpbqpwUiVWbNlRZvnErYEWk9JYNGsZSaqfeWLu29/QpJzWKiJTDK6/AxIlw881QRdkkErsePaBuXWi/f75fUKrHnUhsFo3K57ynEqYgKKQKH5FYvHtrPg/NaUWtAuWkSDZ45fp8RtOK6quUkyJxm9t7GEs2cgWsiNNp6w8AACAASURBVJTekO9b0JqHCckbatf2ytgWLcr9GqrGFSmjwuHOTZrA2WfHHY2IfP89PPMM9D0hn7pnt/ILStCFpUhM1lzQhtrJDSKF1ONOJKMKCmCfvm3Wb6QspJwUyahx4+CK8TpPimSL7h+34GQbRUieEz2NFbAiUjorVvgaeGc2HItVqQK1avmGNOejGkVEyig/Hz75BDp0gOrV445GRHr1gmOq5fOflxIaRAqpYUQkoxYvhgsLhrG8qnrciWSDF16A81YPY3UN5aRINujRA9rVGUYorOhJppwUyZi5c2HIEDjpyIVYCFCjhm9Qg4hILB59FFbO/JVTf3sQzj8fRo+Gxo3Tno9qFBEpo7w82G47deARyQbTp/uJc8QmG38xLhEp2ZAhMGpRC6bc/cr680vqAlMkowpHN89s2gJ77NH1d1BOimTUpEneUHnQ9S2wCy5YfwflpEhGDRgAy5cF/jOvO+yyy0argBWRkq1eDT17Qq8GA6iycrmvV9CiBUydmvZ8VKOISBn897/w7rtw/fWwySZxRyMiffr4v6seGOYXkqmox51IRixf7sOd//532Gvfqj5vT+GQSlX0iGTc66/DZ59Bx45Q9X8fg9naAqxyUiTjevSAOnXg6v8sgxdfhIMPXlt+VU6KZNSCBXDffdD1sLep9dV4uOkmOProjVIBKyIle+YZ+G3KH5y3cCB2+umw++4b7bXUKCJSBt27Q/36cNllcUciInPmwEMPwQUXwLZntYArr1x/J11gimTM8OEwezZ07gx06wbbbAMvvaQedyIx6d4dGjWC81rOg/vvh3POgVdfVU6KxGDKFBgxAtq2hS1feMgLsnfd5bmonBTJuIEDYeFCuHZ5d2jY0C8qRSQWBQVebr1jm4FUX7rQR4lsRNU26tFFKqGJE+Hll+H222HTTeOORkT694eVK70HLKtXw/PPw267wYwZPmWWGkREMmbVKl/f59BDoUXtT+Ctt6B3bzjuOO9xJyIZ9f778OGHcO+9UGNgf1i2DDp1gr32Uk6KxKBXLx88ef1VK+CwXnDEEX4D5aRIhi1Z4teS1x06lrr/HeMNlDVrxh2WSM4aNQp+mrSESzftD8cfDwceuFFfT40iIhuoe3dvDGnXLu5IROT332HQIDjzTGjaFHhsBPz4o09FsNlmvobIsGFqEBHJkBEjvE7n3nvB8rr5sMq2beMOSyRn5eX5YK2LT/sd9rgX/vUvbxARkYybOdNHU158MWz35iP+gKZ2FYnNgw/CvHnQebcesOWWcOmlcYckkrMK18DruOWDbPLbb96JZyNTo4jIBvj+e5/f7sYbYYst4o5GRO69FxYtikZVrlnjU/Xsvz+cdJLPma4edyIZU1Dg86Tvtx+c0PAzH6F1551Qt27coYnkpHHj4M03fbHKWg9FJ8xbbok7LJGc1bevF1dvbL8Kju0BzZv72gUiknErVnhOtjnoC+qPjcqsderEHZZIznr7bZg4fgVj6vWBI4+E//u/jf6aahQR2QC9evloyuuuizsSEVm8GO6+G0480SthGfGMt1yOHOkNIiKSUS+8AN9+C089BdY9z0drXXVV3GGJ5KwePaBePbj83IWw3wA/Ye6/f9xhieSkuXPhgQfg3HNhp7FPJAyrVJlVJA6PPuqDtfKa9vQOPKnWpRSRjMnLg2vqPUqdP36BzsMz8pqlWmjdzFqa2Xdm9oOZdSxin6PM7HMzm2Rm76U3TJH4TZ/uJ85LLoFtt40vDuWjiBsyBObPj0ZVFhR4756994ZTT81oHMpJkbXDnZs2hdP3nATPPQdXX+01shmmnBSBSZO8ofLqq2GzJ+73+Sa7dMl4HMpHEXf33b6kT8cb1/h8zAccACeckPE4lJMivgxlz55w6j6TafD+M3DFFbFNBaKcFIGPPoIP31tNp6o9oVmzjI2iLHGkiJlVBQYCxwAzgHFmNiqE8HXCPvWAQUDLEMJ0M9tmYwUsEpe+ff3fG2+MLwblo4hbvtxz8u9/9wWdefY5+OYb76JepVTt/WmhnBRxr78On30GQ4dC1Z55Pv3ANddkPA7lpIjr0cPT8OqLl0CzfnDssfCXv2Q0BuWjiFuwAO67D047Dfb88hmYPDmWkc3KSRH3zDMwZQq8c3Rv7IcacO21scShnBRx3bvDxZs+Q73fpsBD/TJ2fixNzdEhwA8hhCkhhJXAU8DJSfucAzwfQpgOEEL4Nb1hisRrzhxfhOv882HHHWMNRfkogi9SOXs2dO6MjxLp1g322ANOPz3ToSgnRfCCbKNGcN4h38PTT3uPu622iiMU5aTkvClTYMQIaNsWtnz+QZ+3J561RJSPIsCgQd4w0vnmAh9WGcPI5ohyUnJeQYGXW/+x2880fu8RuPjiOKcCUU5KzvvsM3jt1QLurN3dz48nnZSx1y5No8j2wM8J92dEjyXaDdjCzMaY2QQzuyDVgczsUjMbb2bj586dW7aIRWLQvz+sXAkdUw5mzKi05SMoJ6ViWrXK1/c59FBo0QIYNQomTvQWkqpVMx2OzpGS895/Hz78EDp0gBr9ekCNGnEuvqWclJzXqxdUqwbXX7kceveGo46Cww6LIxSVWyXnLV3q15LHHQcHTnvR57br3DmjI5sT6BwpOW/UKE/D+3bqh4UQ71QgykkRuneHs2qNYptfJ8HNN2f0/FiahdZTjVkJKY5zMPAPoBbwsZn9N4Tw/TpPCuEB4AGAZs2aJR9DJCv9/rv37jnjDNhtt7ijSV8+gnJSKqYRI3xtynvuASPAHXfArrvCWWfFEY7OkZLz8vJgm23gkqOnQvvHfKHKBg3iCkc5KTlt5kwfTXnRRbDd68Ng1ix47LG4wlG5VXLeg9FgrU43B7immy++deaZcYWjc6TktBC8ArZZ47ns/v4DcO650LhxnCEpJyWnffstPDcyMH277rDdzvDvf2f09UvTKDIDaJRwfwfglxT7zAshLAGWmNn7wP7AeoVZkYrmvvtg0SJvsMwCykfJaQUFPk/6fvtBq1bA6NE+3nLYMO8Wm3nKSclp48fDm2/6YpWbDOjpo7Xi7XGnnJSc1q8frFkDHdqvhH/2hL/+1RfgiofyUXLaypXQpw8ccQQctvDVtWXWzI9sLqSclJz29tswbhxMOO5ubPpyuOmmuENSTkpO69kTjq/xNjvMGgdDhmS8Tqc0Y1LGAU3NbCczqwGcBYxK2ucl4HAzq2ZmtYHmwDfpDVUk8xYvhgEDvPJ1//3jjgZQPkqOe+EF703QqVPCKJGddvJePvFQTkpO694d6tWDK06a4RU9bdrADjvEGZJyUnLWvHl+PXnuubDTh4/B9OnQpUvGF3NOoHyUnPbooz56q3OnAHfeCU2axFlmBeWk5Li8PNi9wQIOHHsfnHYa7Lln3CEpJyVnTZ0Kjz8O/bfpDg0bwoUXZjyGEptgQgirzewq4A2gKvBwCGGSmbWNtg8OIXxjZq8DE4EC4KEQwlcbM3CRTHjgAZg/P1rMOQsoHyWXheAF2aZNo/XU33jDu/o8+CBUrx5TTMpJyV2TJnlDZZcuUHdwH++eHvPiW8pJyWUDBsCyZdDxhtVwag84+GBo2TK2eJSPkstWr/YesAcfDMdUeQc++QQGD46tzArKScltH30E770HH5xwPzZ6QVZMBaKclFzWpw/8jbE0nTEG7roLatbMeAwWQjxTzTVr1iyMHz8+ltcWKY3ly2Hnnb3zwDvvpO+4ZjYhhNAsfUdMD+WkZLvXX/dFKocOhYvaBPi///Pud5Mn+8LOZaB8FCm788/3RpHp4+ZQ/6Amvq7PsGHlOqZyUqRsFizwadGPPhpGnvL42gQ95ZRyHVc5KVI2I0bAOefA88/DqXcfBT/8AD/+WK5KH+WjSNmdcAJ8+clSplkT7OCD/OKynJSTImUza5ZP+PG/bVqx39L/wrRpUKdOuY+7oTkZywTsIhXB8OFxr00pIony8qBRIzjvPODdd+Hjj2HQoDI3iIhI2U2Z4hU+7dtD/WH9fOL0LOhxJ5KrBg3yhpHONxfAeXmwzz5w0klxhyWSkwoKfHrJvfeGk+t/4N3T7747ll6wIuLL+bz6Krze6mHslbk+F7OIxOauu2CvlZ+z38+jfXrJNDSIlIUaRURSWL0aevWC5s3jXJtSRAq9/z58+CHce2/UBnLHHbD99nDRRXGHJpKTevXydWJvaPMbNB8E//437LZb3GGJ5KSlS6F/fx9NeeCU53zxraeegiqlWT5SRNLt5Zfhq698rvQqeXfCNtvAJZfEHZZIzurRA7asu5JjPuvtsw0cfnjcIYnkrPnz4f774e1G3eH3unDVVbHFokYRkRRGjPBFf+65J861KUWkUF6eX09efDHe2+799z1B1eNOJONmzvTRlBddBA2eGgBLlmTP4lsiOejBB2HuXOh0c4CrusHuu0eLb4lIphWugbfzzvDvJp/AW29B795Qu3bcoYnkpG+/hZEj4Znjn6TK6J/hgcGq5BGJ0T33wPZLvqP50pFw001Qr15ssahRRCRJQYH3JNh3X593UkTiNX48vPmmL1ZZqxY+SqRBA/W4E4lJv37Rmupt/4Aj7oHTTvM5QkQk41au9IUqjzgCDvv9ZZg4ER55xIdyiUjGvfMOjBsHQ4ZAtZ7doH59aNs27rBEclbPnlC75hpO+a4n7L+/D6sUkVgsWuSNIs826onN2wSuvTbWeNQoIpLkxRfhm298tIhmHRCJX/fu3nng8svxObTefdcnoaxVK+7QRHLOvHle0XPuudD45ftg4UK45Za4wxLJWY8+6qO3Hh4aoEs3X7XynHPiDkskZ+XlQcOG0Hr/z+CyV3yu9Lp14w5LJCdNnerT2D147AtUe/U7ePppjRIRidHgwVD392m0WPg4XHmFTwcSIzWKiCQoHO7ctCmccUbc0YjIpEnwwgvQpQtsthl+YbnNNnDZZXGHJpKTBgyAZcugU7tFcGx/H1J54IFxhyWSk1av9h6wBx8Mx4Q3vXv6Aw9ANV3iicRh7FgYM8b77tTokwebbw7t2sUdlkjO6tMHqljg3OndvZLnX/+KOySRnLVsmc84MKRRH6rMNrjhhrhDUqOISKI33oBPP4WhQzXrgEg26NkT6tSBa64BPvnE59HSvMwisViwAO67z2fL2j1/sK+S16VL3GGJ5Kxnn4Uff4TnnwtYtzuhUSO48MK4wxLJWd27w1ZbwWWHTYLrnvORlJtvHndYIjlp1iyv1+n9jzeo8cZnquQRidnDDwNzZnNi9Yfgggu83BozNYqIJOje3fPyvPPijkREpkzxaezat4cttwQuvNP/c/nlcYcmkpMGDfKGkc7XLoXT+sIxx0Dz5nGHJZKTCgq83LrXXnByvffgo4+81bJGjbhDE8lJn38Oo0dDt25Qe0B379XTvn3cYYnkrP79YdUquOw3VfKIxG3VKu/b2rdhf2z2Kl9gPQtoxQSRyAcf+O3GG8t4PZmfD02a+L8iUm69enlnnuuuAyZM8CvN666DTTeNOzSRnLN0qV9ctmwJB054CH79VWuJiMTo5Zfhq6/g5puhSt6d0KABXHRR3GGJ5Kzu3X2q13YtJ8NTT8EVV0S9ekQk0+bPh/vvh1tbfECt8eWp5BGRdHjiCVg4/XfO+n0QduaZPp1dFlCjiEgkL8+XKrjkkjI8OT8fWrWCadP8XzWMiJTLzJkwfLjX7zRsiK8lUq8eXHVV3KGJ5KSHHoK5c+GWG1d4N58jjvCbiGRcCF4Bu/POcNaOY+Hdd73Cp1atuEMTyUnffQcjR8KVV8JmA3t45ev118cdlkjOuuceWLwYrlveHbbeGi6+OO6QRHLWmjXQowd0b3Av1ZYt9h49WUKNIiJ4J/Q33oBrry3D9WRhg8jSpX5/6VI1jIiUU79+fvLs0AGfj+CllzxBN9ss7tBEcs7Klb5Q5RFHwP9NHu6tlholIhKbd96B//3PZx6o1rNbtIjBZXGHJZKzevaETTaB606bCo89BpdeCttuG3dYIjlp0SJvFLn2yE+p+9Hrfg2p9ShFYvP88zDz+8VctPhuOPFE2G+/uEP6kxpFRPDedvXq+SjnDZLcIFJIDSMiZTZvHgwZAuecAzvthE/OvNlmcPXVcYcmkpMefRRmzIDOHVZ5zU/z5nD00XGHJZKz8vJ8FGXrfSfAa6/51JJ16sQdlkhOmjYNHn8c/vMf2GpoL6hSxUduiUgsBg+G33+HW6r28GvIDa7kEZF0CcHLrV22HkLNxfOhU6e4Q1qHGkUk5339tbdctmtXhk7obdqs3yBSaOlS3y4iG2TAAFi2LBpV+dVX8NxzcM013nIpIhm1erW3gxx8MBzz6xMwdaqPEjGLOzSRnDR2LIwZAzfcADV6d/Nz45VXxh2WSM7q3dtPiTedNxMeftiv/3bYIe6wRHLSsmU+40Cbv35L/fznfOrlzTePOyyRnPXqq/DtF8tpt7Iv/P3vcOihcYe0DjWKSM7r2dM7111zTRmePGxY0UMxa9f27SJSagsWwH33wWmnwZ574t0KNt0U2rePOzSRnPTss/Djj9C54xqsR3c44AA44YS4wxLJWd27R7Nl/W0ivPiiF2A1taRILGbPhqFD4cILoeETfaCgADp2jDsskZw1bBjMmQN5m/fyOe3KVMkjIulQOErk+vrDqb1gNnTuHHdI61GjiOS0KVPgySd9GuYttyzDAVq08PGZyWrXhlde8e0iUmqDBnnDSKdOwLffwtNPew+f+vXjDk0k5xQUeAXsXnvBycufhsmTNUpEJEaffw6jR3s/gdr9u0PduppaUiRGd90Fq1ZBp4vn+Nyv558PTZrEHZZITlq1ykdunXrQNBq8Hc1pt802cYclkrPeew/GfbyKm6yXT7+chfWj1eIOQCROvXtD1apw/fXlOMjIkd4LwczHa6pBRKRMli6F/v2hZUs46CDg/DyoVcvnSheRjHv5ZZ/B7rFHCqjSIw/23htOPTXusERyVvfuPiik3THfQpdnfKV1dRoQicX8+XD//fDvf8NOL9wFK1dGc7+KSByeeMLX+Bmzb19sIj7PpIjEJi8P2m7+FJv9NhWG3ZOVHes0UkRy1i+/+PDKiy7yxSrL5K23YNQo6NrVu+41bqwGEZEyeughmDs3GlU5ebIP47riCth667hDE8k5IXgF7M47w9mbvOALcHXu7AvIikjGffed98O58krYbGAP75CjTgMisbn3Xli8GLpc8RsMHAhnnQVNm8YdlkhOWrPGp0X/+95zaPz2Q3DBBdCoUdxhieSs//0P3nm7gK41e8B++0GrVnGHlFKprmzNrKWZfWdmP5jZepNkmtlRZrbAzD6PbremP1SR9OrXz0+eHTqU8QCrV8O113qNUfv23hAydepGbxBRPkpltHIl9OkDRxwBhx2G18bWqFEhevgoJ6UyeucdL8ze1CFQtUc3r+g588y4wyoV5aRURj17Ru0gp0zx7rBt21aITgPKR6mMFi2Cu++Gk0+GPd+8G5YsieZ+zX7KSamMnn/eOw/c13QAtmKFj6SsIJSTUhl17w7n1XmRLX/9xkdRZuEoESjF9FlmVhUYCBwDzADGmdmoEMLXSbt+EELIzqYfkSTz5vlSIOecAzvtVMaDDBkCkyb5GbhmzbTGVxTlo1RWjz4KM2b4aBGmTIHHHoN27WDbbeMOrVjKSams8vJ8FGWbbUb7QgbDhvl8k1lOOSmV0bRp8PjjPnhyq4d6QrVqcOONcYdVIuWjVFaDB8Pvv0OXqxfAaffAv/7lU0xmOeWkVEaFizk32/UP9nhnIJxxBuy2W9xhlYpyUiqjL7+El14KzNwuD7bb1XMyS5VmpMghwA8hhCkhhJXAU8DJGzcskY3rnnt8+Y8yT/s6fz7ceiv8/e9wyilpja0EykepdFav9h6wBx8M//wn0KNHhanwQTkpldDYsTBmDNxwfaB6r26+aOy558YdVmkpJ6XS6dPHO9h1PGc6DB8Ol1wC220Xd1iloXyUSmf5cp9x4Oij4eCP74MFC6K5XysE5aRUOq+9Bl98AUP2G4gtWlTR1vZRTkql07MnnLLJGzSc9Sl07JjVHetK0yiyPfBzwv0Z0WPJ/mpmX5jZa2aWspuEmV1qZuPNbPzcuXPLEK5I+S1c6HPAnnYa7LlnGQ/StSv88QcMGJDpYWBpy0dQTkp2ePZZ+PFHv5606dPgkUe8wqfMi/1klM6RUul07w5bbgltm74Nn3zihdnq1eMOq7SUk1KpzJ7toygvvBC2e6y3P1jmuV8zTuVWqXQefhjmzIFbr1sM/fv7POkHHhh3WKWlc6RUKoWjRHbfYQkHvj8Ajj8eDjgg7rA2hHJSKpWZj+eT92QTBm7aAXbYAc4/P+6QilWaRpFUNb4h6f6nQOMQwv7AvcCLqQ4UQngghNAshNBs6wowB65UTr17e3tGmad9/fprGDQILr0U9t03rbGVQtryEZSTEr+VK+G223zGgZNPBnr18g0VZx5YnSOlUvnwQxg92pfMqtW3G2y/PbRuHXdYG0I5KZXKHXf4iMqbW89a2zqy445xh1VaKrdKpbJ4sVfA/u1vcNhXg+G33+CWW+IOa0PoHCmVyujRUGNsPp/Pb4TNm1dh1vZJoJyUyiM/n61at6IJ02g470ufVadGjbijKlZpGkVmAI0S7u8A/JK4QwhhYQhhcfT/V4HqZrZV2qIUSZOffoK+feG88+Cgg8pwgBC8pmjTTf0qNfOUj1Kp3HMPTJ7seVnllxkwdChcdBE0alTyk7ODclIqjTVr4Oqr4Yyt8rn5ngbw/vveIz1D62aliXJSKo2JE+G7wfn8WrsJOw+42ltHOq63Bms2Uz5KpdKjB+z2Sz7v/tgY69EdjjkGmjePO6wNoZyUSmPlSnjqsnxetVZssvR3qFLFH6xYlJNSOeTns+a4VtRcs3TtY0OHQn5+fDGVQmkaRcYBTc1sJzOrAZwFjErcwcwamPkcQmZ2SHTc39IdrEh53XijT2fXs2cZDzB6NLz5pk+fFU/ru/JRKo05c7xt8YQToGVLfBhXQUFFq/BRTkqlMXw4bP5ZPk8ubEWVX+f4g02bxhpTGSgnpVIIAYZfmM/LoRX1F02DkSN9Lbtddok7tA2hfJRKY8oUGN8nn9ertqLmnOm+0vrxx8cd1oZSTkql8cLV+Qz5pRW1QlQJW1Dg09lleSVsEuWkVHz5+YRWrai6Yum6jy9blvU5Wa2kHUIIq83sKuANoCrwcAhhkpm1jbYPBk4HLjez1cAy4KwQQvKQL5FY5efDc89Bt2g2kA22ciVcdx3svjtceWXa4ysN5aNUJp07+3ny/jPzodEF3kpy4YW+qHMFoZyUymLBAhh9Qz6vVmlFtZUJBdrTT4dXXoEWLeILbgMoJ6Wy+OCOfO78vBW1ScjHDz7wAq3yUSTjHmmdzwurWlEzMSc7d4b991dOimTY/OfyOXFI0jkSYOlSr4StIGVX5aRUCm3aYEuXpt62dCm0aQNTp2Y0pNKyuHKpWbNmYfz48bG8tuSe1avh4IN9kfWvv4ZatcpwkLvuguuv99Ei5egVZGYTQgjNynyAjUQ5KZk0YQL85S8w8PR8Lh/dyk+WAI895vPbZYjyUcQN/nc+5z/TijrJF5cAtWtn7OJSOSkCK9/IZ/Vxragd4s1HUE6KAHzaL5/db9A5sijKR8m0eXWbsNXiaUXv0LhxRiphlZMisPjlfKqclKKRErK+3Fqa6bNEKrwHH/R5mfv1K2ODyK+/wu23+xw/FW+YtEhWCQGuuQZO2Tyftq8kNIgAXHZZVg+vFKmMvv8ejnumTerKHljbw0dEMmLpWW1SN4iA8lEkw1avhgY36xwpki0mTIAzFw9jZbUiKnZq14ZhwzIblEgO6/peC07nWQK27oYMN4iUhRpFpNKbPx+6dPE8PPXUMh6kSxcv8N51V1pjE8lFTz0F1T/K5+mlrbBlRQx5VsOISMZcdx1cUWsYoVbt1Dvo4lIkY2bOhHOWD2N5VeWjSDZ44AE4d9UwVtdUTorELQS4+mqYtE0L7PDD19+hAlTCilQm330Hd98NV+7/EUaAmjV9QwXJRTWKSKV3++2+Dt6AAWBW8v7r+eILeOghX0dkzz3THp9ILlmyBDp0gCdqtKH6SvW4E4nba6/5rJAt7miBXfqf9XeoIAVakcqiY0d4N7Rg/vCXoUrSpZryUSSjCjvXWYsWVH1wyPo7KCdFMuqpp2DsWBja5kOq578J55zjeQjKR5EYXH897LPJDxz/TV84/3y/uGzcuMLkohpFpFL7+msYONBn5NlvvzIcIARo3x622AJuuy3t8Ynkmt69YcYM+K3PsLUF2GTqcSeSEatWwbXXQtOmcPW5v8Gjj8IBB+jiUiQmH38Mjz/uF5gNN18CBQVQvbpvVD6KZFzXrvDHH1Hnumee9nmYC+diVk6KZFRh57q/HLiaE167Eho18qFcr7xSoSphRSqLws51Ixu1x2rWhF69PAenTq0wuahGEam0Ctsz6taFO+4o40Gefx7GjPEDbLFFOsMTyTnTpnmjyFlnwb5Xt4Cbb15/J11gimTMwIE+5Pmuu6DGHbfAwoXw2GO6uBSJQUGBr7fVsCHcfO1yL8TuuadfbSofRTJu0iQYNCjqXDfjVc/BO+5QTorEpLBz3YgjBmETJ3prZZ06Fa4SVqQyKOxc95/tXmGXb0Z7J/Lttos7rA1WLe4ARDaWl1+Gt97y+e222qoMB1i+HG64AfbZBy69NO3xieSaDh18CrtevYBly2DoUGjSBH791afMUoOISMbMnes9YI89Fk5o+BkMGQLt2vk5D/ziUkQy5rHHYNw4/3fTB+6CKVO8IHv00cpHkQwLwSt7NtsM7rxlBRzVHnbf3RczqFFDOSmSYYWd69qeMptdhnXxAmyZF4wVkfK67z6Y+t1yJmzXHvbYw68jKyA1ikiltGKFLxy7115w+eVlPEj//l7gffttqKZUoElqSAAAIABJREFUESmP99+HZ57xStgddwRu7+359e67vkObNj5llhpERDKiSxefhqD/XQG77GrYcktfhEtEMm7RIl9L5NBD4ZzDf4a98uC007xBREQyrrBz3T33wJaPDYDJk32ekBo14g5NJCfdeKN3rutbpYN3Xr333jIuGCsi5fXrr37ZOLjpXdSZ/CM88maFPT+qplcqpbvvhh9/hDffXDsV8wb55RfIy4OTT4Z//CPt8YnkkjVrvGPdjjt6gZaffoKePeHf/17bCKIedyIZ8/nnPgXzNdfAnp89CR9+CA8+CPXqxR2aSE7Ky4PZs+Gll6BKxw4+l1a/fnGHJZKTEjvXtT3pF9j7TjjpJGjZMu7QRHLSe+/Bs8/CsIs+oM7Dj0GnTr4gnojEoksX2GLxz1ywMurEc8wxcYdUZmoUkUpn9my4Myq7ljk3O3XySfL69k1rbCK5aOhQ+OILePrpaP3m666DKlWUXyIxCMEbQ7bcEm69dhEceiM0awYXXRR3aCI56YcffHDyhRfCIcveg6ee8nmZmzSJOzSRnDRgQELnus4dYPVqT1IRybg1a7zculOj1VzwyZXey65Tp7jDEslZn3/ufekmNL2BKtMrficeNYpIpdOpk/fwKXNujhsHjzziCyDsumtaYxPJNX/8AZ07w+GHwxlnAK+/Di++CD16wA47xB2eSM4ZOdKnsxs8GLYYlAezZsHzz3tDpYhk3A03+IwDPe5cDa2iYZUdOsQdlkhOmjULunWLOtfV/gieeMILsjvvHHdoIjmpsHPdpxcOpMojX3qZtU6duMMSyUmFnetOrvsuB37/jM+hVcE78ahRRCqVceN8WYIyt2cUZvm223oBWETK5Y474LfffEo7W7nC59HabTdfvVJEMmrZMq+A3W8/uOTIydDuLu+efuihcYcmkpPeesunzOrRA7YbNQQmTvSWy9q14w5NJCd16gQrV0K/3mvgrKu8A8/NN8cdlkhOKuxcd0rzWRzwwq0+hd0pp8QdlkjOGjkSxr6/ijkNr4b6TaK50Ss2NYpIpZGW9owRI+Djj+Ghh2CzzdIan0iu+fZbXwPvkkvgwAOBnv19ocrXX4eaNeMOTyTn9O0L06f7YMiq17eHTTbx9X1EJONWr4b27WGXXeDa8+fBvl18HbvTTos7NJGcNG4cDB8ON90Eu455yOcIeeop9UoXicntt3vnuqHNO2DLl8M992hxdZGYLF3qneu6NxxI/V8m+ewftWrFHVa5qVFEKo0nn/T2jIcfLmN7xpIlXgo+6CBo3Trd4YnknOuu886u3boBM2b4Yj+nnALHHht3aCI55+efvTf66afDUUtGw6uveitJgwZxhyaSkwYPhq+/9mvKmnfeAgsXRsMqVeEjkmkh+GDmBg2g8+Xz4eDOcOSRcOaZcYcmkpO++Qbuuw96t3qf+i8/DrfcosXVRWLUty8snz6Ha+vc5vU5J50Ud0hpoUYRqRQWL/Yps5o185lAyqRPH6+4ffJJqFo1rfGJ5JpXX4XXXvO1fbbZBjjrBigogLvuijs0kZzUsaNX+vTptgJatYc99oB27eIOSyQn/fYb3HorHH00nLTDp/DAAz7cee+94w5NJCc9+ST8978+DXPd3l3g99/VK10kJiH4TMub115F+x+uhMaNNY2dSIx+/tknFxjdpCPVZi6rVJ141CgilUKvXvDLLz7HXZnWip0+3Q9y5pm+IrSIlNnKlV6Q3X13uOoqID8fnn4aunaFnXaKOzyRnPPRR17h06ULNHmhP/zwA7zxhq/uLCIZd+utPjCk/10Ba9sOttoKbrst7rBEclJi57oL9v8CLh4MV1zhC3CJSMa9+qoXU/NPvo9qL30FL7ygtbZEYnTTTfCXNf+lxdThfsLcffe4Q0obNYpIhTd1qg/yOPdc+Otfy3iQm27yf3v3TldYIjnr3nvh+++9QFvDVnnLSJMmfgIVkYwqKPApQbbfHjqePxMO7ObT2P3zn3GHJpKTvvzSp8664grY54snYOxYGDoU6tWLOzSRnNSzZ9S57tlAlWvawRZbwB13xB2WSE4q7Fx32C6zOPLd2+C44+Dkk+MOSyRnffghPD1iDdO3uwqsoU9lV4moUUQqvBtu8NmuyrxW7Ecf+SJ6Xbr40EwRKbM5c/w68vjjvQxL//vWTppeCRbiEqlohg+HTz+FJ56A2rfd6Ks79+sXd1giOSkEnyWrXj24/YZF8NcO8Je/aC07kZj89JPPk37uufDX6U/DBx/AkCHeMCIiGXfPPTB5MuS3uBH7eYWmsROJ0Zo1Xm69vt7DbD9rgl9Q1q0bd1hpVaqJhsyspZl9Z2Y/mFnHYvb7i5mtMbPT0xeiSNHy8+G553yKyR12KMMBCgo8y7fffu1okSynfJRsdsstsHRptHTI7Nk+HUjLlpVmIa5UlJOSrRYu9PPj3/4GZ+/wAYwY4SO2dt457tA2KuWkZKsXX/Sy6513Qv1B3WDWLB9eWaa5XysG5aNksxtv9M51vW9d7D3tDjoILr447rA2KuWkZKvCznU3Hfoe2+c/4fUzu+4ad1gbnXJSstXw4fDTp/O5c/XNvszA2WfHHVLalThSxMyqAgOBY4AZwDgzGxVC+DrFfr2ANzZGoCLJVq+G9u19cMf115fxII88AhMmwGOPQZ06aY1vY1A+Sjb79FOfAaRwPREuvAlWVO4ePspJyWbdusGvv8LoUWuwy9pBo0a+4nolppyUbLV8uZdX99kHLj3qezigv48Qad487tA2GuWjZLPCznXdukHDR3rAzJnwzDPeSlJJKSclm3XuDKuWruL23670qZcreZkVlJOSvRYsgE6d4MEGt1Lj19+9E08lrNMpTbekQ4AfQghTQggrgaeAVJP6tQOeA35NY3wiRXroIZg40Yc8l2lWnkWLPMubN4dzzkl7fBuJ8lGyUuGUIFtt5TPR8dFH8OijXgPUtGnc4W1MyknJSpMnw4AB0KYNNPv0Afjii/9n777Dqyi3BQ7/JgkBAtKLhSogYAMBAVGESIfQRClSA4hIl96LNEW6gPTQe5PetwgI0osgvRfpPSF17h8ruSDlmED2np3Mep/nXE2yJyzvOcuZ+db3rSVts+L/oErNSeWWhg2TVj3Dh5l4tW8jD68v3Ps1ztB8VG4panNdlizQrvIJeaGsW1eOVsZvmpPKLe3eDZMnw9xPfibh8UMwYoQdnllBc1K5qX794LWr+/n86i8YzZpBnjxWh+QU0SmKvAGcf+zrC5Hf+3+GYbwBVAXG/q9fZBhGE8MwdhmGsevatWsxjVWp/3frlrTpKVYMqlWL4cUOhzwBf/ONtPcZMSIutS2ItXyM/KzmpIoVc+fKEK7+/SHFK+EyXD1DBtnyE7/pPVK5pbZtIVEiGNj+htwwfX3hC1ucttecVG7n4kW5P1atCiWClsOqVdC7N6RPb3VozqbPrcotTZjwaHNdoq5twdsbfvzR6rBcQe+Ryu1Eba57J+UlKu7uBRUqQMWKVoflKpqTyu0cOwYjhpvMS98CI1Uq6WsXT0VnJfhZ52PMJ74eDnQyTTP8f/0i0zTHm6ZZwDTNAmnTpo1ujEo9pU8fKYyMGBHDE1wOB/j5wdmz0lu9VKm41rYg1vIRNCdV7AgMlJ7MH3wADRsiAyr37ZNd6XGgLd1L0nukcjurV8Py5XJqK/2oHnL+OR63sXuC5qRyO126QGgoDOn/ULan584tmwfiP31uVW7n5k25PxYvDp8nXgXLlkHPnvDaa1aH5gp6j1RuZ+5caTKwOHsHjNDQF1jkidM0J5XbadcO6nnN4q0rW2DgQEiZ0uqQnOY/Z4oglcqMj32dAbj0xGcKAHMM+RdXGqC8YRhhpmkuiZUolXrM4cMwahQ0aRLDE1xRBZHAwEff27JFvu/rG+txOonmo3I7gwbBhQswaxZ43rwmp0N8feHLL60OzRU0J5VbCQ2VuT7Zs0PrYvug8zhZfH33XatDcxXNSeVWtm+X0XVdukDWxUPh1ClYuxYSJLA6NFfQfFRuJ2pz3cifgjG+ag1vvSXb1O1Bc1K5lQcPZHNd4+y/kX3HLClQZstmdViupDmp3Mrq1fDb8ntcTtYB3i0Ques1/opOUWQnkMMwjKzARaAm8K8BDKZpZo36e8MwpgDLNUGVM5imbLB75ZUYnuB6VkEEIChIvr98eVwpjGg+Krdy7px0G6hRA4oWBZp0k3k98XQQ1zNoTiq3MmYMHDkCS3818W7XElKlkjY99qE5qdxGRISstb72GnSrfwHyRfbQKlXK6tBcRfNRuZXDh2H0aOmi/N7GETKAa9UqaZ9lD5qTyq0MGgT/XAhleBb7DFd/guakchuhobLeOjRlX5LeugyjFselUQMv5D+LIqZphhmG0QJYA3gCk03TPGQYRtPIn/9n/1elYsvy5bBunQyPjdGJQH//pwsiUQID5ednzsRGiE6l+ajcTceO8tdBg4CdO2HiRLmTvvOOpXG5iuakcifXrkGvXlC6NPjdmy2nISdMiNdHnp+kOancyYwZsGMHTJsGSXp3kCrJ0KFWh+Uymo/KnTy+ua5fs0vwUV+ZW1C2rNWhuYzmpHInZ8/KO2RA3pEk2XcYli6FxImtDsulNCeVOxk9Gjh6hEZew2WNNG6NGnghhmk+2a7ONQoUKGDu2rXLkj9bxU3BwdL9w8tLBuPFqOvA806KAPj4uPSkiGEYu03TLOCSPywGNCdVTG3eDJ9+KouwvXtGwEcfydPtsWOQLJnV4UWL5qOKT779VmogB7fdJ3eVnLI9/c8/wdPT6tCiTXNSxRf37kHOnJApE/wxcBMenxWXtiB9+lgcWcxoTqr4YtkyqFRJxhW02lkX5s2ToyNxqFWP5qOKT2rUgN1LL3LMMxcevsUlSeMYzUkVX1y7Bjmym2xIUJZ8YX9iHD0K6dNbHVaMxTQno9M+Sym3MHIknDghPe5i3IbZ1xdatYIffvj3911cEFEqvggPl5TKkCHytMiUKY+2w8aRgohS8cn+/TB+vIwPyb2oP1y6BAsXxqmCiFLxyYABcPkyLJ4fhkezVlId6dTJ6rCUsqXgYJm3lTs3NMuzFVrPgK5d41RBRKn45PffpS554N32eByPHK6ulLJMjx7w2f1fyR+xVlrzxMGCyIvQooiKE/75B/r2lcMeZcq8wC84e1Yarb/zDpw+LSdGtCCi1AubPBn27YPZs8En+JYs9Hz8MdSpY3VoStmOacrcgpQp4fu6x6HIEKhfHwoXtjo0pWzp5EnpklWvHhTaN06OOC9YIM+eSimXGzFC8nL1inC8vmsJb7whRRGllMtFba6rntbBe3/Nkdl3b75pdVhK2da+fTBtXBDnk30Hmd6F5s2tDslltCii4oSuXeHhwxdswxweLm+lERFyJPPMGemPFxCgBRGlXsDt29CtG3zyiRx7plVPuHkTRo2yy3B1pdzKwoWwaZPU/pP3/g4SJXr6ZKRSymXat5dTzT92uA6f9oDPPoPPP7c6LKVsKWpzXcWKUOb8RNi7V3b1JElidWhK2dKkSXBofyib3mgOWbM+GlKplHK5qM11vRIPIvXdM/CzQ2YW2IR9/klVnLVzp9QvOnSAHDle4BcMGSLnMydPlptu1qxxYqi6Uu6qb1+4fl1a2RkH9stKbNOmkDev1aEpZTtBQbIA+/770OSNFbBiBQweDK++anVoStnS+vWwZAkMHAivjuoOd+9KD1jdNKCUJbp2lfZZw3vehLLdZCBejRpWh6WULUVtrhuRdQTJT/8tm1ZtNlxdKXeyYAGc/f0M7RL8IPfG4sWtDsmltCii3FpU1TJdOuje/QV+wb59cmHVqtCgQWyHp5TtHD0qazuNGkG+D0z4tIX07Onb1+rQlLKlIUOkQ6RjdTCeLdrIZOeWLa0OSylbCguDNm2kC8h3xfdCkfHSI+Sdd6wOTSlbitpc17EjvDmlJ9y6pUVKpSz0/feQ6PoFvnnQW45v+flZHZJSthW1uW5ysrZ4hnnIxjqb0aKIcmuzZ8O2bXLEMsazmx8+lPkGqVPL9Fl9+FXqpbVtKy3R+/UDZs2CLVskv1Klsjo0pWznwgXZjV6tGhTfOwxOnIA1a8Db2+rQlLKlcePg0CFYvMgkYfuWkCaN9EpXSrlc1Oa69OmhR6X98Okv8O23kCeP1aEpZUvnpjpoPcyfJq9lxfNWuA5XV8pi85s52HGuJum5CgMGQIYMVofkcloUUW7r1i1pmZU//wse8ujSRd5MV66Ul1Kl1EtZskTSafBgSJ/4rmwr+PBDOTailHIp04TvvpOxWUPbXYRS/aByZShd2urQlLKly5ehRw8oUQIq358JW7fCxImQIoXVoSllS1OmyOa6yZNMknZtJSebv//e6rCUsqWIDQ7SNfQjEYFw+aws8GTNanVYStnWxRkOvpjihw+BsoE8Xz6rQ7KEh9UBKPUspglNmsDVqzB2LHjE9H+p69fD8OHQrBmUK+eUGJWyk0uXoHFj+OCDyM48338vkytHjXqBBFVKvaypU+H6AgdXEmchU4/60rdn6FCrw1LKliIioH59KPjAwapDmTDatIYCBcDf3+rQlLKlEydkB+zlhFmof7KnzJfs319PNitlBYeD8HJ+JIoIfPS9efPA4bAuJqVsLGydg1T1IwsiIAuwn39uy5zUlSzllgICZOBPv37yThkjN2/KzoOcOeGnn5wRnlK2EhEB9erBh/cd/HklC94zA+S4c6NGULCg1eEpZTvHj8O8bx2s8vAj+e2zsGEDVK8ugwyUUi43bBiErnOwDD8S/HNenkX9/XXTgFIWCA2FIX4OFjz049Xgs3gM7A/Zs8vuHqWUazkchJf3I0Fo4L+/Hxgo80RsuAirlKUcDiLK+5E4QnMStCii3NCxYzKT0tdX2mfFWPPmcOUKzJghww+UUi9l6FAI3+BgqelHgktn5aUyYUIZZqCUcqmQkEeLPf/acbdgge0eYpVyB3v3wupODlZ5+pEg5LGc7NBBc1IpC0xt4GDw0Sd2wJ4/L6dFlFIuFVHfH8+Hgc/+YWCgnqhUysUe1vLHO0xzMooWRZRbCQmBr76S9dZp015gg92sWTBnDvTq9QJHTJRST9qzB9Z0fmKxJyJCkvWvv6wNTikbmtrAwZBjjy32RAkKsuXuHqWs9OABDK/s4NcIPxKF6447pay2b5iDWrP8SPLkPTI4WPNRKQsMyxPAA56zUdXHR1qEKKVc4uZNqBceQCgJnv0BG+akFkWUW+nZE3bvlrmUGTLE8OJz52SGyEcfQefOTolPKTv5n4s9oaH6cqmUizkcUGq2/9OLPVFsuLtHKSu1bQt9zvvjY2pOKmW1mzchTQe9RyrlLhYvhvbLfTmeq+LTP/TxgeXLpT2IUsrpTBO++QbO3XoFT49w8PT89wdsmpNaFFFuY+NGGDRIBqxXrRrDiyMiZI5IeDhMnw5eXs4IUSlbadMGvr+giz1KuYMbN6BuXeiVMQAzse64U8pqixfD+PGwrlYAJEr07A9pTirlEqYp75D+BBCeSO+RSlnt4kXpuNzkrd/Ic3SebKaLam1u08VXpaw0eTKsXPCAlSlr4/H667BokeYkWhRRbiJqseett2R+QYwNGyZbaIcPh2zZYj0+pexm4UI5sbWuVsDzZ/Poy6VSLhG12HP1KrRe4otRvtzTH7Lxw6xSrnbhgiz2FCgA9cd+BK+//vSHNCeVcpnJk+XZtfRAXzz7ff/0BzQflXKZ8HBZ20kYdJtR9+phZM8uLc6XL4fMmTUXlXKxo0dlbvPc19uS8sZxmVVQqZLmJFoUUW7ANOXF8to1mD0bkiSJ4S84cAC6doUqVaBhQ6fEqJSdnD8PX38dudgzxRcmTHj6Q/pyqZTLTJwom3kGDIB8l1fIyk/Vqrq7RykLhIdDvXoyomDWLPDu2h5OnZIE1ZxUyuWiFntKlIB29a7BkCGQMSMkTiwf0HxUyqUGD5b9qr+/35wEVy/BzJmyyOPrC2fOaC4q5UIhIVC7NnzusQS/S+MxOnR4lIOak1oUUdabMAGWLIGBA+GDD2J48cOHUKcOpEwpPQwMwykxKmUXUYs9ISGRiz2EwIgR8iCrL5dKudyRI9LKrmRJaFvzkrSKzJNHElR39yjlclGLPT//DDkO/wqjR8N330GXLpqTSrlYSAh89ZU8ok6dYuLRsIEMF1m2DFas0HxUysV27YLu3WF4wVlk/3MW9O4NH35odVhK2VaPHnBx92UmGo1lwbVvX6tDcis6eEFZKmqxp1QpeZ+Mse7d4eBBedhNmzbW41PKbgYNgt9+kzYEOXIAHbrBjh2wYAGkSiUzRAIC9OVSKRcIDn5ssWdyOB7168osnzlzZIZB1O4epZRL7Nwpj55ffgkNSl6AvA0hXz7Z2QOak0q5WPfusGePbLB7Y8EIWLlSKpZ58sgHNB+Vcpn79+W5NV+ac7Q80gyKFIHOna0OSynb2rABBg+K4ECGBiS8ESintry9rQ7LrUTrpIhhGGUNwzhqGMYJwzCe+reaYRiVDcM4YBjGPsMwdhmG8Unsh6rim+BgqFVLNqBPnQoeMT235HDIAJKmTaFCBafE6I40H5Wz7NgBPXtC9eqyGZ1Vq2RL7LffQrVqerzyOTQnlbN07w5790qR8vXpP8LGjbLYkyuX1aG5Nc1J5QxRiz2vvQbjxoRj1Kkt29TnzIGECa0Oz21pPipnWb8efvpJXgUrZ9wDHTtKj/Tmza0Oza1pTipnad0aTh0PZ036enhEhMP06eCl+7D/i+akcoYbN6QDSN90P/POhbXSWjJ3bqvDcjv/+W8owzA8gdFAKeACsNMwjKWmaR5+7GMbgKWmaZqGYbwPzAP0jV39T926wb598Ouv8oIZI7dvQ/36kD27LNrahOajcpZ79x4t9owdC8ali3IXff99KT6qZ9KcVM6ybt2jmmSlNH9IxbJmTTmtpZ5Lc1I5S6tWMjrE4YCUY/rD77/LoMocOawOzW1pPipnuX5dHlNz54Yhfe7DJzUhXTrZRaDtlJ9Lc1I5y/z5kn4rPxtKio2bpLPAm29aHZbb05xUzhA1tzn91YN09ugEfn6yg0A9JTpl24LACdM0TwEYhjEHqAz8f5Kapnn/sc8nAczYDFLFP2sjC5XNmsmGnhhr3hwuXYI//niByexxmuajcopWreD0aWmdlTJZOHxeR9r0zJ0rbXrU82hOqlh37ZrU/XPnhsHdb0ORryBTpsiKpS72/AfNSRXr5s2T9Z3u3eFTYzP06SMz7erWtTo0d6f5qGJd1GLPjRvSLcunU0s4cUIqlqlTWx2eu9OcVLHu3Dlo0gRqv7OPspu7SYeB+vWtDiuu0JxUsW78eFi15CHnX6uNR3hymDRJ3yGfIzoNi94Azj/29YXI7/2LYRhVDcM4AqwAGj7rFxmG0STyuNeua9euvUi8Kh6IWux5++0XPOQxZ44MmO3ZEwoWjPX43Fys5WPk5zQnFXPnwpQp0LUrFC0K9Osn1ZHRo7VNz3/Te6SKVaYJjRrJYs/sWSY+bZrAxYswezYkT251eHGB5qSKVVGLPYUKQc8WN6F2bdn9OmaM1aHFBfrcqmLduHHSaeCHHyDv4VnyENu9OxQrZnVocYHeI1WsCg+X/QFeoUFMDq6NkSaNJKkuwEaX5qSKVX//LfOaZ2buStrLB2VXT7p0VofltqJTFHnWv82eqkyaprnYNM1cQBXgmePsTdMcb5pmAdM0C6TVodi2ZJrQsCHcuiXrO4kTx/AXnD8vvUQKF5YVXPuJtXyM/JzmpM2dPQvffCMp1bMnsGkTfP+97IDVHT7RofdIFavGjoVly+DHHyHPzonSj6BfP1mRVdGhOaliTXi43A4jImDWTJMETRvBP//IBp1XXrE6vLhAn1tVrDp8GNq2hTJloLXfSWkH8vHHkQ+xKhr0Hqli1Q8/SDfJ34t0xvvEYSlS6omtmNCcVLEmam5zhQRrqXZ2mHTYKV/e6rDcWnSKIheAjI99nQG49LwPm6b5O5DNMIw0Lxmbiod++QWWL5fFnvffj+HFEREy/Tk01M5DuzQfVawJC3u02DNzJiS4c10Gi2TLJjtgdYdPdGhOqlhz6JAs9pQtC61KHpaJlSVLQocOVocWl2hOqlgzcCBs3iwHJ99cOxaWLJEVoPz5rQ4trtB8VLEmOFgeU5MmhSnjQ/CoXQs8PeUh1p7vhS9Cc1LFmj//hF69YECxNeReN1KeW0uXtjqsuEZzUsWarl3hwv7rTPdqIH2Yf/rJ6pDcXnSKIjuBHIZhZDUMwxuoCSx9/AOGYWQ3DFk9MwwjH+AN3IjtYFXcdugQtGsH5crJ/IIYGzECNm6EYcNkwLo9aT6qWDNwIGzZIvWPN7OaUnS8fl2ap+sO2OjSnFSx4uFDWex55RWY8ksQHl/VlJWfadPAIzqPayqS5qSKFdu3Q+/ekpd18hyUXgRly0KbNlaHFpdoPqpY06UL7N8vnUBeHd0Ddu6UPumZM1sdWlyiOalixd27cn9877XrdDrSQHqjDxxodVhxkeakihVr18LQoSbr32xConvXZeRAjFvz2M9/bqkwTTPMMIwWwBrAE5hsmuYhwzCaRv58LFANqGcYRigQBNQwTVOH/6j/9/ChHONKlkweZGO8Af2vv+RJuFIlmaxnU5qPKrZs2yZzYr/6Sk6LMHQYrFgBP/8MefNaHV6coTmpYkvnznDggKRh+p/aw8GDsGoVvPaa1aHFKZqTKjZELfZkzAhjBgdilKgBKVPC1KlapIwBzUcVW1avln1xLVpIWxAGDZLWWZ9/bnVocYrmpIotLVvCmdMmVz79Bo8/bsDqVboA+wI0J1VsuHoV6tWDnq9PIu+pxXJCRNd0osWwKpcKFChg7tq1y5I/W7le69YwcqQs9sSopZ3DIbvXvbzg/n1ZJIrjQ4IMw9htmmYBq+N4kuakfdy58+geuW8fJD+2U/ox+/nBwoW55t9EAAAgAElEQVS2apul+ajcwapVcm9s2RJG+i6WRZ527WDwYKtDcznNSeUO6tWTjjybN0ORKU1g4kTZgleypNWhuZzmpLLa1avSdjltWtix7AqJC+eBNGnkpIjNFmE1H5U7mD1bNg4srhRAlaUNpUhp01avmpPKaqYpe8dPrTnOQc+8eBQpDOvW2XYTT0xzUptvKqdbtUoKIq1avUBBxM8PAgPl6/7943xBRCl30Lw5nD8vQ/GScwdq1JDd6JMm2aogopQ7uHJFav/vvguDWp6HQo1kXsGAAVaHppQtzZolo+t694YiF+fDhAlylMuGBRGlrGaa4O8Pt2/D+rURJG5aX3b3rF9vu4KIUu7gzBk5pPVFvlNU3tgKiheXgXhKKUuMGQOrl4dyPlNtPO4l1FPNMaRFEeVUUYs9770nw9Wj7cmCCEhR5KOPwNc3tsNUyjZmzJDdr336QJGPTKjZBM6dkwpJypRWh6eUrUQt9ty5AxvWhJGoUW0IDYU5c8Db2+rwlLKd06fh22/l8GS32megwNdQqBB8/73VoSllS6NHw8qV0t313XXDYM0a+OUX2UmglHKpsDBpu+xphjHdqIvh6SkLsJ6eVoemlC399Re0bw/Ts/Xh1ZM7Yf58yJDB6rDiFC2KKKeJWuy5e1fmoydKFM0Ln1UQAfnazw+WL9fCiFIv4NQpaNZMFnu6dkV2v86bJzvSixSxOjylbOfnn+U05c8/w7tL+kmvnunTIXt2q0NTynbCwqB2bfn7GQGheNX7Sh5mZ8+GBAmsDU4pGzp4UBZ7KlSA5oV2wcddpL3kN99YHZpSttS/P2zdCvu++IFEC/6Qo5WZMlkdllK2FDW3uWSiLdQ4PVB2o3/xhdVhxTlaFFFOE7XYM3o0vPNODC7093+6IBIlMFB+fuZMbISolG1ELfZ4eMhJEa+/D8qwn1KloFMnq8NTynYOHICOHSMXe97dBCX6Qt26sgVPKeVy/frBtm1SA8kypbd8MWcOZM1qdWhK2U5QkMwsSJECAkbcxShTE159VTb0aKtXpVxu61Y5NNmr3A7yLO4tCVqrltVhKWVbnTrBub/usCNdHYwsWWRmgYoxLYoopzhwQGZtVawobQhiZOJEKFMGIiKe/pmPDwQExEqMStnJ99/D9u2y2JM5zQMoVwOSJ5dd6dpzUimXCgqS98gUKSBg8A2MUnXgzTdlF4FSyuW2bIG+fWXAes10G2HgQGjUSGZuKaVcrmNHaQuyejWk7d1cettt2gSpUlkdmlK2c+eObK7LnekBPY7Vgddf12dWpSy0cqXUQHbmbE7iExfg1y3wyitWhxUnaVFExbqoxZ5UqV5gbrNpSh+8iAjppx4S8uhnPj7aOkupF7B5sxx3rl8fatYEGreGI0dg7VpIn97q8JSynQ4d4PBhWL3KJG3nRjKAa9s2fZhVygK3b8sBrSxZYHTva/BxHciZE0aMsDo0pWxpxQoYNQq++w7KXJkmA/H69IFPPrE6NKVsxzRlk+uFC3CxYjs8fz0hvdFTpLA6NKVs6coVaZ7TMeNsChydCb17Q+HCVocVZ2lRRMW69u1lsWftWkibNoYX//gjjB8PnTtD6dKPZotoQUSpFxK12JM1q7S0Y/ZsqVZ27QolS1odnlK2s2yZbK777jsoc3IM/PorDBkC+fNbHZpStvP4Ys/WLSZJW/rDzZvS/zVJEqvDU8p2/vlH2qLnyQM/NDwGhZvBp59Ct25Wh6aULc2YIa+Pc2ovI/3McXKMq3hxq8NSypYiIuQemeLOWQZ4fwsffaT3x5ekRREVq5YtgzFjoF07GVUQI7NmQZcu0p+yf39p6bN8uZRBAwK0IKJUDJkmNG0Kly5JH9hXrpyAJk1k0nqfPlaHp5TtXL4MDRtGLvZ8dQA+aQflykGbNlaHppQtTZ8uY0P694dC20fIFvWff5YkVUq5VNRiz4MHMHtKMN71a0HChDIMz9PT6vCUsp2TJ6F5c6hU6ArV1zaCvHmlJ7NSyhI//wxrV4dzPntdPK9ESNXSS5f1X4b+f0/FmqjFnrx55eUyRjZtkuJHsWIwefKjGQe+vjpUXakXNG0azJ0r+VgwTzAUqQEJEkgBUm+eSrnU44s9cyY9wLtuTUiZEqZM0bk+SlkgarGnWDHoVGoPfNwRKlWSbyqlXG7kSFizBn75BXJP7wp79sCSJZAhg9WhKWU7oaEyR8TTw2ROkkYY9+5JgTJhQqtDU8qW9u+Xg1oBuQfx+t+b5R3yzTetDivO07dwFSsiImRewYMHcrwyRvfKw4ehShXIlg0WL9YbrVKx4MSJxxZ7OiH/Z88eKTpmymR1eErZzvDh0lZy2DDINbaNzPWZPh3SpbM6NKVsJzRUDiZ7ecGMsffxrF1TcnHy5BgOw1NKxYZ9++RRtXJl+CbTKhg6VB5kK1e2OjSlbOn77+HPP2H9l+NIvHEFDBoEb79tdVhK2VLwagdpPsxC60RjqXu8J1SvDvXqWR1WvKBbhVWsGDQI1q2DceMgV64YXHj5srQOSZRI+jenTOm0GJWyi8BAqFVLDoVMnw6eK5bKwNiWLaUAqZRyqR07pDtk5crQJPlcmDhRZmfpXB+lLNGtm+Tl/PmQ4YcWcmxk40ZIndrq0JSynTt3pEiZOjVM6ncZ47P68N57MHiw1aEpZUu7Bzto1M+fzEX7kH9mWyhTRk9RKmURc6MDKvrxRlggP4Y1w0idGsaO1U08sURPiqiXNm2aLPbUrAlffx2DC+/fhwoV4MYNmR2SObPTYlTKLkJD4csvYfduOVGZkfPSmu6DD+Cnn6wOTynb+ftvGFDKwcnwLEwrNwvjmyZQqJD2ZFbKIiNGwM6fHFxPmoUv9naDqVOhe3c5WqmUcqmgIKhYEd445uBkeGZS1/eTd8S5c2XTnFLKpY6Oc5C7gx9ZOEujLQ1ll93j7c2VUq7jcBBa1o+EYYEAGKYJ9+7J8UoVK/SkiHopy5bJHJGSJWUBNtrFyrAwOfJ14AAsXQr58zszTKVsISJC8nHlSlj6nYOKrRrAK69ASIi8XGprOqVc6vx56PWpg1l3/fAhEJrVlUWe2bPlJVMp5VIzZsCSNg5WefqR6H4gDBgA774LPXpYHZpSthMWJpvqvDY7WOXth9fVQLh6Dtq1g9y5rQ5PKds5P81BxqaRz6yAYUZAcDAcPQqvv25xdErZjMNBaBk/vEMD//394GDw85ON5b6+1sQWj2i5V72wzZulrpEvXwxHgZgmNGsm7bLGjIHy5Z0ap1J2YJrQtq0s+Exv6KDiOD84dw4OHYJWrSBHDqtDVMpWrl+H7h87mHL90cslERGyCnTmjKWxKWVHK1bAlPoOVnn4kSj8sRfMkyfloVYp5TIREdC4Mdxd6mCNtx9eIY/l5C+/gMNhXXBK2dC1eQ5SN3jsmTVK1AKs5qRSLvWguj8JniyIRAkMlG4g6qVpUUS9kP375d6YJYvsSk+aNAYX//ADTJgAXbtCkybOClEpWxkwQFqC/Py5g9pz/ORGGWX4cH2QVcqF7t2DHp84GHP+GS+XISH6cqmUi23dKvfHZaYfiSKeyMmgIM1JpVzINKFjRzg71cGaBH4kCHkiJwMDNSeVcqEbNyCkjj8+pi7AKuUOVq+GyjcDCDae00bSxwcCAlwbVDylRREVYydPyqyt5Mlh7VpIkyYGF8+cKcWQr76Cfv2cFqNSdjJunLRD71/SQfPVfhiB+nKplFWCg+Hzz6HzUX+SPFkQiaIvl0q5zMGDcgucFOFPYl3wUcpygwbBkCGw8BX/p9uCRNGcVMolosa8NiSA8ATPaf2hC7BKucy2bVCtGqR4Kx0JXvF+ekaBj4+2zopFWhRRMXL5MpQqJd0/1q6FjBljcLHDIQ+3xYvLsK5oDyBRSj3PggXw7bfyMNvlmP/TBZEo+nKplNOFh0PdurB+PRzpFPD8IbH6cqmUS5w6JRt5kiQBz2kBz5/lozmplEtMnAidO8v+uBSzxzx/eLPmpFJOFxIii687d0LXvonx9PLQBVilLHTokKzrfJTmOHNvlsQjSRKYNk3yEDQfnSBaRRHDMMoahnHUMIwThmF0fsbPaxuGcSDyP38YhpEn9kNVVrt9G8qWhatXpWVWrlwxuPjQIahaVeYaLFqkA59fguajirJ+vbxUFikC8+aBMXTI84uN+nLpNJqTCqQdSPPmMH8+DB4MZeqmkwVYfbl0Oc1JBfDPP1C6NDx8CGvWwKsh5yA0FDw9//1BzUmn0nxUURYtgm++kffJgLHBeIwcITdPb+9/f1Bz0qk0JxXIXJ/69WWj6+KuOyk2oIwMU58zRxdgXUxzUoGMnCxdGrJ7nWF1WAk8I8JkwadOHcnDzJk1H53gP4sihmF4AqOBcsDbQC3DMN5+4mOngWKmab4P9AXGx3agylqBgVCxIvz9NyxZAgULxuDiS5egXDlInFiqKSlTOi3O+E7zUUXZuROqVJHi5LJl4PPwJvTpIy+WTxYd9YHWaTQnVZSePaWVXefO0K7qKTlWqbt7XE5zUgHcuSMLr5cvy6PnO0cXQcOGULKkTFzXnHQJzUcVxeGAWrWgUCFYMCcMb//asho7aZI0T9ecdAnNSQVSi2zVSuofU1rtodKo0pA6tSRq9eq6AOtCmpMKZON56dKQ/P5Ftnh/hlfgPSmIvB35PwVfX6maaD7GuuicFCkInDBN85RpmiHAHKDy4x8wTfMP0zRvRX65HcgQu2EqK4WGyr1x61aYNUveJ6Pt3j1p5HzzpryVZs7stDhtQvNRceSI1BnTpZPdryk978rqz9Gj8vC6apW+XLqO5qRixAgZk9W4MQxocUkKIg8fwrp1urvH9TQnbS4oCCpVgsOHZWd64XvrHq3GLl4s/bQ0J11F81GxezdUriwNA5YvjSBJm69h4UIYNkxau/r6ak66juakok8fGD0ahtbbR/3pJWVYrMPxqDe6LsC6kuakzd2NXMoJOX+FXSlK4H33uizy5NEDQa7gFY3PvAGcf+zrC0Ch//H5RsCqZ/3AMIwmQBOATJkyRTNEZaWICNlYt2IFjB0LX3wRg4vDwqSacuCAbGX/4AOnxWkjsZaPoDkZF50/L+utXl6ywe615IFQriLs2SOrP1FVy+XL5UUzIEAfaJ1L75E2N2MGtGkjw9V/6XcDo0Rp2e6zYQO8+658KOrlUrmC5qSNhYVBzZqwebNs5Cnzyh9QKvJY5YoVkDSpfFBz0lX0udXmjh2TjTypUsGa1Sap+rWFKVOgVy+5eUbRnHQVvUfa3KhRUhTpUeUgbVaUlFPNGzfq5lXraE7a2MOHsmng4oEbHM9YCp+r56UgEqPWPOplRKco8qwG9eYzP2gYvkiSfvKsn5umOZ7Io14FChR45u9Q7sM0oV07WfDp1096wMbo4m+/lePQ48fL07CKDbGWj6A5Gddcvy7HKu/ehU2bIHvGYKhSTVZ/Zs6UrbFR9OXSVfQeaWMrVz7a5Dpz7D28KpSDEyfktJY+zFpFc9KmTBO+/hqWLpUdsDVz74di5aVH+tq12r7VGvrcamMXL8pGHpCDk29M+l6OVrZuLUURZQW9R9rY7NnQsiW0+OwwfbaWwEiYUE6IvPmm1aHZmeakTYWFyUHmPb/d4VTWMiS7dEw28Hzy3Mcg5QTRKYpcADI+9nUG4NKTHzIM431gIlDONM0bsROestLAgTB8uDy3du0aw4sHDICJE6FbN3lDVbFF89Gm7t2D8uWlzrFmDeR9NwxqfCWFxwkT5I6qrKA5aVNbt8rpyfffhyWzg0hUvdKjE1t6OstKmpM2ZJrQoYNsQO/dG5qVPAZFS0OyZNKTOX16q0O0K81Hm7p5Uzby3LoFv/0GOVYMl+Rs0ACGDgXjWeuAygU0J21q9WqoVw/qfniEkYc+w/D0lIJI9uxWh2Z3mpM2ZJrQtCmsW3KfY1nLk/rCARneXKKE1aHZTnRmiuwEchiGkdUwDG+gJrD08Q8YhpEJWATUNU3zWOyHqVxt/HipZ9Sp8wLPrTNmQPfucnHfvk6L0aY0H20oOFha8+zZA3PnwqefRPa1W7RI+jE3bmx1iHamOWlDBw/KuKyMGWHV0lCSfV1Djm9NnfrvE1vKCpqTNjRoEAwZAi1aQM8G56SVpGnK9nRtCWIlzUcbevAAKlSAkyfl5Fa+/QHw3XfyMDthAnhEZwlCOYnmpA1t2wbVqkH5HMeZcv4zDNOUgshbb1kdmtKctKUuXWDmpCAOZq7I6+f+lGNc5ctbHZYt/edJEdM0wwzDaAGsATyByaZpHjIMo2nkz8cCPYHUwBhDVs/DTNMs4LywlTMtWCBVywoVYPLkaD63OhzSQ6RlS8lwX1+YNEl3AcUyzUf7CQ+HunVlo+uUKVCpognNW8D06VJ0fLwfs3I5zUn7OX1a5jQnSQJrV0eQrmMDmZs1ejTUrm11eLanOWk/kyZB585yYHJE1ysYxUtJn0mHA3LmtDo8W9N8tJ+QEFl83bFDZqkXv7FQNu+UKiWDfryi06hCOYvmpP0cOiTrOoXTnmTRbV88wkLl+FauXFaHptCctKPBg2HYj8HsyfQ5Wc5tknWdatWsDsu2DNO0ptVcgQIFzF27dlnyZ6vn27BBCpQffijtl318onGRwyFbZgMD5essWWDvXkiRwpmhxlmGYex2x5uY5qT7iRrNM26c3DzbtTWhUyf46Sfo2BF++EELjy9J81HFxJUr8PHH0hZk8+8m74xpDr/8Ii0ju3SxOrx4QXNSxcTixdLGrlQpWDr1Ft5lfOH4cXmI/fhjq8OLFzQnVXRFRMjegDlzpFjZ8I01ULHioxfLJEmsDjHO03xUMXHmjNwKM4SeZmuCYngFB8pQ9ffftzq0eENzUsXElCnwtX8oW9+oTsGLS2TkQKNGVocVr8Q0J/Xsqvp/O3dClSqyqW7ZshcsiICsGu3d67Q4lbKLnj2lINK5M7RrB/TrJwWRZs20IKKUi925IydELl+WAevvzOomBZGOHSVJlVIu5XBAzZpQsCAsnPYA76oV4PBhqZRoQUQplzJNaNVKCiI//ggNc26FqlXh7bdlcKwWRJRyqatXZa5P6vtn2ZzAF6+g+9J6QAsiSlni11+hSaNw1r5aTwoiP/+sBRE3oEURBcCRI1CuHKRNK0OcU6aMxkXPKogABAXJ9x0Op8SqlB2MHCk1kMaNZRM6w4dLlaRePbmBakFEKZcJCpJRIYcPyyifwpt+hIEDoUkTLVAqZYE9e6ByZciRA1YsCiZJnarwZ2RP5tKlrQ5PKdv5/nvpItm+PXQsvU/69WTIIC+W2j1AKZe6exfKlgXz3Hl2JP0M7we3ZcZW3rxWh6aULW3aBDWrR7AoVWN8/5kjw/BatLA6LIUWRRRw/ry8P3p5ycnm116L5oX+/k8XRKIEBsrPlVIxNnMmtG4tG+x++QWMSRNlQGW1atKPQAdUKuUyYWGyG33zZpg2DcqciTy+VbMmjBmjBRGlXOzYMVnsSZUK1qwII1XzWrLYM2mS9mRWygKjR0Pv3vLqN6jxMXmxTJZMdqWnT291eErZysOHsmngxoGL7Ev9GYnuX5dFnvz5rQ5NKVvau1fmwk72aYHf9Slyw+zQweqwVCRdWbO569flufXOHVi9GrJnj8HF/6vo4eMDAQEvHZ9SdrNyJTRoAL6+kfMo58+W3ejlyumASqVczDTh669h6VIYNQpqmrNl0E+FClIh8fS0OkSlbOXiRZkfArB2dQRv9Gos7bKGD5ebp1LKpWbPhpYtZRF2fPdzGKVKyg/WrYNMmawNTimbCQuDWrXgyG+XOZjuM5Lc/UcWeQoWtDo0pWzp+HEoW8ZkMO2pdTuy7XLPnlaHpR6jRREbu39f1nXOnJEZIjE6TTl8OPTpA7lzQ+LE//6Zjw8sXy6rukqpaNu6VQbGvv8+LFkCidYuhbp14dNPYeFC8Pa2OkSlbKVjRxmI17s3NMu0XNrXFS0K8+dDggRWh6eUrdy8KRt5bt2C1atM3hrTBqZOlefR1q2tDk8p21mz5tFtcfbwK3iVKyV9e9askSGVSimXMU1o2hT+WHKFQ+lLkOzuRVi1Cj76yOrQlLKlS5fkubXD/V58fW+o7CDQtstuR4siNhUcDJ9/Drt3w9y5suYaLeHh8uL53XfS22f3bhmeFzWVXQsiSr2QgwdlFE/GjPL8mmzHevjySznqvGzZ08VHpZRTDRoEgwdLu9een/4m+Zgnj+ajUhZ48EA28pw8KSe38v3aS+ZrtW0LPXpYHZ5StrN9u7xLvvsuLJ12m8RVykhP5hUr4IMPrA5PKdvp0gV+nXSNA2lLkOruGcnFTz6xOiylbOnWLShTBupfGkj7oL4yKHb4cC2IuCEtithQeLhsPo9qv1ypUjQvDAyUbewjR0pRZN48WRjy9ZVCSObMWhBR6gWcPi03zSRJpOVruuNbpQ9BrlxSIXnlFatDVMpWJk2CTp2kBcGIOjsxKlWErFmlBUGyZFaHp5SthITIqJAdO2DOHCi+ewj07QuNGknlUl8wlXKpQ4egfHl4/XVYvfAByb+qAIcPSyu7jz+2Ojyl7MXh4E6qLPz94xL2pi5JunsnZU2mWDGrI1PKfhwOIjJloWdRB2X+Hk7vkK5QuzaMHatzYd2UNqe3GdOUXa/z58t7ZP360bzw6lWpnuzYASNGQKtW//65r6/04VJKxciVK9If/eFDGeSc+fpuedPMkEEqJKlSWR2iUrayeLGM8SlTBqZ2PIRHibKQJo3sJEiTxurwlLKViAgZFbJmDUycCFWuT4T27eXk1rhxWhBRysXOnpX7Y6JEsHZZMOm//VyOjcydKz9QSrmOw0FYWT+ShwSymM8x7nphrFgBn31mdWRK2Y/Dgennh0dgIIMpS0Iid/VMmaJzKN2YlqpsJChIToiMHQudO0O7dtG88Ngx6UV54AAsWvR0QUQp9UL++ks21F2+LAPW3+GQvFCmTAnr10P69FaHqJRtmKbcH0d/4eCCVxaWVJ9JgvKlZJbP+vXwxhtWh6iUrdy9Cz2LOhgwOwuzmzholHSuVCzLloUZM/QFUykX27kTOhRw8MelLGzpvZ6s3WvLBp4JE6SbgFLKZcyNDkLL+OEVEgiAByaGhwd46b5npVzO4cCs4IcRKPmYkBA5GdKkieakm9P/dmzi3DkZAbJ3r3Qc6NYtmhdu3SonRDw9weGAQoWcGqdSdrFokQynLOPt4K9k/iQ60U+mOkctwGbMaHWIStlGcLDMvjs+wcEqDz8ShQRC47rS027bNsiWzeoQlbKVY8dgQCkHo8/5kYRAskwtBxNDZSfBwoVyr1RKuczUqTDraweLw/zwMQOhWVnpyTxsGDRsaHV4StlK0EoHHpX8SBge+O8fBAfLkEptaa6U6zgcRJT3w+PhE/kYESGLsJqPbk1PitjApk1QoACcOCHDKbt3j2a3gfnzoUQJSJ1aFoW0IKLUS4uIkJmw1apBvYwO5j/0I9E/Z6VC8uCBFESyZ7c6TKVs4/JleU49PsHBGi8/EkVEPtCaJoSFwbVr1gaolM2sXAnt8jkYE1kQAWShxzRl84CPj7UBKmUjoaHQujVMaeDg1/DIgghIQSRBAsiTx9oAlbKZ06fhVhX/pwsiUQIDwd/ftUEpZWMPqvs/XRCJovno9rQoEo+ZJowaBSVLyliCHTtk40C0LhwyBKpXl2qK7pJVKlbcuSPz0/v1gx/LyQ5Yj6DHFmBDQmTIiFLKJbZvh/z5IcVeB+u8/fAOe+KB9uFDuXE6HNYEqJSNmCYMHAiDKziYF+iHD4FPf6BmTc1HpVzk2jXp6npg5BObBqKEhuo9UikX2rBBlmfGeLbEfN6HfHwgIMCVYSllS+HhMpbgy+tjCOc5LV01H92eFkXiqYcPoXFjaQdSrhz8+SfkzBmNC8PDZWZI1BDL9evlpIhS6qUcOSKHrVavhsWtHXTY9Kjn5P/TBVilXGbyZChWTIbFLknp//89mZ+iO3yUcrr792UvTteuMNfHn8Sm5qNSVtq7VxZf//gDlqX2f3rTQBTNSaWczjRh+HApUrZIOIG+YZ0xsmSBxIn//UEfH23Vo5QL3LoFFSrAjB8vMC51NzyMCDk9+TjNxzhBiyLx0MWLULy4LPj07AlLlkDy5NG48MED+PxzOV7Svj3MmSOrRUqpl7JsGRQsCDdvyg6fKkv8ny6IRNGXS6WcKjQUWrSARo2kKLJrp4l3tYrPv0B3+CjlVKdOQZEiMmtr8GBIM2/M84eoaz4q5XSzZsn4nogI2LIFkg7o+vzey5qTSjlVUBDUrw9tv4tg/psd6XO5CUbJkrB/P6xY8ailpC7AKuUShw7Bhx/CnfU7OZbsQzKGnMRYsQLWrNF8jIO0KBLPbN0qu3oOHZKXyz59wCM6/y1fuSIJu3y5FEV++imaFyqlniciAvr2hUqV4K23YPdu+PTDIHj77edfpC+XSjnN1avSUnL0aKn9r1wQSKpWdeS+V6SI7rhTysXWrZPn1gsXYNUqaOd3FKNjB7mB6o47pVwqLAw6dIDatSUvd+2CAoemylCR1Kmf3iynOamUU507B0WLwsLpDzicuxpVj/8EzZvLjrtkyR6t32TOrLmolAssWgSFC8Nn1+exxfNTfFIlkiOV5cppPsZRuuodj4wfL3mXNKn0Sa9aNZoXHj0KH30Ef/0FixfLjVYp9VLu3YMvvpDTWnXqwObNkDE0cjvsqlVQt+7Tw2L15VIpp9m9W+aH7NgBM2fCT01P4lX0I5g9Wwb9bN6sO+6UchHTlFMhZcvCG2/Azp1QOnCJbL27ehXWrtUdd0q50M2bUL685GXz5rB+ZQjp+zSDBg3kPfHQIVi5UnNSKRf5/XcpTt49comL2T4l19GlMHKkbOTx8nr0QV9fOHNGc1EpJ4qIkHWdatVMfkrej/F3auBZIJ/MKXj33Ucf1HyMc7QoEg+EhEDTpvDNN1CihCz4vJcGo2YAACAASURBVPPOcz7scECWLI9mFmzeLA+6Dx7Apk2ypV0p9VJOnJAdBEuXwrBhMG0aJF6/TFZkz56Vl8hp0+Sv+nKplNNNnw6ffCIHILduha9SrJQ3zfPnZZGnWzf5oe7wUcrpAgNls0CHDtK1dduWcLJN6iq7eXLmlApmyZKaj0q5yMGDUo/ctAkmToRRnS/gXaoY/PKLJOratZAuneakUi5gmnKiuUQJKJJ4L4eSFiTFlWPyYtmypdXhKWU7d+5A5cowqO9Dtr1Zh6YXe8iD7IYNcm9UcVq0iiKGYZQ1DOOoYRgnDMPo/Iyf5zIMY5thGMGGYbSP/TDV8/zzD3z2GYwbB507y/NpypTP+bDDIUOcz56Vv/bsKS+d6dLJ0ZIPP3Rp7OrFaD66t9WrJZWuXJFNrm1ahmN07yYFxzfflMWeChXkw/pyGS9oTrqvsDBo2xbq1ZNC5a4dEeRb1kfugVmySG+QsmX/fZHu8InzNCfd19mzUqCcPRsGDIB5Y66T9MtyMHAgfP21bNbJlOnRBZqPcZ7mo3tbsED2xwUFSVGkUbbfZBPPX3/B/PkwaJDuSo9nNCfdV3AwNG4ss+965F3G4htFSZDAkOE+Ue+PKt7RnHRfR49CoUKwZ9UVTmf9jMKnZkH//rLBVecvxwte//UBwzA8gdFAKeACsNMwjKWmaR5+7GM3gVZAFadEqZ5pxw7ZYXfrFsydC9Wr/48PRxVEooY7BwbKsIP33oPffoNUqVwRsnpJmo/uyzTlvbFLF3j/felElzXpNShTS3YRNG4MP//89M0z6uVSxUmak+7r+nWoUQM2bpR26D91u02ChnWlAFm3Lowd+3QLOxXnaU66r99+gy+/hNBQScPy6XZBgWqyi2DiRGjUyOoQVSzTfHRf4eGyP27AACmKLFxg8trsodCpE2TPLgmbO7fVYapYpjnpvi5dkrWdP/80WVFqOOXWt8PIn19OiLz2mtXhKSfRnHRfy5fLjK28ngfZl8aPRP9ck80CX3xhdWgqFkXnpEhB4IRpmqdM0wwB5gCVH/+AaZpXTdPcCYQ6IUb1DFOmwKefygzKP/6IYUHkcSdPwv79zgpTxT7NRzf04AHUrCmntapXl/Y8Wa9sh3z55ItJk2DCBN1NED9pTrqh/fvlxNbWrRAQAMMbHiDBRwXkKNeoUTB1qhZE4i/NSTdjmrInoGRJSJtWNvWUvzxJjoyA7IDVgkh8pfnohm7flgPMAwbInh3H0nu81qYGtG8vPUJ27NCCSPylOemGtm2TA1pHDoZysnQzyq9ri1G1qhzf0oJIfKc56WYiImTcZKVK0CDtChwhRUjkGSaDfrQgEu9EpyjyBnD+sa8vRH5PWSA0FFq1An9/eZfctQvy5PmPi/z9n10QAfm+v3+sx6mcRvPRzZw+LbPT58+HH3+E2bNMkgSMkqqlt7dULRs2tDpM5Tyak25m7lzZ9RoaKs+uDbxnSe+swEDZ+dq8ORiG1WEq59GcdCMPH8pjZqtW0vlj+6Zg3hrcRFZiixaVlpIFClgdpnIezUc38/ffULCgjAn55RcY3+4oCT8tBAsXyoPsggWQLJnVYSrn0Zx0MxMmQLFikD7RHc7n9ePNtWNlp938+bqBxx40J93IvXtyqrlHD5Pp+YYx/HQlPHK+JZsF9Hk1XopOUeRZKwfmi/xhhmE0MQxjl2EYu65du/Yiv8LWrl2DUqVkt13btrLhNXXqaFw4cuS/e8E+zsdHttGquCLW8hE0J1/Whg1ybzx3TmY1d2x2H6NObRmCV7asVC0/+MDqMJVz6T3STYSHS9ePmjXlkNaubaEUnP2dnHvOnx/27IGPP7Y6TOV8mpNu4sIF2R8wdSr06gWLR5wjWYWisgLUpYs8yKZJY3WYyrn0udWN/Pqr9Ea/c0daSzZNvxij4Ifykrl2LXTsqJsG4j+9R7qJkBD49lto0gRqFT7N7oRFeGXHRpg8WeZseURr/K+K+zQn3cSJE7KxbvniUPYXbkrt3W0xqlSRXXZvaJ0qvorOv2kvABkf+zoDcOlF/jDTNMebplnANM0CadOmfZFfYVt79sji659/wvTpMGTI8+sc/880Yc4cudOGhz99gY+PDneOe2ItH0Fz8kWZJgwbBqVLy4nmnTuhbJYj8qY5d670I1iyBFKmtDpU5Xx6j3QDt27JLvRBg6BpU9g46x9erVMShg+XLeobN8Krr1odpnINzUk3sGWL1CL//ltmbPUuugGPD/PDkSOwaJHcJz09rQ5TOZ8+t7qBiAjo3RuqVIGcOWHXn+EUXdlFBhjkyiUntkqUsDpM5Rp6j3QD//wDn30m4+1G19nGlCOF8Lx6WYqT2sXDbjQn3cCaNdJ6OejiTS7nKcv728fLBp758yFJEqvDU04UnaLITiCHYRhZDcPwBmoCS50blnrczJmyudU05SWzTp1oXHTqFJQrB7VqQcaMsmN97dpHRzC1IBJXaT5aLCgI6tWT01pVqkgP2Ox758tdNGqnXZcuurvHPjQnLXbokKTfxo0wfjz8Um8b3h/ll2rljBkwYoQM4FJ2oTlpsbFj5fEyeXL4c7tJlaM/yi6CdOkkL6tWtTpE5Tqajxa7e1dSrk8fqF8fNi+6Rsavy8IPP8jGud9/h0yZrA5TuY7mpMV27pTNrnv2wNYWs2k23xcjWTJ5qdS1GTvSnLSQacqmuvLloWj6YxxJUZhUhzbLMecBA3RNxwb+66wBpmmGGYbRAlgDeAKTTdM8ZBhG08ifjzUM41VgF5AMiDAMow3wtmmad50Ye7wXFibtJIcMkfYD8+fL++T/FBoqF/TpI4tAI0dCs2aPduMtXy67DwIC9KYbB2k+WuvcOXmx3LsX+vaFrh1C8ejSSY6NFC4sSZohg9VhKhfSnLTWokVSpHzlFfjNYVLkwFgo1lo2A2zfDu+/b3WIysU0J60THCwHs8aPl305s8beJUWbBnJU5MsvpSVI0qRWh6lcSPPRWseOyQaeY8dkf0DLwjsxPq4GV6/CpEk6886GNCct5HBw/0t/ut8NwOu14pys35fXRvWS+VqLFmk7SZvSnLRO0ErJyVWBAfQqDj32V8Pw9JSddp98YnV4ykX+sygCYJrmSmDlE98b+9jf/4Mc81Kx5MABebHctAlatIChQ6Ox0fWPP+Cbb+Cvv+Q49IgRTy/Q+vrCmTPOClu5gOaj60VEwPpuDnIP8ue1RAH0/tWXivkvQckacnyrZUsYPFgGqyvb0Zx0vRs3YNbXDiou9qdergC6Ly/M632/lV095cvLCRFtX2dbmpOut2MHTKnvoMsRfz78KgD/Lq/iWbqqNGgePFiOV+qsAlvSfHS9sDBY1dFBnuH+vPVKAKPX+eJ7ciIUbS6tJLds0YGxNqY56Xo3FjhIWtOPpOGB/Orhh0fWIniPXS87e8aPh4QJrQ5RWUhz0vX2D3fwVls/0pqBrPcsi8fvYRi5csGyZfDmm1aHp1woWkUR5Trnz0OPHjBtGqRIIQc6GjT4j4tu3ZJ2PePGye7YX3+FSpVcEa5S8d7atTC/mYPhJ/1IQiBLI/zwONkfvv4B7t2DWbOkTZ1SyumCgqTev7WfgzkPJCdHnymPUTaDLL726gU9e+pRZ6Vc5ORJ6NoVrs5zsAI/fAik8YKysMgDkiWD9euheHGrw1TKFkxTXgMXt3Iw5rzcIxeF+OExuDisXAmlSslzq+5IV8ol7t2DBc0dVJ/uR0ICAUgUEQib1stJrYkTdcOAUi506BDMbOyg23Y/EkfmpGd4iLw7/vCDFkRsSFcN3MTt29CpE+TIIbPR27eXF83/WRCJGqSeOzdMmCC78A4f1oKIUrFg715pgT6wjIMRp+TFEsDjYSB8952cCtmxQwsiSrlAeDhMmQJvvQVrujiY//BRThoPH0pBpH9/mSSrBRGlnO7aNTnRnCsX3P3VwZoEUhABICRE/vPzz1oQUcpFtm2TLjwjqjoYe+GJ59aVK+Grr2DVKi2IKOUCoaEwZgzUzyQFkah8/Jc5c+C331wem1J2dPEiNG4Mrd5z0H37M3IyIgJq1gSHw5oAlWV05cBiwcEyjiBbNvjpJ6heHY4elWE//7Pzx7MGqQ8Zor2alXpJZ89C3bqQPz8k3u5gbQI/fMxnPMhevy49mZVSTmOasobzwQcyDssviYP1Cf1IFP6MnOzfXx9klXKywEBJtWzZZMHnx7IOVnj44R36jJdLf3/NSaWc7NgxqFYNihSB9IcdrPX2I/GznluXLJGh6koppzFNWLgQ3nkHmjeHMUH+zy6IgNxQ/f1dG6BSNnP3LnTvLpvPp02DRYlrP9rE8yTNSVvSoohFIiLk9HKuXHLAo0AB2LNHEjVz5v9xYWioHOt65x2ZITJypAyT/eADl8WuVHx086ac0HrrLViwADp2hMUp/Enw5EJPlKAgvWkq5US7d0PJkjIi5MEDmDsXxgTWxzNYH2SVcrWwMJnLnCOHvFyWKCEj7NruqYNHkOakUq525Yosur79trR67dMH5if1J0GI5qNSVtiyBT7+GL74AhJ4mWzvtYr0OZM//wIfH+mVrpSKdVEHlrNlk808nT7ewu0i5UkeePn5F2lO2pIWRSywYQN8+CHUri1zQ9auhTVrIG/eJz7ocECWLI922f3xB+TLJ/NDypeXVlktW4Knp6v/EZSKNx4+lBmw2bLB0KHSXeDYMfih6108fIs9/0K9aSrlFKdPSx4WKAAHDkjt/+8DoVS/PR4j8DmLPaA5qZQTmCYsXw558kjbgUyZYPNmWDzmMrlGfAv//PP8izUnlYp19+/D999D9uwyn/mbb6SDZM9im/BI6vP8CzUflXKKI0egShVpX3fxTCiORjP4yzMPhfqUx7h5E779FhIn/vdFPj5yc/X1tSZopeIp04R582TDQKtWJv6vr+HuB8Xotb4oPod3wYABsHSp5ODjNCdtS4siLnTggHS8KllSOu9Mny47YUuVesaHHQ7w85NePhUqQMWKsvXgzh1J4oULIUMGl/8zKBVfRERIDubMCR06wEcfwb59EDDqARlnD4KsWeXoVtGikCjRvy/Wm6ZSse7GDRnXkzOndPno1g1OHo+gZfp5eH/wjqz85MwpPSf1QVYpp9uxQ0aCVKwoB5UXLIA/Vt7mk5VdZSfBxInQtKn8QHNSKacKC4Nx4+S0Vq9eUKaMDIwd3Xgv6RuUk2S9exfatdN8VMoFLl+WW+C778L2DQ9YU2Ekp72yU3xSXYyIyGF4J09Kr8kVKx7lpeajUk6xaRMULgw1a0TgF7KI29k/ZNCBsrxy7RSMGAFnzsgG84oVJQc1JxVaFHGJ8+dlYHrevNLpavBgmRtSp85z5sFGFUSidsQGBUmSfvGFnA6pWNGV4SsV76xdKzND6tWTeZMbNsDKxcG8vynyjGWnTlCokMzq+f13GVCpN02lnCIoSLpCZssmp0Lq1YPjx0z6fbqWZCU+hBo1IGFC2RCwZQu0aaMPsko50cmTknaFCskO2NGj4dDOQKqdHISR7U0YOBCqVn30w2rVNCeVchLTlI0C770nC7DZsknzgAU/nOCtXrWki8Cff8pwyuPH5UVT81Epp7l3TwqT2bPDkonXWZavF5cSZKL0itZ4ZM4Ey5bBwYNQvz54e8tFvr6Sh5kzaz4qFcsOHZIl0hLFwyh8fDo3X3+X4eerkZw7soHn5Elo1erfGwY0J1UkLYo40e3bsraaIwfMni0bd06elL8+ufH8/z1ZEHncypWwc6dTY1YqPtu7F0qXlt11t2/LXJ+df4Ty2amJkqitWsmgn82bJd/+j73zDpOiyvrwe0gigoCKCQXWrLhiQMUM6iooinmNKEbcVdewn3kVMaxhjWvACKKYAygiJsAcWbOIIqJiAgQlDmnO98e5zdT0dJzpUMOc93n6memqW1Wnu+tX59x07jbb2IHuNB2n4CwNg+g22sgG7eyyi82ovOekd2nfdw8T6m+/2Yytjz6yaFfEDnZNOk7BmT69yg2OHAmXXAKTJizmb03uoulmG1pQu8MO5kyHDbPW2QSuSccpOG+/bb7xwAOrOkdef+xndnjgb7DppjZY4KKLYPJkWxgvkaLH9eg4BWfxYpv0scEGMHTgtzy59un81LQDvd4fSKNddoY337Q6ZO/eqUe+9uhhI9Vdj45TEH780VK7bvvnCjZ4eRAz2m7EzbP60mbVJtYAO2ECnHBCVedkMq5JB+8UKQoLF1p2j/XXt0E7hx1maxRcdx2sskqGA7/5xhJSpsuZ7gvkOU6t+O47OOYY6+MYP97WDvny86UcoQ/RaPPN4KSTYK214KWXrGNy551rnsSdpuMUBFV4/nnYaitzaWutBePGwbPXTqDzvw6yec+ffWbTRiZONPGmWjvLNek4BWH+fFuEcv31rcHnhBNg0leVXNb5MVp1C6nrOnWyvATPPZdiEbyAa9JxCsJXX9kErB13tOrhoEHw2Ru/0+fdC5EN1oe774aTT7adV1xhi1Qm43p0nNqRtK6rqmUu79wZ7vr7RwzTI5nceEN6fncnjY443DJ5jBhhgnUcp/AkaXL2bLj4Ythyg7msMvh6fm6xHjdWnEqbjVa3wQIffQSHHw5NmpTXbqde4J0iBaSy0kaeb7IJnH22LRL7v//ZINeOHdMctHChrQS055427GDOnPQLp/sCeY6TFzNn2sC5jTaylOfnngvfTFLO6vQ0K2zXBY46ynQ1YoTltttzz6qR6I7jFJzx401m++wD8+bBo4/Cu49/z25DT7CkzC+/DJddZg09p59uabMcxykKS5ZYVoENN7TK5e67w6efKIMOepG19g+p65o1q0pdt+uu5TbZcZZrfv0V/v53WyD2xRfNHX798XxO+eNammyUInXdmmuW22THWb6Iruvauzef3jKWnXZUbjtkDIN/2puP2Io9FjyLnHWWzdC67z6bteU4TnGIaFJ79+ap08ey9Z9m0ejKgUyu7Mi1lf+kdbfNLB/6229bZoGUaxQ4Tmq866xAvPKKNbj+73/QpQu88IKl6UnLxIlWEx0yxFZd79gRBg60YbNff10zhZbng3WcnKmogFtvtZGvf/xhKV0HXqas+8UL8JeLrWV2o43gkUfg0EPdcTpOkfn2W8vw8fDDto7PLbfAKQfPoNn1/4a+t9kwvH/8w/JotWtXbnMdZ7lG1ULK88+3Aa7dulkH5c7N3oPTzrcKaMeOcP/9Nngg3WAdx3EKwty5Nov5uutsna1TToFLLlzCGs/dB1tdBj/9ZKMJrrwy/Uwtx3HqRnIa8/nz2fAfPRnauBMb8BXacg246Crk1FNTz85yHKewJGlS5s9nv1v3Yp9GTWhOBfTc3+qO3bqV2VCnPuOdIrVE1XKfjxhh+V0//BA6dIAHHoAjj0zTxlpRYXMv77rLFm9u0gT239+mP++5Z1Wlc511rLaaeAB4h4jjZKWiwjonR4yAGY+P5Ybf+zFju8EceXcPtvj9NTjqIhvp2qmTzbg6+mifUuk4ReTnn22A+bf3jeXU9/oxs9lgLrywB+f+bS6t77sRNrnOposceywMGGBO1HGcoqBq4wGGD4cfh43l0in92GrtwQx8ogcHbToB+dfF8NRT1il5883WKusztRynaMybZ1lbhw+HWU+N5eY5/Vi6y2COvHM3Nv7sSdj9YsujteOONqLAZ2o5TvEYO5bKfXvTaEH1NObNWcT6lV/D2WcjV16ZYWFYx3EKSeUrY9HevWlcUV2TTVlCE1FLI3niiWWyzlme8BbBPFiyxNbOGjHCXlOmWKadbt2s/njyyWn85Oefm2iHDoVZsyxp89VXW0NQumnPiQXy+vWzBlzvEHGcGsycaenNR4yA0aOtgtmr+VieXtybFZjP1Z/sA8d3tpagtdeuSpaebrEtx3FqjaqtZ5fwke++C90Zy3PSmxbMZ1Sj3jSafTxs/RhMm2YpQK64wvKEOI5TcBYtsvV6hg+3Dsoff4TdxTTZnPk8MHNf5N7uNr15pZUsV89ZZ0GrVuU23XGWS6ZNs+rd8OHWIVJRAb1XGssTFRa3XvZeLzigo3WGdO5swu3d21O7Ok4RSAxyHT4cTrqyH2svTr2uqyQWFbn++hJb6DgNi4oKy6Q8YgRcet+xrFOZRpNLl1od0jtFnALgnSJZmDvX6oojRljj68yZNnBuzz3hwgstZd2aE8Za58WfI50X8+fD44/brJC33oKmTeGgg6znpHv33NL1JBbIcxxnGVOmVDW6vvYaLF1qCzUffTT06zSW7S7vjSwNDrSiwjpETj3VAtkVVyyr7Y6zvLF0qaVvTWjy669te9euMLTfWI56uDeNwgifRhXzLa9dly5W2Kc6O07B+eMPeP55k9ioUbYY5Yorwt57w71Hj2WvW3ojYSSsVCywwoccYoMGPHWd4xScr7+uyizw1lvWELvuunDSSXBcx7FsdUkkbl240A44/3xr8PHUdY5TUBKDXIcPN13qd99xLENp2nRx+oN8XVfHKRqJQa7Dh8OLoyvZav4bnNxkMKszPf1BrkmngHinSAp+/RWefdaE+fLLFp+2bWsDdfr0sYply5ahcDTPXe/eNmXkww9h2DCrmW68MfznP9C3r1c2HacWqMJHH1UFrx9/bNs328zW8enTB7bdYBaNbrkJLr7SWmmTuf9+WzvEZ1w5Tp1ZsMB84/Dh5iunT7d+/x494MwzYf/9lHXGDLUWn8UpKplff20ncRynIEydagPKR4ywsHTxYgs5DzkEDjgA9tx1ESved5s5zSVLap5g1Cj47DP3kY5TACor4f33qzpCJkyw7V26wCWXWNy6ZfvpyM03wXnX1IxbVW3hrb32ck06TgGIDnIdORIqZs3nr02eYkTrwXRhjBXauQds39facqIxqqcxd5yCkxjkOny4dVKus3QKf285lEFN7qcdk9EVWyF/PRq22MIGCfhay04R8U6RwMSJVcJ85x2LRzt2hP79LXjdeWdr9KlGisW4OOkkK/jXv9r/u+ziU54dJ08WL7ZZIInR599/bzLaaSdbhLLPfpVsOHu85cw6e7SJtrIy/Qnnz7fZXD7zynFqxYwZkVE8L5qkVl7Z1n3t0wd67TyH1uPHmCavG51Za65Hx6kTqpaZNTFY4IMPbPuGG8I//mEdId3WnELjl0bDvaPhyFesVSgdrknHqRMLF8KYMabHZ56xNbUaN7ZlQPr3h/33WUKnae+ZjzxltIlWNf0JXZOOUyd++cUG7owYkRjkqvRs9SZPrTGEnSoeo+mCObDyn+CMy2zwaqdOduBee/m6ro5TYFRt3Hiibefjj6EF8zhj7Se5Z50hrP/dWHSeILvvDv0GIgceaPoD2Hxz16RTVBpsp0hlpeU7T3SETJxo27faytZ77dPHOiar9WcsXQrffFM1bP3RR1M3xDZpAscf7wviOU4ezJljdcVEqrrff7c1evbaCy69FPbbfhrtPnzRCl3zgrXSilienosusmGxySMJEvgUS8fJm8mTq3zkG2+Yu2vfHo47Dvrsr/RY7VOavjIa7hoNfd+w3syWLWGPPaxVdtAgS2GXjOvRcfJmyRJLvZPoCJk82bZvvz1cdRUc2HMBG//yKvLCaDhhdFVg27Gj5Zds394Kppql5Zp0nLyZNcsmWY0YYVno5s61pXl69jQXuO9WP9H2vRcsbh3wkh3QqJGljrzsMlhtNfjnPz1udZwC8eWXVY2uiUGuO67zPU9u/QA9vh9Cix8nQeVK8NdDLZjdZZeaKc19XVfHKQiLF8Orr1Zp8ocfQFBO/fMbPLDdEDp//hiNfppr6y1ffjlyzDEWsybjmnSKjapmfQE9gYnAJOD8FPsFuCXs/wTYOts5t9lmG83ImDGqHTva3zpSWak6c6bq55+rvnH5GJ3RsqMe1HaMgmqTJqp77KH63/+qfvdd5KB581TffVf1zjtVTz1VdYcdVFdaSdX8a/ZXx451tttZPgE+0Bx0l+5VDD1qiTW5eLHqjz+qfjlojM5epaOet90YbdbMpLPqqqrHHac6/InFOv/F11Uvukh1m22qtNWunerRR6sOG6Y6bVpNG1u0qK7FFi0KYrOzfFJXPepy4CNVzeVNmqT60Y1jdGbrjtqv05hlEtp8c9WLL1b93ysztfKRR1X79VNde+0qjW2xheq555otCxdWt9H16OSJa9Li1hkzVCffO0bntuuoV+89Rldd1STUrJlqr16qg+6o1F9e/VL1pptUe/ZUbd7cCjRvbu9vukn1yy/tZFEbXZNOntTLuLXAPnLRItUfflCdcPsY/aNtRz17qzHapIlJaI01VE86SfW5pxfqwtFjzB9usUWVxtZay/zmo49ahTTZTtekkwfuI405c1S/+kp1/H/G6MyVO2rfdavi1h23nKdPHvygzu62p1aK2Mbu3VWHDLEDHaeAuCZVly61ZplJd4/Ruat11Cv2GKNt2lSFpSfsOUXHHzBQl3Ra3za2bKl6/PGqr71WPU51nAKQryazzhQRkcbAbcBfgKnA+yLyjKp+ESnWC9gwvLYH7gh/a0fyOh1ppkhVVtpg8Z9/rvn66afq7xcuhO6MZSS9WYn5PNS4N69fOJJt/tmDtoun2eyPRz6yvx99ZCPsErNAVl4ZttwSTjjBppJsuaUtPHLQQT66xykpZdEj5KzJhQttunI2TU6fDrtWVunxkvd70+HgkWz91w3ZduYLlvLjhJdsXZ7GjWGHHWzByZ49TYPJo3oSJEYS+BRLp0TE2Ueq2iLLqfSYrMvZs6v7yNvn9KZX/2fYce+Vaf/paBvpelVIU9emjU3h6tnT/rZvn9pO16NTBuKsyaVLzf9l0+Qvv8COi6r0ePoLvVmyx0g269uVns3GsOKro+GaSJq6jTeGU04xTe62m62sngrXpFNi4qxHsMmMmfSY0OSMGbCbVmnyit97s/FfR9L1kE5s+esLNHrheThmjE0XadrU8i5fc41p8s9/Tp9KPUyBuQAAIABJREFU2TXplJg4a1LVqn6p2nKSNTl3bvW49c65vTn+kKvZpumntHzuUfhotqXEuuQSS4+13nq1Nt9xikmcNbl0KUybll2Tv/wCOy2u0uNZr/Sm+Z5P0H3z39jyw8E0fjms3bP77jDwUmtHXWmlWpvvOIVErCMlQwGRHYABqrp3eH8BgKr+O1LmTmCcqj4c3k8Euqvqz+nO27VrV/0gkQQ5SvI6HcCSps0Z0fsePmy+A9Omsew1YwYsSbGmcqtWsHo7WH31qleX+W+z1+Mn0mRxJJVHo0bWuDNzZtW2Dh2s0yP66tQpdTCbwlYPZp1siMh4Ve1ay2OLokfIrEndd18kknJjcZPmPNnzHj5oapqcPt36CX//o+bhjQRWXbVKi+3awTaL3+bA55L0KFKVX7l9e6tI9uplqXjatMntC4rY7FMsnVyoix7D8bHwkc8ddA8fJ3zkdJge/OSCFNmrVmhWXY+rrw5bVrxN7+FJmqz6AJamrmdPe223naWJzBXXo5MH9VGT2rs3kqTJ4b3v4X/NqnxkIm5dmiLrauuVq2uy65K3OfSFE2m6JClmFbEaaiJNXc+esPfe8Kc/5fcluSadPKhXcWsaH/niYffwSYvqepw2Df6YXfO8jRtZZquoj9x60dscMDJD3Nqxo8WsPXtao0+rVrl/SQm7XZNODtRHH5kybj3wHj5coaYmFy6qeYoVmwc9rl7VxtOl4m32fSpF3LrCCnD44ZYea9dd0w+kc5wCUR81mSpufXrfexjfdIdqevztN6hM0Vzctk11H9l18dscPDopbk3wpz+ZHqNr9zhOEclXk7m0arQHfoi8n0rNXslUZdoDGYPZGqTqZACaLK7g4KeP5uBczzMnvCZnKVdZacMRTj0VDj0UunSBVVbJ3V4f3eOUntLpEZZpUpJykDddUsHhI4/m8FzOocCM8PoiUzm10XWDBlnFMN2oulzo0cMXp3RKRSx8ZJ9Hj6ZPrudZFCyYmkPZZs3gkUfgwAPzMrUarkentJRck5JCk4c8fTSH5Hqe2eE1KUOZykrrjLz+ejjtNNNmbXFNOqUjFj5yn2FHs0+u56kEpoVXJhJx6913W2OPx61O/SAWmuzzWB5xawXwfXhlo1EjOPZY6N49L1Mdp4zEIm49dPjRHJrreX4Pr6+ylFthBfORe+yRl5mOU0py6RRJFeEl9xfmUgYRORk4GaBDhw41j+jXL3U6qgSrrgo33JB+fzrOPtu6OVOxdKmtknf77fmfF3zhH6fUFEyPUCZNZtLj4sUwcCAcf3x+53Sc8rF8+8hFi+Css+rWKeI4paV+azKTHpcsgVtusTKOUz8oXdyaRY+66qpIoX3k4sVw6aXWCOs49YP67SMhsyYXLLDreiejU3+o35rMpMeFC20JAtejE2Ny6RSZCqwbeb8O8FMtyqCqdwF3gU3nqnGlwYNTjiYAbBbG44/XrtNh3XUzn7eu63/46B6ndBRMj1AmTRZbj45TWtxHOk68qN+adD06yxeli1uz6FHcRzoO1HcfCa5JZ3mjfmvS9ejUc3JJsvg+sKGI/ElEmgGHA88klXkG6CtGN+CPbHlgU5KYddGiRfXtdU1LVazzOk7pKZ0eoTjacT06yxfuIx0nXtRvTboeneWL+q3HYp7XccqDa9Jx4kX91qTr0annZO0UUdUlwGnAC8AE4DFV/VxE+otI/1BsFLaCxyTgbuBvtbYoWVSFElOxzus4JaTkeoTiaMf16CwnuI90nHixXGjS9egsJywXeizmeR2nxLgmHSdeLBeadD069RlVLctrm2220YyMGaPasaP9LSTFOq/j5AjwgZZJd5leZdGk69EpM67HEp3XcXLENVnkczpOntRLTbqPdJZT6qUeVV2TznKLa7LI53ScPMlXk7msKVIeirVOh6//4Ti1oxjacT06Tu1wH+k48cJ9pOPEB/eRjhMvXJOOEy88bnUcILc1RRzHcRzHcRzHcRzHcRzHcRzHceo93iniOI7jOI7jOI7jOI7jOI7jOE6DQCzlVhkuLDId+C5LsdWAGSUwJxfiYktc7ID42BIXOyA3WzqqartSGJMP9UyTcbED4mNLXOyA+mWL67EwxMWWuNgBbksq3EeWhrjYAW5LKuJiByzfmqxv33OpiIstcbED6pct9VWPUL++51IRFzvAbUnF8uwjoX59z6XCbalJXOyAImiybJ0iuSAiH6hq13LbAfGxJS52QHxsiYsdEC9bikFcPl9c7ID42BIXO8BtKRVx+mxxsSUudoDbEmc7ikVcPl9c7AC3Jc52QLxsKTRx+mxuS3ztALelVMTps8XFlrjYAW5LnO0oFnH5fHGxA9yWONsBxbHF02c5juM4juM4juM4juM4juM4jtMg8E4Rx3Ecx3Ecx3Ecx3Ecx3Ecx3EaBHHvFLmr3AZEiIstcbED4mNLXOyAeNlSDOLy+eJiB8THlrjYAW5LqYjTZ4uLLXGxA9yWVMTFjmIRl88XFzvAbUlFXOyAeNlSaOL02dyWmsTFDnBbSkWcPltcbImLHeC2pCIudhSLuHy+uNgBbksq4mIHFMGWWK8p4jiO4ziO4ziO4ziO4ziO4ziOUyjiPlPEcRzHcRzHcRzHcRzHcRzHcRynIHiniOM4juM4juM4juM4juM4juM4DYKyd4qISE8RmSgik0Tk/BT7RURuCfs/EZGty2jLUcGGT0TkLRHpUi5bIuW2FZGlInJIuewQke4i8pGIfC4irxbDjlxsEZHWIvKsiHwcbOlXJDvuE5FpIvJZmv0lu2eLgWsyfzsi5Yqqx1xtcU3W2O+aLI0dDc5H5mpLKTTpeiwNcdFjjrY0OE3GRY+52OKaLAyuyfztiJRrMD4yF1tck4UhLpqMix5zsSVSrsFo0vVYGuKixxxtaXCajIsec7FludWkqpbtBTQGvgHWA5oBHwObJZXZB3geEKAb8G4ZbdkRaBv+71VOWyLlxgCjgEPK9J20Ab4AOoT3q5fx97kQuCb83w6YCTQrgi27AlsDn6XZX5J7tozfc4PSZFz0mMd34pqsud81WRo7GpSPzON7KbomXY+lecVFj3nY0qA0GRc95mGLa7I033OD0mRc9JjHd+KarLnfNVkaOxqUj8zje/G4tcT3a7FecdFjHrY0KE3GRY952LJcarLcM0W2Ayap6mRVXQQ8AvRJKtMHGKrGO0AbEVmrHLao6luqOiu8fQdYpwh25GRL4HTgSWBaGe04EnhKVb8HUNVy2qJAKxERoCUm0iWFNkRVXwvnTkep7tli4JqshR2BYusxV1tckzVxTZbAjgboI3O1pRSadD2WhrjoMSdbGqAm46LHXG1xTdYd12Qt7Ag0JB+Zqy2uyboTF03GRY852RJoSJp0PZaGuOgxJ1saoCbjosdcbVkuNVnuTpH2wA+R91PDtnzLlMqWKCdgvVPFIKstItIeOBAYVCQbcrID2AhoKyLjRGS8iPQtoy23ApsCPwGfAv9Q1coi2ZOJUt2zxcA1WQs7SqTHnGzBNZkK12Rp7IjSEHxkTrZQGk26HktDXPRYm+s0BE3GRY+52uKarDuuyVrY0QB9ZK62uCbrTlw0GRc95mRLA9Sk67E0xEWPtblOQ9BkXPSYqy3LpSab1NmcuiEptmktypTKFiso0gMT6c5FsCNXW24CzlPVpdZRVzY7mgDbAHsAKwJvi8g7qvpVGWzZG/gI2B1YH3hJRF5X1dkFtiUbpbpni4FrsnZ2lEKPudrimqyJa7I0dljBhuMjc7WlFJp0PZaGuOgxr+s0IE3GRY+52uKarDuuydrZ0dB8ZK62uCbrTlw0GRc95mpLQ9Ok67E0xEWPeV2nAWkyLnrM1ZblUpPl7hSZCqwbeb8O1uuUb5lS2YKIbAHcA/RS1d+KYEeutnQFHgkCXQ3YR0SWqOrwEtsxFZihqvOAeSLyGtAFKLRIc7GlH3C1qiowSUS+BTYB3iuwLdko1T1bDFyTtbOjFHrM1RbXZE1ck6Wxo6H5yFxtKYUmXY+lIS56zPk6DUyTcdFjrra4JuuOa7J2djQ0H5mrLa7JuhMXTcZFj7na0tA06XosDXHRY87XaWCajIsec7Vl+dSkFmGRllxfWKfMZOBPVC3m0jmpzL5UX0TlvTLa0gGYBOxY7u8lqfwQirPwTy7fyabAK6FsC+AzYPMy2XIHMCD8vwbwI7BakX6jTqRf+Kck92y57r2Gpsm46DGP78Q1WXOfa7I0djQoH5nH91J0TboeS/OKix7zsKVBaTIueszDFtdkab7nBqXJuOgxj+/ENVlzn2uyNHY0KB+Zx/ficWuJ79dy3nul+nyuyVp/J+4ja+4r6D1b1pkiqrpERE4DXsBWu79PVT8Xkf5h/yBgFLa6/CRgPtY7VS5bLgFWBW4PPYZLVLVrmWwpOrnYoaoTRGQ08AlQCdyjqp+VwxbgcmCIiHyKCeQ8VZ1RaFtE5GGgO7CaiEwFLgWaRuwoyT1bDFyTtbajJLgmU+OaLP7ni4se87ClJMRFk67H0hAXPeZhS4PSZFz0mKstuCbrjGuy1naUBNdkalyTHrc2dE26HktDXPSYhy0NSpNx0WOutrCcalJU60s6PMdxHMdxHMdxHMdxHMdxHMdxnNrTqNwGOI7jOI7jOI7jOI7jOI7jOI7jlALvFHEcx3Ecx3Ecx3Ecx3Ecx3Ecp0HgnSKO4ziO4ziO4ziO4ziO4ziO4zQIvFPEcRzHcRzHcRzHcRzHcRzHcZwGgXeKOI7jOI7jOI7jOI7jOI7jOI7TIPBOEcdxHMdxHMdxHMdxHMdxHMdxGgTeKeI4juM4juM4juM4juM4juM4ToPAO0Vigoj8W0TOjLyfIiKdCnyNASIyIPL+PRHpXMhrOE59RkT2EpHhkfdDROS4Al+ju4iMi7y/QUT6F/IajtPQEJHNROSDyPtq/q5A1+gkIlMi788QkasLeQ3HiTsicoqI3BR5P05Euhf4GseJyJDI+6dEpGchr+E4yxsi0k5EJopI8/C+mo4KeB2N/L+/iDxS6Gs4Tn1ERN4Uka3C/9VixgJeY5nPFZE1RGSCiKxQ6Os4zvKAiKwgIl+IyJrhfbV2mAJeZ1nbrYhsISJvFfoaTvGoN50i4Ub7VURWimw7MdVNLSK7iYiKyBUlNbKWiEg7oC9wZ4kv/R9gYCFOJCJHish3IjJPRIaLyCoZynYSkbEiMl9EvhSRPSP71hKRZ0Tkp/Abdko69jAReSscOy7FufcTkc9EZG4ot1nS/vVEZKSIzBGRGSJybdi+gojcGz7DHBH5UER6RY5rJiJPhPtQC90AUB8In31B+G4Tr1vDvuPC93JD0jEHhO1DymJ0/lwFlLqR8zrgIhFpVtcTiciWIjI+6GO8iGyZoewKInKfiMwWkV9E5OxczxV+76VJ90L3FNfYUEQqROTByLbNROQDEZkVXi9HdSoibUTkfhGZFl4Dks6Z9vkR9rcTkYdE5Pdw/mH5fIflJEljv4h1yrWM7B8S9Wsi0llEfhaRc8L708J3uzBXzYkFhyoiTyVt7xK2jyvMpys6l2M+rZTcBRwtIqvX9UTZ7uuksiIi14jIb+F1rYhILucSkR4i8mnQx28i8rSItE86/54i8j8xf/6DiBwWtq8mVuH/LRz/tojslMbGMeH+aRLeZ/SxocyJIjIp3P+jRWTt2n2bxaeuWo1sr/GMjDNifupizG+VkquBKwt5QhG5NNyjKbVW13s2aG2siPwhaRrGROQfIvJt0NoEEdkoRZnBwc4N6vBZl1u/WQgke3z7RrltzJHzgcGqWlGqC6rqM8DmIrJFXc8lIqsEnzQv6O7IDGU3F5EXxOpymmL/3KTXUhH5b9jXTUReEpGZIjJdRB4XkbUix2bUrlh8/HrYP1VELkna36D1lAmx9oIPwm/ys4g8LyI7h30DwrPu0Ej5JpKiPSCOiMh+wBxV/bBU11TVX4GxwMl1PZcYaWPLFOX3CP5kftBLx1zOJSKri8jDYm09f4jFldtHju0hGeJUEfmPiHwt5pe/FJG+kX0biciIoOuZ4RmxcRr7q8WpSfvqVWyWDbGOtFmS1HkmFquqiOyftP2msP248H5fEXkj/Ca/iMjdItKqhB+hLpwMvKaqv5Tqgqr6CfB7eCbUCcnSXpOifNo22WznkhzbkVJpR0QeDM/02SLylYicmHTMYWJx7hyxTqoDkuwaJNbWP1NEnk3SfHKM9mJkX3cRqZTq/v7YXL7bKPWmUyTQBPhHpgIi0hS4GXi3JBYVhuOAUaq6oK4nSvNgr7Et8AzQQyKBYC2v2Rnr0DkGWAOYD9ye4ZCHgQ+BVYGLgCfEOoYAKoHRwMFpjp0J3ESKhmsR2RAYBvQH2gDPAs9IVaNMM+AlYAywJrAOkHB2TYAfgN2A1sC/gMekehD2BnA0ULKHagzZT1VbRl6nRfZ9A/w16X7rC3xVWhNrh4hsC7RW1XcKdL7GuWxT1Z+BL4H9k/fleb1mwAjsnm4L3A+MkPSdLQOADYGOQA/gXAkjcXM819tJ98K4FNe4DXg/adtPwCHAKsBq2HMoOsrwRqAF0AnYDjhGRPpF9md6fgA8hWm0I7A6pW8oryv7qWpLYEtgK+CCVIVCoDIWuFJVrw+bfwKuAO7L85rTgR1FZNXItmOpP9pdC7uHh2crm+P5cvKjoeHpeew5V1ey3ddRTgYOALoAWwC9gVNyPNcXwN6q2gZYG/gauCNxoFgH5UPhuNbYfTg+7J4LHA+0w54L1wDPJn83InIU5lOjZPSxIrIb1indB3s2fBs+R5ypi1YTpHpGxpk+wJeq+mNdTyRGo2zbAFT1PWBlEela1+uG66yP+aGfMxSr6z07D3sW/18aG04ETgD2BVpiOp6RVGZnYP18Plsalne/WQgyxbexJzR2HUtVvaau58unPvkwBWiUxZ6Hi7C65FHAHZI+o8Fi4DFMQzWI/pbhfAuAx8Puttighk7YPT8HGBw5PKN2MR/5Gqb73YBTkxoVXU8pCA1wN2HPzTWADlh7QZ9IsZnAwFT1pXpAf+CBQpwoT/0No3oMWFuyxZZRW1bD7vN/YTr4AHg0x3O1xOKebcKx9wPPSdXAkoxxKqbP/TC/fCxws4jsGPa1weqVG2P32HtYfTbZ/lRxapT6FpulJcQsuwBK6raGr7DvMVG+CXAo1q6ToDVWv1wb2BRrQyv14Jjacgr1W5cDSNNek8KWbG2yac+VaztSBu38G+ikqitj99kVIrJNOKZ9OO/ZwMqYb31IqgYV/gPYAXtWrA38Dvw36fzRGG2vpH0/JcVv96f6fjKiqvXiBUzBRsDMBNqEbScC45LKnQ9cCwwBrqjD9boDU4FzgWlYxekAYB/s4TETuDBSfjvg7fAj/gzcCjQL+3bEKjrrhvddQrlNwvsxwNEpPm+nyPvewEfhuLeALZLKngd8AizEbtRU2wYAA5Ku8xJwbB1/m6uAhyLv18eC2lYpym4U7GkV2fY60D+pXBPs4d0pzTVT/fanAc9F3jfCguA9wvuTgdfz+FyfAAen2D4V6F5uTZT6Fe6pPdPsOw7rNBoN7Bu2rYJVCq4DhtThugr8DQuK5mAjwtcPepuNVYoSWmsLjMQaeWeF/9eJ2DMVe6iCBWWTgL7h/SXAPUnXHgIcF3m/SdDMTGAicFhS2TuAUVjAtmeabd1T3LsXYaP76vL77AX8CEhk2/dAzzTlfwT2iry/HHgkl3Mlfu8s9hwefpsBwINpyjQB/g7Mj2ybAWwbeX9hQrdkeX4Eu6cAjcutl0JoDPNl0WfaECwo3S58TyemOc8VuWqOKl83CPh72NY4bLsk+V6txef5P+xZOg+4FwvSnse0/DLQNlL+ceyZ8QfW4NA5bG+G+b/TI/a9CVwS3vcFXk669gAi/g4Lsp7Eng3fAmcklX0CC9hmY/4l1bZOwJSk6xwFjK3j756TX4zsews4OfL+BOCdfM8FrIAFsV9Etj0EXJ6DzY2wSqkCq0e2t8ZipG5hX5MM51jmY7FGo9uSfi8F1i+lBvO8t+ukVXJ4RuZoS6fwXfXDGvFnYY0z24bv+Hfg1kj59bG487dg2zCq4ur1Mf+2deR3mEGIebCGwouTrj+OSEwUfvu3wnU/Tto3Dpvx8SYWn22QZttxJD3DgLuBSwv0+z2PxfPVfsccjsv7nsX8/pQU+vmBEJ+muVYTrCNji3DeDZJ0di9W3/gx3Gsp/R7Lud8s0P2Q9j4gh3gny7nHhd/nLaxj+Vmsc2oY5lvep3p97+Zwb8zGOqR3iewbBVwfef8ocF/4f1dgUgrbh+Ry34Syb2IDU2aGfTW2hbKadJ2dgG/r+BushNUdN4psewC4OstxGyTbk6LMscBkIjFt0v6tsRH+ydtraDdsnw9sFnn/OHBB+L/B6ynNd9w63P+HZigzIOjiY0LbBFnaA3K47oDw+zyIxZ2fhmfiBVj7zg9Urwv1AyaEspOBUyL7zgPeIcQ1wKnA50BzLE5dQKhzhv2dovcP9tw/H2ts/g3z/6tEyioWz32PxcA1toWy46juV5uEe7JjHX+jtLFlirInA29F3q8UPv8m+Z4r7J8NbJNie404NUWZZ4Bz0uxbJXyHqybdi2njVAoUm8XlhdXl3gRuAEYm7RuCxTK/EOpjWJvj81i7znFpznkQ8GkdbBqCNdY/jz0X3sQGLN+ExbBfAltFyid0MwfrNDswsu8O4InI+2uAVwDBOl4XRH9jktphwj32n6CxX7H68IqRslMx7f+C+aQa20LZKVT35e3DtVeo4++Xtr0mRdmMbbKZzkUO7UjZtBMptzEWZxwW3m8PTEsqMx3YIfIbXhvZty8wMfJ+CuljtO7A1LrqpL7NFPkAcwT/TLVTbNre8RQoJRQmzubYTX0JViE7GuvZ3gW4RETWC2WXAmdhI593APbAGnJR1bewXrv7RWRFTFAXq+qX4dg/Yw2sKRGRrbGK6ClYIH0nNgMiOgXuCOwGaqOqSzJsS2YC1kmDiHQQmxaX7pVuGnNnLIAhfN5vCIFtmrKTVXVOZNvHYXtdkfBKfr95eN8NmCI2VXeG2FTCP6c8kcgamP2fF8CuhsRQqkZNH471OC8swHl7YrrrhnVU3oU1Rq6L/b5HhHKNsNFeHalyhLcCqOpM7Plwd+iZvhH4SFWHhmOz6XAlrEPkIWzk1xHA7Umj2I7EGndaYcFEum3JLNNhuNYnGXSYbhZWZ+ATDR4i8AkptCUibbEGnI8jm6M6zOVcWwUdfSUi/5LqUyhXxp7D1VLFJNnwO1CBjQS4Knl30v8JDWd7fnTDfsP7xaZcvx9G89Y7RGQdoBfWcRdlO6zz8SxVvaeAl4xqd2/s2fdTAc57MPAX7Hm6HxYAX4j5ykbAGZGyz2MjWFYH/odVjlHVRZjvHSgim2LBcWOq0ulk024jrCHqY8yf7wGcKSJ7R4r1wTpB2iSum2ZbMsnaHZlBuyPTnCNfv1jN51JTuxnPlfD12PPxn1iDfoJuocynYtOgH5SkdJgi8gmm3WewjuRpkd1XYcFtxhmVKXxsKv8NVdqPLbXRai7PyFqwPaafv2IVy4uwRr3OwGGRZ6FgjQyJEX/rYpX/RPx2HjBMRFpg/nSIVs0EzKa19sBzWIPqKtj99WTSrIRjsAaVVsB3GbYlk6y1TPHq+RlsPBRYpKqj0pVJc1wh79l1wmtzsRR134rIZUmzZM7CGsE+SXH8/cASrEF4K6wye2KKctCA/GaMORy7x9tTNahnMKaRCcClkbLvY7PPVsHizcclrBGCxbDHiMjuYbTmtlRlUMiozUC2+2Z7rCF4dar8a6ptyUwAOoXnGiJyewZtprqfwbS1VFWjM1QLVT88FhiaFNNG2ZX86ns3AX1FpKlYap4dsEEe4HpKxw5Ym8rTWcopNvvgUrHsH4VgP6ztpS3W0fwCFn+2x/xwNH35NKxReGWsg+TG0A4DNshvEXCxWHaKq7BBrRWY761U1akZ7DgDG2C7G+Z/Z2EzEqLshvnlvbNsW0Zo45lEVXvOkVn8Y4c09mWKLTOWVdV5WKN151T7M51LbDZtMyIxVJY4NXrsithzMJ1+dwV+UdXfItvSxqlFis3KTV+sDjMM2DvEMlES8fzhkfJDyUy+z8xUHIalY10Nayt6G6v7rYbVvaIp2b/B2l5bA5cBD0pVpptzgC3EUl3ugnXAHRue93/G4p907aBgnSgbYX53A6rafROsifnjjlTNiEy1rRpqM6oXYx0EiMj5mXSZ6hw5tNckk7ZNtkBtPxnreMH3z8c6tX7GBnKAteFPEFuDrLFY6qyF4fxggzV2EpG1Q93jKKxNIMowsbR4L4pIl6R9q4ul3vpWRG6UyHIbuVLfOkXAbtLTJXVaiVuAf6nq3AJdazGW7mAxlt5lNeBmVZ2jqp9jD4MtAFR1vKq+o6pLVHUK5mCjQdAATMjvYQ1NUSfYBuv5TMdJwJ2q+q6qLlWbErSQ0HgRuEVVf9DqKbhSbUtmTrg+qvq9qrbJ8HoozTlaYiN7o/yBVW7rUjZfXgJ2E8st1wxreGuGpeIBq4Aejt0na2MV91TTwppijuP+SMeVYwxPeoiflLT/aaC7iLQmN6eaK9eo6uygu8+AF1V1sqr+gT00twJQ1d9U9UlVnR8aAK4kokNVfREbMfQK1mEYndaYTYe9sRE/g4PO/4eNPD8kUmaEqr6pqpValdM51bZklukw2LlFBh3+Lc058tVhYn+qstnO9RrW8LM61uh9BNXTDFwO3KuqP6SxFbVp0a2xGV7R/LujgfNFpJVYDvXjqdJwNrvWwSr5Y7GA5XpM46ulsyOGDBeROdjotWlUbywBe+4n7vuCETrvVwkV/EJq97+q+msIDl8H3lXVD1V1Ifa82Cpiw33Bvy7EfGaX8CxBVT/DGlqfxipIx6jq0nBoNu1uC7RT1YGqukhVJ2ODHA6PlHlbVYcHnS7IsC2ZOdh9nPgMvTNot3eac+TrF5M1mnw3AAAgAElEQVTL/wG0FBHJ5VwJX4/FNBdjwWuCdbDGu4OxSv6KJE1hVtUtsAaDI4l09IqlNtopuXwyaXzsKKzhfotQyb0EaxxpkeY0caAuWs36jKwFl6tqRfBz84CHVXVaRHsJPzlJVV9S1YWqOh2reEb95N3YzMx3gbWwzpUE2bR2NJYOdlTQzUtYZWifSJkhqvp58KOLM2xLJtlPZopXU64NJpae4yrgzAyfIdVxhb5n1wl/98Iq7T0wP3pCuN66WHxySfKBoUGjF3Cmqs5T65S8kerPsygNwW8WgmzxbV0YrKrfRGLWb1T15dBQ8zjV/eCDIZZdopZubwVCo4paTvT+WOfGzdhM54QeM2ozx/vmJ1X9b7j2ggzbkonagKr+LYM20609UpT6YWgA3g37zlLt3wLTWbpUWakYicX+CzD/ea+qJlLtuJ5SsyowQzM3TgLL1qmZTvqO3nx5XVVfiOitHTYDKdG+00lEEvfuc0GrqqqvAi9ijbGoaiUWH5+BNSJfq1Xrh2TzjWDP9ItUdWokzj1EqqffGRD0uSDLtmSi7TkPZfGP36c5R6bYMlvZRPl09ciU5wqdEA8Al4XnI+EzZIpTowzCGnZfSN4hNmDlNixlT2Jbtji1GLFZ2RBLwdkReExVx2OdC6kGOQ/FOnpbY8/LtOmIReQvWEdzjfgkT55Waz+twOp2Fao6NNTtHqW6X3xcVX8KceWjWIy6Xdg3H4s9b8BmhJ2uVZ2T2fyiYO2sZ6nqzOBPr6K6X6zEZikvjGgw1bZURHV5dSZdpjk+W3tNqvLpdFmntp9c6nhqbVStsGfmU4SB0eE3HYoN9FgY/p6i1pkKNvvke2ymymysEzg6yeEoqtJdjgVeSDyzsWfDllh9ZXdsEHW1NY5zod51iqg1jIzERoouQ2whm1ZBKFmR6ouxpOsx/02rGl0SN/yvkf0LCDeY2MJOI8UWrZmNCWpZABQc7xCsIfF61Wq9cLPIHPR1BM5J6k1cF2vYT5Dq4Z3LA70VluKgLszFGkiirEzqh1A+ZfMiVFSPxWYG/Ix9/19gU9zAfq83VPV5tZHH/8GCtE0T5xAbpfcA1qtar/IJl4gDkh7id0d3BsfwHKHnX1XfzHQysVk7CR0elaFosu7S6bCFiNwptsDUbKzxvo1Uz017F6bDwVp95EguOtw+SYdHYZWeBPVJh4n9qcpmPJdah9S3ITj5FHNch8CyET97YpXtjARnOAgYKlV5Jc/AftOvsZlGD1Ol4WyfcQHWcXWvqi5W1Uew7z/lYtAx5QBVbYVNB92EiB8JJPLcvhRGfRSSB7DnXg+yjOYTWxAtod0LMxTNVbuNReRqEfkmaHdKKBP9/PdjQdEoVf06sj0X7a6dpN0LsVReCeqi3eQgMl/y9YvJ5VcG5oa4Iudzqc2eS+SMTVTKF2DPxq/UBphcRfUG7cSxFar6MNaB2SX4ztuBf2Rq9EjnY1X1FaxT4UlspsCUYHOmUZflplZazecZGcp/HtHaLhmK5qq11UXkERH5MWjtwRS23435yf+GxpsEuWjt0CSt7YxVVhKU009ehqU6+DbXA4p0zybqFNeq6u9aNZgqobWbgIHRRqIIHYGmwM+R7/hObJBCqvulIfjNQpAxvk2FiFwY+a4HZSiakzbDOc8RW4z0j/Dbtqa6PkdiMyUnqmp09nEu2kx73wTqok2omz6LVT/si9X9amg+DLx5HvNbr+dyMrGZk6OxuLc5Vh/fW0QSA5ZcT6n5DVhN0uffT+ZirEO+eboCIrJLRH+ZRq0n621GivadhH/sJSLviC32+zv2TI6250zBGuU6UX2Aazb9gWnw6Yj+JmCZRgoVixa6HhmNLbOVTZRPV4+sca4wmOBZLK3Wv1MZlCZOTRx/HRanHJZso9jg6ReB20OsmvDlaePUfGOzesKx2EDSxHplDxFZPyRB8CXtMN2NTNfQLyLdwjkO0eqz+qJljoroMtMAvnz8Yl8R+Siinc2prsv3CCkSsdRnCbLpsh02kGV85Nyjw/YE07XmoNZU21JRV11ma69JVT6dLmvd9pNrHQ+sAyTcT+tgKQYRkT2x2V7dsQHruwH3SNVC7ndgz/pVsVR8TxEZUKY2uHiB2qDnf2PfaaKz+hdV/SK0SX2LZZSJDljOiXrXKRK4FOvVax/ZtgfQNXRK/IKlDzhTRGosrgTVF2DL0GOeD3dgPVUbqi0wcyGRafViKQUuxaZLXy/VU199QupUUwl+wGasRIP1FomHfOIjpTgu3TThKJsSplGJTVWcm+GVrtH6c6qnNFgPG9mU6mH5ObCeiEQfUF0oUJoqVX1CVTdX1VWx77sjVQtlfUKG7yT0Fidy3h+s6UcrOpkZik1lzLqolar2iugwXXqafDgHG1G3fdDhrmG7AImFzu8MNp4aKkQJctHhq0k6bKmqp0Y/Uorj8tJhsPPzDDpMV/H+HJs+Gh2FswUptKWqs7COw+j0w6gOcz5X4pRUPe+6Y5WF78Oz+J/AwSLyvzTHNsICkvbBtpmqepSqrqmqncP+9yJ2ZXp+ZNR4fUJthNoQai7QuRTrjPseGymRHMDUhQewtI+j1EbeZLKvf0S7yenPasORWLqqPbFGoE5he/QevB1rENpbbPRTgly0+22SdluparSxv1DafT6DdtNVDvL1i9V8LjW1m8+5mmCNYon7KF8NNQXWC8d3BR4Nuk/43amJhvxsPlZVb1PVDVV1dayhuQk2MzDW1EKr3cnjGamqnSNay6nhLgv/xn7jLYKfPJrq8WpLrFH+XmCAVE+flovWHkjS2kpafeZGobSWKV5N11G7B3BGpK6wLrZ4+nmpChfxnp2IdbKk+9x7ANdF7AR4WyyN7Q/YSLvVIt/xysFfprpfGozfLDWqelXku+5f1/OFZ+V5WFqRtmqjR/+guh+8EmtMXUtEjohsz0Wbae+bxEdKcVyu2pyiqrPD5xiUQZvpfNFXQBOxtEQJClE/7EuKWSJiKbdfxmbY5bMI73pYmq+harNnpmKzDRLxhOspNW9jaXoOyKWw2izDSYRU5GnKvB7RX53TrIW2mScxX75G0N8oqvvHfbBUYK9QfaHpr223RNumkvkB6JXkH5urzeZc9rFSHJfxfgqdBRtQ1Z5zVAb9ZRoMnCm2zFhWLF3N+lSPRdOeK3zXw7GR4dkWo06OUxGRy7CZb3slnjuRfW2xDpFnVDWa8i9bnNqd/OqvsSZ0Oh2GZVFJxBJnYbPwk9MPgQ2QOYc0mQJEZCtshtTxaoNCUqKqwyK67FWAz9ERG6hzGrY2TBsszorq8u9Y2+NPWKN4gk+w+CddZ+wMrAOmc0STrVW1ZaRMrfyiiKyNdQBMDO8vzKTLVOfIob0mmbRtsnVs+8lax0tBE+yZADaT4zVV/SB0XryPzUbfM2LHkNAGtBCbjbKdpJ9hGW13ymdfWuplp4iqTsKmVUVzkf+LqnxwW2KivRvLB1kKWmHTfeaKyCaEnjFYVqkaglWsTsBuyMsjx46ieqqtZO4G+ovI9mKsJCL7JlVw8iY4pG2wtFOJqYotM7zSNVoPA/YTG7GxEjZ65imtnr+YcI2vsAVzLxWR5iJyICa4JyN2NccEDLCCVOXSTYwmbo4JrVE4R9PI/m1CmXZY4/ezWpXq4EGgm4jsKdY4fib2MJwQ9t+BBfb7aYoechGJ2tIsXDtv0TUAXsXWEMiYQqVItMKc2++hISc5nUmioeR4LOgdKlWzSLLpcCSWk/EYsTzCTUVkW7E1DurKblTvEe+cQYfpKt7jsEa4M8K9mhjROiZN+aFYXty24Zl1EvacynousZFUa4T/N8Gev4kO6LswJ5h4Fg/CZg/tHcr/RUS2CjpdGZviOIugQxFZX0RWDft7Ybk6rwjfS7bnx9NAWxE5Nhx/CNbZknHGUoy5CfiLVI2kAJbNPDwUe36NCs9dRKRJeEY1BhqH7yjXUXmojbDYjerpckpFK6zB5jesk6xaR4uIHIP5q+Mw33+/WOMtmA/bOuorkngPmC0i54nIiuHe2FxEti2A3cna7ZVBuykrB7n4xSSGAmeLSPsQdJ9D0G62c4nIQSKysYg0Cn7yBuBDtdF4YAM3+onIemJ5Xc/Dnn2ISDcR2VlEmoXv8TyssfhdrOFubap0n2gg2ibshww+Nti6eYhxOmDPkZtDEF8fyEerGZ+RJaAVNiLsd7EGnOS0MTcD41X1xGBXtCM+m598EIsH907Ea2IpTdfJcEyuJGstU7yarqN2D2yEYeK7/wlrkEnO656g1vds0FhzrONQQvlmwfb5WD3mXLFUketgPjix7tBGWCUxYSdYXvynVfVnrMHnehFZOVxnfUmzbkED9Jv1mVbYmh/TsQ6CS6jeELgrVq/tG17/lapG2PewmdEpG2XzvW/yJFmb/TNoM2XjtdrM4aewtcNWEpGdsIESKTssgu4SC1wn9LhCUpkdsXv58aTt7bF49jZVrTHQKJN2sc4bEVu3oZGIrIkNxEx02LqeUqA26+0S4DYROUBsZn/TUJ9IuV4EFouem2ZfMWiGtT9MB5aEOsheiZ1iDXT3Ymm9jsV83T6wzNe/TGb/OAi4UqyRFxFpJyJ9CmD3dlin5HfBlmFZ/GO6wcBpY8sUPI2tiXVw0Mol2HoEiTaXtOcSa7d5Aquv91VLS7aMbHGqiFyADaT6i1bP+JBIx/UC8KaqJq8tli1OLXdsVmgOwOrym1H1mTbF0qn2TVH+Fqz95rXkHSKyOTaD4nRVfbZYBqdhJayhe3qwpR+RtdtEZCOsneBoLP3vuYlYPHRaL0u1lUy49+7G1g5KzLZtL9XXnKwt3YExoZE/eRBFjVeG82Rqr0kmW5tsbdt+MmpHbAb64SLSMvi9vbGUsIk2qPeBXRK/i1gH2y5UrSnyPiF9W3g+/A1L3TlDbND+TqHu2VxE/g+bJfRmOFf3UEbEUs9eTVWbVM7Uy06RwEBMJACo5SH/JfHCHrTzIhX9YvNP7AE9BxNXNI3XGVjDwb9UVbGAtp9U9awNBfYR69Gtgap+gN20t2KNh5OwhqG6sj8wTlXrtJiu2joP/TEhTsOC+mUjO8RGDEWDzsOx3sZZ2I17iFpe6wQLqJri9SVVU1vBHnYLsIrqLuH/6BT3m7EpVRPD32U5gVV1IvbAHBSu3QfYX1UXhQDlFEzov0jq2TETw/XaYw53ATYTpSHxrFTv2a6RYkeNV0qovSg3YTnwZwDvYA4csA4zLK9oX7Vp09dgTvZ8ALU1Qv4Qke1TnTg4lL2w+/cnbJGpa6jqwKsVYguFbUaG/J25oJYS7gAs0Pkd6/g5IGxPjByKjiy4FMst+h3WkXWdqo7O5VxYw9InIjIPayR7itCIrTa1MfosnovlCU1ovA2WEuuPcP0NgJ5aNQ11G+BT7Fn6b+Co8IxJkPb5Ee65/bHn8R/Yb9tHq6YN1yvC5xqKdTol71sEHISNvHs2+I+LsefS+dizbkHYls8136irT6glQ7F78Ucs7eE7iR2hwfEmTLtz1da3+oAwxV1Vf8UCr5SVy6D3/bDn+7fY8+EeImuB1IZQEdyHNLnK8yTtfR2C2+goojuxlAOfYqOlnqP6QqGZfGx77Lk4JxxfCRyYOFBV78N+i3ex32MhVQNQVsAaj3/Dfqd9gH3V8vxqku4T1/s1Rx/bHJuSPxdr3HubFPd9XMlHq7Yp4zOy2FwGbI09I5/Dnt8AhAaanlhMB+Yzt478Ts8Cm4RGjhqo5eHugw1AmI6NjP0/6ljfEOvAnKeWIqHWqK3VEP3ulwKzNKxFKDaS7/nwf13v2V2xZ/AooEP4/8XI/tPCsT+FYx8C7gt2TkuyEyzlSyIe7os14H2B6fwJqqcoS6bB+M06kDW+LQEvYJ0LX2HP3wpC6pzQ2DcUOE1Vf1RLT3EvMFhEJDxnhmC+Px353je5cgTVfVBt+RsWw0/D4sRTE/GfVGUzSIxy74hpKhEfLqDmQvPHknqQ3onYjI9LJfVI3bTaVRuVfhA24noW1uH4GWERetdTelT1BsynXEyVfziNNPUftRTMdXrm52nfHCzeeQz7bY/EBtkmuAtbJ3JUaIw/AUsBs2rYfyfWTpGOm8P5XhRbj+wdIGWdM0+OovrghdqSMbYUy2JwFCyLeQ7G7vtZ2Oc4PMdz7Yit07kXNjgjOT1oxjgVq292AL6OHJsY9Hggto5gv6TneYdscWoO9df6xrFYOtzvkz7XrcBRkjRoTm2U/iuhrTKZc7CUUvdGvtOCZHnJhqp+ga3N9DaWYuvPVDWIN8EG41yjqh+rpVa+EHhAqjrJs+nyPKxt9R2xlLIvE9bxqiOF0mXa9hpYNms6kUoqY5tspnNlavvJph2sPe1ULH3sLGzg8ZmqOiKc+1VsDaUnwrPvSeAqtTUQwfxlBdaBNR2rXyY03wpr952F1T17YjPuEh2iW2P3xjzgLex5E504kROS+r53So2IXAVMU9WbwvspQHe13JWFusYAAFUdEN6/C5ygtk6L4zR4RGQv4G+qekB4PwTrOBxSwGt0xxbN6x7eX48tunl7oa7hOA0NEdkM65zYTlU12d8V6BqdsOdBp/D+dGBdVS3lSEbHKSsicjKwmaqeGd6Pw3zauAJe4zgsBj4uvH8SW/x0VKGu4TjLG2Kjql8HtlLVBck6KuB1VFUTaWn3A45R1cMKeQ3HqY+IyBvYaPoPk2PGAl5jHMHnio1ufxXTfC5rHDhOgyJ0jnwI7KGqPye3wxTwOlMIbbci8mfgLlXdoZDXcIpHzmk1nOKiqpkWqi3WNQsxOsFxlhtCj/WLWQsW9prnlPJ6jrM8EkYSFSIdVj7XLEeKQMcpK6p6VxmueXCpr+k49Y0wonmTEl/zWWxEuOM0eFR15+ylCnq9aVhKJMdxUqCWvmqzEl/zU2ztIaeekNN0dhHpKSITRWSSiCTn50NE/k9EPgqvz0RkqVRfmNHJn5uwqUuFZFx4OfUY12NJGY5NjS8kU0ifC9JxCo6kX9wt3cLfywPjKLy/+x3zzU7McT9ZUoZgfq2QfEQdU0o6jlM0HV1WhHM6JcR9ZEkoVsw4hML7XKfMuCZLxhSK0w5TjLZbp0RkTZ8ltgjxV9jCO1OxhVCOCKMyU5XfDzhLVXcvsK2O0+BxPTpO/BCRnliu4MbAPap6ddL+/8Nyi4LN0NwUaKflWXfHcZZr3E86juM4TmrcRzpOvHBNOk55yWWmyHbAJFWdHBZSeYQ0i5kGjsAWR3Mcp/C4Hh0nRoRA9jagFzY994iwvsUyVPU6Vd1SVbcELgBe9Q4Rxyka7icdx3EcJzXuIx0nXrgmHaeM5LKmSHvgh8j7qUDKtShEpAW2IvxpafafDJwMsNJKK22zySYlTXvqOLFg/PjxM1S1XS0PL5geQxnXpNOgqaMeIRLIAohIIpBNObqHHAPZ1VZbTTt16lQHsxynflIATXrc6jgFpACaLAruJ52GSJx8ZBTXo9NQiZMmPW51nPw1mUuniKTYli7n1n7Am+lGwIbFGe8C6Nq1q37wwQc5Gek4yxMi8l1dDk+xrVZ6BNek49RRj1CkQLZDhw64Hp2GSAE06XGr4xSQAmiyKHTq1Mn9pNPgiJOP9LjVceKlSY9bHSd/TeaSPmsqsG7k/TrAT2nKHo5P5XKcYuJ6dJx4UdBAVlW7qmrXdu1iNyjXceoL7icdx3EcJzUF85EetzpOQfC41XHKSC6dIu8DG4rIn0SkGSbEZ5ILiUhrYDdgRGFNdBwnguvRceKFB7KOEy/cTzqO4zhOatxHOk68cE06ThnJ2imiqkuwVB8vABOAx1T1cxHpLyL9I0UPBF5U1XnFMdVxHNej48QOD2QdJxfGjoVOnexvEXE/6Tg5UiJNOo6TIyXQpPtIx8kRj1sdJ14USZO5rCmCqo4CRiVtG5T0fggwpFCGOY6TGtej48QHVV0iIolAtjFwXyKQDfsT2vRA1mm4jB0LvXvD/Pn2d+RI6NGjaJdzP+k4WSixJh3HyUIJNek+0nGy4HGr48SLImoyl/RZjuM4jlP/KN0In1GqupGqrq+qV4Ztg6LBrKoOUdXDi2qI48SRaBALVcGsj053nPLgmnSceOGadJz44Hp0nHhRZE16p4jjFIh33oEPPii3FY7jADB2LEt69obvvvNA1nHKRXIQm8ArmI5THlyTjhMvXJOOEx9cj44TL0qgSe8UcZwCoApDjh3LWjt0ovIVd5aOU1bGjqVyn940WeQjfBynrPTrVzOITTB/vu13HKd0uCYdJ164Jh0nPrgeHSdelECT3iniOAXgg+vGcv1XvWm/5Dsa7e+Nr45TNsJogkYVPsLHccrO4MHQokXqfS1a2H7HcUqHa9Jx4oVr0nHig+vRceJFCTTpnSKOU1fGjuXPF/RmJXxUuuOUHR/h4zjxoUcPGDkSbdq0+vYWLXxhZ8cpBz16oM88SyVSfbtr0nHKQ48ecO21Nbe7Jh2n9IS4tbJxk+rbXY+OUx569KDyqeFFjVu9U8Rx6sLYsSzt1ZvmlT4q3XFiweDBLGziI3wcJzZ060ZF45VYmgg5vWLpOGXl/Vfn0whlaZNmtsE16TjlZeRIWHllWHFFe++adJzyseWWLNSmLKGxvXc9Ok5Z+XDUzyFuXcE2FFiT3iniOHWhXz8aL/RR6Y4TF37epAe3V55ac4cHtI5TFipuvYcVK35ncOfroWNH16HjlBGtVFa88Up+aNIJfWaka9Jxys1778Ho0XDBBfDcc65JxykzP57/X1asXMBLBw9yPTpOmdGllaxy17+Z0GwLGDWqKJpskr2I4zjp+OqCwbTvH0mdFcVHpTtOybnxuiWcUvk0i/60Ec1+nWqdk94h4jjlYdEiFl15He+zM10GnwnbnlluixynQfPhjePYeu47vHb47azb6y8wZUq5TXKchs1ll8Eqq8Df/w6tWrkmHaeczJ1Lq8E383zT/dh58InQ6sRyW+Q4DZpPBjxFl4oveeWkR9j0L7sXxUf6TBHHqQMXvdyDC5rfWHOHN8I6Tsn57TeYcfujrM9kmt14rWnQR/g4TtlYdN+DrPzHD4ze+iK23bbc1jiOw5VX8mujNdnujtLNZBaRniIyUUQmicj5Kfa3FpFnReRjEflcRHyatdMweP99G/l6zjnWIeI4Tln5ecCdrLx4Jj/2vdAl6TjlRpUVb7qKyY03ZOebDinaZXymiOPUkgkT4Mkn4eONX4LvW4AqLFjgHSKOUyb+e3Ml5yy8iooNN6f5fvtBo0Y+4s5xysXSpcy75Go+ZWv2vmHvclvjOA2ez+59l61nvcKrva9jtzbNS3JNEWkM3Ab8BZgKvC8iz6jqF5Fifwe+UNX9RKQdMFFEhqnqopIY6TjlYuBAaNsWTjut3JY4jlNRQfPb/sO4xrtz0LXdym2N4zR4Pr9+NJ3nfsiLh9/Lei0aF+06PlPEcWrJ1VdDl2YT2Hzik3DmmZ4H1nHKyOzZ8M31w+nMFzQfeJF1iDiOUzaWPPw4bad/zdObXMiuu0m5zXGcBs+8i65ipqzCNnf3L+VltwMmqerk0MnxCNAnqYwCrUREgJbATGBJKY10nJIzfrzVGc8+2xZZdxynrEy7ZjBtK35h4sEXscoq5bbGcRo4qnDVlUxttC473X50US/lM0UcpxZMmQLDhsHbG/4b+X5F6xRp185HpTtOmRh0h3LW/Cuo6LAhzQ89tNzmOE7DprKS2edfxS9syi43HFhuaxynwfPVk5+y/a/PMK7HZXRfs2UpL90e+CHyfiqwfVKZW4FngJ+AVsBfVbUy1clE5GTgZIAOHToU3FjHKRkDB0KbNnD66eW2xHGcxYtp9J9reEe60ecmH9zqOOXmq3teo/OsN3mh93/Zu22zol7Lh9I6Ti249lpYXybT9euHoH9/6xBxHKcsLFgAH109mq35kOYDLoDGxZte6ThOdpY+8xyr/Pgpj3S6gL16eqjpOOVmxtlXMYeWbHlPydP0pJompknv9wY+AtYGtgRuFZGUQ+dV9S5V7aqqXdt57O3UVz78EJ55Bs46C1q3Lrc1jtPg+e3Wh1lt7nd8tM9FrLmWz252nHIz/19XMU1WZ/u7Tij6tbym6jh58vPPcN99cPcG1yCNG9vieI7jlI1771H+/vsVVKzRAY4u7vRKx3GyoMqsf17Jt3Ri6+uOQLxu6ThlZcpLX7P9948xfvu/0Wa9kucEmQqsG3m/DjYjJEo/4Ck1JgHfApuUyD7HKT0DB1pnyBlnlNsSx3EqK1l8+b/5hC3Y57Z9y22N4zR4vn3sfbb89UX+1/1s2qy1YtGv550ijpMnN9wAqy+ayi7fDIYTToC11y63SY7TYFm0CF67/FV24i1W+Nd50LRpuU1ynAZN5ctjWO2bd3lgrfPY/yDP0uo45eb7065hEc3ofM/Z5bj8+8CGIvInEWkGHI6lyoryPbAHgIisAWwMTC6plY5TKj7+GIYPt9TLbdqU2xrHafD8ft9TrDnrS97qfiEdOvpIHscpNzP/eRWzaEPXe04tyfW8U8Rx8uC33+COO+DOjf6DVFbCueeW2yTHadAMGwYnT7+CirZrIicc///s3XmczlX/x/HXmc2+b9mXiLSoaJWiUpF2ESJEUZbsayT7vi8Rk8hWJEkp/YYWbVqkSGQna/aZMdv5/XHR7da4zYxr5lzXfN/Px8PjNtfm3f1wfD/X95zzOa7jiHjekc6D2UdRrhrSnBBVmSJO7f1mN7f98RbfX/ccha4tkuF/vrU2AWgHrAQ2AYustb8ZY9oYY86d+D4QuMMYswH4DOhhrT2c4WFFMsJrr/kOVu/Y0XUSEbGW032GsJmruHdqfddpRDxvz8e/UnX3Ur67tQMFyyXbSdXvtIRPJBUmTIAcpw/wwM7p0LQplCnjOpKIZyUmwop+3/AOn2F7j4KsWV1HEvE0u/ZrCv0axZACo+n+jMajiGtbXxhJYSxXvu5uEY+1dgWw4oLHpp33+5m5jrcAACAASURBVH3A/RmdSyTD/fILLFkCr7wC+fK5TiPieScXfUTxgz8x7ZZZtKmkMylFXNvbYRh5ycH1b2Rce8kUreEzxjxojNlsjNlqjOl5kdfUNMb8bIz5zRizxr8xRdw7edI3KTK1wlhCzsRCr15Ocmg8ivi8+y402zOYMznzY9q84DqOiOcd6jSEwxSg+GsvEOZw2Y2ukyJw8NeD3PLLDL6p0JTit5dyHUdEBg6EXLl8rbNExC1rOdptMDspRfWpbs+kVN0qAge//pNqW+az9ro2FL22QIb9uZecFDHGhAKTgTpAZaCRMabyBa/JC0wBHrHWXgM8lQ5ZRZyaOhXMsb95dO9kaNAArroqwzNoPIr4WAuLX/mZh1lOePdOkDOnsywqZEXA/ryewt8tJzL3yzRqlcNZDl0nRXw2th5LFs5QYmKylyURyUi//upbzdOhA+TP7zSK6lYRiP74c0rtXsvH13XnupvcnUmpulXEZ9sLw4knnKte75Khf25KdorcAmy11m6z1sYBC4BHL3hNY2CJtXYXgLX2oH9jirgVE+M7YH1cuYmERp+C3r1dRdF4FAE+/BDqbxlCXLbchLRv5yyHClkRn0Odh3CCXOTp/RIREU6j6Dopnnds+1Fu+mYy35Z8irIPZPwiHhG5wMCBvgU8nTo5jaG6VcTnYMfB7KcIN01yfial6lbxvKO/7uWmDW/yZYWWlLm9aIb+2SmZFCkO7D7v5z1nHzvfVUA+Y8xqY8wPxphmyX2QMeZ5Y8w6Y8y6Q4cOpS2xiAOzZsHpAydpdGg8PPooXH+9qyh+G4+gMSnByVqY2/d36vMuoR3aQd68LuOokBXZvJmCUe/wZvaXaNrBeZ901a3ieT+1mkxuTpJ/lLNFPCJyzsaN8M470L49FMi4liAXobpVPC/2i+8ps+VTPijfmZvvyuY6jupW8bxNrUYRQhKlJnbL8D87JZMiJpnH7AU/hwFVgYeAB4BXjDH/WpZkrZ1ura1mra1WqFChVIcVcSE+HkaMgGGlpxJ+8ij06eMyjt/GI2hMSnBavRrqrB9KYkQ2Qrs478usQlY871CXYcSSlZAuncjm/Lul6lbxtlP7T3F91Di+K1yPig2quI4jIgMHQvbs0Lmz6ySgulWEfS8N5m/ycfWEtq6jgOpW8biT2w5xw7ev80XJJlz1QNkM//NTMimyByh53s8lgH3JvOZja+1pa+1h4HNAVbhkCnPnwsFdMbQ6Phruvx9uvtllHI1H8byZfbfThLcxL7wA7gs+FbLibTt3km/FXOZkac2z3Qq7TgO6TorHrXthOgXsEbIP0i4REec2bYKFC6FdOyhY0HUaUN0qHhf/06+U2/A+S0t2oPqDuVzHAdWt4nEbWo0jK7EUGtPLyZ+fkkmR74EKxpiyxpgI4Glg2QWveR+oYYwJM8ZkB24FNvk3qkjGS0yEYcPg1RJvkOXYQejb13UkjUfxtG+/hTvXDofQUMJ6dnUdB1TIiscd6TmSJGuIfrEruQLiu6Wuk+JdscdiqbR8FD/lrcW1rW93HUdEBg2CbNmgS8YeHPs/qG4VT9vVdiinyEGpUR0wyU0RZjzVreJZMfuPc+3qSXxZ5EmurV/JSYZLTopYaxOAdsBKfANvkbX2N2NMG2NMm7Ov2QR8DPwCfAe8Ya39Nf1ii2SMxYthxx9naB8zAmrU8P1ySONRvG5q3720IBLbvCUUK+Y6DqiQFS/bv59ci95gflgznu1b8tKvzwC6ToqXffvSbK5I+gvb22mrVxEB2LwZFiyAl14KhJ3N56huFc9K3LyVMt8uYEnhttz7VH7XcQDVreJtP7eeTG57ghwOdzeHpeRF1toVwIoLHpt2wc8jgZH+iybilrUwZAh0L/IW2Q/sgb4zXUcCNB7Fu375BaqsGkV4SCIhfXu4jgP4ClljzLlCNhSYda6QPfv8NGvtJmPMuUI2CRWykkn83XcMeZLiOdiqJ/kD47sloOukeFNCbAJlFw3ntxy3cGOXe1zHEZFBgyBrVugaEDubAdWt4m072g6nOOEUGNw5UHaJAKpbxZvijp7mqhVj+TpfHW5vdaOzHCmaFBHxohUr4Nf1CXxRaBhUqwa1a7uOJOJpk/sfZCyvE9/wGbKUKeM6zj9UyIon/f032WdP5d2QhjR7rbzrNCKe983L87kzYTvf9RiHCQmguz0iXvTHHzBvHnTqBIUD4rytf6huFS9K2rmbUqtn806+1jzdsqjrOCKe9+OLb3Bb0mFMH7e7m1NypoiI51gLgwdDuwILyHVom+8skUBaTiDiMVu2QJmlvkO4svR3cwiXiPzHsYETyZpwim1P96ZIEddpRLwtKSGJopFD+SPrdVR7tZ7rOCIyeDBkyQLdurlOIiLA9vajwVqyvtKdEN0FFXEqMfoMZd4dybqcd3Nr5+pOs+ifA5FkrF4N33ydRL/wIXDddfDww64jiXjaxNeO8hKTiHvkKahY0XUcEW87eZLwqeNZZh7lmWHXuk4j4nnf9V7KlXGbONyqFyFh+non4tTWrfD229CmDVo1IOKePXCQ4h9O5/2cz/BI+9Ku44h43g8d3+KKhL3EvNzb+dpzVc0iyRgyBFrmfY/8+zdB795oOYGIO7t3Q/55k8jNSbIO1OGxIq6dGDGNHGeOsuHh3pQMjPPVRTzLJlnyTBrMjvDy3Dq6ges4IjJoEISHQ/furpOICLDj5XFEJMWS0LUnYTpAQMQpG59A0beGsSFrNaq/6v6IAt3pFbnAd9/BqlWWwdkHQYUK8NRTriOJeNr4wadonzSO6Psehuuvdx1HxNtiYmDMaFZxHw1H3+I6jYjn/TBkJVfH/Mjuxj0JjQh1HUfE2/78E+bOhRdegCuucJ1GRI4do9A7k/kwa30e76luAyKu/dRrESXjtnHkhT6EhLo/okDzpCIXGDwYGuRcQZF9P0NkJITqC6aIKwcPQvjMaRTgbxikXSIirp2aOIvc0Qf49r4F3Kfz1UWcCx85hH2hJbh1UlPXUURk8GAIC9MuEZEAsbPbJEonnuBEp95kyeI6jYi32cQk8kwZwubwa7hzxCOu4wDaKSLyXzZsgGXLLKPyDoLSpaFJE9eRRDxt4ogYOiaM4vQd98Gtt7qOI+Jt8fEkDBnBV9zBY2Pvdp1GxPPWT/qCKie+YMtj3YjIGeE6joi3bdsGb73l2yVSrJjrNCJy+jR5Z4/jk/CHeOzVG1ynEfG8XwYv48qY39jzTC/CIgJjOiIwUogEiKFDoW7WKEru+QZ69PD1gxURJ44ehehJs7iCA+QY0td1HBHPi57xNnmP7yLq9j5cc6377c4iXhf/6mAOmULcPK2V6ygiMmSIb5dIjx6uk4gIsKffdPLEH+Gvln3IkcN1GhGPs5Yso4awI7Qc1Sc0dJ3mH5oUETlr61ZYuBDGFx4MRYtCixauI4l42tTxcXQ8M5zTN1SHu+5yHUfE2xITiek/lJ+4gToT6rhOI+J5m+b+QLUjK/nt/s5kL5jddRwRb9uxA2bPhtattUtEJBCcOUO2KaP4IrQmjw2/3XUaEc/bNHEVlU5+z5YnepI1Z+Cc5KFJEZGzhg+HGqFrKb/r/6BrV8ia1XUkEc86dQr2j5pLKXaTY2hfMFqVLuJS7NuLKXD4D1bc0Juq1TQeRVw73mMIx8nDTTPauo4iIkOGQEiIdomIBIh9Q9+kQOw+tjbsQ548rtOISMKAwewLKc4d05q5jvJfNCkiAuze7VvcM6nYYChQwNcLVkScmTE1gfanh3KqUlV44AHXcUS8zVpO9hrC71Tk7nFPuE4j4nlbl23ktn1L+OnO9uQuqbs9Ik7t3AmRkdCqFZQo4TqNiCQkEDZ6ON+H3MLD4+51nUbE87a8+RXX/b2GXx/oSo78WVzH+S+aFBEBRo2CKkk/ce3OFdC5M2o6KeJObCxsGfIOFdhKziF9tEtExLH491dQaN963qvYizvvDnUdR8Tz9r88jNNk57o3OrqOIiJDh/pq1Z490/wRCQnw7LPwww9+zCXiUQcnLKDwqe38Uq8PBQvpe6SIayd7D+GwKcjN01u7jvIvmhQRzzt4EGbMgKklBkOePPDSS64jiXja7MgkXjw2mFNlroFHH3UdR8TbrOVIl8HsoDQ3j23sOo2I5+1avY3bts9j3U0vUKBiQddxRLxt1y6YNQueew5Klkzzx0yZAm+95TuaREQuQ1ISCYOGssFcR53J9VynEfG8nUt/4qa/VvBDjU7kKxF4i881KSKeN24clI3ZSLWdi6F9e9R0UsSdhAT48dVlXMtv5BjU29efWUScSfxsNVds+5qFpbtz74PhruOIeN6OF0eQSCgVZ3R1HUVEhg3z/W+vXmn+iP374ZVXfN1in1CHSpHLcmTmUood3ch39/SiWAl9jxRx7WCnIRwnNzfNDMzF5/pXQjzt2DGYPBmmlh4K2bNDR7UhEHFp/jxL64ODOH3FlZiGDVzHEfG8gx0H8xdXcM2olupkJ+LYX+v2cuumSL69ugVX3FTMdRwRb9uzB2bOhBYtoFSpNH9Mt26+1rETJ6pjrMhlsZbovoPZQnnumabvkSKu7f3sd6ruWMy31dpRqHxgLj7XpIh42uTJUPDEn9TYPQ/atoWCakMg4kpSEnze9xOq8QPZXusFYWGuI4l4WtLX31J042fMu6ILdZ/I6jqOiOdtbjOGUBIpO7W76ygiMmyYr3i9jF0in38Oc+f6JkYqVPBjNhEPOrZoJSUP/sjnt/ekbHmdgSfi2u52w4ghG9fMeNl1lIvSpIh41unTMHYsTCk5DBMeDl26uI4k4mlLl0Kz3YM4XaAkIc82dR1HxPP2dxjCEfJTemgbdbITcezI5sPc/MM0vi3biJJ3l3MdR8S7oqKgRAl4/XVo3hzKlEnTx8TH+46yLF0aevf2a0IRTzrabQi7KEn1afoeKeLaoe93UO33uay95nmK31DIdZyLStFXXGPMg8aYzcaYrcaYnsk8X9MYc9wY8/PZX/38H1XEv6ZPh2xHdlP7r9m+w/GKFnUdKUU0HiUzshZW9PycGnxJtn7dISLCdSQRT7O/bKDYumXMzd+Rx5vmdB0nVXSdlMxoQ6vx5CCaIuPSvipdRC5TVBTUqwd79/oOwqtVK80fNWkS/PorjB/v6+IsIml3csUXlN39BZ/e0I1K1wfX90jVrZIZbX1+BEmEUH5qYC8+v+SkiDEmFJgM1AEqA42MMZWTeekX1tobzv56zc85RfzqzBkYNQrGFx9JCBa6B0cbAo1Hyaw++QQabBlEdO4ihLR+znWcVFEhK5lOVBSJt9xGNFkp+Go7QoOoA4Guk5LpREWRVKIU1b4cyzfFnqD8I8n9dRaRdHduQiQ6+j+PtW7tezyV9u2D/v2hbl145BE/ZkwB1a2S6URFkfXR+zlKHqpODrrvkapbJXOJiiKxeEmq/vwGX17ZnLI1SrhO9D+lZKfILcBWa+02a20csAB4NH1jiaSv2bMhYd8BHj00A5o18+1bDg4aj5L5REVR7eGi3M+nRPTsAtmyuU6UYipkJdOJisLWrUvYmWjCSaBhpfWuE6WWrpOSeZy9CRuydzc5OU3RZ+93nUjEm5KbEAHfz/XqpXpipGtXiIuDCRMy9nB11a2S6URFYevUJTwhllwmmhvOfOs6UWqpbpXM4+y1MnTfHsKJp0Kru1wnuqSUTIoUB3af9/Oes49d6HZjzHpjzEfGmGuS+yBjzPPGmHXGmHWHDh1KQ1yRy5e4Koq6L5XhrfwdCUmIg57/WiATyPw2HkFjUgJAVBSJdepRIH4/Fgi7PuhWwKqQlczjbCFrYmMBCCeBsMdSf7PHMdWtkjkkcxO29PjOwTYeRTKHFi3+PSFyTnS07/kUioqC+fN9X0GvvNJP+VJOdatkHufq1jO+ujXMxqdpktIx1a2SOVxQtxqg5MAXAn48pmRSJLm1C/aCn38ESltrqwATgaXJfZC1drq1tpq1tlqhQoF70IpkYlFRJD1UjxIJO7n/74WYmjWhQgXXqVLDb+MRNCbFsagobL16hJ75z4WTBg0C/sJ5ARWykjn4eRWsQ6pbJfhlnvEokjlERl784I/s2X3Pp0BcnO9w9bJloUcPP+ZLOdWtkjlknuuk6lYJfkE8HlMyKbIHKHnezyWAfee/wFp7wlp76uzvVwDhxpiCfksp4g9RUdiH6hEed94N2LVrA3qAJkPjUTKHcyt7gvDCeQEVspI5+HEVrGO6TkrwyzzjUSRzqFXL1/PqQtmzw/LlKT5wffx42LTJ1zbLUbdY1a2SOWSe66TqVgl+QTweUzIp8j1QwRhT1hgTATwNLDv/BcaYK4zxdcM0xtxy9nOP+DusSJqduwEbc8FAjY0NthuwGo+SOQTxhfMCKmQlc4iMxGbJkvxzqVgFGwB0nZTg56dV6YHgUoc6n31NzbMHOv9mjFmT0RlFLunUKZg1y9fv6tzYTOWEyJ49MGCA72D1evXSMeslYqC6VTKDyEhseETyzwXXdVJ1qwS/IK5bLzkpYq1NANoBK4FNwCJr7W/GmDbGmDZnX1Yf+NUYsx6YADxtrb1wxYGIO5nkBqzGo2QakZHEhwfnhfMCKmQlc7jzTk5mK0zShYtIU3nTxzVdJyVTqFWLnR3H/Gv5drCNx5Qc6myMyQtMAR6x1l4DPJXhQUUuZfBg36zG7Nm+MVi6dKrHYpcukJgI48alY85LU90qmcOtt3IiJDeJqltF3KtVi50tB/z78SAYj2EpedHZFQIrLnhs2nm/nwRM8m80ET+KjCS2dj2yJiYzMRJcN2A1HiVT2HtVLd63rXiRCf/9RBBcOM9nrU0wxpwrZEOBWecK2bPPT8NXyLY1xiQAMaiQlQB0asQUch/bTeSVg2j+1xBfa7sgG4/n6Dopwc4mWY5PmsMJ8pA7WxwmJiZYx+M/hzoDGGPOHeq88bzXNAaWWGt3AVhrD2Z4SpH/ZfNmGD0amjWD6tV9j+3YkaqPWLUKFi2C117znSfiiupWySx2vTScUmcO8+H943joy96+ha7BeZ1U3SpBLykugcSZkewPKUqRLMd9HXqCZDympH2WSNBbGVeLOonLSTKh//1EkAxUkcxmcOcjPJ0whzOVb0xzG4JAYa1dYa29ylp7pbV28NnHpp0rZq21k6y111hrq1hrb7PWrnWbWOQChw4R8lp/VpoHuG1Zb0waV8GKiH98/fJCrj/5Fb80G4X58MNgHo8pOdT5KiCfMWa1MeYHY0yzi32YDnaWDGctdOjgOwBkxIg0fcSZM77D1cuXh27d/JwvDVS3SrBL3LaTwrNH8H62p6m5pGOad2+JiH+sazWNcjEb2dRuCubD4BqPKdopIhLM4uOhUye4tVg8IfsSITzc92CQ3oAVCXbffAPXLOpHHnOC0IVvwaFDvhZ2kZEajyIOHGr7CvniTvFjs7E8UNlA5VqpXgUrIv4RfTiaMlO68Xu2G7ljRguICA3m8ZiSQ53DgKrAvUA24GtjzDfW2j/+9UZrpwPTAapVq6aV65L+3nsPPvnE1/OqSJE0fcTYsfDHH/DRR5A1q5/ziXjQzobducIaGD6cHDnwfX8M3uukSFA7tfMIFeb249vc93H3mEch1ATVeNROEcn0pkyBLZvimRDS0Xc43gcfBNXMpUhmkpQEE1r9Qhumkfh8W7j22v8UshqPIhnO/vQzBRZPZ2a2drQdf7XrOCKe992TwymWuIe4keMJjQi99BsC2yUPdT77mo+ttaettYeBz4EqGZRP5OKio30r6667zrfVIw127YKBA+Hxx+HBB/2cT8SDTq34nHLrFjG/ZA8eaVfKdRwRz9vwRH9y2RNkmzqWkNDk1sIENu0UkUzt0CHo3x8mVZxErs2/+yZEHnggqGYuRTKTOW9ZWv/Wkfic+cg6JJnDuEQk41jLwSYvE0IBsg7pT968rgOJeNuer3Zy6+cjWFvqae54qYbrOP7wz6HOwF58hzo3vuA17wOTjDFhQARwKzA2Q1OKJGfoUN+sxpo1EJa22yadOvk6cDk+XF0kc0hM5HjzDhyhFDfN74YJvvuvIpnK7o82cMuPU/m/ii9Su/G1ruOkiXaKSKbWrx9kP3mAVntf9S3Peegh15FEPOvkSfiy07vUYjURwwdB/vyuI4l4WuzcdymyaQ3TSw7imfb5XMcR8bxdjbpjMZReMNx1FL+w1iYA5w513gQsOneo83kHO28CPgZ+Ab4D3rDW/uoqswgAW7f6zhBp0gTuuitNH/Hxx7BkCbzyCpTSgnaRy/bX4JkUP7Sej+8ZyY3Vs7uOI+Jt1nKsWUeOkZdrFwfvYlftFJFMa/16mD4dvry6D6Gbo31LdLScQMSZkQOi6XusK6crVCHHC61dxxHxtpgYYtt1ZTPXc/ecVoQGfZcekeC2fuLn3LF7EatrvkrN2zPPHVRr7QpgxQWPTbvg55HAyIzMJXJR1kLHjhARASPT9tfyzBlo3x6uugo6d/ZzPhEvOnaM7IP68FVoDR6f95TrNCKe98trS7n+cBQrH57EA9cE72JX7RSRTOlcLXtPru+5beMsePllqFjRdSwRz/rzTwgbN5LS7CLHGxPQHVgRt472GUXeE7t4/94J3Hm3xqOIS4lxiWTp0ZG9oSW55Z1uruOIeNsHH8CKFfDqq1C0aJo+YuRI32aTSZMgSxb/xhPxom3NB5Ar/gjbOoyncBEtdBVxKeFULPkGd2Fz+LXcPe8F13EuiyZFJFNavBg+X5PEnPwdMIUL+/Yti4gzw17cRdfE4cQ83CDNbQhExE927yb7hKEsDn2Klm/e7TqNiOd91WoWlWJ+Zle7kWQvqJYgIs7ExPhW1lWuDB06pOkjduyAwYPhqaegdm3/xhPxorj1myj5/iTeydOahsNudB1HxPPWNR5DyfjtHOo7jqw5g7sBVXCnF0lGTAx07Qq9Ss7liu3fQGQk5M7tOpaIZ61aBfd90o3wcAifpO4YIq7tb96DPImWfZ1HUKKE6zQi3nZ85zEqz+3N+tw1uG1MA9dxRLxt+HDfrMb//R+Eh6fpI15+2bcheswY/0YT8SRr2dugE/nIQcFpg4iIcB1IxNuO/rqXaz8YwheFHufOV+51HeeyaaeIZDqjR8ORnSfpd7oH3HILNGvmOpKIZyUkwNxWq2nIIujZUydNijiWsPpLrvi/+czI041Wg8q4jiPieT898Rr57RGyTBuPCVFLEBFntm2DYcOgYUOoVStNH/Hhh/D++9CvH1p0IOIHR99eQdk/VvLO1f259+lCruOIeN4f9XsRTjyFZ4/KFEc2a1JEMpU9e2DoUJhz1SCy/L0fJk6EEP01F3Hl9ckJdNrZkehCpQnvpT7pIk4lJfF3s47spgSlp/QgWzbXgUS8bduK36n+40S+rNSKSo3UEkTEqU6dICwMRo1K09tjYnyHq199tW+3iIhcprg4zrzUid+pRM1327lOI+J5W+d+w62b57Cmahcq1innOo5f6G6xZCo9e0LZ+D94dPtYaNHCt1NERJw4cgS29Z5BFX4h2+RR6A6siFunJkZSePePzK48gkca5XAdR8TzjjTvTDTZufrdQa6jiHjbihWwbNllbfEYMQK2b/cdrq4WPyKXb3e3CVxxYgtf1h9Lhcppa2cnIv5hE5NIeLED+01Rqi3p7TqO32hSRDKNtWvh7bdhcelOmGzZfFtGRMSZ4T3+pnd0X07dXBNT/0nXcUS87fhxknr15iuq89iCpzPFdmeRYPb9gBXcfOgjfn6kP4WuKew6joh3xcb6DlWvVCnNWzz+/NP31fPpp+Gee/ycT8SD7P4D5J/8Gp9GPESDmQ+6jiPieT92mkOlk9+zoelw8pfK6TqO3+igdckUkpJ8tWzTAh9ScesK37bnIkVcxxLxrA0boNTM/uQzxwh5Yzy6Ayvi1sEOgygYc4ivGqyg+3UajyIuxZ2Ko+DgTmyLqMjtb6sliIhTo0b5ZjU++SRNWzys9X0PDQ/3nW0pIpfvz4a9KZUYy4mBY8id23UaEW+LPXSSklN6sj7brdSa0cR1HL/SThHJFGbPhg0/nGFSeCeoWNHX0FVEnLAWxrfaQFumENeiDVx/vetIIp5mN/9BvjnjmZelJa2mVnUdR8Tz1jaZRNn4PzjSZywROdVnR8SZnTthyBB48kmoXTtNH/HBB77uWwMGQLFifs4n4kHRn6+j3OeRLCzSkcd7XOU6jojn/fjUEAon7iduxHjCIjLXNIJ2ikjQO3ECevWCMaXHk3vnFoj8SI1cRRxa+p6l8Xcdic+el6wjXnMdR8Tz/mrcmZw2KwkDBpM/v+s0It526NcD3LhsAN8XqsvN/eq4jiPibZ06+XYzjxmTprdHR/t2iVxzjdbkifiFtRxq0pGsFKLinL6EZK77ryJB58DaP6m6ZgxRJZtRq92truP4nf6JkaA3eDCEHNhHm0MD4ZFH4EH1nBRxJTYWPm27hHuIInzYQChQwHUkEU+Lfe8jiv34ITOK9qNpV7WVFHFtU/2+ZCeaArPTdhNWRPxk5Up47z3o0wdKlUrTRwwd6ttsMmWKr32WiFyeA+PnU3rPWj64bQi31M7jOo6I5+1p2IU4Iii3aJjrKOkiRZMixpgHjTGbjTFbjTE9/8frbjbGJBpj6vsvosjFbdkCY8fCu1f2JDQhLs2rfIKJxqMEsokjYuh+sAsny15HaNvnXccR8bb4eE4934k/qMDNb3UgNNR1oIyh66QEqk1v/8idm2fyVdUOlKtT0XUcEe86c8a3taNCBejSJU0fsWULjBgBzzwDd93l53wiXnT6NGG9uvNTyE3UWdjcdZoMo7pVAtWmCZ9Sdc/7fFWzD6VvK+o6Trq45KSIMSYUmAzUASoDjYwxlS/yuuHASn+HFLmYLl2gRtjX3PHnHN8PV17pOlK60niUQLZvH8QOGkUZdpJr1gQI80aHRhWyEqiODpxEwcObWXznWO66zxttJXWdv8RNQwAAIABJREFUlEBlkyxxL3bkiCnIjYtfcR1HxNvGjvXNakyYAFmypPrt1vrmVLJmhZEj0yFfOlLdKoFqe5vhFIjdy4ZWEyheyhsreVS3SqBKiksgS8+X2RFajjvfedl1nHSTkp0itwBbrbXbrLVxwALg0WRe1x5YDBz0Yz6Ri1q5EpZ/kMTb+dv7TrXr3dt1pIyg8SgBa2T7XXSJH8qpB+tDzZqu42QIFbISsA4eJGLYAFaGPEjjOXVdp8lIuk5KQPq60yKqnPiS358ZTJ7SeV3HEfGu3bth4EB47LE0t11+7z3fd9HXXoMrrvBzvnSkulUCVcLWHRR9eyTLcjSiwfjqruNkJNWtEpC+f24a5WI2sqPdaHIWzOo6TrpJyaRIcWD3eT/vOfvYP4wxxYHHgWn/64OMMc8bY9YZY9YdOnQotVlF/hEf7zsXr0ehSK7Y+4NviU7OnK5jZQS/jcezr9WYFL/49lu4dUl3wsMsOaeNch0nI6mQlYD0V6tXiIg/zZa2YyldxriOk5FUt0rAiT4cTenJ3diU7UbueKOl6zgi3talCyQl+XaLpMHp0/Dyy3D99fDSS37Olv5Ut0pA2vFUN5KsIcu44WTNvPdfk+PX+zsi/nByxxGuersf3+e+l7tGJ3eJyDxSMimS3Ddpe8HP44Ae1trE//VB1trp1tpq1tpqhQoVSmlGkX+ZOhX2bTrGq3G9oHp1aNTIdaSM4rfxCBqT4h9JSTCr+ec8zUKSuvaA0qVdR8pIugErASfxh58p8sEM3szZnpYjKrmOk9FUt0rA+a7+CIon7iZuxHhCI7zREkQkIK1aBe+84+swUKZMmj5i4EDfZpPJk4OyU6zqVgk4x99fTfmf32VhuV7c/1xJ13Eymt/qVo1J8Zdfn+xHLnuCLFPHERKauRfXpeQyvgc4/1+mEsC+C15TDVhgjAEoCNQ1xiRYa5f6JaXIeQ4dgv79YVapAUTsPgwTV4LJ3AP1PBqPEnDefiuRtr934HT+kuR4pbvrOBktVYWs+R//VllrpwPTAapVq3bhZ4ikjLUcfLoDYRSg4IR+ZM/uOlCG03VSAsrer3dx65rhrC3ZkDva1XAdR8S74uJ8B4GUKwfduqXpI9as8TUoeO45uPNOP+fLGKpbJbAkJnLyuY4coxS3Lurqods6//Bb3aoxKf6we8UGbvlxGlGVXuS+xte6jpPuUjIp8j1QwRhTFtgLPA00Pv8F1tqy535vjHkTWK4vlpJe+vWDEic28vipSZjWreHGG11HykgajxJQTp6EDR3foCnrSZq8EA/egdUNWAkopyLfoejWLxhV4XW6NPfkuQW6TkpA2dmwO/mB0gtHuI4i4m3jx8Pvv8MHH5CW/jxHjsAzz8CVV8K4cemQL2OobpWAsqf/DEoc+YVZDy6iZdVsruO4oLpVAoe1HH22IznIy7WLB7hOkyEuOSlirU0wxrTDd8hWKDDLWvubMabN2efV104yzPr1MP11y8YSHTEnc8KgQa4jZSiNRwk0Y/sdpfuJPpy48W5yN3zKdRwXVMhK4IiOJu7lbvzEDdRe8JwXV9vpOikBZf2kL7hj90JW392fmreXch1HxLv27oUBA6BePd+vVLLWtzvkwAH45pugPspSdasEDPv3UXIN78tXYXfz+Nv1XcdxQnWrBJL1r75HlcNRfPLIJO6vnN91nAyRoi6Y1toVwIoLHkt2cFprm19+LJF/s9Z3qF3jnO9TcfcqmDABPNjjW+NRAsW2bVBgQn/ym6OERI73Uhu7f6iQlUBysPsoCp/cReQjc+hyk3fPLdB1UgJBYlwiEd07sje0JLe867nWkiKBpVs3SEjw7RZJg6lT4f33YcwYuOkmP2fLQKpbJZBsbTqAcglH2dtrHNXze+975DmqWyUQJJyKpcDQLmwOv5a73n7BdZwME3xHg4lnLVkC36yO4UCBTnDNNdC2retIIp424flfGZU0hehmL5CzShXXcZxRISuBwO7cRe6pw1gS3oBnZ97lOo6I561tHUmNmJ9Y22EBxQt6rrWkiHtRUdCiBXTsCPPn+3owlyuX6o/ZsAE6d4a6dX0L9IKd6lYJBLE/bqTsikksyd+aJwfe4DqOiOd932gMt8fv4KsBq6iY0ztTBd75L5WgFhMDXbvCiCKjyX1gByxcBWH66yviymerLPU+e5n4bLnJOWag6zginrf3mR4USLKc6DeCggVdpxHxtuM7j1FpTm/W576T28c2cB1HxHuionxtsqKjoUsXKFIEevZM9cdER0PDhpAvH0RGenJTtIj/WcveBi9TgJwUmzmQUO9ubhYJCEd/3ct1y4fwZaHHqf7Kva7jZKgQ1wFEUmL0aEjYsZsXjw+FJ5+Ee701UEUCSUICLGu5lPv4jLDBr0GBAq4jiXjamVVfUOLLBbxZqDvP9CntOo6I5/305EAK2MNETBmPCdFdVJEMdf6ECPh6MB875jsMJJU6dfKdzT5nDhQu7OecIh51KHI5V/75Ke9VeZXqj3mvHbpIoNnyZE/CiafQ7FGem/zXpIgEvD17YOhQmF+iO6EkwahRriOJeNobE2N4eXdnjpe6lvD2bVzHEfGuqCgoXZrTDVuymxJUiuyhTZQiLkVFEV+kOHf+MI4vKz7H1U2C+PABkWB04YTIOWfO+B6PikrxR737LkyfDj16wH33+TmniBedrVtDXmrD76YS97z7kutEIt4WFUV8waLc8sdc1lTtQsU6qW8xGez01VkCXs+ecHv859y5ZwH07w9lyriOJOJNUVEkNmtBzgP3UJYd2FmfqY2diCvn3fjJD6yq2JcGD+ncAhFnzo7J8OhoLHB9jzquE4l4T4sW/54QOSc62vf8jh2X/JidO6F1a7jlFnjtNf9GFPGk8+rWAsC6ezvyQPlw16lEvCsqCnte3Xpbl+quEzmhnSIS0H6dGMWgt0uzMEdLKFkSund3HUnEm84WsqF7dtIkPpJTN9XA3HuP61Qi3pTMStj6O8ekagWsiPjRBWPSAHnbNdWYFMlokZGQ/SILBLJn9z1/CQkJ0LgxJCX5zmcP131bkcuTTN16/9oBukaKuHJ2TJrz6tbcrRp4ckxqUkQCVuKqKK58uR5l2EWBY3/6VvZcrMgVkfSTzM2enJvWefKiKeLcRVqDhMRGp7o1iIj4wcXa9URrTIpkuFq1km+1nD07LF/ue/4SXnsN1q6FadOgnPc6iYj410WukSZG10gRJ1S3/hdNikhgiooisW49siWdN1BHjfLcABVx7mIXzZgYT140RZxLSWsQEck4GpMigeP4cd93xsKFIVs232OpmBBZvRoGDfIN20aN0jeqiCfoGikSWDQm/4smRSTwREWRWKceEfGauRRxThdNkcASGfmfGz0XSmFrEBHxo8hIEsOzJP+cxqRIxrEWXnjBdyDIkiXw4YdQunSKJ0QOH4YmTeCqq2DChAzIK+IFkZHYrKpbRQJGZCSJYRHJP+fBMalJEQk4Sc+2IPSMbsKKBITISBKyXF5vZhHxo5o1+bv0DdgLH0/FSlgR8Z9DhSpzMj4bSZj/fkJjUiRjzZoFCxf6+l9Vr+4bezt2pGgMWgvPPeebGJk/H3LmTP+4Ip5w110cyFNedatIgNgfXpK4hBASL5wO8OiY1KSIBBRrYXD5SKLRagKRQLD/6lpMNy/8+wmPXjRFXDs2bBr5f/+ahQVfwp47Z0vjUcSJpIQkdtRqThZi+WvgzP+cfacxKZKxNm6E9u3h3nuhR49Uv33yZFi2DEaMgBtvTId8Ih61s+0wrjiwgQ8q99Q1UsSxpDPxHKvbmFiysn/MPI1JNCkiAWbOHOgXVZPDpav9+0kPD1QRF5KS4JUnN9I8dhox11TVRVPEsaQNv5Gtb2c+CXmQG7+YiFm+PFWtQUTEv75oMJGbD3/M9w1HU7xvC99Y1JgUyVgxMdCwoW97x5w5EBqaqrevXw9du8JDD0GHDumUUcSDTq36huIz+vNBjqepuXaIrpEijn1bpz+VTn7Pj21mULxTQ41JIMx1AJFz/vwTXnoJhleYSaktX8Dzz8Pcub6WWboJK5LhJo2Kpd3aRpicOcj26Qfw++++9nWRkRqLIhktNpbDDzTGJuXm0Og3ub+SgUpnW4OISIbbvGg9t73Xne+KPEyNeW19D9bSmBTJcF26wK+/wkcfQdGiqXrr6dPw9NOQP7+vvDXm0u8RkUuzx09w+rEmHKYEV7w3ldx5jK6RIg5tnhbFrVHD+KzMc9wzpb7vQY1J7RSRwBAfD40bw9Xmd7ru6Qj33ANTp2rmUsSRn3+GkF49qMIvZJ3/pu9LZip6M4uIfx1o0ZPCf/3CzOqRNO5UxHUcEU+LPhxNaLPGHAvJz5WrZ2JCdCf1YowxDxpjNhtjthpjev6P191sjEk0xtTPyHwS5BYv9n1n7NYNHnww1W9/+WXYvNm3waRQoXTIJ+JR2+q2o+DpHaxp/TY3187rOo6Ip53a9Td52jdlR1h5bvp8nBYAnEc7RSQgDBgAP393hv1lGxNyIhu89RaEhGjmUsSB6GiY9vCHTEuaQEzrDmSr95DrSCKeFr34I4osGM+snB1o+0FdFbIijq2r2ZW7zmzkh6GfULWS7qRejDEmFJgM1Ab2AN8bY5ZZazcm87rhwMqMTylBa8cO3+not9wCgwal+u2LFsEbb0CvXr6jSETEP/aPmceVa+cQWao/zaZWdx1HxNusZfNdrbku4SB7X/+aciVzuk4UULRTRJxbswaGDIFl1/Yh3/afYOZMKF7cdSwRzxrQ5i8G7mnOyXLXk23CcNdxRLztwAHin2nOL1xHhSXDyZfPdSARb/u2zzLu+m0qa6p1oWrP2q7jBLpbgK3W2m3W2jhgAfBoMq9rDywGDmZkOAli59oMWAvz50NERKrevmOHr1Pzbbf5FueJiH/E/7GdnN3b8m3oHdy3um9qj/gRET9b13YmVXcu4bN7BlP1+aqu4wQcTYqIU0ePwjPPwLNFP+GBX0dD27bwaHLflUQkIyxdksS9c54lT9hpcn0wH7JmdR1JxLusZd+DLYiIPcGaF+ZTo7bGo4hL+3/cR/mhLdmU7UZu/7/BruMEg+LA7vN+3nP2sX8YY4oDjwPTLvVhxpjnjTHrjDHrDh065NegEmT694evv4bp06FcuVS99fz5lHnzIDw8nTKKeE1CAvvuaUJiIhyZ8DYly6oxjYhL+6I2c/XrHfku973ct6KL6zgBKUWTIpfqBWuMedQY84sx5uezheqd/o8qmY21vhU6iX8dZHpsM6hcGUaNch0r4Gk8SnrZtw9+ajqG+/mUkHFjfWNSRJw58upEiv38EZPLjqbtpGtcxwkauk5KekhKSGJv7WfJZqPJungeEbmyuI4UDJJr9mcv+Hkc0MNam3ipD7PWTrfWVrPWViukAyC869NPYdgwaNUKGjZM9dsHDPjPfErZsumQT8Sjtj83iNJ7v2ZRrWnUfbGM6zhBQ3WrpIfE6DOcergRsWSj8IrZhGfRnojkXPL/lfN6wdYBKgONjDEX3in7DKhirb0BaAm84e+gkvlERsK771o+r9CS8NPHfFufs2d3HSugaTxKeklKgoGP/UCf6N6crP0EYS8+7zpS0FAhK+kh4cdfyDWwGyvCHubJVW0J02K7FNF1UtLL54+Pperfq1jXdDxl61RyHSdY7AFKnvdzCWDfBa+pBiwwxuwA6gNTjDGPZUw8CToHDkDTplCpEowfn+q3R0X52jY/91ya5lMyBdWtkh6Of/glpd4ayNLcTWn8QSPXcYKG6lZJL9890JerTv/ELx1nUqa6jie4mJR8xf6nFyyAMeZcL9h/Dsiz1p467/U5+PcKIJH/8scf0L49jL9qMuV//9BX1F5/vetYwUDjUdLFhCGn6PR9I+LyFSHXghnoJOeUSeEhsp8By6y11hhzPbAI0B01ubiYGP5+sBGJNj+xk2ZStpzGYyroOil+t+ntH7ljeS++KfY4Nd5s5TpOMPkeqGCMKQvsBZ4GGp//AmvtP2v1jTFvAsuttUszMqQEiaQkaNYMjh/37RZJ5WK6w4d9bZsrVkzTfEqmoLpV0oM9eowzTz3DYcpQdvkkcuRwnSioqG4Vv9s4YRW3fzmKVeXbcO9YHU/wv6Rk/8wle8ECGGMeN8b8DnyIb/ZSJFlxcb4+rjeGbaD9zq5Qp45vhkRSQuNR/O6HHyBvvw6UZys5lsyF/PldRwomlzxE1lp7ylp7rnhVISuXtK9xVwof2sjc2m/xxAtqEZNKuk6KX50+eJosLRtzJKQwFdfMwIRokjKlrLUJQDtgJbAJWGSt/c0Y08YY08ZtOgk6o0bBJ5/AuHFw3XWpequ10KKFb2JkwQK8fNNWdav4l7X8eX9b8sfs4dsO86hSI7frRMFGdav41cnthynQuRlbwq/m5s9Ha63rJaRkUiQlvWCx1r5nra0EPAYMTPaDdDieAP36wW8/xLAiTyNM3rzw5ptalZ5yfhuPoDEpcPo0zHl4Ic1tJGc698bUvNt1pGDjt0JW41EATs1bRrGlU3gjbxfaLK7tOk4wUt0qfvXD3Z0oE/cH+0fOIV/5Aq7jBB1r7Qpr7VXW2iuttYPPPjbNWvuvg9Wttc2tte9mfEoJeN98A336QP36vkMpU2niRFi+3DevUqVKOuQLHqpbxa/2DptD+XULmFt+AE+PvdV1nGCkulX8x1q23PUceROPcHr6PPIU1fEEl5KSSZGU9IL9h7X2c+BKY0zBZJ7T4Xge93//ByNGwEeVu5J7928wezYULuw6VjDx23g8+7zGpMcNfG4HA/56nuOVbyPbsP6u4wQjvxWyGo9i9+4jqUVLfuJGblg+mFy5XCcKSqpbxW++6b6Eu36fwee39eDGzrVcxxHxpmPHoFEjKF4cZqS+xevPP0O3bvDww9CuXTplDB6qW8Vvzvy2lbx9X2Jt+F08uLonITrHOS1Ut4rffPfcNG7as4zVDwzjhuY3uI4TFFLyz9Y/vWCNMRH4esEuO/8FxpjyxviqE2PMTUAEcMTfYSW4HTniOxfvhWLLqLlxCnTuDA884DpWsNF4FL9ZsiiBhxc2IUsWyLN8HoSHu44UjPw6USkelpTEvtrPEhYXzbrO86hWPYvrRMFK10nxi7++30PFUa3YmL0ad3w6wHUcEW+y1rczZPduX9+rvHlT9fbTp+Hpp6FgQZg1S80JUN0q/hIfz/57mxCXFEbM9LlcUTzUdaJgpbpV/GLPJxu5LrIz3+Z9gHuXdXQdJ2hc8qB1a22CMeZcL9hQYNa5XrBnn58GPAk0M8bEAzFAw/P6UIpgLbRqBWEH9zExZ0u44QYYMsR1rKCj8Sj+sns3bH12IE+wloQZ86Bs2Uu/SZJzyUNkjTHlgT/PHlipQlaSdbDnGIpvWsXoitPpNFLnmaaVrpPiD4lxiey/vxkVbBzZl84jImeE60gi3vTGG/DOOzBsGNx2W6rf3qED/PEHfPaZb2JEVLeKf2xt+irlD3zHrDrv0LJ5yUu/QZKlulX8IeFULDGPN+KUyUWxT94kLELbtlLqkpMi4OsFC6y44LFp5/1+ODDcv9EkM5kxA95fmsT2Cs0I2xMN8+dDFq2CTQuNR7lciYkw4uEvGBc7iBOPP0vupo1cRwpaKmTFH+K++ZF8o3qzPOJxGn3WSu0HLpOuk3K5vnhkJDWPRfFFi1nUqF3BdRwRb/rtN9+sRu3avv5XqfTmm77dIX36QC11vwNUt4p//L1kNeUWDmVJ3pY0XlLfdZygp7pVLtf39/Xi9uhfWNNtOXfffIXrOEElRZMiIpdj0yZ4+WV4vcJoSm/5DKZPh0paBSviyoQBR+m2vgmnC5cj9+yJruMEPRWycllOn+ZY3UbE2cKEzpxBseLq7SHi0sbZ31N95SusLdmAO99o7jqOiDdFR0PDhpA7N7z1FqldLfDRR74uBffdB6++mj4Rg5XqVrkcSYf/JrFJU/405am0cjxZs7pOJOJtv47+mNu/Hccnldpz/4iHXMcJOlqLKOnqzBlo3BjuiFhHq+294YknfBWqiDjx3beWUoNaU8z8Ra4P5qGTnEXc2v1UJwoe3cK7j86hzjMFXMcR8bRT+0+RvXVjDoYWpfKaaZgQTVKKONGpk2+nyJw5cEXqVr1++y3Urw9VqsCSJRCmZaAi/mEtf977PHliD/Bz9/lUviWn60Qinnb8jwMU6f4sm8Ov5fbPR7iOE5Q0KSLpqndv2PLzKZbmaIwpUsTXR0sn3Ik4cfIkLH14Jk/axcT1H4y55WbXkUQ87fisxZT8aAazCvbghfnq7SHi2k93daBk/DYOj3ubvGXzuY4j4k2LFvk6C/ToAfffn6q3bt4MDz3km0dZsUJrf0T8aders6jwy2LmXT2I+kOruo4j4mk2yfJnzZbkSjrOmTfnk6uQtm2lhSZFJN188gmMGQOfVOpIzr+2wty5kD+/61ginjWk2e/0OdSRo9XuI/srXV3HEfE0u2s3IW1a8725mVtXvka2bK4TiXjb2k6LqLElki/u7E2VdjVcxxHxpu3boXVruPVWGDgwVW/dtw8eeABCQ2HlSihSJJ0yinhQzM+bKTiwA19E3EO91V21zlXEse+aTeKmv1awpt4orm98res4QUuTIpIuDh2CZ5+FTsUXccfvs6BXL6hZ03UsEc9aNOcMDZY2guzZybcs9b2ZRcSPEhPZe28zTHwcm/vN47qbwl0nEvG0PV/t5Jpxz7Mh521UX9nPdRwR74mKgtKloW5dX1eB+fMhPOXXxuPHoU4dOHLEt0OkfPl0zCriNXFxHKzdmBibFfPWWxQsrO+RIi7t+nADVd7uxtf5H+K+915yHSeoqcOm+J210LIl5Pp7JyOzPO9b6aMT7kSc2bkTDrfqSQN+JnHeB1C0qOtIIp72V+cRlNi6mnE3RNKxv+7ciLiUGJfIkbpNyU0SeT54m/DsmqQUyVBRUVCvnu9wdYB+/aBs2RS/PTYWHnsMNm70TYhUVVcfEb/6o2Ffrjr8I7Mff49nGxZ3HUfE0+JPxBD/VCOOm7yUWjWL0DBt27ocmuIVv5s6FT5ansDq4k0IJQnmzUvVSh8R8Z+EBJhY9yNejBvH8abtCH20nutIIp4W+/l3FJzQj2VZG/DMJ8+q/YCIY1/UHUqVE1+woc0UStUs5zqOiLdcOCECMGqU7/EUSEyEpk1h9Wp4802oXTtdUop41qH5q7hq6UgWF3yBRgsecx1HxPPW1erGlTG/8Ufv2RS/sbDrOEFPkyLiV7/9Bl26QGT5IRTb/hVMmQLl9AVTxJXxvQ/QbWNzjpa8jjzTR7qOI+JNUVFQpgx8+CEnHm7MPoqRe940ChbSjIiIE2fH5LYuk7jzs1f5qnRjqk99xnUqEW9JbkIEfD/Xq3fJiRFroWNHePddGD0amjRJx6wiXnL2Gpm4eCmmeTM2m0pcv2oMERGug4l41Lm6tdUQbv9xMp9e24kagx5wnSpTUPss8ZvYWGjUCO7N+hXPbBvgq0yf0RdMESeiooht1Jy7DhQmX+gJIj6OgqxZXacS8Z7zbvokPfIoBZKSmN5oDW0fz+c6mYg3nTcmy4zpwOGQwlz7+RTXqUS8p0WLf0+InBMd7Xt+x46Lvn3oUJg8Gbp2hc6d0yeiiOecd400T9UntzV89eoKHq2S3XUyEW86b0yWndmHneFXcseaoa5TZRraKSJ+06MH7NxwnEURTTClS/uqVBHJeFFR2IfqkfXALm5mHfb5NlC5sutUIt5zwSrYkKREkgijVfMEx8FEPOrCMYmlYNhx8vz5o+NgIh40fjwX7SGZPTtERl70rbNmQZ8+vjV4w4enUz4Rr7nwGmkTCTGGR2ocdRxMxKMuGJMGKGn2kmP9Wre5MhFNiohffDM0ik4TyvB9icfJfmQPvP025MnjOpaI90RFYevVw8T8Z+VdltnTU9ybWUT85CJtQcKJJ/zxS7cFERE/u8iYDImLTVGrHhHxo1OnYNgwCA2FLFn++7ns2WH5cqhVK9m3Ll8Ozz8P99/vmxwJ0R0Nkct3kWtkmI3HPKxrpEiGU92aIVRCyGXbPC2K63vXoww7uWpPFDRrBrff7jqWiPecvXCaNPZmFhE/SklbEBHJOBqTIoHhzBl44gn47jtYtAg++sg3EQKXnBD5+mto0ABuvBEWL0ZnHIj4i66RIoFFYzJDaFJELsuu2VGUbFuP7Jw3WBcu1M1XERd04RQJHJGRkC1b8s9doi2IiKSDyEiSIi5ytpbGpEjGSEz0nTn56afwxhvw+OO+CZDly6F06f85IbJpk2+NT/Hi8OGHkDNnBmcXycwiI7GqW0UCR2QkSeFZkn9OY9JvNCkiaXZwYRQFW1wwIQJalS7iyGcNXyfxYv+s68IpkrFuu43D+SpgL3z8EqtgRSR9bI8rzom4LCRxwRkGGpMiGcNaaNMG3n0Xxoz578U6tWr5DlW/yDjcuxceeADCw2HlSihcOGMii3iFvakqByNKqG4VCRDbDuTgTLxR3ZrONCkiaXLkCMQ/04LsVqvSRQLBRx8kcHzkdEJJwl7YS0AXTpGMlZDAnhpPk3/fBhZV6INNYVsQEUkff63bS/hD9xNvIjgw/M0Ut+oRET/q2dO3O6RPH+jUKcVvO3oUHnwQjh3zddoqVy4dM4p4UWws2294jPzHt/NRjSG6Roo4tvezTeRtUpcDocU4OGmRxmQ60qSIpNqpU1C3LrRlCtZoVbqIa199aTnweBuesEuIHTYO8/HHunCKuGIte+q2psQPy5hw5QQeWT8Ik4K2ICKSPo7++Ten77yf3Il/c/itjyjavVmKWvWIiB8NHw4jRkDbtjBwYIrfFhMDjz4KmzfD0qW+s0RExI8SEth6a2PK7YjizbvfpM6aXrpGijh0+MddhDx4P/E2jNj3P+GKl+prTKajMNcBJLicOxdvw7ozfHD9OMx66zvhLi7uPy/STViRDLOF7d4uAAAgAElEQVRhA/xwXw86JM7kdJd+5OjR0ffE8uW+3VqRkRqLIhlob5PulPj0TaZf0Y8WP7TzHStyri2IiGSo0wdPs+eGh7jqzFY2jv6YG5+p6ntCY1Ik40yf7tsl0qgRTJoExlz6PfiOH2nSBL74AhYsgHvuSeecIl5jLVvva0P5X95j5nXjaLGqiW946hop4sTJ7Yc5dcf95E04yfbINdz40JW+JzQm002KdooYYx40xmw2xmw1xvRM5vkmxphfzv5aa4yp4v+o4lpiIjRrBv/3aQKbbniawj9/CjNnglalZyiNRzln+3ZYVn04Hc6M5MSz7cjx/+zdd3xUxf7G8c8kIUBAegsdpKMiCtJUiNK7CleswBWRa9d7FcVr+YmoWLFzQQUVFcVCEwTEUJQioEhvUkNClZ6QOr8/zqJLSGATsns22ef9ekWze87ufnfZJzO7c87My8/8vfEcczOLSN5LeOglqnz+Cp+WvJveK5+hZEm3KwpNaicFIOV4Cusa96HR8V/47dGJNH1Y7aFIwH35pbOOSNeu8NFHEObbRBXWwj33wLffwqhRcOONfq5TJARt+ccw6sz/gE9q/pdbfnmACB0y7Qr1WwXg5P5jxDXpSsXkHawfOY2mA/TPHAjn7JUYY8KBd4AuQCPgJmNMo0y7bQPaWmsvAYYDY/K6UHGXtXDffTDpywxWXTaQGr9OhjfecI5Ej4nR6VwBojzKKXv3wvstxvLEscc43O1mSnz4hs9H3kneUkdWAPa/+AHRo4YypeiNtPn1LSpUVB7doHZSADLSMlh20QCaH/ieRbf/j5Yjr3O7JJHQM2sW3HortGkDkyY5q6T7aPhw+N//YOhQeOABP9YYgtRvFYCt97xKna9e5Ovyd9H792cpUsTtikKT+q0CkHYimY2Nr6PusV9Z+u9JtHr0KrdLChm+jAVfAWyx1m4FMMZMBHoB607tYK1d5LX/EqBqXhYp7nvmGXjvPcuipvfS6NcJ8NxzcP/9f++g07kCRXkUjhyBV1pOYuT+uzjUuiulvx3v85F3kre8OrIdgDhgmTFmqrV2nddupzqyh4wxXXA6si0CX634y6EPv6XM44P5MaIjdRd9TM3ayqOL1E6GOJthWXjZA7Td8TnzOr9Iu48GuV2SSOhZtMiZc7lxY5g27e9ZBXwwZgw8/TT07w8vvODHGkOQ+q0CsHP4R9R+9z/MvKAvV696hwtK6EAeF6nfGuJsWjorL7qVZvvnMvuWj+j4Sne3SwopvnxqrwLs8roc57kuO3cAM8+nKAkub74Jzz5rmXHxY7T67T149FEYNsztskKV8hjikpLg2StnM2L7LRxu3IbSc3J25J3kub86stbaFOBUR/Yv1tpF1tpDnovqyBYwx6fPI2rQTawIa84Fc76h0aWRbpcU6tROhrj57YfTdvXbzLv837T97lG3yxEJPatWQbduUKWKM81yqVI+33TyZGct9i5dYOxYnQTtB+q3hriE/02l8lN3sKBwexqv+ITylcLdLinUqd8ayqzll2Z302z7V8zs8BodJ9zudkUhx5czRbLqitgsdzQmBiekV2azfTAwGKB69eo+lihu+vRT55TlCY1eoMvql5w5YV98UT1U9+RZHj37KJP5SFoaPNVxCc+uuY4TNRpR5qecHXknfpFVR/ZsR9Nl25FVHvOfpJ9/xfTuyVZbm8RJ39GuXTG3SxL1W0Pa/H7v0i72aX66sD9tf3kZE6b+qkhAbdkCHTtCsWIwZw5UrOjzTX/6yVmLvVmzHM+2Jb5TvzWEHfhmAWX+9Q9WhV9GhZ++pXrdwm6XJOq3hrTFHZ6k1e9j+L7p43Se9ZDb5YQkX84UiQOqeV2uCsRn3skYcwnwPtDLWnswqzuy1o6x1jaz1jYrX758buqVAJo5EwYMgDfrvsUt655w5oR95x0NiLgrz/IIymR+Yi0802cNj//UlbRy0ZRekrMj78RvctORHZrVduUxf0ldu4nkazpzIL00W0fPpt0NZd0uSRzqt4aoRfdP5Kov7mVppZ60XPO+BkREAi0+Hjp0cI7imT3bWW/SR2vXQo8eUL06fPedM6YifqF+a4g6umAlhfv2YDu1MDNn0KBZcbdLEof6rSFq6U2jaDV3BD/UvpMOv4zQ16wu8WVQZBlQ1xhTyxgTCfQDpnrvYIypDnwD3Gat3ZT3ZUqgLVoEN9wAT1QZz32b74fevWHcOK1b4D7lMUS9MHgbd0/pSMQFRSn5yxyoVMntksSRpwOVkj9k7NrN4RYdSU2xLB0+h253aWaJIKJ2MgQtHzGL5m/dxqqSV3HJ2olEFPHlZHgRyTN//umcIXLggHNkXaPM6wRnb80a6NQJihRx1mYvV86PdYr6rSEocdUW0tp34lBGSfZ/OpumHRSyIKJ+awha8eAntJj4EAsr3MDVa94jPEIjIm455ycGa22aMeZeYBYQDnxorV1rjBni2T4aeAooC7xrnOGtNGttM/+VLf60erUzDewdJb/i6V13OEf8TJwIEfqA6TblMTS98+Qe/vF+B0oWTiZq0QKoVcvtkuRvf3Vkgd04HdmbvXdQR7ZgsQf/ZG+TjhQ/cZCv7p3HwP/Wc7sk8aJ2MvSseX8JDf97PVuLNKbWqqkULVPU7ZJEQsvx49C1qzN11syZ0Ly5zzf94QfnQLxixZwBkZo1/VemAOq3hpyU7fEcbdmBiNR0Nrwxm443VTv3jSRg1G8NPatfmE6TNwbyS4lrabruUyKLal0fN/n0Lbe1dgYwI9N1o71+HwQMytvSxA3btjlH6nQLm8mbB2/GtGwJ334LhTXfZLBQHkPLJ28dps1znakasYfI2LmYixq7XZJ4UUc2xJw4Qdyl3ahwaAsf9v2eIW9e7nZFkgW1k6Fjy5S1VB7cjQMR0ZT55XtKVi/pdkkioSU5Ga67DpYvh6+/hpgYn2/64Ydw113QsKEzZVY1fVfrd+q3hpaMg4fYc2knyiTt54dhsfS+v4HbJUkW1G8NHZs+WEidYX1ZX6QpF/7+LcXL6ntWt+nQf/nL3r3OWc+XHZvPx6nXYy66SJO6irho6sREat3fncZmHUz5jrBWZ1sHUdyijmyISElhe/M+VIv7hfdiJnHPFzGa+1XERXE/76DY9Z1INZGYObMpf7GmlRQJqLQ0uPlm53SP8eOhVy+fbmYtPPkkjBjhfPacNAlKlPBvqfI39VtDgz2RyLaLe1D1yCa+veM7+o3w/QwuEcl7O6b+TsU7e7A7ogZll8ygbM0L3C5J8G1NEQkBR45A585QadcyJmf0IKxWTeccZi3kLOKK+XNSiLylD61YTPrHn1Goawe3SxIJXRkZbGs3gJrrv2f0pf9jyOzrNSAi4qID6/eTGtORqIzjHPliFtXb1Xa7JJHQEBvrzHH1448wZAh88w2MGgX9+/t08+RkuOUWZ0Bk0CCYPl0DIiJ5LjWVzU37UithEV/0+JQbx7Z3uyKRkLZ30R8Uvb4zx80FmNmzqdykvNsliYcGRYSTJ50De+zqNcyN7ExExXLOET/lFVQRN/y6PIN9XQfQOWMmJ18fTZFb+7hdkkjospbtvR6g1uLPGVv7Be5YPEhLbIm46GjcUfY160LF1F3seGc69fpc4nZJchbGmM7GmI3GmC3GmMey2H6LMWaV52eRMaaJG3WKD2JjoXt32LHDmW/5gw+cUz4eeMCnmx886CxV+fnn8MILMGYMFCrk55pFQk1GBhtaD6Te5hl80no0t03powN5RFx0aF0CKe06EpGewqGJs7kwprrbJYkXfawPcWlp0K8f7J6/hVWlOhBZtLAzIFKlituliYSkTRstK6+6j3+mfc6Rx1+k5IN3ul2SSEjbMWg4Nae/zScV/82Nvw6lSBG3KxIJXScPn+SPi3tzceJKfnt6Cs3vvtLtkuQsjDHhwDtAByAOWGaMmWqtXee12zagrbX2kDGmCzAG0HyhwebUgEhionM5LQ0iIqBdO59uvmWLsxb7zp0wcSLceKP/ShUJWdayoctDNFj+KRMajuCW+YM1ICLiohO7D3OgeWeiU/ey4e25NOvb0O2SJBOdKRLCrIXBg2HFlF2sKNOeouGpzoBIbU1BIOKG3bthZoun+efJd/nzjkco+fxQt0sSCWm7hr1LjQ+f5tsS/em86mVKlNQnSxG3pKeks7LxLTQ9HMvSIeNp/kw3t0uSc7sC2GKt3WqtTQEmAqctPGGtXWStPeS5uASoGuAa5VwyD4ickpYGPXo4289i0SJo1Qr+/BPmztWAiIi/bOw/ggaz32RS1Qfps+Jxndks4qKUw866PjUS17PyqW9pdo+O9whGGhQJYUOHwvRx+/itbHtKpB1y1hBp1MjtskRCi2du5qNTYvmk2Rs8cGQ4B3rdQZmxI92uTCQ0eTJ58O4nqfLCvcwp0oPLf3uf8hU0ICIScJ482rk/8vMlQ2gZ/w3zrxtFm/dudbsy8U0VYJfX5TjPddm5A5iZ3UZjzGBjzHJjzPL9+/fnUYlyTgMHnjkgckpiorM9G5MmwTXXOMtULl4Mbdr4qUaRUOVpJ3ff+BD1P3mS78rcSqfVr1KkqPqtIgHnyWPGrDmsaXwjjQ79zMLBE7jy/7Q+bLDS2HGoiY2FgQOZ2GkcY8dcyuqyHSmbuAtmz4bLL3e7OpHQ4nXkXZHrOvOYTWHf1TdQ4ev/oXOdRVzglcky7z3HurCLqbboC6rXVndJJOC88pjRsRNXZ6Qxr80TtPvGt/ULJChk1ZmxWe5oTAzOoEi2c6JZa8fgTK9Fs2bNsrwf8YPXX4c+fSAj48xtUVEwbtwZV1sLL7/sHITXpg1MngzlygWgVpFQ4tVOVt4xit+KtKD5qg8pUUrHPosEnFcebZcuXGbTmdXrXTr97x9uVyZnob+WocRrcbyeY7qxqkQbqhxbj5k8Ga7UnMwiAZVpKoJIm4I1YVQYdieEh7tcnEgIypRJAzQotIUGh5e4W5dIKMqUx/CMNNJNBG3/7xqXC5McigOqeV2uCsRn3skYcwnwPtDLWnswQLWJL37/HR56yOmbRkaevi0qCqZPh5iY065OS4MhQ5wBkX79nNmZNSAiksey6Lc2YRUVNv3kbl0ioShzv9WmkxZWiI73N3C5MDkXDYqEithYrFdIo0ii6tH1mCeegI4dXS5OJMRkMzezsRlw/fXnnJtZRPJYNpkMT05yrlcmRQInuzzaNEzPc69fIEFlGVDXGFPLGBMJ9AOmeu9gjKkOfAPcZq3d5EKNkp2vvoLWrZ1RjkWL4PvvnYEQyHZA5OhRJ75jxsDjj8Onn0KRIi7ULlKQZdNOhp1Uv1Uk4LLJY0RGKqaH8hjsNCgSCjwDIibzF7AAI0cqpCKBdh5zM4uIHyiTIsFDeSwwrLVpwL3ALGA98KW1dq0xZogxZohnt6eAssC7xpiVxpjlLpUrp2RkwFNPQd++0KQJLF8OzZo5AyDTp0ONGlkOiMTFwVVXOWeGjB0Lzz8PYfq2QSTvDRigdlIkWKjfmq+pmxIC0m4beMaAyF8UUpGAWzpwNGlkM0VWNnMzi4ifnDhBQtFa2W9XJkUCat+Dz5OR5VIUKI/5kLV2hrW2nrX2QmvtCM91o621oz2/D7LWlrbWXur5aeZuxSHu2DHnrOXhw+Gf/3QOnqtU6e/tMTGwffsZAyIrV0KLFrBtG8yYAYMGBbZskVCR8edhdqVHZ7+D2kmRgNoz6An1W/MxDYoUcEuWQL+kcSSRzXnLCqlIwFgLbz+6k/Bn/ksE6diIQqfvkM1UBCLiH6mbtxNXsw0VN8xneuU7sUWjTt9BmRQJqF9fnkvEw/eRSBTphQqfvlF5FPGvP/6AVq2cnL35Jrz/PhQufM6bzZjhnCESHg4//6yZmUX85fiy9SRUb0Gl3SuY1eAB9VtFXPbb0ImUePIBDpqypEdm+s5VecwXNChSgH3wAbRtCyUjE4ksksXIpUIqEjDHj8Mz7eZx48uX06jQZpInTcXMnnXOuZlFxD/+/PpHTjRqRrEDO3j/uhl03jEG8910ZVLEBTbDMv+6UVzyaCcORkZz8IeVhM+aqTyKBMoPP0Dz5pCQALNmwX33gcnmyFcv770HPXpA3brOwXgXXxyAWkVCUNx7U6FlCyJOHGbqAz/Scd0o9VtFXGLT0lly9aM0fekmNhS7nKSlawj/fobymA9pUKQASkmBe+6BQYMsb9V4hff39iC8UUP44guFVMQFf2yxvF33DZ5c0J6wCuUouuoXCvfpcc65mUXED6xl58OjKNGnI/HpFfnp1V8Y/E1nIiJQJkVckPRnEj/X7U/byQ+xPLonlbYupsa1dZRHkUCwFt54Azp3hsqVYdkyuPbac94sIwMeeQTuvhu6dIEFC5ybi0gey8hgwy3PUvXuXmwJq8fWL5Zzw6irnDFLtZMiAXd855/8XrUrLRe+zOy6d9Mgbi7Vm1dUHvOpCLcLkLy1bx/06QNLFyazrPFdNFv7kbNI3vjxzkBI+fLOGiLjximkIgEwd1oiB/rcxWMpE9jXujcVZn4EJUr8vcOpuZlFxP+SktjSfgh1Fn3MrKK9qTT7Y3pcecHp+yiTIgETv3QXh6+5jisTVzDv2uFc/f0wwiK8jtlSHkX8JzkZ/vUv53Nh797w8cdwwQXnvFlSEtx+O3z1lXMg3qhROAcWiEieyjhyjE0tb6fBhslML3MbTRb/j2r1ip6+k9pJkYDZNXM19O5Nw5Q4ZvUZS8cvB51+UqXymO/oTJECZMUKuPxy2LlsL3H1rnEGRJ555vQzRLJZHE9E8pa1MGbYdkr3vJK+KZ/y50PDqbDw69MHREQkYFK37mJHzaups+hjxtV6lsu3f02TzAMiIhIwv7+1gEKtLqdq4iZ++e9U2v3w39MHRETEfxISoF07Z0Dkqafg6699GhDZvx+uucbZ/bXX4K23NCAi4g/Hf9tMXLWW1NkwjQnNRnHtro/OHBARkYD5/amvKd21FRGpSax8fR6dJg3yZZZJCXLqwhQQH38MgwdDu9K/M7VUTyJ37Ycvv3TOEhGRgEpMhNe7z+Wu2BspWiiN5M+mUaZPN7fLEglZh6YuxPbpQ+nUJD7oOYX+X/fUlzgiLrEZlgX93qX1pAeJK1SbY5OncEXXBm6XJRI6li2D666DQ4ec0z1uuOGcN7HWGQi59144etT5/brrAlCrSAiKGzuTEkNuIiojgql3z+KWt6/Vl68iLrHpGSzp9BSt5o7g96ItKfnD17RorfkiCwqfDscyxnQ2xmw0xmwxxjyWxfYGxpjFxphkY8x/8r5MyU5aGjz0EPTvD4/U+ZaZR1sTGZ4OP/2kAZECSnkMbju2W0bXfZXHYjtiK1Qkas0yimpARMQd1rLjsfco3usaDqSVYv5Lv3DHFA2IFHRqJ4NX8tFkfmowiLaT7uW3Cp0os+UXamtARCRwJkyAq66CQoVg8WKfBkR273YGQPr2ddYNWbRIAyIifmEtGwa8SOXB3dhharL502Vc/44GRAo69VuDV2LCEX6r3pNWc0cwt+YdXLhrHjU1IFKgnHNQxBgTDrwDdAEaATcZYxpl2u1P4H7glTyvULJ14AB06gSjRlmmtXqe4Wuvx1x8sXP0z2WXuV2e+IHyGNzmz0xkeYNbeDj+P+xrcx3ltyzB1KvrdlniZ+rIBqnkZDa1G0yNkXezoGgnkub9Qo9H9OVrQad2Mnjt+TWezZXbctXmD5l35X9ptnsqJauXdLsskdCQnu6sjH7bbdCqlfN58ZJLznqTjAwYPRoaNYJZs+Cll+CXX+DSSwNUs/iF+q3BKePYCdZe0o8GHz3OnFL/oMSqn2l1cy23yxI/U781eO2eu559ta7g4vhZfN/zXa75YyzFyxZ2uyzJY76cKXIFsMVau9VamwJMBHp572Ct3WetXQak+qFGycLKldCsGaz4KYk/Wt5C98VPwC23wLx5EB3tdnniP8pjELIWxj+9jZJdW3Nd8kQOPPw80Qsn+TQ3s+Rv6sgGp9Qd8Wyr2Y56C95nQo0naLJ9Kk2u1pevIULtZBBaPWYxpvnl1DyxhiWPfE27hcO1foiIP8XGQs2azv8PH4bu3eGVV5yV0WfPhnLlznrz9euhbVtnHfbmzWHNGmdMRWda5m/qtwan46u3sbNaaxqumcTnl47kqrjPqdGomNtlSWCo3xqEVj03lRIdWhCVcpjlI3+k85R/YcJ0ylZB5MunkSrALq/LcZ7rxCUTJ0Lr1lA2OZ64Om2pvXQivPACfPIJFCnidnniX8pjkDl5El7pNIcezzajTqEdJH09g3KvPo7Ocw4Z6sgGmT9nLOFIvWaU37Oa8d0m0W/Lc5SroC9fQ4jaySCzsP/71L+rLSfDipHwzRJavnS92yWJFGyxsc4gyI4d0LUrXHwxzJ0LY8bA2287U2dlIyUFhg93zgZZu9ZZh33OHLjwwgDWL/6kfmuQiftoLmlNm1HyyE4m3zmDfr8+SlQxfY4MIeq3BhGbnsHiLs9yyZO92F64Psdjl9Pq0avcLkv8yJdvCbL6i2xz82DGmMHGmOXGmOX79+/PzV2EtPR0GDoUbroJbq63nF9oTvEd6+Dbb+Gxx/QlbGjIszyCMnm+4nZZxtR9mYfndCatQmWi1i6n2PWd3S5LAivPOrLK4/nb/uQHFOvWlqOpRZn/wmIGTO+jo1pDj/qtQSLleAoLLrqbqz6+k1Vlr6HkpmXUve4it8sSKdhODYgkJjqXT56EuDjnLJE77zzrTRcvdmZgfuopuP5652yRAQP0EbOAUb81WFjL+sGvEz2gIwlEs278Mq4f01l5Cz3qtwaJpH3H+LXWDbT6/ml+rHY7NbYvoHbbam6XJX7my6BIHOD9TqgKxOfmway1Y6y1zay1zcqXL5+buwhZhw5Bt27OXK7vd/iCsRuvIrxwIWelu169zn0HUlDkWR5BmTwfi+acYEXdftwf9yh72vSh4h+LCaurw+hCUJ51ZJXHHPKeGiQlhQ3t76Hmc4NYWqQtx+Yuo9tjF7tdobhD/Va3eGVy/5q9rK9yLVevfY95LYbSNP47StUq7XaFIgVb5gERb48/7mzPwrFjcP/90KYNHDkC06bB559DxYp+rlfcoH6rW7zaSJuYxJrLbqfh2IeZV7IXRX9bTJv+ddyuUNyhfqtbvDKZsGAzCTVa0mTXNL7vPIp228ZTomJRtyuUAPDl+MllQF1jTC1gN9APuNmvVclp1qyB3r1h144Mlnf/Py6f/ixceSV8/TVUqOB2eRJYyqNbYmNh4EDsh+P4/OfqXPzUdbRgLXsfHkmVVx7RYXShK08HKsVHXl/82G7diI+qQ4ODq5lY7RGuXfo85aN1ekgIUzvpBq9MZnTuSlhqceraEyy673PavdnP7epEQsOAAVkPiIBz/cCBsH37aVd/952zbkhcnLPcyPPPa0m8Ak79Vjd491u7diMhvCoXndjMlxcPp9vPwyh2gaZ5DWHqt7rBu9/aqQsXpEYQaYqw9NnZdH7yGrerkwA657cG1to0Y8y9wCwgHPjQWrvWGDPEs320MaYSsBwoAWQYYx4EGllrj/qx9oIvNpYTNw7k0WPjyChxBfFX9qfs9K+dDu1770Hhwm5XKAGmPLrEq9FM69CF7hmFMIUKkTRxJhWv7+h2deIudWQDLdORsCYpicpJq5l9xRP0+fk5TZcV4tROuiBTJsNSTlKaZOKe/B+tn9WAiEhA/PADhJ3li9WoKGeBEI99++DBB50zQho1gp9/hlatAlCnuE391kDL3G89mUQ0m1nQ+Tn6znhCx9WFOPVbXZC535qaTBQpHHlpLG3+owGRUOPTVwfW2hnAjEzXjfb6fQ/OUQaSR5JmxBLeqzvF0hL5xnQjIqoyEQu2wWuvOT1YtZ4hS3kMsEyNZqGMZMJJwX7wCeEaEAl56sgGWDZTgxig45rXYeG1EBPjTm0SNNROBlA2mQzDUv3VByGmjjIp4k9//AH//jdMmQK1asGzz8KLL56eyagomD4dYmKwFj7+GB5+GI4fh//7P2fNSh1rFxrUbw2ws/Rbr17wPMxrrTZS1G8NpLP0W6s8PQgur6RMhhgdTxlk0tLg+6GxXPNadyJxglrEJsH2P+CFF+Chh1yuUCSExMZiu3XHJJ3ZaDJkMFStrEZT1JENpIEDczw1iIj4j+0/AKNMigTesWMwYgS8/joUKuR8TnzwQShSxJlm+dSXPl4DIlu3wl13OSeVtGkDY8dCw4ZuPxEJNPVbAygXU9qJiP/Y2/ur3yqn0eSFQcJamDoVBl0YS8xr3Ykii6AOH57tAnkikreOH4djPW8+Y0DkL6caTREJiIPTFrH7aPHsd8g0NYiI+I/NsCx64Av27k7NfidlUiTvZWTA+PFQrx6MHAk33QSbNsFjjzkDIuAcsDN9OtSoAdOnk3ZVDK+8AhddBEuXwrvvwoIFGhAR8ae4j+YSfzAy+x3URooETMbJFH65/W2O7j7LCW/KZEjSoEgQWLoU2raFXr1gRPwAimU1IAL6ElYkAFJT4bNnt/BDuX5ccHwPNrsd1WiKBMTxXzexruENlO3ZhrBDB/mhycPYolGn7+R1JKyI+NfKUfNYV6IFrd/sx5HI8mz850hslDIp4neLF0OLFs7nwZo1nQ+R48dD5cpn7hsTA9u381upGFq0gEcegfbtYd06Z2H1sy0/IiK5dzB2FWtrdKHqgPakJqYy/8ph6reKuMVafn/yK+JKNuaKT+5jc7GmbHjgXSeD3pTJkKXukIs2b4a+faFlS9ixIYkF/d6lctnk7G+gL2FF/MZamDFuL19WuJe+TzekY+p04v75FGbaNDWaIi5IjdvL6qvvpsjljai2YTZfNH6WEyu30H7lq5jvpv+dS+VRJCA2f7uGXyp259KHYih1cg8/DRpPnSO/Uv+DRzHTlUkRv4mLg1tvhdatIT4eJkxwVka/4opsb3LkiHPySPPmsHs3fPmls+xIVXOXAw0AACAASURBVE2KJOIXJzbsYmXTgZS+5lKidy7lq5avEPnHBtouHKF+q4gLNr2/gPWlWtHkub4k2cLMe+Q7Ljv8Iw1G/cvJoDIpaFDEFfv2wX33QaNGsHDGMWa1f5ltphZXTbwHU7s2PP+8voQVCaAlc47xYfVnuPqfF3Lj4dHEdbmTonFbqPrB/zlzMqvRFAkYe+w4a258luTqdWiwcCzTKg9h88w/uHHNk9RpUszZKdPUIMqjiP8kLN/Nwnp3UPv6JtTf9xPzuoykzL6NXDm2P+GR4c5OyqRI3ktKcqZPrl8fvvoK/vtf2LgRbrkl21M9Nm+G++93Bj9GjnSWNFi/3jkQz5jAli8SCtIOHOa3zo8R1rAeDVZ+zpS6/+Hg0j/os/jfRNfKeko7tZEi/rN77npWVOtFvTvbUvJYHLP7fUjNw7/T7qWuhIV7GkJlUjy00HoAnTjhrIU3ciQUTTzIt03fousfbxL2wyHo0AGGDXPm0TLGOX0kiwXyRCTvbFydwvzbxtLr92dpyT7+uLwvNT5+jlqN6p2+46lGc+BA52wtZVEk76WlsemxDynz5tNclLqH2SVuoPArz9N7UL2sv8jxTA0iIv5xZOcRfus3kisWj+IK0ll42QNcMvEJ2tUtm/UNlEmR3ImNPb2Paa0zCPLII7BjB/TpAy+9BLVqZXlza53F0994A2bMgIgIuPFGZ931yy8P8HMRCRH2ZDKr736P6h8Np0nGIWaXv5Xyo4dz3fU1sr6B2kgRvzq0Np6NNz1D89UfUJzifN/2eVp+9gAdK0dlfQNlUtCgSECkpTl93KefBpuQwCd1XqNn/HuErTgBvXvD44+fefqzvoQV8Zs98RlM7z+Jdj88wWD+YHvNdiSNn8aFbbOfhkCNpoifWMv2t6YRPmwo9U5s4JfINix94hs6/18rwsPdLk4k9KQcT2Fx/9Fc9O2ztLMH+bnGzVT/+DnaXZ31F7Iich5iY/8+EK57dxg1ypkea8ECuOQSZ3u7dlneNDERPvkE3nzTWSukQgV48kkYMgSiowP7NERCRkYGG4d/SfEXhnFJ8jZ+jupA6nMj6fRgU52NJeKCk/uO8uvNL9Nk7mtcRio/NrqPxp//l86XlHO7NMkHNCjiR9bCtGnOfK5J67fxdsWX6R35IWFbU+Gmm5zBkMaNs78DfQkrkqeOH4dv7pnLRROGMihjBbvLXszht2ZQs19nzSkg4oK9U5dyePAj1N+7kE1h9fnm9sl0ea8nRaOUR5FAy0jLYMm/J1Hl3WG0TdvKr6WvYd+bL9HmVh1qLuIX3gMi4Px/8GAoUQJGj4ZBg8jq6ICdO+Gdd2DsWDh0CJo2ddZb79cPChcO7FMQCSU7P4ol+cFHqX94OWsimrDygVl0eqUjEfpWTSTg0pNSWD54DBd+9iytM/YzP7ofFT8YQYcutd0uTfIRrSniJ0uXOjNhDe21nufjbuePsLpcd+gDwgb0h02bnCOAzjYgIiK5FxsLNWs6/wdSU2HSE7+xrGwnbv+4PdWK7Cdh5MdU2fsbpW7qogEREX/KlEeAI8s3s6pBXyr2aknJvZv4usNoyiWs4fqPemlARMTfssjkylHz2FCyBa3f7EdyRDGWD59J0wM/0FADIiL+kXlAxFtqKtSrd9qAiLXw00/O2iC1a8Mrr8A11zgnlKxYAf37a0BEJE9k0Ubuj13DqhrdqT7gGooc2cuU6z+i1sEVdBulARERv8uUSZthWfnfr9hdqjEtJtzH9mKNWf7eMtrGf04DDYhIDulPeF7wmgd2c9UYhg2DrV+t4P8KP0838y2kF8U8cD/8+99QpYrb1YoUbF4fMm337iwfPJaED2bQ99inHIkow/b7X6PmyH9BkSJuVypS8GWaFiTlg09Y+3YsF/08mtoU5tsmz3D5Z//mhkbF3a5UJDRkymTc0LdIePtrmu+fQXx4VX4aNJ5W79z69wLqIpL3kpLgH//IekDk1PaBA2H7dpKT4YsvnCmyVqyAUqXg4Yfhnnuc9WFFJA9laiMT3x3H+tdncenv4ynEBUxu/RKtP7+PXtX1OVIkIDJlcte/RnB87EQuPbqUjYUas2Dod1w5osvfC6iL5JAGRc6XV0iTO3bnnYznGWxm0oFZ2CIlMY88AQ88AOU0n52I32U66s4kJtJs1C2kEMmmPsOoO/ZRSpYq6XKRIiEii2lBCt10A5cQxsxqd1Fr3FNcd20ld2sUCSVZZLLK03dQimLM6/wiLT69nyvLFHW3RpGCKiMDFi50FgGZNAmOHs1+36go/nx1HG8+48yitXcvNGwI770Ht90GxYoFrGqR0JFFG1l0wI1cTAQz6z1IownD6N28rLs1ioSSLDJZ7dWHOGDKMeemD2n7we3UL6qDeOT8aFDkPKTNicX06E54shPSwmmJjOJB0kuUgmEvYv71L2dOWBHxv9hYbLfumKTTj7ozQGTRcOrd3R40ICISGNlMC2IAIiPp/lFfiNGAiEjAnKWNLFYkg3aPXgEaEBHJe+vXOwMhn37qLAZSvDjccAPcequzvVev09rK9CJRvNRmOs/cHENKCnTt6hxf16GDZnsV8ZvYWGz37pgs+q0RhQvRfXR30ICISODExmK7dcMkJZ2xqWyRE3S4syZoQETygNYUyaFjx5yDe0a0jyW1Y7e/BkS8hacmwxVXaEBEJAC2bkjh6yFzONGh1xlf9pxiTk1DICJ+ZROT2PL6NJI79cx2WpDwlJPKo0iAHNlxmJ/v+YyTHc4cEDnFnFQbKZKn9u1z5rtq3hwaNYKRI53/f/op7NnjrIrevr3zM306NioKgKSwKNqfnM6IRTEMHgwbN8J330HHjhoQEfGH9KMnWPfcNyR36nHGgMgpYclqI0UC5dCqXSy9/R1S2nfNckAE9N2O5C2dKeKDhASYOhWmTIGffjhJl9QpjGcARTmZ9Q285oEVkbxlLayMPcSWt2ZSPHYqrY/M5AaOkkwkGSacMJt+5o2iomDcuMAXKxICUvb8yYZXvyP968nU3/49dWwix4kignDCUR5FAm334p1seW0qF8ydzMWH5tOGNA6Z0hQyKYTbtDNvoEyK+MZrHUliYk7flpTkfGD85BP4/ntIT4emTeG11+Cmm6DS32dHWusMeMyfD/Pnx5BceDqvJg7k8fLj6PFoDN/+01k7RETyXuL2fWx8ZRpmymTqx/1AI05ylOLqt4q4wVrivl/DzrcmU3bhFOofX0ELYHdYVSqZPeq3it9pUCQL1sKGDTB5sjMQsnSppTnLuL/EeL4K+5woDmPLl4dDaZCmkIr4W0oKLP18K3vHTiV6+VRaJC+gKekcLFSRnS3+Qbl/9iT61mth6dIzp+yJioLp08/88CoiuXZk1Q42vzKFIrMm02DfAi4hnXhTmQU1+xN+Q2+aPtSO4ht/Vh5FAsBmWDZ9tYqE0VOouGQyDZN+owqwNbI+P7f4N2X/2YvG/2xB2ML5yqRIbmVa7JXp06FtW2dkY8IE+OorZ52QqlXhP/9xFv9o3BhwPluuW3tqEMT52bvXudvoaGjbKYaVN25nQg8I12wgInnu4NItbHl1Mhf8MJkGhxbRFMtOU4N59e+iyI29ufyBKwn/faHaSJEAsKlpbBr3Mwc/nEz1X6dQNXUblTGsKtqSWTEvUvlfvWh8QwPC5mcxHbMyKXlMgyIe6emwZMnfAyGbN0M08TxWZQLTyo+n/P712NSimD7Xw8CBmJgYp0erkIrk3lmOuDtyKIOl7ywj8bMp1Ns4lasy1gKwo8RFrO0wlBr39qRsh+aUDfOaBTAmxsnfqVwqjyI5k10mrSV+5u/sensKZRdOps7xlTQDNoQ3ZlaToZS4vTfN7rqczsW88lhZeRQ5L2dpI9NOprH63YUc/WQKtddMoX7adupiWFu8JfO6jKT6fb2o3aU+tb1vpDZSJHeyWOyVjh2hTBlnqqzixaFPH2cgpF07Mghj9WqY/6bzcXHBAjhwwLlp1arOrFnt2jljKnXqaGoskVzLrp3MyGDHNyuIf28ylRZPplbSOsoCawtdyvdXPE3ZO3pz2YBLqB7pFT61kSLn5yz91pRDJ1g3ajbJX0ym3ubp1M/4k5MU5rcy17L+2sep+3APLm2Zab1JZVICIKQHRZKS4IcfnIGQadNg/34oHnGSoY2mcVvj8VRf/z1mdwa0aQPPj8X07QslvRZqVkhFci+LI+52V23BytfmEjZtKk13T6Mje0kjnM3RV7Om6yAufKgnNRrXpsbZ7vdULrOb3kBEspYpk3byFDZvDefguCnU+HUylVN3UAnDb0Xb8F3MK1T+Vy+a3FCHBmdbnUx5FMmdLNrI4w2bs/rVWaR/M4VG276jqXU+UK6q0J7tnZ+gwSM9uPiiime/X2VSJGfmzIGePeFkpmmT09KckY4nniB96DB+3xzF/Pkw7w1YuBAOHXJ2q1kTunVzBkDatoVatTQIIpInMrWTGd98y4b1cOTjydRePYUaafFUIZxfi1/Nhs53Uf2+XjTqUoPGZ8uf2kiR3Mmi33qsemPWvzSN8O+m0Gj3HC7lJH9Smt+rdsP27MUlj3SiVc0Lzn6/yqT4mbHWuvLAzZo1s8uXL89+h7PN2XoejkyOJXzQQEY2GMdrv8WQmAglLrDc23I5AxjPhcs+J+zwIecwnttvh/79oV69s9+pn2qVgskYs8Ja28ztOjILaCYzH3EHpBNOKuEUIYVjYSX4o24Xit7Ykzr3dSG8XOnzezyRbCiPXveXKZMWMMBJCrO8TEeOX9uLeg/3oHbLCuf/eCLZUCbJto1MJ4xIUjlkSrO2VnfCr+/Fxf/uRPFKxc/v8UTOIl9mMjd5TE+HrVthzRpYu9b5/6nfz2Jv0RrUj9zOkSPO5Tp1/h4AadsWqlfPwZMSOYd8mUcIaL/1BFH8Wr4zSZ160/A/3ajWpMz5P55INpRJssxjBmF//XdnWA02NehF1E29aHr/VRQtUej8Hk/kLHKaSZ/OFDHGdAbeAMKB9621L2babjzbuwKJwABr7a8+V51ZVnO2niOox445C6Kf+omPP/1yQgJcuDOWiSe6U4xEHl/UneodP+bqatuou2g8YXPWQpEicP31MGAAXHON75O6xsRoUXUJmIDnEXKcyYwMOLAzkYPr9nJkQwKJW/eQsnMPNmEP5Xf9StO935+xkF046RBm2PPwy1R87n4uLRx5XiWLBEp+aCNTDp3g4JoEDq+L5/iWBFK3x5OxO4GI/fGU27eO2kdXEsbpB0kYID2iMCc//oYrb+qa63JFAi3YM2kzLEfjjnJwTYLTRv6RQOpOp7NaLu43Gu6dRzgZp90mnHQwhs1DXqXWa/dzZZGQPtlb8pGgy6O1sHPnmYMf69efdjZISrXaHKvemBNXNaHK4q8IT0s546FOEMWj5cZxY5e/B0GqVMl15SIBEXSZzELywePs/z2eIxsSOLE5ntQd8dh4T791/zpqH1uVbb8147Ovuapv51yXKxJowZ5Jm57B0T/2c3BNAsc2xpO0NYG0nfGE7YmnbPwq6h5YQlimfmsYGaSHFWLLf96h1ohBVI/QKZISnM75icoYEw68A3QA4oBlxpip1tp1Xrt1Aep6floA73n+n3NZzNma0bU7vw2fzrqKMdkOepw4ceZdRUZC5crOAnZ9y8UybHN3CuPcb5RN5M5ZfZwdW7WC//0P/vEPKFUqV2WLBELA8whZZ7JzVzb2e5q9VCR99x7M3j0U+nMPxY7uoeTJPZRL20MFjpL5ePIMDBZzxpc9p4RnpFFp0tvw8n9yXa5IIAVFG9mlK9sGv8D+sEqk7HAayIgDCUQdiqdkYjxlUxIoYY8SDUR73dVJCrM3rDLRNv6MD5anhKclU+rxu+Gm7bkqVyTQgiKTnbuy+bb/Y7+pSNquBMyeBCIPJhB1NIFSifGUT0ugJEmUzHRXSRShEKnZt5E2jboz3oR3H85VqSKBFgx5tF26cOSGO0g+lkzkxjUU27mOyJPH/rrJgSJV2FLkItYWvYaV4Y1ZeuIi1tGQE7uKwy5nn3YMYjrOgXWnpEVGkfzZdD66QbMESP4RDJnM6NKVrYOeZ7+p6BwQEB9PoQMJRB2Op0RiAuVS4rmA41QFqnrdVSJF2RceTXTG7rP2Wy94ZAj03Z6rckUCLSgy2bkrm29+igOmAum74jF7Eyh8IJ7ix+IplZRA+fQ9lCTtjH7rfspRiiNnDIicEp6RSp0vRsDIO3NVqkgg+HKY2RXAFmvtVgBjzESgF+Ad0l7Ax9aZi2uJMaaUMSbaWpuQo2qyOO0KIOxkIk0fuYaalCaFwhgDYWHOiRxhYRAeBmEXZLou3Jmv1ZwENiT/PbFrZkWKwIgRmvZK8ovA5RGyz2TKSRp+/DgNPZePmhL8WagSR4tV4mC5S9lbrhJUqkSh6tFE1a5EyfqVKNu4EkWrlXMmWs7iPgFnXZ5x43JcpoiL3G8jk09y4VsPcaHnchJF2BcezaGilYkvczHbynYio2I04dUqU6RWNBfUr0yZiypTvm4pakSabO8XUCYlP3I/kyknqf/BUOp7Lh/lAg4WiuZIVDRxVVqwrVw0VIp22sgLoylRP5pyF0dTolpJzPx5yqMUJK7n0SQnU+qzdzlMCX7lctbSnzVcxMaIi9hXvjGRFUpRrhx//XQtB7d7XXZ+YohYMx1u+HsdyYjp0ymjz4+S/7ieybDkk9R552HqeC4nUpR9EZU5XDSa+PKXsq1sV2wlp99atLbTby17UTTlLixJzQj1W6XAcT+TKSepP37YX/3Wg6YsByIrczQqmv0VGrOufGVMdDSRNStTrG5lSjaIpvzFlShXrjBmnvIo+ZsvgyJV+Os4GcAZvcw8KpnVPlWA00JqjBkMDAaontUEqwMHZh0mIAwoHZVK2o19iczpFHSffZb9tpMnncfV9FeSP+RZHuH8MgmQVrEKGRs2UaJUFCV8q//vxbIyN55RUT6dTi0SZIKijQRILV+ZIz+voUztUtQIN9Tw9Rkok1KwBE0m0ypUJnn1JkpUKKY2UkJV4Pqt58hj4QqlKfHdj/QoBwPLQbFiOVzwvKoWe5UCIWjayNTylTn+yzpKVS9BzbAchFHtpBQsQZPJtIpVSFn/B2VLF6asr9Urj5LP+TIoklULlfl8RV/2wVo7BhgDzsI/Z9xi3LizjjKGTZ9KZG5C1a+fRi+loMizPML5ZzLi80+gVNQ5Ss5C5sZTjabkX0HTRhb6YgLl6pb2oeQsKJNScARNJiMmTiCiQjEfSs5EeZSCI3D91nPksejEcTQ736VwtY6k5H9B00YW+mICpWtmnpDHR2onpeAImkxGfP4JEaUL+1ByJsqj5GNhPuwTB1TzulwViM/FPud2KkxRmb5kPd9Q+et+RQIvcHkE/2bn1H3XqKEcSn6W/9vIzPevTEr+VjAyqTxKwVAw8ihScBScTKqdlIKhYGRSeZR8ypdBkWVAXWNMLWNMJNAPmJppn6nA7cbREjiSq/UL4Myg5nWjmdf3KxJYgc0j+Dc7p464Uw4l/yoYbaT3/SuTkr8VnEwqj5L/FZw8ihQMBSuTaicl/ys4mVQeJR8656CItTYNuBeYBawHvrTWrjXGDDHGDPHsNgPYCmwBxgJ3n1dV/hpl1Oil5HOu5BGUHZFsFKg2UqQAUCZFgofyKBJclEmR4KJMirjLWJvllK1+16xZM7t8+XJXHlvETcaYFdba853VOM8pkxKKlEeR4KJMigQXZVIkeCiPIsFFmRQJLjnNpC/TZ4mIiIiIiIiIiIiIiOR7GhQREREREREREREREZGQoEEREREREREREREREREJCa6tKWKM2Q/sOMdu5YADASjHF8FSS7DUAcFTS7DUAb7VUsNaWz4QxeREPstksNQBwVNLsNQB+asW5TFvBEstwVIHqJasqI0MjGCpA1RLVoKlDijYmcxvr3OgBEstwVIH5K9a8mseIX+9zoESLHWAaslKQW4jIX+9zoGiWs4ULHWAHzLp2qCIL4wxy4Nl0aJgqSVY6oDgqSVY6oDgqsUfguX5BUsdEDy1BEsdoFoCJZieW7DUEix1gGoJ5jr8JVieX7DUAaolmOuA4KolrwXTc1MtwVsHqJZACabnFiy1BEsdoFqCuQ5/CZbnFyx1gGoJ5jrAP7Vo+iwREREREREREREREQkJGhQREREREREREREREZGQEOyDImPcLsBLsNQSLHVA8NQSLHVAcNXiD8Hy/IKlDgieWoKlDlAtgRJMzy1YagmWOkC1ZCVY6vCXYHl+wVIHqJasBEsdEFy15LVgem6q5UzBUgeolkAJpucWLLUESx2gWrISLHX4S7A8v2CpA1RLVoKlDvBDLUG9poiIiIiIiIiIiIiIiEheCfYzRURERERERERERERERPKE64MixpjOxpiNxpgtxpjHsthujDFveravMsZc5mItt3hqWGWMWWSMaeJWLV77NTfGpBtj+rhVhzGmnTFmpTFmrTFmvj/q8KUWY0xJY8w0Y8zvnloG+qmOD40x+4wxa7LZHrD3rD8okzmvw2s/v+bR11qUyTO2K5OBqSPk2khfawlEJpXHwAiWPPpYS8hlMljy6EstymTeUCZzXofXfiHTRvpSizKZN4Ilk8GSR19q8dovZDKpPAZGsOTRx1pCLpPBkkdfaimwmbTWuvYDhAN/ALWBSOB3oFGmfboCMwEDtASWulhLa6C05/cubtbitd+PwAygj0uvSSlgHVDdc7mCi/8+w4CRnt/LA38CkX6o5WrgMmBNNtsD8p518XUOqUwGSx5z8Jook2duVyYDU0dItZE5eF38nknlMTA/wZLHHNQSUpkMljzmoBZlMjCvc0hlMljymIPXRJk8c7syGZg6QqqNzMHron5rgN+v/voJljzmoJaQymSw5DEHtRTITLp9psgVwBZr7VZrbQowEeiVaZ9ewMfWsQQoZYyJdqMWa+0ia+0hz8UlQFU/1OFTLR73AV8D+1ys42bgG2vtTgBrrZu1WOACY4wBiuOENC2vC7HWLvDcd3YC9Z71B2UyF3V4+DuPvtaiTJ5JmQxAHSHYRvpaSyAyqTwGRrDk0adaQjCTwZJHX2tRJs+fMpmLOjxCqY30tRZl8vwFSyaDJY8+1eIRSplUHgMjWPLoUy0hmMlgyaOvtRTITLo9KFIF2OV1Oc5zXU73CVQt3u7AGZ3yh3PWYoypAlwHjPZTDT7VAdQDShtj5hljVhhjbnexlreBhkA8sBp4wFqb4ad6ziZQ71l/UCZzUUeA8uhTLSiTWVEmA1OHt1BoI32qhcBkUnkMjGDJY24eJxQyGSx59LUWZfL8KZO5qCME20hfa1Emz1+wZDJY8uhTLSGYSeUxMIIlj7l5nFDIZLDk0ddaCmQmI867nPNjsrjO5mKfQNXi7GhMDE5Ir/RDHb7WMgoYaq1NdwbqXKsjArgcuBYoCiw2xiyx1m5yoZZOwErgGuBCYI4xZqG19mge13IugXrP+oMymbs6ApFHX2tRJs+kTAamDmfH0Gkjfa0lEJlUHgMjWPKYo8cJoUwGSx59rUWZPH/KZO7qCLU20tdalMnzFyyZDJY8+lpLqGVSeQyMYMljjh4nhDIZLHn0tZYCmUm3B0XigGpel6vijDrldJ9A1YIx5hLgfaCLtfagH+rwtZZmwERPQMsBXY0xadbayQGuIw44YK09AZwwxiwAmgB5HVJfahkIvGittcAWY8w2oAHwSx7Xci6Bes/6gzKZuzoCkUdfa1Emz6RMBqaOUGsjfa0lEJlUHgMjWPLo8+OEWCaDJY++1qJMnj9lMnd1hFob6WstyuT5C5ZMBksefa0l1DKpPAZGsOTR58cJsUwGSx59raVgZtL6YZEWX39wBmW2ArX4ezGXxpn26cbpi6j84mIt1YEtQGu3X5dM+4/HPwv/+PKaNATmevaNAtYAF7lUy3vAM57fKwK7gXJ++jeqSfYL/wTkPevWey/UMhkseczBa6JMnrlNmQxMHSHVRubgdfF7JpXHwPwESx5zUEtIZTJY8piDWpTJwLzOIZXJYMljDl4TZfLMbcpkYOoIqTYyB6+L+q0Bfr+6+d4L1PNTJnP9mqiNPHNbnr5nXT1TxFqbZoy5F5iFs9r9h9batcaYIZ7to4EZOKvLbwEScUan3KrlKaAs8K5nxDDNWtvMpVr8zpc6rLXrjTHfA6uADOB9a+0aN2oBhgPjjTGrcQIy1Fp7IK9rMcZ8DrQDyhlj4oCngUJedQTkPesPymSu6wgIZTJryqT/n1+w5DEHtQREsGRSeQyMYMljDmoJqUwGSx59rQVl8rwpk7muIyCUyawpk+q3hnomlcfACJY85qCWkMpksOTR11oooJk01uaX6fBERERERERERERERERyL8ztAkRERERERERERERERAJBgyIiIiIiIiIiIiIiIhISNCgiIiIiIiIiIiIiIiIhQYMiIiIiIiIiIiIiIiISEjQoIiIiIiIiIiIiIiIiIUGDIiIiIiIiIiIiIiIiEhI0KCIiIiIiIiIiIiIiIiFBgyIuMsYUNsasM8ZU8lxuZ4yZ54fH2W6Mqen5/RJjzKK8fgyRgkCZFMmfjDGNjDHLvS4/Y4x5Jo8fo6YxZrvX5fuNMS/m5WOIFBTKpASCpz/V3u06go0x5mdjTFPP76flJA8fY54xpp3n94rGmPXGmMJ5/TgioUxZFgkeymPB5PqgiOcf/VDmf2hjzHhjjDXG9Mx0/SjP9QM8l2OMMauNMYeNMQeNMd8aY6oE8Cmcj8HAAmvtnkA9oLV2FXDYGNPjfO/L8wXyh8aYo8aYPcaYh8+x/83GmB3GmBPGmMnGmDK+3pcx5lJjzApjTKLn/5dm8xg/et4fEV73+4HncY8ZY34zxnTx2r+RMWa55z14yBjzgzGmkdf2R4wxazy33WaMeSTT4203xiQZY457fmZ7bWtnjMnw2nbcGNPf19fXLeebyUzbxnm21fFz72LYkAAAIABJREFU2XlFmfTxvvyVSc8+1xpjNnjuO9YYU8Nr28xMmUoxxqzOVNdCY8wRY0ycMeYpr23DMt02yZPRcr6+xm7K9PfmkDHmO2NMNa/t4z2vxzHPzxpjzAvGmJJe+wwwxqRneh3e9mw769+7IDcceCXAjzkGuNUYU+F878g4HetYz3t+gznLl3zGMdI4fZ6DxpiXjDHGa3usMWa/J7u/G2N6ZbrtE8aYnZ7tE40xJbJ4jDKe+/gp0/Vnzb0x5iHP34sjnr8fhb22Hc/0k26MeSu3r1kwCEAmHzTGbPX8W8UbY14/9bc0H1Am/96ebSY928/WFlcxxkwxxvxpnDZtiNe2csb5gH7QOJ+DFhtj2mRT42ltsee6CcaYBE9dm4wxg3L7eknwME5/8pi19rdAPaa1di8Qi9OPPi/nylMW+5+tz3jO+zLGPGCcPs8J43z5VM9rW3ljzGeefB0yxnya6bbtjTG/em67yxjzD8/1V2XR5lljzA2e7f2MMRuN01buM8Z8ZLza4ixuG7TtpTn/73K6GWN+8rzGe4wxY40xF2TxOOONMWnGmMqZrn/GGJPq9VqtP/U6e7ZHGmO+Mk57bY3ny8b8QFk+Lcvn/Ixyjiyfz2feHp7HPm6MWWRO/66osHH6ZvGeHLxrjCl0Pq/b+ciDPMYYH75bPY88tjTGzDFOn2a/MWaSMSY6T18EP1EefcujMaaCMeZzTyaOGKef2sJr+zm/IzXZt631jNMn3u95D80yxtTPpv4z+r3Zsta69gPUBNKBP4G+mbaNBzYCX3tdFwHsBrYAAzzXVQQqe34vDLwETHXzeeXg+a8B2nhdbgfMy+V9RWR3HbAdqOl1/S3A9Dyo/wVgIVAaaAjsATpns29j4BhwNVAc+AyY6Mt9AZHADuAhz7/x/Z7LkZke4xZgAWC9nnsx4BnPey0M6O6po6ZneynPNgOEe+57ldd9Pgpc5nnv1fc8bj+v7duB9tk853ZAnNvvsxz+m553Jr22Xen171HH7efm4/NXJn24Lz9nshxwBOgLFAFeBpac5TnPA57yurwOGOHJ84VAAtAzm9s+A/zo9vsuB/++f/298bw2HwKTvbaPB57z2t4cpyO1BijmuX4A8FM293/Wv3fB+gNE4/zNKpLp3/aZXN5fltn1vGe3Z7p+LPCfPHgOi4HXgKLADcBhoHw2+96F87e4KlDF854f4rX9Eq+8tfDkK9pzuT+wAajmyf0U4KMsHmOsJ7s/eV131twDnYC9OH9bSnuy+WI2z6EYcBy42u33z3n+u/k7kxcCpTy/lwF+BB52+3n78Look75n8lxtcSwwCigENPG8rjFe76n6OG2pAXp7tkdkqu+MttjrsQt7fm+A085f7vb7J4f/Tn9lUD9/vSbfAbd4XT4jJzm4r7P1ZecB7byubwOsyYP6z5qnTPuetc/oQzYHAauARp4MXQiU8dq+0PN3oKQng029tjUC9gFdPH+PygIXZlNnO0/OT/3drwaU8/xeHPgUeDOb2wZte0nefJdzM9AZiMLpO8wERmfxGhwDDgKPZNr2DDDB63InIAmo6LkcCTyI87k0wfs9G+w/yvJpWT7XdzLZZpnz+8xbFzjqef9EAI973r+nXrunPbctA5QHlgD/59L7JS/yeM7vVs8zj108/8YlcDL/IfC9mznLweurPP69Pds8ArWBh3E+C4TjDOgcAIp7trfjLN+Rcpa2Fbji/9m78zib6v+B46+3se9EKWsl30JpkZQKrSp92/u2aFGSCoXInjB2ki1LDFKp6Bf5avlWo30RSaGEhBCKwmDM+Pz+eJ/RmevOwty5Z2bu+/l43Af3nHPvfc+9933P53xW4EEv34qgHbB+DPMcYcu9Gb5mwF+svsBnaGFjQci+6WgPs61ABW9bS/RE+SkhFbDe/mLoj9rKHMQ0HZjgvc4eL74q6AXJTrQywV8g6g6s9X4YVgI3+fY9D8zx3R8KfID+UNfwfiD8FyfN8FXAen/PCGADWtEwESjh/zIBT3nv0YvhtnnHrid9BWxV77WL5fDz+w24ynd/AL4TTMixg4CXffdPBZKBMlk9F3CVt198+zfgq+xFC6urgcZZffnRE+YtYbYXBh4DkjJ57BhgrO/+egpWo0hEctJ7L79FKwIcOWgUwXIypnISPXF+7ttXyntvTg/zuFpo4e9k37YkoK7v/utAjzCPFe97cl/QeXcUn+96fL83wLXA6pBcGRjymDLoRWB77/79ZFABG+b10v3eHWO8Xb3Pdy8wFS1sv43m5/t4vyW+z2orWgj7GKjnbS8KLAM6ePfj0N+Bvt79e4H3Q167H74KWOAkYC6wHfgF6Bhy7BxgFnrh0yaDbbU4sgL2biAxh59rHeBAWu552z4h44Lq50Bb3/0HyaDhEC087gcaeffn4LuAAS7y9pf0bbsQrRBuTfpGkUzzHr3IHOTbdzmwNYO47gPW+Z8rP96imZPoRcH7wIQcxms5mfX7FM2czPBcjFbeOHyNMehomBfDPG8h4Hrv+ON927N1LkYvarcAtwedV8fwnX7S+07/BbxK+sa4lt53dZf3OZ3l25eufEr6RsxmaPmtC3pxvgVonYM4+3n5NMvLte+971kP7/k3kr7M1RpY5R27DnjYt+8ptOItrQLlEWAFWnFRFC0zVfMdny5PvO9KWln5D+A1/qk8rOW9Lw+iv+8fh9vmHbuI9BU3hdEyWM0cfqZHk0+Zlhkzey7vfdgIXJ7Bc1/lfb/iMtj/MjAgm39TApCQwb7SwExgYQb78+z5kgjX5XjH3Ax8H7LtXu+zepyQykFCKmG9bduAi8I89yZy2CiC5XIguRzm+MPXKGSdyzm55m0P/DfkPd+X9lrAN/gaINBGvo0FIR/JoG6VCOWjt+9cdPSF5WMByccM9v+N1+mGrBtFjubcWtF7D4/zbct2HVTaLejps+5Fe0a8BFwtIieE7N8PzAfu8B0/M/RJRKSGiOxCP6gn0RbNnLgd6I22kB1AKweWevfnoD80adYCl6Bv/jPALN8QsC7AWaJTI1yCfvHuc/ppnQmsc86lZBLHUDSpzwZqoxWnfX37q6BfhJr8M6Qq3LZ0nHO/AQfRCyBEpLs3RC7sLdxziEgF9IL2O9/m79CW+HDq+Y91zq1FT0Z1svFc9dDRG863f3nIaw1CK7wznfbI+47VQX/g/Nt3od+3sd5zhXusoJ/1ipBdL3lDuN4TkQYh+44Xkd+9YWXPikipzOLLAyKSk2hP4o+dTg0VCZaTsZOToXHtRT/TcH/HvcAnzrlffNtGA/eKSBFvOOWFaEVfqEvQysC5mcWXV4lISeA/aOEtQ8653cD/0L/3aJ4/o9+7o3ULcCX6GV+PFr57orlbCB1tkOZttEfW8Wh+vwTgnEsGWgH9ReQMtMAZh44IAs3dnzL5WwoBb6Hfq6poZf0TInK177Ab0N+S8mmvm8G2UKvQ3ttpr7Ugk9xdkMFz1EN/e3b7tmU7d8Md68WxH/gKLVynre0g3g3f/WLo+46IxAHj0YtAf36nvW5meR8urhNE5Lgwf8N9wMyQ58rXcisnRad8+BvtZdUAmJTDUC0n81ZOZngu5p9cDc3Z+iHPvZx/ymcvOOe2+XZnei4WneojCe1gsgVYmMHfmJfdjvY0PxntjHM/gIici/ZCfRhtVJwEzJfsz81dBS1LVkXLi+O98tGxuh7tMFMB7Tj0LppzVYH+pM/tbWiFVVm0EudZ7+8B7bGZDPQWkdPQz7iVc24/mq+HnHObMomjIzqqqCla1tuJ/u77NUV7TF+dxbbDvPLzGrz88367MizLikiNDOLLMp8yOjZMmTGz56rm3ep703P8IiLPeL9PoBUqPwEzRKcaWSwiTX3P1dj7O78XnYZulvim5EnjnRtuBWaEbL9YRP5CK+duQcuv4eTl82Wkrhv9LuXIsud9wCvAbOB0Xy6kI+o6tAJzZXb/iGNguRz9XD4szDVKVrmck2vecOVm/3k43P5q4psmNYqiVbcayXwMl+9Hy/Ixb+Vj6P6z0e/AGt/mzOpIs3Vu9VyKdsD7w7ctW3VQ6eSktSmHLVUXo5WAaUNHfwQ6+fZPBwZ6x32BFkp/R4exZ9SaWRFt4Wucg7imA1N89zsAq3z3zwR2ZfL4ZcANvvuN0CFsvwJ3+rbfTUjLHL5e6egP6l58w3DRyr1ffMcmk7431BHbvO3r8fVK97b9Rg6G4aLDfl3I619JBkPI0N747cLE0Cyr5wL6ENLbHf2x7+f9v6H3vqdNpRC2RRAdYvU+MCmDGEsBjwLXZbD/GfTHoZhvWxPvO1kSbZHeyj9TXVRBh38VQi/UPs7otfPCjQjlpPd5rgHKefcdOR8pYjmZ9ftUIHIS7bk8JOS4zwj/mx9u2raLvO0p3uuGHcLsvc70aOZYTm/e92YP2uM1BdgMnBmSKwPDPG4I8D/v//d7j93lux1xziTM790xxusfZjwXeN53vwO+qYZCHlve+/zK+bZ1QX+XdgKn+bZPCfOd6ef7Pl4AbAjZ3wOv16Z37MdhHh+6rVZoPqGF5NQcfq73cORvT3xG3090dNTpITE4QnqRevl1Del/x9ugvWdqob/h873HXujt75T2GREygoGs834t6UeLFfGeu1bIY2oQMsIrv96inJOnob0Xq+QwXsvJrN+naOZkhudi7/+foh12iqM9Kv8EfgoTQ3HgTnyjH8n+uTgOLdv1BopEM4dyevO+061894fhTb2DXhQPCDn+J6Cp9/905VOOHCkSOnp4W7jczGac/fBy3rt/PfrbEefdL+PFUz6Dx78JPB7y3f8TbQTs4dvehJAReqF54j3mct/9E9Hyv/97ckrI49Nt87YvIqTXPVpeuzeHn2m28snbl2mZMbPnQsuLDp0SJW065dXAQ96xk/mnF28RtCJxF/9cJyV737866GiPucBLYWK8Bx0NF3akB1px1w+oE2Zfnj1fkjt1OVei55M6vm01gEPA2d79d4HnQnIr2ftskrz3q1sGMUdqpIjlcvbeq4jlcsj2dNcoZJ3LObnmPR29/m+GVuz28b6PPbz9A704K6N1P195z3diAcjHI+pWiWw+nuV99y+xfCw4+Riyryw6esf/XmZaR0r2z63V0Dz21+dlq9wbegtypMh9wHvOuR3e/Ze9bek45z5Ff2R6o8PA9mX0hM65P9FeGPMkzIIqInK3/LOYy9uZxPa77//7wtwv7XvOe0VkWVrLHNpqfHjRXufc13hDXtEhVGl2okmakcpoRfsS33O/421Ps91pyyVZbAunDPpjdaz2eP/6F2gti/Z2yej40MVc047P6rkyfKzXA2AC+mOWYQ9/77gX0SRrH+4Ypy2gE4GZErJIp4i0R1vTr3POHfA95jPn3D7nXJJzbjD6nl7i7dvqnFvpnDvktCd7N7SnUF4VqZwcDfR3zv2V1QtaTqZjOZl1XP7HX4yeVOf4tlVEP5P+aAVRdbSnzKMhjy2BzpGZrtdePnGjc6482ru/PfCRiFTJ4jFV0QJemi+dc+V9t3Q92zP6vQs5ZqIvd3tm8trZyl0RiRORISKyVrRX/HrvmEq+42egBZyFzrmffduzyt2awEn+XjRoz3h/D6qNYR4XbluoMuiULTmRre98JseXBfY4rzSYxjl30Dn3NpoDaQsrTkN7dy1Ce/Qkets3iS6W2BHodYxxhouLMH/HvWhjyy8ZvE5+k+s5CeB951egv69HsJw8LL/lZFavdTd60bgRreR/Ca3YS8c5t9859wrQXUQaZPdc7D021SvbVUOni8hv/L0Bk/inTFgT6BLyPauO9uDMjj9C3jv/cx8m6RfVzqzHa2iu7XDOpfruwz/5d42IfCm6kOgudGo+f1l2Pfr7XYv0PVGzyj3Q9+X/fO/JKrSyJFL5l5OyLGQznzI4Nu34zM5Lac+V9p4Pc87t8t7TSeh7jbd/vXNuqpe7s9H3oIlvf4JzbrVzbg/aOzXtsX73kclID6ejxd9Be12Hysvny4jW5YhIY+85bnXOrfbtugftDLfMu/8ScJekX8z6Ne/cWRKdGuleEXn4aP8gy+V08louAxleo2SVy8d8zeuc+xH9Xo9DR1NWQkc9pJ2H49HRCcvQ6YneRCvC/SM2oyFadasRyUcRqY2ORn7cOfdJuNe3fEwnP+Vj2r4S6KjwL716UiBbdaRZnltFpDLwHjql8CvetmyXe0MF0ijivUG3A01FZKuIbEV7JzaQI6cfAp0jrgtZD7cEbRU6niM/RJxzLznnSnu3a479L1AiUhPtDdcencesPLp4pviOeQy9UN6MfuBplgOnhGu88exAvxD1fBfJ5Zxz/sJ4uC9w2AJXSNwnoS3dP3n3e/p+cI64hXsO59xO9MTg/7wakPHwtxWkn87gFPR9WZ2N51qBTnnkH5p4lre9LNoi+Kr3PVrs7d8kOj1S2pCutHmzb3HOHczovUFzoiRaYZEW6wPo1BCXu8yHzME/vY+Odl+gIpyTlwPDfc8D8IWI3BV6oOXk4ZgsJzOOqxRaoAo3lP4N72SZ5hS0h/BM51yKl6+zOfIi9Wa0QnJRmPclX/Aqsd5AC1sXZ3SciJQGrkDnw89Sdn/vnHPtfLkbdsrBo3QXOjXOFWjvpVppIfmOmQAsQCsU/X/zcrQ3SUY2oiO6/JXOZZxz/u/FMeUuOtz58PBiEXk7k9zNqOF3Bfrb4y9sZzt3szgWtFx0KoBXAH3aOVfLOVfNe9xv3q0R2qtppZe7zwGNvN/yODLP+4zi+t2lH9IMWnjOjw2SmcqtnAxx+LMM8/qWkypf5WToY/3nYgDn3K/OuZbOucrOuQvQaaC+zuS5i6DnwizPxVnEVRBsBOJDvmcl0y6g0UaOkr7js2rMDMs594kv9zKaiiLbRKf3movO/36CV5ZdSPqy7LXoaOUP0Ck/0vysu6UqGdsIXBPyvhT3KucP/1lhHpdp/nnl59p4+SfpOz6Fu2U0xcfR5FNWZcbMnusntGNORn/X8kz2ZWc/IlId7WGeVR1GRrmXJ8+Xka7LEZFz0JGrDzjnPgjZfS/6e5z2OqPQSsyw141epebbaI/xo2K5fDimvJjLmV2jZJXLObnmxTk3xzlX3zl3HLqwek28c6rTzrHtnXNVnXOnoGtJLPFVyue6KNet5jgfvfqa99GRnC9m9MKWj4djym/5mPZev4leX2bVQB1aR5rpuVV0yrv3gPnOuXjfrmMp9wIBNYqgc62losNmzvZuZ6AXiPeGOX4MOozt49AdInKziPxLRAqJthiNAr512rKZ20qhH9h2L5bW+Ob5FZE66DC1VmirajfROdXwvjg/o5UQR3DOHUIrd58Vb9SCiFSV9PMtH6tmwIfOa81zzg3y/eAcccvkeWaic+5VEJHTgYfQoXnhvARcL9riWwrtyf2G+2e+5syeaxH6fekoIsVEWyQBPkR7A57EP9+jtAvq89Dhi6A9684ArnchreEicqWInCPaI7Is+v3ZibbsIiJ3o62TVzrn1oU8toaINBGRoiJSXES6oieFz7z9zbxjxCsUDwHmZfJ+BiliOYlWhDTwPQ/oifD/IhtyWJaT+Twn0e9JfRG5RUSKo2u2LHfaUwdIN9Ij9G9brbvlLu+cUAWd4/+7kOMy7bWXH3i/Kzeg86euCrO/mIichxZIdqKLfGb1nBn+3kVBGXS9oD/QSqp0lboicg/6HbofHc0wQ7RyGXR9hnO970s4XwN/i8hTIlLC+72vLyLnRyDupmhhHwDn3DWZ5G5GFwyr0R5mT3vnkpvQxoaM1ruZCXT2fn9OQi9spgOIyOmivaBKiK6r0wqdb/Ujb39FETnV+/7URc95/b3ft7fRiu+03O2L9n4727u4W0TGeZ8W14MiUtcrsPYmJEdF5CK008Hrmb+t+U8u5WQb3/mmLjrFVGiFUW6xnIxCTpLFuVhEzhCRMl5ZsxW6+PMob19j0XUJinrP/xTa2eArsjgXi8jxInKHiJT23v+r0em30vK5IJgCtBORC7z8LCUi18k/jV3L0B6ucSLSAv3u5AVF0Qq77UCKiFyDfu4AiEgltGNJG7Q8c71oRQ5OO5m8T+Z/y0QgXrRiChGp7P125VQjdGTFr14sL2WSe6WdcxsyeJ4M8ymMrMqMGT6Xcy4JeBW9FigjItXQsu4C33NXEJH7vO/Irej56zNvfwLQWkROEV035CnfY9Pcgy5Wu9a/UbRSK+0asSba2/yDkGPy8vkyknU59dGRMh2cc2+F7LsQrYhr5Hud+mTQC957TDV0jSF/5V0x3/ko7bo9Gh0VLZcjlMuSyTVKNnI5J9e8iMh53m9AZXQEylu+uKqKyEleLjdGp9d6Oov3N9KiUrcaiXwUbVT4EBjvnJt4zH/xsbF8jEI+io4amoN2Jr7Xu8b078+qjjTDc6tofe27wGfOue4hMWenDio8l4N5yY71hp74RobZfjs6BLowGczD7B3nX7+gAzpP517vsbOBmjmILd3rokmxyHe/NpDiux+P9jjegf5ofOQ9pjB60dfdd+wj6JxqafMfPkb6uZybhbxWcfTLtg74G73I7ug7dlNI7Eds87avxzenNzrf4r8j8DkWQ6fi+BsdttY5ZP8efHMEor0ON3if1Tyg4lE81znAEjS5lgLnZBBTLXxzx6Et+Q5dWGqP73a3t/82dM7FPegP5ELgLN/z/YIOgfQ/Nm2u4npoS+ZetNLgA6Ch77Gd0dbRJLTleCxQJoici2ZOhtnnyPmaIpaTMZKT3jFXoHm5D62IrRXynHeia8KEmwPzMrRnwF/ed3cKUNK3vyo6f/8xfyeDunnfm33e+7UbHQXlf9+moz2ldnuf6QpgKL55VAlZJyLk+TP8vctBvFf47s/CW1PAu98GeN/7f2nvO7jb+2zv9b4ntdH5a/8Amvge+yrp1xp6HfiP736/kNc6CZ02aitaIf1lWmzesbNCYg+3rRbp544tjg6fPyECn20t77u+D+3x5n/fLkGHN6fdF3Te/D+927C0XEAvgr7y3sddXi7c5HtsHe/5k7z3uXMmMR3xXSGLvEfPe7+jvxsJhMwvi15Mvhh0LkXqRu7nZIL3fu71Xms4IWtUHUO8lpPZe69qEYWc9I7J7Fz8BFo+3YuWtfzlzKZoo/9u73U/IoO1yTjyXFzZO34Xmq/f482/np9uYb7T6b4naGXMYu/v3OJ9L8t4+xqiObkbnc7zFdKvKRJapkv3WkcZZ2hcV4R8dwt7n0817/5jaO7v8mKb7YvtDXznZrSH7mZ0hDTAdcDbmeRJIfS3+ifvb18LDAr3Pclom7d9Eb55z9GpRjpG4DPNMJ+8/SvIZpkxG89V1ntvd6PXan1D9l/i5cYe4BtC5r5H51Lf7t1eBCqE7P8ReDDM3xiP/lbt9f6dnPb5+Y7Js+dLIluXk4CuUeAve67w9k0E5oZ5fCO00b4imlv+susW73H+sv967zvsv9U6xr+9H5bLQeRyptcoZJ3LObnm/ZR/zrOTgFK+fZd6368k73O4OyfvWR7IxwzrVolAPqINRi7kc9yTg7+9H5aPeSof0bKp83LCv/8Sb3+WdaRkcG5FG6sc+v30P3eNMH9v2Pc33C2twG4CIDqs6Ft0yNEWEWmGXjA2i/DrrEcTa72InAlMds5dGMnXMKYgsJw0Jn8S7UU/A2jknHMi0g/AOdcvgq9RC20kreXd7wBUd851y+RhxsQky0ljgiMin6I9778NzZMIvsYitIy8SHRE20doQ3l21tEzxmSD5bIxeYflY8GU0dz5JgqcTpVTN8qv+T06T54xJoTlpDH5k3NuJRCJqXeO5jXHRvP1jMlPLCeNCY5zLsN1jXLp9baho6KMMRFkuWxM3mH5WDBla00REWkhIj+JyBoRCZ27CxHpKiLLvNsPIpIqIhUjH26Bt56M53XLidHoEDFTAFg+RtV6LCeNyY8WebdI2oXmrjHm6C3CcjImWbk1cLmVJ9PRcrLJZywn8y3L5QLKcjJfsnwsILKcPktE4tDFa69E57xcDNzp9QALd/z1QCfn3GURjtWYmGf5aIwxxhhj8gMrtxqTt1hOGpO3WE4aE6zsjBRpBKxxzq1zziWji9HckMnxd6IL1RljIs/y0RhjjDHG5AdWbjUmb7GcNCZvsZw0JkDZWVOkKroqfJpNwAXhDhSRkkALoH0G+9sCbQFKlSp13umnn35UwRpTECxZsmSHc67yMT48YvnoHWM5aWJaDvMx11SqVMnVqlUr6DCMiTrLSWPyFiu3GpN3ROAcaXU7xkSQ5aQxecvR5mR2GkUkzLaM5ty6HvjMOfdnuJ3OucnAZICGDRu6b775JltBGlOQiMivOXl4mG3HlI9gOWlMDvMx19SqVQvLRxOLLCeNyVus3GpM3hGBc6TV7RgTQZaTxuQtR5uT2Zk+axNQ3Xe/GrA5g2PvwIZyGZObLB+NMcYYY0x+YOVWY/IWy0lj8hbLSWMClJ1GkcXAaSJysogURRNxfuhBIlIOaArMi2yIxhgfy0djjDHGGJMfWLnVmLzFctKYvMVy0pgAZTl9lnMuRUTaA+8CccA059wKEWnn7Z/oHXoT8J5zbm+uRWtMjLN8NMYYY4wx+YGVW43JWywnjclbLCeNCVZ2RorgnFvonKvjnDvVORfvbZvoS1Ccc9Odc3fkVqDG5HmJiVCrlv6biywfjcmmKOWkMSYbopiPItJCRH4SkTUi0j3M/q4issy7/SAiqSJSMdcDMyYvsXKrMTHJctKYvMVy0pjgZKtRxBiThcREaNkSfv1V/7VKWGOCZTlpTN4RxXwUkThgPHANUBe4U0Tq+o9xzg13zp3tnDsb6AF8lNnizsYUOHaONCbvsc48xhhjTFRZo4gxOZV2YZmUpPeTkuwC05ggRTknrVe6MZmI/jmyEbDGObfOOZcMzAZuyOT4O7FFK00ssXKrMXlPYiKHrrWGSmPyit27YXNGy50bY6Lul1/Y80jHAAAgAElEQVQgOTnyz2uNIsbkROiFZRq7wDQmGFHOSeuVbkwmgjlHVgU2+u5v8rYdQURKAi2AuRnsbysi34jIN9u3b494oMZEnZVbjcl7EhM5dF1LCu23hkpj8ooJE+Dkk2HjxqyPNcbkLufgxhvhuusi/9zWKGJMTrRufeSFZZqkJN1vjIme6Oek9Uo3JiPBnCMlzDaXwbHXA59l1EjpnJvsnGvonGtYuXLliAVoTGCs3GpM3uI1VBbaZw2VxuQV+/bBqFHQtClUrx50NMaYBQtg+XJo1Sryz22NIsbkREIClCwZfl/JkrrfGBM9CQm4EiXC78udnIxYr3RjCpxgzpGbAP8lbDUgowkQ7sAaKU0ssXKrMXmLNVQak+dMnQrbtkGvXkFHYoxxDuLjdcmtu+6K/PNbo4gxOdG8OTuHTjqyC2rJktqc2bx5EFEZE7uaN2dlgzBny9zLyYj1SrepekyB07w5zJsHEpImuXuOXAycJiIni0hRtOFjfuhBIlIOaArMy40gjMmTmjeHIUOO3G7lVmOCkZBAcmFrqDQmr0hOhmHDoH29RC69r5aN1jImYImJ8NVXMPqGRIqcViviOWmNIsbk0E+TP+YghTlU3OudbheWxgQmeedeqnw9jxWlL/inN2zu5mTEeqXbVD2mQNqyRbv4FCum93P5HOmcSwHaA+8Cq4DXnHMrRKSdiLTzHXoT8J5zbm+uBGJMXrVwIZQtCyWs3GpM0P44qzlPysgjd1heGhOIWbPg1I2JPLumJfLrrzaNnTEBi4+Hmysk8u8pLSEXctIaRYzJgZ3fb+Lc76fz8WltKLTwv1CzphVgjQnQ0kencNyhHezuN1JzMfdz0nqlG5OR1FQYOBAaNNCK2CidI51zC51zdZxzpzrn4r1tE51zE33HTHfO3ZGrgRiT13z9NbzzDvTsCf+1cqsxQRs7FpoffJfUEqWsodKYgKWmQmLfRBZKSwof8Ka1s/V9jAnMl1/CoQ8Tmb2nJZKUOzlZOCLPYkyMWvXQSBpxiOpjukHzk2H9+qBDMiZmpSYdoNacESwp3ZQLOjfRia1yOSedcykiktYrPQ6YltYr3dufVglrvdJN7HntNVi9GubMgcsus3OkMUEbMAAqVoRHH4UyZSwnjQnQ7t3wv2d/oB9vQte+0KyZriGSkGANIsYE4ONnEpn4W0tKELLOT1olrDVWGhNVb3VO5L+0pMjB3MtJaxQx5hjtXreds7+axCfV76Z5i5ODDseYmLfk8Zk0SvmNNZ0TjljCIDc55xYCC0O2TQy5Px2YHr2ojAnYoUNaAVuvHtx0U9DRGGO+/VYvHgcMgDJleOcdKF8eGjcOOjBjYtPzz8Njfw8itWRp4jp2hOOOs4ZKYwLiHPxrSGtKhTaIpElK0kZLy1FjomL5cnjoi9aUzOWctOmzjDlG37cZTXH2U3lk96BDMSbmHUpO4cSZQ/i+eEMu6ntF0OEYY+bOhVWroE8fKGTFTWMCN2AAlCsHHTqQnAwPPwyPP64VQcaY6Nq3D94ctpr/8Cpx7R/VBhFjTGD++1+4+2ACKUVLhj+gZEkdxWWMiYrBg+HR4gm4Ermbk3aVaswx2Lf1L+ovGsdnx99M/dvOCDocY2Let91fpXryOv54uBeF4qI4TMQYc6S0USKnnw633grAtm0waRIkJwccmzGxaPly+L//01aQcuWYPh02bIB+/YjqyEpjjJo2Ddr8MQSKFoXOnYMOx5iY5pwu5ry+VnMdUVk4ZEIdW+fHmKj6+WedhfnMjs2Rrk8eeUAEc9IaRYw5BsseGk9Z9zcl43sFHYoxMc+lHqL8xMH8VKQeFw/7d9DhGGPmzYPvv4fevSEuDoDhw3UZg19+CTg2Y2JRfLyuIfL44yQn690LLoAWLYIOzJjYc/AgvDToV+6VFynU9iE44YSgQzImpiUm6oLO3bpB4bPra9nVK79ag4gx0Tckrc/AE4fgzTehenXNRYh4TlqjiDFHKXnnXuosfJYvKlzDuQ+eE3Q4xsS85fHzOXXfCjbd05PCRe20ZkygnIP+/eG00+A//wFg61YYPx5atYJ//Svg+IyJNStXwuuvQ4cOULEiCQk2SsSYIM2aBXdvHkahOEG6dQ06HGNi3qBBUKWKLk/AqFE6rHnqVKhZ0xpEjImyDRtg5kx48EE44eu3dLRzfLzmYi7kpC20bsxRWvroFBof2gE9e9nFpDFBc45iI+JZH3cKTZ67PehojDELFsCyZTB9+uHpB4YO1evLPn2CDc2YmBQfr73qOnU6PEqkcWO4+uqgAzMm9qSmwtSBW/hApiL336+9X40xgfnqK/jgAx3RXDzpTxg3Tjv13Hef3owxUTVihP7brauDWwfCqafCnXfqdWUOF1UPxxpFjDkKqUkHqDVnBEtKX0rjLk2CDseYmLfyuf9Rd/c3/O+2ydQqbac0YwKVNkrklFPg7rsB2LwZnn9erytr1w44PmNizerVMHs2dOkClSqRMAk2boQpU2yUiDFBmDsXblw3kiKFUpAe3YMOx5iYFx8PFSpAu3bA8Odgzx7oZVOkGxOE33/XMuo990CNVe/CN9/ACy8cuc5PBFkNkjFHYcnjM2mU8hs/PzHNLiaNyQNSBwxic6GqXDTx3qBDMca8844WXqdOPVx4HTxYe8b27h1wbMbEokGDoFgx6NKFAwf+GSVy1VVBB2ZM7HEOJvTfwUJ5Xnu9nnJK0CEZE9OWL4e33tLpJEun/gXPPQc33wz16wcdmjExafRoOHAAuj/l4IEBUKOGtpDkomxNvi4iLUTkJxFZIyJhuzSISDMRWSYiK0Tko8iGaUzw3MEUTpw5hO+LN6RJvysDi8Py0Rj18/TPOPPPj/i+RVdKVSwWdDjGxDbn4JlndK5Xr/C6cSNMnqxzNJ98csDxGRNr1q7VxQvatYMTTiAhQXPymWeiO0rEyq3GqIUL4YoVoynBPgr17BFYHJaTxqjBg6F0aV1yi7Fj4a+/Apnr1XLSGNi5U9egvO02qLN5EXz+OTz1lK64nouyHCkiInHAeOBKYBOwWETmO+dW+o4pD0wAWjjnNojI8bkVsDFB+bbHa5ybvI41HUdSKC6YYSKWj8b8Y0+PeHZIJRpNahN0KMaY99/XiZknTYIiRQDtpO6czUJgTCAGD9YRW127cuCA5uOFF8KVUezXY+VWY5Rz8Nwzu5gjY3E33YLUrRtIHJaTxqiff4bXXoMnn4SKRXbDs8/C9dfD2WdHNQ7LSWPUuHGwezf07Al0GgAnnggPPJDrr5udkSKNgDXOuXXOuWRgNnBDyDF3AW845zYAOOe2RTZMY4LlUg9RbsIgfipSj4uH/TvIUCwfjQHWv7GUc7a+zZJLOlGhWqmgwzEmtqWNEqle/fCilOvX6yxabdro4BFjTBT9+ivMmAEPPQQnnsi0aTpKpF+/qK8lYuVWY4BFi+D8xeMp6/6mUJ9AewpYThoDDB2qfXg6dQImTIA//wxklAiWk8awZ49OndWyJTTY8xkkJkLXrlC8eK6/dnYaRaoCG333N3nb/OoAFURkkYgsERGb3N0UKMvj53PqvhVsatWDIsWyNetcbrF8NAbY3mUwuyjHuVMfCzoUY0xiInz2GXTvrusXoGsXiHi9fYwx0TVkCBQqBE89dXiUyEUXRXeUiCei5VYRaSsi34jIN9u3b8+FcI3JHaP676GLPEvqNddFvSd6iIjlpOWjya82boSZM7XjTpUye2HkSGjRAs4/P4hwLCdNzJs8Wdsle/YEBg6EypWhbduovHZ2FloP15/IhXme84DLgRLAFyLypXNudbonEmkLtAWoUaPG0UdrTBCco9iIeNbHnUKTMf8JOpqI5SNYTpr86bcPVnHe+rn87/yeXF27XNDhGGP694eTTjo8xHntWkhIgEcfhWrVAo7NmFizcaMO03rwQahWjWnPw6ZNMG1a1EeJQITLrc65ycBkgIYNG4Y+jzF50tdfQ51Fk6jIHxDsKBGIYE5aPpr8avhwHeTctSs67ev27UGNEgHLSRPj9u+HESOgeXO4sPBieOcdnQK2VHRmA8lOl/dNQHXf/WrA5jDHvOOc2+uc2wF8DDQIfSLn3GTnXEPnXMPKlSsfa8zGRNXKMe9z+u5v+Pnm7hQvnZ12xFwVsXwEy0mTP216bAj7KEH9yY8HHYox5qOP9PbUU4eHOA8cqFMSdA+7VKQxJlcNG6a1Pd27Hx4l0qQJXHFFINFEtNxqTH40rP9+usoIUppdrgv7BMty0sS0bdtgyhRo1QpqHr9PW0guv1yHUwbDctLEtBkzYMsWbw3K+HioUAEei95sINlpFFkMnCYiJ4tIUeAOYH7IMfOAS0SksIiUBC4AVkU2VGOCkdo/ns1SlQufzxOzUFk+mpi2ffF6zvvpJT6v15aqZ1tDnjGBGzAATjhB1y5AF66cORMeeUQHjxhjomjLFq3tue8+qFmTqVN1lEgAa4mksXKriWnffw/H/3caVdxWCj/dO+hwwHLSxLhnn4UDB7yOOy+8AFu3BjlKBCwnTQxLSdH1fS64AC6rtBzmzYMnnoAyZaIWQ5bd3p1zKSLSHngXiAOmOedWiEg7b/9E59wqEXkHWA4cAl5wzv2Qm4EbEw0/T/+MM//8iHdbPMvVxxULOhzLRxPzfm47jPOIo/bEJ4MOxRjz2WfwwQc6F3OJEoDOpFWsmA4cCYqItACeQ8+TLzjnhoQ5phkwGigC7HDONY1qkMbkhuHD9QqzRw/27/9nlMjllwcTjpVbTawbNjCZeBnKwfMvokjT4E8zlpMmlu3cCePHw223wb9qHdDa2EsvhQBz03LSxLJXXoFfftFF1iV+oDaGdOgQ1RiyNReQc24hsDBk28SQ+8OB4ZELzZjg7e45iB1SiUZTHgo6lMMsH02s2rlyC+cum8anp97P5ReHrj9njIm6AQN0IbyHHwbgxx/h5ZehSxcdPBIEEYkDxgNXotMNLBaR+c65lb5jygMTgBbOuQ0icnww0RoTQb//DhMn6pwgp57K1PHw2286LUFAo0QAK7ea2LVmDRR7fRY13AboNzHYRPSxnDSxavx42L3bW8x5+nQ9SU6fHnBUlpMmNh06pEuHnHkmtDx1FcyZAz166PRZUZSd6bOMiUm/vvkt525ZyJJLOlGhWnQW+THGZGxVm5EU4SDVxnQLOpR0RKSFiPwkImtEJOwqCiLSTESWicgKEfko2jEaE3FffQXvvgtPPnl4Ibz+/XXASNeugUbWCFjjnFvnnEsGZgM3hBxzF/CGc24DgHNuW5RjNCbyRo7UOUF69mT/fr3QvPhiuOyyoAMzJjYNG5RCdwZz8MxzoUWLoMMxJqbt2aO90a+7DhrUPagnycaNgxtKaUyMe/NNWLVKGykLDRmkF5FPPBH1OAJfNdqYvGpbp0GUpyznTo3eIj/GmPB2r/+Ds76YyCdV76TZtacGHc5h1ivdxKwBA+C44+DRRwFYsQJmz9Y5misHu9xPVWCj7/4mdO5lvzpAERFZBJQBnnPOzQx9IhFpC7QFqFGjRq4Ea0xE7NgBEybAHXdAnTq8ME47wM6cmWc6pxsTUzZuhH0zX6e2WwPPvGGJaEzAJk+GP/7wFnN+8UX49Vd4/nnLTWMC4JyuqV67Ntx2zhq4+2Xo1CmQi0gbKWJMGL99sIrz1s/ly4btqVy7XNDhGBPzvn9oDKXZy3EjegQdSijrlW5iz5Il8N//QufOULo0AM88o//t0iXg2CDc1a0LuV8YOA+4Drga6CMidY54kHOTnXMNnXMNKwfc0mNMpp59FpKSoFevw6NELrkEmjcPOjBjYtPI4Yd4KjWe5Dr14IbQYqExJpoOHIARI/SceOH5KVob27ChjeAyJiDvvQdLl2pnurjhQ6BIEZ19IAA2UsSYMDa2H0p5SlB/SvSHbxlj0tu/7W/qfjCGTyvfyMV31As6nFDWK93EngEDoHx5aN8egOXL4fXXoXdvHTwSsE1Add/9asDmMMfscM7tBfaKyMdAA2B1dEI0JoL+/BPGjoVbb4W6dXlhHGzerB1hrQOsMdG3bRtsnTSP+qyAp1+CQtYP1ZggTZ8OW7bo6EleeQXWrdPOBHaSNCYQ8fFQvTrcc+mv0G4GtGsHVaoEEoudoY0JsX3xehr+OIvP67Wl6tnWM9SYoH3b9nnKu12UGNAr6FDCsV7pJrYsWwbz5ukQ57JlAejXT//buXOwoXkWA6eJyMkiUhS4A5gfcsw84BIRKSwiJdGGzFVRjtOYyBgzRleO7d378CiRSy+1USLGBGX0s44nk+NJrlkbbr896HCMiWkpKTB0KDRqBJc3S4WBA6FBA7j++qBDMyYmffKJ3rp2haKjh2njZLfg1oy1kSLGhFjTdhjnUYjaE4MZvmWM+cfBv/dR+61RfFXuKhq1bRh0OOFYr3QTWwYO1BaQjh0BHfr8f/+nDSMVKgQbGoBzLkVE2gPvAnHANOfcChFp5+2f6JxbJSLvAMuBQ8ALzrkfgovamGP011+6cuxNN8FZZzFlrI4SmTXLOsAaE4Rdu+DHMe/SkCXQdyoUtuoWY4I0ezb88oueKmXO67B6tQ5vtpOkMYEYNEiXDmlz7WboOhVat9ZhIwGxs7QxPjtXbuGcZdP49NT7ueziqkGHY0zMW/LoVBof2saaHr3yatn1cK904De0V/pdIcfMA8aJSGGgKNor/dmoRmlMJPzwA8ydC3366PRZaGNI+fLwRB6abdI5txBYGLJtYsj94cDwaMZlTMSNHasNI336HB4l0rSpjRIxJijjxjq6JA0guUp1irZqFXQ4xsS0Q4f0vFi/PrS89hCcPRDq1oWbbw46NGNi0pIl8M47mpclxg3XoVxPPRVoTNYoYozPqodGcQEHqTom2MQ0xkDqvmRqvDqMb0s1oXHXS4IOJyzrlW5iysCBupq61wKyeDG89ZZuLlcu4NiMiTW7d+uc6C1bwjnnMHmMzpn+8stBB2ZMbNqzBxaP+IjefA69x0HRokGHZExMe/NNWLlSz4uF5v0frFjh3bFVBIwJwqBBes342G3b4MxJ0KoVnHJKoDFZo4gxnt3r/+Csz5/nk6p30uzaU4MOx5iYt7TzLM5P2cjarpOQQnlzmAhYr3QTI1atgtdeg+7doWJFAJ5+Wv/rzaRljImmCRN0kfU+fdi3D4YM0VEizZoFHZgxsWnKFGj/dzzJx1Wh6AMPBB2OMTHNOa2ArV0bbr/NQcMBUKeOrfNjTEBWroQ33oDevaHMlFGwfz/06BF0WNYoYkya7x8aw0Xs5bgRwSemMbHOpaRy/LQhrCh2Lhf1bxF0OMaY+HgoWfLwaupffAFvv60VsWXKBBybMbFm714YMQJatIBGjZhio0SMCdSBA/DhoC/pxPvQYwSUKBF0SMbEtPfe06l6pkyBuIVvwXffwYwZEBcXdGjGxKQhQ/RS8ol7/oDzxsN//gP/+lfQYWHjxowB9m/fTd0PxvBp5Rs58456QYdjTMz7ttccaib/zLY2PYkrnHdHiRgTE1avhldegUcfhUqVAB0lUrkyPPZYwLEZE4smToQdO6BvX/bt07mZmzWzUSLGBGX6dGi7I57kMhXh4YeDDseYmBcfD9Wqwb33OBgwQKfouSt02UdjTDSsW6cdd9q1g+NeGqPzTfbqFXRYgI0UMQaApW2f5yK3ixID8kZiGhPL3CFHmXGDWFP4dC4eeVPQ4RhjBg2CYsWgSxcAPvkE/vc/7aheunTAsRkTa/btg+HD4fLL4cILmfwcbN0Ks2cHHZgxsSklBeb3X8Z/WYDrOsBOjMYE7JNP9Pbcc1A08V345ht44QUobNWfxgRh2DAdpPXkQ39B4+fgppugfv2gwwKsUcQYDv69j9Pmj+KrclfRqG3DoMMxJub9MGQBZyYt54N7Z1C7mA1oNCZQa9fCrFm6cMgJJwA6SuSEE+CRRwKOzZhYNGUK/P47vPba4bVEmjfX9USMMdE3ezbct3kQB0uWpUiH9kGHY0zMGzRIRzO3edDBlf2hRg24556gwzImJm3eDAkJ0Lo1nDh3HPz1ly4skkdYo4iJeUsem0bjQ7+zpkcvxGbpMSZYzlF4aDwbCtWiybg7g47GGDN4sPas69oVgMREvY0erfPCGmOiaP9+GDpUW0AuvZRJo3WUyKuvBh2YMbHp0CF4td8q5jEHeaInlC8fdEjGxLQlS+Cdd7RhpOSXH+oieBMmQNGiQYdmTEwaORJSU6F7+z3Q7Fm47jo499ygwzrMGkVMTEvdf5Dqs4fxbakmNO56SdDhGBPzVj2fyBl/f8V7Nz1PjTJFgg7HmNi2fr0uSvnII3DiiTino0ROPBHatg06OGNi0LRp2uVu5kz27dP2kcsug0svDTowY2LTvHlw29rBHCpWgsKdngg6HGNi3qBBUK6cLoPHv/tD1arwwANBh2VMTNqxQ5fBu+suqPXORPjjjzw1SgSsUcTEuKWdZ3F+ygbWdZ2IFLJhIsYELfnpeLbIiVw46f6gQzHGDBkChQpBt24AfPihztE8diyUKBFwbMbEmuRkzcmLLoLLLmOijRIxJlDOwfS+65jLyxR65HGoVCnokIyJaStXwhtvaJ1rue8+ho8/1oVFihULOjRjYtKYMZCUBD2e2AfXjoArroDGjYMOKx1rFDExy6Wkcvy0wawodi4X9W8RdDjGxLw1s76kwY4Pee+qEVxVuXjQ4RgT2zZu1F7pbdpAtWo4B337QrVquskYE2UzZmheTplC0j6xUSLGBOy99+DaH4ZC4cIU6tol6HCMiXlDhujUro8/Dtw5QBfAe+ihoMMyJib9/bd2pLv5Zjjjsxd0Pbw82JMnWyvYikgLEflJRNaISPcw+5uJyF8issy79Y18qMZE1rd95lLzwM9sa9OTuML5Z5SI5aMpqP7qPog/qUjDKQ8HHYoxsS0xEerV08nSu+tp5r334PPPoVcvKG5tlsZET2Ii1KwJffpAo0Zw1VVMmqTXlv36BR1c1qzcagqqKU9vojUJyIMPwkknBR1OtllOmoJo3Tp4+WV4+GGo9PMX8P77uh5ePhjabDlpCqIJE2DXLuj15AGd7/WSS3RNvDwmy5EiIhIHjAeuBDYBi0VkvnNuZcihnzjnWuZCjMZEVmIi7v7WHP97YdYUPp2LR94UdETZZvloCqTERFL+czfnbd/Ce02e4aoapYOOyJjYlZioC+Dt26cLrK9di6teg759oUYNm5bZmKhKTISWLXXuAYCOHQ+PErn8cr2+zMus3GoKqk8/hUu+Gk5cIUdcj25Bh5NtlpOmoBo+HOLioEsX4KEBOp1du3ZBh5Uly0lTECUlwahR0KIFnPv9DPjtN0hICDqssLIzfVYjYI1zbh2AiMwGbgBCk9SYvM+7uJSkJKoBS6/qTpFi2RowlVdYPpqCxcvJwklJOKDhQ2cHHZExsSutAnbfPr2fkgItW/JV7wV8/XVzpkyBokWDDdGYmBHaIAIQH89/N13I7783Z86c4EI7ClZuNQVPYiL/uuZeGrINd/c9OpIr/7CcNAXO5s064+v990PVzYvh7bdh8GAoVSro0LLDctIUOFOnwvbt0KvbQXhgsI50vuKKoMMKKzu1wVWBjb77m7xtoS4Uke9E5G0RqReR6IyJpDAXl+d8Mka35x+Wj6bgCMlJASo+emd+y0ljCoZwFbAASUk06NWSO6skct99wYRmTMzJJB+ve74lXc5N5OKLgwntKFm51RQsiYmkXtuSygc2UYxkCl/RLOiIjpblpClwRo6E1FR46ilg4ECoUAEeeyzosLLLctIUKMnJMGyYjma++NeXYP16nQJW8uaSBdlpFAkXuQu5vxSo6ZxrAIwF3gz7RCJtReQbEflm+/btRxepMTmRwcWl7EvS7fmnEjZi+QiWkyZAmVT45LOcNKZgaN36yHz0lHBJTD7YmiJFohyTMbEqk3wsSRIDf2sd5YCOmZVbTcHhlV3j9v/TmYdHHslvZVar2zEFyu+/w6RJcOedcMrfy2D+fOjUCcqUCTq07LKcNAXK9OmwaRP06p4KgwbB2Wfr1Mx5VHYaRTYB1X33qwGb/Qc45/52zu3x/r8QKCIilUKfyDk32TnX0DnXsHLlyjkI25ijlMnFJUlJuj9/iFg+evstJ00wCk5OGlMwJCRAsWJhd+2TkpSYnTfngTWmQEpIgJIlw+7aX6gkxV/JN/lo5VZTMBSczjxWt2MKlF694MAB7YjOwIFQtix06BB0WEfDctIUGH/9pbnYpAlctes1+Pln6N07z44Sgew1iiwGThORk0WkKHAHMN9/gIhUEdG/UkQaec/7R6SDNeaYZXJxScmSeXbRnzAsH03BkJCAKxg5aUzB0KQJHH/8EYXWvZTk0+4LiLuieUCBHT0RaSEiP4nIGhHpHmZ/MxH5S0SWebe+QcRpTIaaN4dx447YvJeSrBm9QPfnD1ZuNQVDwenMYzlpCowlS3QtkccfhzrJP8DcudCxI5QvH3RoR8Ny0hQYAwdCvW2JfLC2JtKrJ9StCzfdFHRYmcqyUcQ5lwK0B94FVgGvOedWiEg7EWnnHXYr8IOIfAeMAe5wzoUO+TImOM2bs2/qy0eMQ6RkSViQfy4uLR9NgdG8OT9f98SR2/NZThpTYIwZAxs3Qnz84U4E+6Qkj1ZfwGUD8k8+ikgcMB64BqgL3CkidcMc+olz7mzv1j+qQRqTFedg1iwoXRpKlAAgiZL0O28B9Tvkn3y0cqspMBISOFg0/3fmsZw0BYVz2hhSqRL0a5oIF1wAxYvDE2GuL/Mwy0lTUKxeDcueTeTtwi0ptnWDriVy441QKDtjMYJTODsHeUO0FoZsm+j7/zjgyO5MxuQhy0a+TyMEKVqMQsn7823lq+WjKQiSd+6l7Bsz+KVIHWoV2YQkJeXbnBSRFsBzQBzwgnNuSMj+ZsA84Bdv0xtWCWvylM2b4ZlndAqQHj2gcWP23t6aljsSaKgPmsMAACAASURBVDu0OXFxQQd4VBoBa5xz6wBEZDZwA7Ay0KiMORpz5sCHH8L48XDGGfx1S2tu3JlA/Jj8dX4EK7eaguHPBs0ZUngow5JDpuXJh2VXy0lTELz6Knz2GSzokkjp26+F/fuhcGFYvjxf5SNYTpqCYfp9icxLbUkxfKMqR4+GK67I0zmZt5tsjImQjW//wPnfPM+HdR6l0DsLoWbNfFeANaYgWXLbEKqk/sbvQxKQBQvybU5ar3RTIHTrBsnJWnAFUi9tTsNK69lWtzm33x5wbEevKrDRd3+Tty3UhSLynYi8LSL1wj2RLVhpArF3L3TpogtTPvwwexs157TC6yl6VXMuuijo4IyJTf37HeK2pBmklDvu8Oit/NggYkxBkJQEXbvCQ7UTufb5ltogApCSkt/W+DGmQPh6aCK9vmxJSfLfulvZGiliTL7mHDvve4JSlKX+3Geg/nE6lMsYE4jti9dzzgfDWXTSXTTr7NXw5N+ctF7pJn/7+GN46SVdBO/UUwGYPRt+/BFee438NkoEINxKfqFTDCwFajrn9ojItcCbwGlHPMi5ycBkgIYNG9o0BSY6Bg/Wqexefhni4hg1CrZvh379gg7MmNi0ciXsGTed8/kGxs+Ck07SNUQSEqxBxJgADBsGtTcl8nyxlsiBDCphrcHSmKg4eBCq9m5NqdAGkTRp627l0foeGyliCrzlA+dz1vYPWNyyPyfWPy7ocIyJeb/e3pVU4qjxytCgQ4kE65Vu8q+UFOjQAWrU0Gmz0ILtM8/AmWfCLbcEHN+x2QRU992vBmz2H+Cc+9s5t8f7/0KgiIhUil6IxmRgzRoYPhxatYKLL+aXX2DQILj9drjwwqCDMyb2OAc9H/uLQfTg4PkXwV13aUXr+vVW4WpMAH79FYYOhddKtiYutEEkTVolrDEm140fD61SEkgplj/X3bJGEVOgpezZT4WBnfmpSD2avtIu6wcYY3LVT5MW0XD9HD5t0p1TLq0WdDiRcDS90hsAY9Fe6Uc+yLnJzrmGzrmGlStXjnCYxoQxcaLOvTxq1OHF1UePhp9/1vXW8/i6eBlZDJwmIieLSFHgDmC+/wARqSIi4v2/EVoe/iPqkRoTqlMnKFpUu8ECHTvqFOmjRgUclzEx6q234JJF/anMdopMHAsSrthnjImWbt00DQ9NTdDzZTh5vBLWmIIibSRz8RbNiXtxxpEH5INpJvPn5a4x2bS41WiqJ69jW8/nKF7aZoszJkjuYAqFOj/OhkI1aTznyaDDiRTrlW7yp+3boU8fXfzu5psB2LBBC7bXX6+3/Mg5lwK0B94FVgGvOedWiEg7EUnrHXEr8IOIfAeMAe5wztn0WCZYCxbo7emn4cQTmT9f7/brB1XDjT80xuSqAwdgXPsf6cgY3ANt4Nxzgw7JmJj28cc6tetTT8EJ/74AypU7sqEyH1TCGlNQ9OmjS+GNGgXy1nztyVO8uO7MJ7lojSKmwNq5YjNnzhvIp5Vu5OKnLw86HGNi3uKHX+C0pOWseXgE5aqUCDqcSLFe6SZ/6tkT9uyBMWMOX1A+/rhOFTJmTMCx5ZBzbqFzro5z7lTnXLy3baJzbqL3/3HOuXrOuQbOucbOuc+DjdjEvP374Ykn4PTToWNHkpJ0lEi9evqvMSb6nhvt6LzxCShVikKD44MOx5iYlpqq5dTq1XWRdQYP1g4+zz57eLRzfqmENaYgWLYMJk+G9u3hjJ2fw4svanIuXAg1a+abXLSu86bAWn1rT87mIJVnjLCRzsYEbO+mndSe0ZslpZvSbGz+XKggHOdcioik9UqPA6al9Ur39k9Ee6U/IiIpwD6sV7oJ2tdfw9Sp0KULnHEGoOXWN9/Ua8xatYINz5iYM2oUrF0L770HRYsyqL/Om/7RR1CkSNDBGRN7tm6Fb/otoBvvQvxosGlNjQnUtGlaCTt7NpTcslbX37r7bm0pOessXUMkISFfVMIak985p315jjsO+vZKhas76LDmnj2hdOk8u6h6ONYoYgqkta98zQU/zuDdc7pz9bWnBh2OMTFv+S3P0OjQTuLGjqZQXMFqpfSmxFoYsm2i7//jgHHRjsuYsA4d0i49VaromGd0PcoOHaBuXejcOeD4jIk1GzbAwIE6jd2VV7J6tdb13HMPXHpp0MEZE5v6PnWAQfs7caB2XYo9+mjQ4RgT03bt0rrWSy6B228HbuikPQa89bdo3jxfVcIak9/NmaMddyZOhApvTIWlS+Hll7VBJJ+xRhFT4LjUQyS368hWqULDN3oGHY4xMe+3/63k/K/HkVj7Ia64/+ygwzEmtiUkwOLFMGsWlC0LaH3s+vWwaFHGa1YaY3LJk09ql7tRo3BO2yxLlNCGEWNM9C1eDBVnPktt1sKE92y4ljEB698f/vgDnnsO5O2F8NZb2iBy0klBh2ZMzNm3T4uuDRpAm1t2wuk9tRfPHXcEHdoxsUYRU+As7fIS5/39Fe+3ms4VtcoEHY4xsc05tt/TiVKUpu6cAUFHY0xs27kTuneHiy+Gu+4CYNUqGDEC7r0XmjYNOD5jYs2HH8Lrr2uNT82azHkd/vc/GDsWTjgh6OCMiT3OwYB2v/GKDOTgdTdS5Morgw7JmJj24496TmzTBs6pewBufxz+9S+dNssYE3UjRugg55kzIe6Zvnp96VujMr+xRhFToBz4Yw/Vxj3F8hKNaDb1nqDDMSbmfT94AWf//h7vXjOaqxvYfMzGBKpvX/jzTxg3DkRwDh59VEc6W690Y6Ls4EGdt+7kk6FrV3bv1vmZzzkHHnkk6OCMiU0vvwy3Le1OscIpFH5uZNDhGBPzOnfW9dMHDkTX31qzBt5914Y2GxOAjRt1/cnbboOmFZbDhAnQrp0OG8mnrFHEFChLbh3MRalb+HXIGxQuWijocIyJaalJByj7TGfWFD6dS2fbfMzGBOq777Tg+sgjhwuuL72kU2ZNnAjHHx9seMbEnPHjYeVKmDcPihfnmd6weTPMnQtxcUEHZ0zs2bMHXnvic+YxC9etF5xyStAhGRPTFi6Et9+GkSPh+AMbtWXkppvgqquCDs2YmNS9u46oHDbUQeuOUKECDMjfs4FYrbEpMH7/Yh3nLhpJYrV7aNSxcdDhGBPzvm41hprJa9jcbTQlytp8zMYEJm2hgooVdZoedKRzly7QqBE89FDA8RkTa7Zuhaefhmuugeuv54cfYPRonR6ksRVhjQnEsCGH6LOjIwcqV0V69gg6HGNiWnIydOqkM2W1bw907QqHDuloEWNM1H32mY6m7NoVan39mq60Hh+v15f5mI0UMQXGxjuepBSFOXn24KBDMSbm7fpxK/XfHMDnFVtyycCrgw7HmNj28svw6acwZcrhgmuvXrBjB7zzDhSyLjLGRFf37rpS5ejROITHHoPy5WHIkKADMyY2rV8P24Ym0JAl8NzLUKpU0CEZE9PGjoXVq3W0SNHPEuHVV6FfP6hVK+jQjIk5hw5Bx45QtSo81X4vnPekzvfapk3QoeWYNYqYAmHVuA9ouOH/ePfSeK5uUjXocIyJeT/d0pNz3H7KTxuVX9fcMqZg+PtvePJJOP98eOABAL7+WqfM6tBBy7PGmCj64guYMUMbRurUYdaL8PHH2mZ53HFBB2dMbHr68V2MSOnBgfMvptgddwQdjjEx7fffdWDztdfCNVcchHM7amNIt25Bh2ZMTJo+HZYu1amXS40ZDJs2wezZBWK+V2sUMfneoeQUinR7gl/jTuaiOZ2DDseYmLfu1cVcsDKB9xp05aobTgs6HGNi24ABOlXPvHlQqBCpqbqsSJUq+X4KWGPyn9RUnQekalXo1Ytdu7TNsnHjw22WxpgoS0yEBvP7U0l2IJPexXrzGBOs3r0hKcmbKWvCBPjhB3jzTShRIujQjIk5f/8NPXrARRfBnY3WQuvh0KoVNGkSdGgRYY0iJt9b/NAkLtj3A4kd3qBm5eJBh2NMTHOHHPsffpxtcjznvtE76HCMiW2rVulCBQ8+qIuHoNeWS5dq556yZQOOz5hY88ILmoCvvAKlS9Ong01jZ0yQUlLguXareJ2xpLZ+iMI2fNKYQC1dClOneuuJlP8d+vaFq6+Gf/876NCMiUkDB8L27TqVnXTuBEWLwtChQYcVMdkqfotICxH5SUTWiEj3TI47X0RSReTWyIVoTMb2/PoHdV7sw+Kyl9H02RuDDicqLB9NXvZtt1eo+9cXLPvPYCqdYjWuxgTGOZ38tXRpGKxrbW3Zor3v/p+9Ow/zsWoDOP49s2FI1sgukezL2NexL4Nk34lkyZKdbGVNtuwkY8sSIsa+jOw7JUKI7IYIsy/n/eOgeTVKmvk9v5nn/lxXV838nrz3dXXd7+8859znvqtWhcaNLY5PCLu5excGDYIKFaBJE44dM4eUXbok7DZ2sm4Vzmzul5rO53qiPZPiNnak1eE4hOSkcFZaQ48ekCYNDBmCKU8PDoYvvkjQN7gkJ4Wz+uUXU1/Xrh0Uvb0R1q0zyZkhg9WhxZp/PBRRSrkC04GaQB6gmVIqz3Oe+wzYHNtBCvE8JxsMJ7n+A4/pk3FxTbhflE9IPgpnFvp7IBkm9+OnxEXxnt/W6nCEsLfVq2HbNtMjK21aAHr1gtBQmD49Qb9bCuGchgyBP/6AqVOJ0oouXUxqJuQ2drJuFc7s3j3Y238t1dmC++hPn35XJmSSk8KZLV8Oe/bAqFGQ4swB8PV9fGXkLatDizOSk8KZ9eoFiRPDqGFh0LMn5Mpl/p6AvMhNkeLAea31Ra11GLAMqBfDc92AVcDtWIxPiOe6svEnih2diX+uThRsmd/qcBxF8lE4raONx5I+8hqBo77APZH0ARHCMkFB5iWyQAHo1AmArVtNy6wBAyCnjPoRwrGOH4fZs6FrV8ifn3nz4OBB+PxzSJHC6uDilKxbhdMaNSSE4Q97EfJGHlSXzlaH4yiSk8IpBQVB377m5uR7bR7P38qQwVxxTtgkJ4VT2rQJ/PxMTU/6ZZPh3DlzbcTDw+rQYtWLzBTJCFyJ9vNVoET0B5RSGYH6QCWgWKxFJ8TzaM3vbXqSlOTkXfWp1dE4kuSjcEoBhy9RZPvn7MzQnIq9EsbQLSHirbFj4bffYPFicHMjNNTsxb75pjkUEUI4kNZmcyd1avjkE+7eNXlYvryZU5nAybpVOKXTpyHRjEnk4CLM3gru7laH5CiSk8IpjRsHV6/CkiXgumAeHD1qfnjlFatDi2uSk8LphIeb+ro334TuDa9DgRFQpw7UrGl1aLHuRQ5FYmqwoJ/5eTLQX2sdqf6mH4NSqiPQESBLliwvGqMQf/HDiO8oGLCdzT5TqZ4vtdXhOFKs5SNITorYc6lxX/LgStZlCWfolhDx0oUL5s2yRQsoVw4wP/7yC2zebK5ACyEcaPFi2LfPTI5NkYKBHeH+fdu0sZN1q3A6WsPIzteYo0cRWqs+iapUsTokR5K9HeF0fvvNzG1u0gTK5f0d6g80lQNNm1odmiNITgqnM2MGnDkDa9dCoqH9ISwMJk2yOqw48SL9Ta4CmaP9nAm4/swzXsAypdQloCEwQyn1l6nXWus5WmsvrbVXWhv07BRxI+JRCKlG9uase14qLO1kdTiOFmv5CJKTInacmbWTYpdWsqfMALKXy2R1OELY20cfmYrXceMAc0YyapQZrF6tmsWxOYgMrBRO48ED6NcPiheHtm05eBDmzjXtmPPlszo4h5B1q3A6fn5Qa1d/ErtFkGjaBKvDcTTZ2xFOp18/8/dx4zC9eu7dg6lTbVE5gOSkcDIBATBsmHlv9Em51xT39OkDOXJYHVqceJFDkcNATqVUdqWUB9AUWBv9Aa11dq11Nq11NmAl0EVrvSbWoxUCONxiMpnDLxIwaDKJk73IZacERfJROBUdEYlr7x5ccclCqVV9rA7HErIBK5zG+vWwbp1ZyWbI8LRrj4dHgi3u+QsZWCmcyqefwq1bMG0akdqFLl3g9ddNitqErFuFUwkNhcWd99KSr1F9+0L27FaH5GiSk8Kp7NplBqz37w9Zfj8Bs2ZBly5mLp49SE4KpzJkCDx6BJMnRKK6d4NMmWDQIKvDijP/uKOstY5QSn2IeWl0BeZprU8ppTo9/nxWHMcoxFO//3Sd/GtHsjdNPcoMs9VVZ0DyUTifwx2/pHjQj+zo9A2V0iWxOhyHi7YBWxVT6XNYKbVWa306hudkA1bEnZAQ6NEDcueG7t0BWLXKDMmbNMnMqrSJpwMrAZRSTwZWnn7muScDK6U3s4gbP/8MX3wB7dtDsWLMmg7HjpnNn4TfIt2QdatwNlMnR9LvWneC02Qiycf2G7IlOSmcSWSkWbpmzgz9+mqo/iGkSmUKCmxCclI4kxMnYM4c8yr59t65cPw4LFsGSZNaHVqceaEye631BmDDM7+LMTm11m3/e1hCxOyXhgMpRDhpFkywyW3Kv5J8FM7i0ZV7vLlgMEeTVaDiNNtefpANWOEcJk40vbK2bAEPDx4+NC16ChUyt0VsJNYGVkpvZvHStDZvlMmSwejR3LoFH38MVapAo0ZWB+dYsm4VzuLmTbg8bB5FOQZTlyboTZ6/IzkpnMW8eWYTdtky8Fz9Nezda3pMpkxpdWgOJTkpnIHW5t0xVSoY3v13KP4xVKhgejAnYC/SPksIp3D+64OUOLuQ74v04q1aCbOfnRDxyY8NP+HVqHu4Tp2Mi6tNTylj3oDNGP2BaBuwf1vpo5TqqJQ6opQ6EhAQEOuBigTst99g5Eho0ACqVgVMe57r12HmTHCzV6fJfzWw8u/+IOnNLF7at9/Ctm0mL9OmpV8/CAqCadPs0iJdCOczss99hoYOItirnJnoLISwzP37pligbFloXOMB9O0LxYpBu3ZWhyaELa1aBd9/b5auKSYONbN9pkxJ8AtXe70mi3hLR0YR1qUHN1V6iq5KuP3shIgvrm09TfFD09j55vtUblvI6nCs9K82YNXfLCq01nOAOQBeXl7P/hlC/JW/v3l5zJbN/DzBDIz94Qezhn3/fShZ0rrwLPJvBlYCpAFqKaUipD+z+M/8/aFNGzO4oEAB+OADdu+GhQtNO+a33rI6QCHs6cgRyPn1cFKr33H5MuFv8gjh7EaMgDt3TJtXNXKEucr13XfgInXbQjhacLCZpV6gALxf/AfoOtM2s33kUETEC8d6f03RBwfZ1nI+VbLZpBGzEM5KawJafkRSkvH2yhFWR2M12YAV1vD3Bx8fU35++TK0bQtZsxIVBZ07m6vPY8ZYHaQlng6sBK5hBlY2j/6A1vrpZF2l1HzAT/JR/GfRcxJg0CDCtRtdukDWrKYiVgjheFrDpPdPs4BpRLR9H49Cti7mEcJyZ8+a4p327aGI5xmYPNn8ULy41aEJYUsTJpjXyR3bNa49u5kWdp98YnVYDiGHIsK5+fujW7ch+/VATiYpRsWvWlkdkRD29bgq/ULl9yl0ewuba0yiekHbt5SRDVjheM9uvgJ88w20bs28C97s3w/z55uDEbuRgZXCEjHl5KBBrDlbgJ9+8mbNGvD0tC48Iexs6RJN2xM9iPR8hUTjRlodjhC299FH5jtx5AgNrbqZ+T6jR1sdlhC2dPWqKaRr0AC8by+H3bth9mzbvEjKoYhwXo9fMFVQEKmAW+0/xc1DrlMKYYloGz7Z5w3hmktmyi/vanVUlpMNWOFwMW2+AgQFoWv7sM7Nj/LlvWnd2prwnIEMrBQO9Tc5WXumDwNK+FG3rrc1sQlhZ/7+RLVpx9X77WnONqLGTIE0aayOSghb27ABNm6E8eMh3b7VZv7WlCnw2mtWhyaELfXvD5GRMH74I6jRB4oUMTe3bEIORYRziuEF8+15/eDdPOAtL5ZCONQz+eiCJr3LbVyP7pF8RDZghYO1a/fXzdfHVHAQU2jHoxmXpF26EI7yNznpSRCfXmmHUpccG5MQdvd47eoSFEQfhhGSPhuJu3S2OiohbC0szNwSyZULurUPgkK9IH9+0/dVCOFwe/fCkiUweDBkWzIarl0z3QdcXa0OzWGk7F44n7+puMPHx3wuhHCM5+Sja0So5KMQVvD1hSRJYvwoEE82N/Ulb14HxySEnfn6QuLEMX4U5u6J+2JfBwckhM3FUMyT+N4N0xJECGGZqVPh3DmYNAk8Jn1mhhhMnQpuUqsthKNFRkKPHpAxIwxsdN4MFmnVCkqXtjo0h5JDEeF8/qbijqAg87kQwjEkH4VwLt7eULHiX34drDzpkM6PFnPl9pYQDlWqlHmjfEaw8oR1fnKjUghHel5xXagU8whhpZ9/hiFDoHZtqJX7Inz2GTRrBhUqWB2aELY0bhwcPQqffw6eH38EHh4mL21GDkWE8/H1RT+n4g5PT1ORJ4RwDF/f50+HlXwUwvGWLjXNmFu2fJqb4e6e1NJ+NJvjTdKkFscnhN306wcXLsCoUU9zMhBPTo7xw6O6HIgI4VBSzCOE0wkNhebNoZq7P2t+yGaq0d3czG6sEMLhDh2CoUPhk4r+NO2RDvz8zC9ef93q0BxODkWE04kqU47Lrm+gn/3A09Mkq1TcCeE43t7cHvyF5KMQzuDCBfjgAyhTxhxI+vkRkTErdV38eKWON3XrWh2gEDazdq1p/dGzJwwaxM25flwmK+PK+VG8v3w/CuFwvr5EJpZiHiGcyaBBkOKEPytDfXC7ehn27TOnJDHcshRCxK2HD036NUjlz5CDPqiA26AUFCxodWiWkEMR4XQO+owgW+BpjtUc/GeFumzACmGJ8AfBPBoxiXukJCrx4zkGko9COF5YGDRtagbfLVliKuy8vWlc/BLfu3gzZYrVAQphM1evmqrzwoVh7FgAOn/jTR7PS3T4Wr4fhbDCQy9vhiWbIMU8QjiJLVvg2ER/Nrn54BYa7RbX119LOzshLNC9O2S96M/Xf/iggh/npNZQv74tc1IORYRTOffVbopvHcmOzG0osn6EWbxmzSqLWCEscrRSX94IPs1Pg5bismG95KMQVvn4YzhyBObNgyxZAFi/HlavNreds2WzNjwhbCUiwpTZhYXB8uWQKBHz58OaNTBsGGTObHWAQthT304PaXNnAuEp0kISKeYRwkoBATC7qT8blA+JIp5paxcUJHN+hHCw5cvh0nx/Nrr64BoqOQngZnUAQjwReO0+yTq15DfX7BTcNRWlMIvXS5esDk0IW/ppzDpKHp3OlrwfUW1UdfNLyUchHG/jRhg/Hrp0MVU8wK1b0KED5MkDvXpZHJ8QdjNyJOzeDQsXQs6cnDpl0tPbG3r3tjo4Iexp2TIoteRDcqiLuKzdaQ4v27UzLbPkQEQIh9Ia3nsPpt1rRxL+Yc6PvF8KEecuXzZdmH/2aIdHmOTkE3JTRDgHrTldvhNpI65z54slpM72itURCWFr907f4PXB7/GzR0FKfz/G6nCEsK8bN6BNGyhQACZMACAy0hSp379vNoE8PCyOUQg7+f57GDECWreGVq0IDIRGjSB5ctPZztXV6gCFsJ/Ll2Hbe0tow0L4eDCUK/dncZ0ciAjhcDNmmAtaR7r6/nlr61ky50cIh4iIgJYtISoK9Dxf04Y5JjbMSTkUEU7haI+FFLu4nO3lPqFY1+JWhyOErenIKH7zbkOSqEAiFy8lWepEVockhD1FRpoVbGCgOf1InBiATz6BHTvMC2f+/BbHKISd3L0LLVpAjhwwfToAXbvCmTOmPXr69BbHJ4QNRURA3wYXmRjciZCiZXAZNsTqkISwtVOnoE8fqFkT3p3qbQ4pnyVt7YRwmDFjYM8e8+6YIV2k+eJ89mDEpjkphyLCcjf3nOetqV05mqwClTb3tzocIWzvUPPJFLy9ld31J5Gv0dtWhyOEfX32mTn9mDoV3ja5uHmz6dzTrp35SwjhIFqbpAsIMIeUyZIxfz4sWGDm+lSubHWAQtjT2BHh9DranMSeLiRe9fXzK2CFEHEuJASaNTO3J319QS1aaKatt2plNl3BtpuvQlhh/35TUNe8ObSsdtvk4ttvw9q1kpPIoYiwWGRIOPdrNScMD1L6LcIjifQcEMJKl1Yfp/A3A9ibph5VV3S0Ohwh7GvfPrPT2rTp09OPq1fNxZG8eWHaNIvjE8Jupk6Fdetg3DgoUuT/5ogMkcJ0ISyxbx+4jhhOSQ7i4TsHsma1OiQhbK1/fzh50hyIpPvjnPmiLFcO5s0zm65Zs9p281UIR3vwwFxwzpwZZkyLMi2Z790zE9dr1pScRA5FhMUO1RxG7oeHOdF5Dm9UyGx1OELYWti9QHSz5txVaXljx1xcXJXVIQlhT/fumTK7rFlh1ixQivBwcz4SEgIrV/5Z2COEcIDjx6FvX/Dxge7dZY7Iv6CUqqGUOquUOq+UGhDD5/WUUj8qpU4opY4opcpaEaeIf/74A6a+609/PYawlu9B48ZWhxQvSE6KuLJhA0yZAt27Q63KodCkCSRKZPpLurnJnJ/nkJwUcaVrV/jtN5OCr/pOhk2bYOLEP/svS06+2KGIJKmIC2dn76TEzrFsz9Ye7+kNrQ4n3pB8FHHlWMVeZA09y4XhC3k9fxqrwxHCnrSGDh3g+nXToufVVwEYNAj27oW5c+GttyyOUQg7efjQbOykTfu4F4iSOSIvSCnlCkwHagJ5gGZKqTzPPLYdKKi1LgS8B8x1bJQivurf/g7jb7UkNEsuPGZNsTqceEFyUsSVW7fMxeb8+U33V/r1gxMnzPdmZil+fR7JSRFXvv4aFi82jQdKJzoKAwbAO+9A585Wh+ZU/rHhZrQkrQpcBQ4rpdZqrU9He2w7sFZrrZVSBYBvgNxxEbBIGB799juvdm3Jr245KbJrMkoK0l+I5KOIKz8MX03JH+ewuWA/qg+VxuhCWGb2bPj2W/j8cyhWDIDvvoPx400HgiZNLI5PCLv58EO4cMHM90mT5ukckWHDZI7ICygOnNdaXwRQSi0D6gFPjGfYeAAAIABJREFU161a60fRnk8KaIdGKOKlxYs0NVe1J53rHdzW+EHSpFaHFF9ITopYFxUFbduaVj07dkDiLWv/vDJSt67V4Tk7yUkR6y5eNGcfZcrAoG4PoXhTSJcOvvoK2Xz9fy9yU+Rpkmqtw4AnSfqU1vqR1vpJYkqSir+nNWfKv0+qyNv8MWMJKTMnszqi+ETyUcS6309eI/OnHfgpcVHK7RxhdThC2NePP0LPnlCjBvTqBcCvv5oXzaJFzW1nIYQDLVoECxeaoSEVKsgckX8vI3Al2s9XH//u/yil6iulzgDrMVWwQjzXxYtw7P2Z1GMtLp+NhcKFrQ4pPpGcFLFu6lTTlWfCBMib/Iq5MlK4sJnBJf6J5KSIVRERZgali8vjznXdu5gvziVLIFUqq8NzOi9yKBJrSaqU6vi4nc+RgICAl4lXJACHO32F1+Vv2VFpFEXeL2p1OPFNrH5pSk4KHRHJ1UqtSKRDcF22BM8UHlaHJIQ9BQaaoSEpU5oydBcXQkNNi3StYcUK05ZZ/DNpMylixS+/mDK7cuVg8GCZI/JyYipH/EuxjtZ6tdY6N/AO8NzqDFm3ivBwGFL/J0aF9ia4Qg1cPuphdUjxTazlpOSjAFPP068f1KkDnd+PMFOdw8LMIGdZuL4IyUkRq0aMgP37zVjKrN8v/LOHVrlyVofmlF7kUCTWklRrPUdr7aW19kqbNu2/i1QkCNf9z5JnTg8OJ69M5Q29rQ4nPorVl0vJSXGw0XgK3PFnb+MpvF0vl9XhxEuyAStiRc+eZkjBokXw2msA9O4NR46YM5Ls2S2OL56Q3swiVoSGmkPKaANiZY7IS7kKRG8mnwm4/ryHtda7gBxKqRgHm8m6VYwZGszAH5vCq6+SZPl8Uwor/o1Yy0nJRxEcDM2ameLzr74CNXIE7N4NM2dCzpxWhxdfSE6KWLN7N4wcCW3aQNMi58z15vLlYfBgq0NzWi+yiojVxaywr8jgMB7WbU4ISUi7YQHuiWQR+xIkH0WsufjNEYquGcyudA2pskRu4b4M2YAVsWL5cjNBfeBAqFLl6a+mTzcHI/Xq/cO/L6KTNpPivxswAI4dg3nzIHPmp3NEhg6VOSL/0mEgp1Iqu1LKA2gKrI3+gFLqTaVMg2ulVBHAA7jr8EiF09u9G9KM7UM+TpFk+QLTH138W5KTItb06QOnT5suk2l/8jcl6m3amN494kVJTopYcf++Sb3s2WHq+FBzYvmkuEeuNz/XPw5aJ1qSAtcwSdo8+gNKqTeBC48HO0uSihgdrDaY0o+O4d9jDd5l/tLxSbwYyUcRK0LuPMK1VXNuu6TnrZ1zcHGVgVsvSYbjif/m4kXo2BFKlYLhwwE4exY6dIDSpWHMGGvDi4diajNZ4tmHlFL1gTHAa0DtmP4gpVRHoCNAlixZYj1Q4aT8/GDyZOjWDerVkzki/4HWOkIp9SGwGXAF5mmtTymlOj3+fBbQAGitlAoHgoEm0Q4thQDg3j1YUH8Nc5lBWLfeeFSvbnVI8ZLkpIgta9fCjBmmeKdqoQAo1NLcDpk2zerQ4hXJSREbtIZOneD6ddi7F14ZPdAU96xZA5kyWR2eU/vHQxFJUhEbTk/ZRuk9n7PtzU5UniQlry9L8lHElhMVe1A87DwHx/hTKndKq8OJz2QDVry8sDBTxePiYoYUuLsTFGTmFiRKZG6LuLtbHWS888JtJoHVSqnymDaTVWJ4Zg4wB8DLy0u+R+3g2jVo2xYKFoRx42SOSCzQWm8ANjzzu1nR/vkz4DNHxyXiD61hUOurfHa3PYG5i5B0/GirQ4rXJCfFf3XjBrRvD4UKwagRUdCwLdy5A+vXQ7JkVocX70hOiv9q4ULz3jhqFBS/swEmTYKuXaXdwAt4kZsikqTiP3n46x1S92rNL+5vU2zXBJQUpP8nko/ivzox6BtKnprHJq+PqTGggtXhxHeyASte3uDBcOgQrFwJ2bIBpjj9p59gwwYp7HlJ/7rNpFIqh1Iqjdb6TpxHJ5xXZKTpOxASYt4sEyema1szR2TrVpkjIoRVFvpG0tivFa94hOLx3VLw8LA6JCFsKyrKdMgKDISlSyHRzMlm0Tp1qjklEUI41Pnz8OGHUKEC9G91HYq0gQIFYPx4q0OLF2Sog4hbWnOufHtSRN4l8MulvPq6p9URCWFrAUd/I/vYjvyQpAQVtg+zOpyEQOb8iJezeTN8/rm569ygAQDz55sRBh9/DDVqWBtePCa9mcXLGT0adu40w3zeekvmiAjhBH75BX7t9Bne7MRtxlTIlcvqkISwtUmTTKHA5MmQ++FhM4OrXj1TlS6EcKjwcGje3HQWWDQ/Ete2rSAoCJYtg8SJrQ4vXnihmyJCvKxD7WdT/OpaNlWfRI02Ba0ORwhb0xGR3Krakqw6kiSrviZJcunLEwtkzo/4927cgFatIF8+mDgRgJMn/5xb8Hi0iHgJ0mZSvJTdu03itWgBrVvLHBEhnEBYGIyue4Avw4cSVKcJnu+1tTokIWzt+HEYOBDq14f3mzyAIk3NNcp585B2IEI43vDhcPgwrFgBmZeOgx07YO5cePttq0OLN+RQRMSZq1tOk9/3Iw6mqE6Vtd2tDkcI2zvwzhhK3dvN1pYLqFozh9XhJAiyASv+tagoaN0aHj0yVelJkvDwoZlb8OqrMrcgNkibSfGv/P67KbN74w2YOZPAICVzRIRwAqP7/8GQM80JTZuJpAtnyaarEBYKDDRj8F57Db6co1GdPoDLl81aNlUqq8MTwnZ27oQxY8x8n4YZ90PTIdCkCbz3ntWhxStyKCLiRMSjEILqNyeReoUMW+bj5iGd2oSw0vnFByi2fjg7MzSjyoJWVoeToMgGrPhXxo2Dbdvgyy8hTx60ho4dTYuQ7dtlboEQDqW1eXm8dQv274dXXpE5IkI4Af8dmlyTO5NV/Ybrml2QIoXVIQlha716wblzZgmbeq2vac8zciSULWt1aELYzu+/m6YDOXPC5OH3oWwzyJIFZs+WAoJ/SXaqRZw4XGUguYJ+4HQfXzIXkzdKIawUfOsBid5rzg2XTOT9fibKRb4ohXAof38zSH3aNDNcvXFjU9YDzJr153tlxYqWRimEfTzJyZ494bvv4LPPoGhRmSMihBP4/Xf4rsFCmrOUyMHDoXRpq0MSwtZWr4Y5c6BfP6j0+s9mqnOlSmaeiBDCoZ4U1N26BUu+1iTr1RGuXYOlS03bAfGvyE0REet+mrCJUgcnszV3N6qOq211OELY3o8VPsQr/DJHJuyixJvyRSmEQ/n7g4+PGXrXvbvpOzBnDijF0aNmT7ZmTejf3+pAhbCJ6Dk5ZQqUKAE9e8ocESGcgNYwtNkvjL3flYdFK/DKsIFWhySErV29Ch06QNGi8OnAYCjXBJIlg0WLpL+kEBaYNw9WrXpcz3N8rhkoMnasWc+Kf01uiojY8bji7tGib3mtX1vOeuSj5K5xVkclhH09zslzjT+mxNlFbCs5hBK9ylgdlRD2En3zFcxuzx9/wLFj3L9v5oikS2feK11kRSZE3Hs2JwF+/JHgjTtljogQTsB3dhhttzTDNYkHr6yWTVchrBQZacbghYaa70aPgb3h5ElzpTJDBqvDE8J2zp41NXaVKkGfWqehRw+oUgX69rU6tHhLboqI/y7aC2aS1o3wwJVb87fxStrEVkcmhD1Fy8mcl0dzPlFeKm4bbHVUQthLTJuvACEhaB8fJhT248oVb3bvhtSprQlRCFt5Xk4GB+NS14f0kX5M3eYtc0SEsIK/P+Et2/HKzZJ4cZSoRd9C5sxWRyWErY0fb746v/oKcp1cBTNnQp8+5oqzEMKhwsKgRQtInBgWzg7G5d2m5tbWwoVSXfcfyKGI+G+eecF0JQpcXcmfPsDiwISwqWdyUgFvcBGXQ7tNTxAhhGO0a/fXzdfHVFAQ7fe2I/WkS5Qs6eC4hLCrv8nJRJFBfPtqO1JUvuTYmIQQ4O+P9vHBPSiIRlwmuIoPSRrUtzoqIWztyBEzBq9RI2jnfQkKt4dixWDUKKtDE8KWhgyBo0fNjJ+Mk/qYW1sbN8Lrr1sdWrwmx0ni5T2n4s41Mtz83t/fosCEsKnn5KRLaLDkpBCO5usLHh4xfhSIJ/PK+tKjh4NjEsLOfH3BLeZ6sBAXT15Z6evggIQQT9auKtraNcne7bJmFcJCjx5B8+Zmr3X2tHBUi+amBeyyZc9d2woh4s727TBuHHzwAbyjV8OMGdC7N9SoYXVo8Z4cioiX9zcVdwQFmc+FEI4jOSmE8wgKgoiIv1xnDlKedHzdj17rvFHKotiEsKMjR0xOPnMwEoQnQd/44VpFblMK4VB/09JOinmEsEZ4ODRtChcuwOLFkHLSUNi/H+bMgTfesDo8IWznzBmY+q4/V92y8UWpZdC+PXh5wejRVoeWIMihiHh5vr7oJEli/szT01TkCSEcx9eXKPdEMX8mOSmE4+zaBQ0bQqFC8N13Jv8w1ej13fzo7edNihQWxyiEnXz5JfTrB02amFYDj3MyEE/OjPcjVQM5EBHC4aSYRwinEhUF770Hgev9uZ8iG+UPjIOxY6FDB/P9KYRwqCtXYGg5f5Y88CFjxGUSvdfCFA4sXSq3tmKJHIqIlxZWqDiXXN5AP/uBpyf4+cn8AiEc7ML1JISGQxTPlJ9LTgrhOEePmgrXbNlg0ybzz35+3E+RlZpRfrw71ZsiRawOUggbWbbM9BuoVcsMo6xShQ1d/bhEVla09qNIb/luFMIKP/T0Jfx5I06lmEcIh9LadOO5utifLe4+vPL7ZejfH7JmhS++sDo8IWznzh0YXMaf+Xd88ORxAUFUlPnryhVrg0tA5FBEvJTIkHBO5W1ElsCfOV5v+NOKO9l8FcIaV7ecJmWr2tx0zcSdGSskJ4Wwws8/m96uqVLB1q2QNi0A64O8Sf3gEhmae9Oxo8UxCmEn69dDq1ZQrhysWAEeHqxeDXUnevN+lUu0miffjUJY4cQJWD7gOO5EoF2fORiRtasQDjdmDJyY7M9mNx/cw6Pd4Lp1Cw4etC4wIWzo4UMYUtafGVeiHYg8ERYmLSZjkRyKiH9NR0ZxrEBbCt/YyLaGsymyZphZuGbNKgtYISwQcOQybrWqEYYHYeu28FrnBpKTQjjapUtQtSq4upoDkUyZAPOPDRpA4cIwezYyR0QIR/n+e9PGrmBBWLcOPD3ZtMl0AClWDL791qSrEMKxLlyA+RV8GR3am6BaDVGbNkoxjxAWmj0btn7szyZXHzwintmADQmRDVghHCg0FN59FwacbUfSZw9EnpAWk7FGDkXEv6M1B0v3pNgvS9hYfgzVV3Qwv/f2NhtCsoAVwqEeXAggsGw1Ekc+4taCzbxV8/EAPMlJIRzn5k1zIBIYCFu2QM6cAOzcCXXrQu7c5tfJklkbphC2ceQI1KkD2bObNnbJk+PvD/XrQ758ZqzIK69YHaQQ9nPjBowrvYYJDzoQWLoqnt8uhipVpJhHCIusXAmdO8OyJO1IFCkbsEJYKTLSXHDetg3ODPAFmeEc5+RQRPwrB3xGUvLQVDbn7UUN//5WhyOErYUEPORGoZqkC/2NM5/7UbBVAatDEsJ+7t2D6tXh+nXYsAEKmDzcu9cU1uXIYW6LpEplcZxC2MXp06aNXerUJvnSpGHvXnNGkiOHOaBMkcLqIIWwn3v3YGiZ7Uy53YTgfMVIuvlbSJTIfCjFPEI43LZt0KIFlCkDr67yBXf3mB+UDVgh4pzW0LWr6fY6YQJU75kHUqb864NyozJWvdChiFKqhlLqrFLqvFJqQAyft1BK/fj4r31KqYKxH6qw2qH3ZlJyw1B2ZG5D5WOfo1ykB4gVJB8FQMSjEM7leYccj05wqO9KSvYpa3VIQthPYCDUrg1nzsCaNVCqFGBaL9esCRkzmhfOx6NFhBBx7ddfza0td3eTfBkzcuSImbH+JB/TpLE6SHuRdasAU2jet+JhJv76DuHZcpHs+w1yfdIikpMC4PBheOcdeOst02Ey8e3fIDz8r30lZQM2zklOCoChQ00ruwEDoFe7e1CtGty/D1OnSovJOPSPhyJKKVdgOlATyAM0U0rleeaxX4EKWusCwAhgTmwHKqx1fMByvHy7sjd1HUqfnoubh1wysoLkowDQEZGcyNeCAnd2sKP1fCqMq211SELYT2io6cVz8CAsXWo2YoFjx8zFkddegx07IH16i+MUwi6uXzdteIKDzQ2RHDn48UfzTpk6NWzfLvnoaLJuFWD2WXvXPM3YH2uiXktLsr2b5fqkRSQnBZhanpo1zVp182ZIsX0VvPee+Q5dv142YB1IclIAfPEFjBwJHTrA6EGPTDXPk6K7Dz+UFpNx6EV2tosD57XWF7XWYcAyoF70B7TW+7TW9x7/eADIFLthCiudmrSFvJ+14kSysuQ/tZzEydysDsnOJB/tTmsOFe2E1+Vv2Vh9MtUWtLQ6IiHsJyICmjc3G69ffWWm4QE//GDORlKmNAciGTNaHKdNScWdDd29a04/bt82M0Ty5ePMGbO/4+lpDkQyyWrICrJutbmoKOjX+BIf76pGkuTuJNu3FTJksDosO5OctLkrV8xa1c3NLGNf/2ETNGsGJUuaDdjq1WUD1rEkJ21u8WLo2dO8Ts6aHIKq/465yrVs2dOiO2kxGXde5FAkI3Al2s9XH//uedoDG2P6QCnVUSl1RCl1JCAg4MWjFJY5v/gA2XrV54JHHjIfX0fydM8Z9CMcJdbyESQn46MDlQZR4se5bCr6MTU29rA6HIFswNpOVBR07AjffguTJkHbtoAZY/BkA3bHDsiSxdow7Uoq7mzo4UNT8nr+PKxdC8WLc+ECVK4MLi4mH7NntzpI25J1q41pDcM63aLLmqqkThxI0t2bzWAfYSXZ27GxO3dM/cCDB6Z+IMe1XWYnNm9ec0MkaVLzoGzAOpLkpI1t2ADt2plU+3pBBK4tm5lKnnnzTEcCEede5FAkpsEROsYHlfLGJGmME7i11nO01l5aa6+00mDb6V3dcppUrWtz2/V1ku3ZRNo3X7U6JBGL+QiSk/HNwSYTKblzLNtyfEC1gyNQMtbHcrIBazNaQ+/eZtjksGGmrAc4d85swLq7ywasE5CKOzsJDoa6dU3fuhUrwNub334z+RgaamaI5MpldZC2JutWG5s49D7vflmDrG7XSLxtPRQoYHVIQvZ2bOvhQ9OR59IlM0OkUMQR8PExN0K2bIEUKawO0a4kJ21q715o2BAKFoQ130aRuMt75rbWlCnQurXV4dnGi/RBugpkjvZzJuD6sw8ppQoAc4GaWuu7sROesErAkcu41apGGB6E+20hezFpwuwkJB9t6mj3BZT4pje70zWk/MnpuLjKiYiTeLoBC6CUerIBe/rJA1rrfdGelw3Y+GzECJg8Gbp3N4ciwIULUKmSuUCycyfkzGltiCLGirsSf/P831bcAR0BssjVH+cTHg5NmsD335veA3XqcOOGORC5f98cUObLZ3WQtifrVpv6aloQxUfWIb/LKVzWrkOVKW11SMKQnLSh0FBzIeTYMVi9GsqnPgUVapjZPlu3gmygW0ly0oZOnjRnkpkzw8YNmuRDesCiReZds1s3q8OzlRe5KXIYyKmUyq6U8gCaAmujP6CUygJ8C7TSWp+L/TCFIz24EEBg2WokjnzErQWbyVXjDatDEn+SfLShH0eto+DU9hx6tQpFTi/GI4mr1SGJP8mVZ7uYMsUchLRpY9pmKcXly+ZAJCTEVKS//bbVQQqk4s4eoqJM67p162D6dGjenIAA08Lu5k3TFqRIEauDFMi61ZZWLQsnfbdGlGEvLFyES83qVock/iQ5aTORkdCqlVmnzpsHdfJcMHMKPDxk4JZzkJy0mYsXzeiepEnNJa20U4fCtGnQpw98/LHV4dnOP94U0VpHKKU+BDYDrsA8rfUppVSnx5/PAoYCqYEZyvRzidBae8Vd2CKuBN9+yPVCNckSeoUfP99CyVZyzdmZSD7az7m5u8g5uDE/Jy7Cmz98S9JUiawOSfy/l9mALRvT51rrOTxureXl5RXjnyEssmAB9OhhervOnQsuLly9avq/PnhgKtLz57c6SPGYVNwldFpD166wZAmMGQOdO3PvntnjuXjRHIiULGl1kAJk3WpH27dGEd6iDQ3YQNiUWXi0aGJ1SCIayUl7efJ1uWIFTJgArStdhXJVzNWRXbtkxo8TkJy0l5s3zVyf0FDYvRuyrhgPI0dChw4wbhzSH93xXqR9FlrrDcCGZ343K9o/dwA6xG5owtEiHoVwLu875H10gr19v6NCnxj37YTFJB/t4/J3J0jfsQ7X3LKR5tAGUmV9xeqQxF/JBmxCt2YNtG9vStCXLgU3N27cMDdE7t41lXeFC1sdpIjmacUdcA1Tcdc8+gNScRfPDRoEs2bBgAEwYAAPHkCNGvDzz2bOeoUKVgcoopN1q30cPqS5ULsbHaOWEjR0DJ7dPrA6JBEDyUn7GDoUZs82X5e9Wt6GClXN4nXHDjNcXTgFyUl7+OMPs169ccNc0sqz90vo2xcaNzbrWjkQscQLHYqIhE9HRHIiXwu87uxga+tFVB1X2+qQhLC1m3vOk+TdGjxUyXHZupnX86exOiQRM9mATci2bzczC4oVM02YEyXi9m0zs+D6dXPluVgxq4MU0UnFXQI3dqz5q1MnGD2awECoXdv0SV+1yrQjEEI43pkz8H3FYfQJn8GjTn1INjzGroRCCAf54os/C9BH97sPlarD5cuweTN4yZJHCEcKDoa6deH0adP5teTl5fDBB1Czppkl4irt0a0ihyICHaU5WKQTJS9/y6Yak6mxoKXVIQlha/dO3yC8UjU8dQQB3/iTt6IM+HVWsgGbAPn7Q7t2pnKnf3946y1Yvx6SJePuXXNh5NIl06KntMyNdUpScZeAPMlHX184exYGDoTmzWH6dEJCFfXqwb595hJX3bpWByuEPV25AstLTWJY8Aj+aNSeV2dICxAhrLR4MfTsaYarzxr/CFWzFpw6Za5TlitndXhC2EpEBDRtatplLV0K1SM3QMuWJhdXrjTzfYRl5FBEcKDyIEqdnMsmr4+pvqGH1eEIYWuBV+9xt1h10off5sz0HXg1lMnNzk42YBMQf3/w8YGgIPjwQ8iQwVwHSZXq6cyCc+fAzw/Kl7c6WCESuOj5WKMGhIWZn+fPJyzChYYNzWWuBQtM5wEhhOPduQPTSyxg7P1e3K/cgBRLZ8uBiBAW2rDB1BJ4e8PXX4Xg2uAdOHgQvvnGfJcKIRxGa3j/fXMeOX06NHl9F1RvAAULmisjnp5Wh2h7LlYHIKx1sPEESu0cy7Y3P6DagRGyhhXCQmH3g7iUvw5Zgs5wYtgavLoUtzokIewj+gbsE/fuwc8/P51ZcOqUGTFSpYp1YQphC8/mY1gYuLhA165EKHeaNzcXuGbNgtatrQ1VCLt69Ag+K72GkTfac69oFVKs/1pagAhhob17oWFDs9+6ZkU4ids2NdUD8+ZBgwZWhyeErWhtGg/Mnw+ffAJdih8xa9vs2U3LgeTJrQ5RIIci9uPvD9mygb8/R7otoMSKPuxO15DyP07HxVVORIRwuMc5GbV5K6fyNOLt+/vY3WkJZYfLrqsQDhPTgQhAcDC6tg8fl/bn2DFzw1mK7ISIY8/Lx6godIMGfFbDn1WrYNIk045ZCOF4oaHwacUdjPylCQ9yeZFyp5m7JYSwxsmT5qszc2bYuD6K5N3bwnffwdSp0KaN1eEJYTvjxsGECab5wJAGp81LZOrUsHUrpJF5sc5C2mfZSbSXzKjqNSkcHs6hV6tQ5PRiPJJIVY8QDhctJ3XNmhTWkWyuP4vqMxtaHZkQ9tKu3V83YB9TwUH0OdWOiisvUaeOg+MSwo7+Lh+DgmixvR1q1CV69nRwXEII8PdHt23HojT9GXKsH0EZc5Jqn5m7JYSwxsWLUL06JE0KWzZr0g7vCkuWwOjRZkdWCOFQc+fCgAHQrBl80fNXVPmq4O4O27ZBxoxWhyeikZsidvFM1Z1LeCgKyD3rI5KmkqoeIRzumZx01ZFEuLhTvVsuiwMTwmYiIqBEied+HIgn5z/2la4DQjjKF1+YVlkxCMSTHS19GTTIwTEJIcyBiI8P6rfLtD/WBZUsKSkPbTGVr0IIS9y8CdWqmdtbWzZrss7ob3pL9u8PAwdaHZ4QtvPtt+Ymc40aMH/MDVyqVYHgYHNDJEcOq8MTz5BDETt4ThsCF6JI3r6R+VwI4TjPyUm3qHDze8lJIRzj7l2oWdMMn6xX7y/D7gLxZE9/PyqP9LYoQCFs5ocfoFcvM6jZw+P/PgrEkwUN/Wi3UPJRCId7ciDyeO2qgGQRf8DZs9bGJYSNXb9uNl5v3DBztvKsGQ2ffw6dO8OYMVaHJ4TtrFtnboeUKAErZ9/Fo3ZVuH3bzBDJl8/q8EQM5FDEDv6mDQFBQeZzIYTjSE4KYb0TJ8DLC3btMgMo16wBPz/044ORQDzZ2duP6mNlA1YIh1i6FEqVgpAQ2LPHvEBGy8c5dfzo/I03SkbgCeFY/v7o2n8eiDwVEiLFPEJYZP9+KFoUMpz1506ybJT8uhsMHgytWsG0aciXpRCOExUFI0fCpLr+/Eo2NnVbT9KGNeH8eVi7FooXtzpE8RxyKGIDkTNmE6meMzPE0xN8fR0bkBA2d6f7J0TxnIWq5KQQcW/pUihdGsLDYffupweRQSW8GV7Uj0tkZWt3P2qPlwMRIeJcRIS5HdK8uTmoPHoUSpYkrIw3U6ubfJxW3Y8ea+RARAgrhLVshwqWYh4hnMXcuVChAlR28ccPH5LcvmwOQsqWNYU+z2lBKYSIfQ8fQqNGsH2IPxtdfcgQdpnkLeua9eyKFeAt75POTP7fMoH7/afrnGs27Om8gv/j6Ql+fpKkQjjQyTF+ePTpzgOSE+m7lVDHAAAgAElEQVT+zDwfyUkh4lZEBPTp8/+br48rd86eNVedR+zx5rvJl3jnC8lDIeLc7dtQtSpMmgTdusH27ZA+PVevQsWK0H21N5N7XKLPem/Z4xHCAutWhbH1VoHnPyDFPEI4TFgYdOkC778PPQv6s+ieDy4h0Q4sjx0zxT5CCIe4cMFccr6/2p8t7j4kinycj1FR4OYGyZJZG6D4R/J6kYCdX7SfiEJFyfzgJ7Z3WYXbts1/9kuXzVchHEpHRnHAZyR5B9Xliseb3Nn+I66bN0pOCuEod+6YxssTJsCHH5rN13TpAFi+3JyR3LxpOvb06GFxrELYwaFDpvfHgQOwcCFMmQLu7mzdCoULw8mTZtzP5Mng+pwLz0KIuBEVBRN6XydVQ29qR64jsE6Tv8zdkrWrEI5z8yZUrgwzZ8Lspv58dtrnrze4goKkpZ0QDrJ5s3l/zPGbP1s8fHAPfyYfw8IkH+MBORRJoI50mkuW1hUIJCkXvz5A5envmgWrnx9kzSoLWCEcKCTgIcdyNKLk+iF8n7EFmS7t4c1KWSQnhXCU48fNqnXPHlPROnUquLsTGgpdu0LTplCggHmsWjWrgxXCBr76CsqVM6cde/dCq1ZERcGIEVC9ujmvPHLEtCMQQjjWgwcwsOI+mk8sipfbCcIWLSfp2mVmrSrFPEI43OHDf15wXroUOu5t89cZP09ISzsh4pTWMG4c1KoFWbLAyuTtcA2VfIyv5FAkgYkMDuNgkc54zX6fYykq4fnTYQo0z/fnA97ecOmSLGCFcJCbe85zLWspCl1ew6ZqE6lweSGvpk/y5wOSk0LErSVLoEwZiIw0LQXatgXg11/Nr2fMgN69YedOyJTJ0kiFSPhCQ6FTJ+jQwTREP3oUihTh7l2oXRuGDoUWLeDgQXjrLauDFcJ+zp3VTHprFiN2VyRJak88jh7Ao2Vj86EU8wjhcAsWmBoCNzfYtw+aFjrz90PUpaWdEHEmMBCaNYP+/aFhQ9i3V+PepMHz/wXJR6cnhyIJyP0zNzmTsRIljs9iU8H+FLm+nnS5U1odlhC2dWriZhKXL0bK4BvsH7aZGps/wsVVpsQK4RBPhje3aAHFipmy82LFAFi7FooUgfPnYc0aGD8e3N3/4c8TQvw3166ZQSGzZ8OAAbBxI6ROzeHDJh937DBtQRYuhKRJrQ5WCPvZtCaEA/nfZ9jNzjwsXoUUvxxBFcj//w9JMY8QDhEebtq5tm0LpUubZWyh8yvNWjY42CxepaWdEA5z6ZIpqPvmGxg7FpbNDyFpjw4wcaLJyyRJ/v9fkHyMF+RQJIG4sOwwIfm8yH7vGNvaL6XGibF4JJEGzEJYQmsONhhH7t61uOGehTubjlB2eBWroxLCPgICTB+sJ8Obt22DdOkID4e+faFePciRw8yjrFfP6mCFsIHdu838kJMnYeVKGDMG7eLKzJlQtqwpet2zx1wi+bsCWCFE7NMapg24Ssr6FWgd/hX3u35M6n3rIKUU1wlhhYAA00pyyhTo2RO2bIggzdg+pqdkvnxmAdu7t7S0E8JBduwwLewuX4YNG6B/k0uocmVh3jwYMgT274f16yUf4yE5FEkAjnZfQMZm5QjT7pz13U+VuU2tDkkI2wq7F8jhnM0o8W1/9qRvSPoL+8hVPbvVYQlhH8eOmVXrvn0wf/7T4c1Xr5p16fjx0KWL2YB94w2rgxUigdPazPCpVAmSJzfD1Rs0IDAQWrUyuVi5sumi9fgilxDCgR49gmHeu2j0WVEKuJ0mdMkqUkwbaeb9CCEc7vhx8324b5+5OTmp/03calSBCRPMILzvv/+z36u0tBMiTmkNkyebWrt06cwytobLFlPoc/68aT/w6afmO1PyMV56oUMRpVQNpdRZpdR5pdSAGD7PrZTar5QKVUr1if0wRUyiQsM5UKIHRae25WTyMrifOEzhtgWtDkvEMclH5xVw+BKXM5eh6IVv2FhxLGWvLCNlJukBIoTDLF5s7jVrbU492rQBYMsWKFwYTpwwI0amT4fEiS2OVYiELijI5GD37lCzppkUmycPZ85A8eImF0eMMO+NqVNbHayIK7JudV4XL2im5prKkO8r4542BYlPHCRRs3etDkvEMclJ57V06Z9j8PbsgVZv7DX9JQ8dgkWLYNo08PD4/39JWtrFe5KTzik42CxjP/oI6tSBA/uiyLliNNSoARkymHVtnTr//y9JPsY7/3goopRyBaYDNYE8QDOlVJ5nHvsd6A6Mj/UIRYweXgzgp4zVKXloCpvzfET+a5t5PX8aq8MScUzy0Xn9PGMHriW9SBN4mT0DN1DTvz+ubtIDxA5kIWsRf3/Ils38PTzcrFhbtYISJUzjZS8vIiNh2DCzdk2f3vy6WTOrAxdxTXLSItFz8knj5cWL4ZNPzPCeV1/lm29MBWxAgDmsHDwYXOTeeoIl61bntd0vmIN52jLwRnfulaxJql8OofI++59GJDSSk84pIsK0d23e3Fx2PnJY47VvipnD5ekJBw5Ay5ZWhynigOSkc7pyBcqVM2eRn34Kq+b9wStt3oWPP4amTU1O5sxpdZgiFri9wDPFgfNa64sASqllQD3g9JMHtNa3gdtKqdpxEqX4P5dWH8ej8TvkirjF1lYLqbaglfRftg/JR2ejNQebf0HRZX246P4WkavXUL6ufEHaRbSFbFXgKnBYKbVWa3062mNPFrLvWBBiwuTvDz4+phK9dm3IlQt++MFUpD+emn7rlpmxvn27qfKZMeOv8yhFwiM5aZHoOVmzpqlkdXGBdeugdm3CwsyGz5QpUKqUGVL5pPuHSNBk3epktIYvB1+m6Oh3qcwxfu8+nNcmDZHTSfuQnHQyv/9u9li3bjXdsSZ++giPDzuaayN168KCBZAihdVhirgjOelkdu2Chg0hJAS++w7q5jgFJd+FCxdML63u3WUAXgLyIqufjMCVaD9fffy7f00p1VEpdUQpdSQgIOBl/gjbO9ZnCa+9WwYdFcWpWXuoulAORGwm1vIRJCf/q/AHwRx6uw0lln3EgbR1SH3uAG/LgYjdPF3Iaq3DgCcL2ae01re11oeBcCsCTHCib76Cudv8ww8wYAB88QW4u7N7t2mXtXcvfPWVGS0iByK2ITnpaM/mZGioGVQwbRrUrs3Vq1ChgjkQ6dEDdu6UAxEbkXWrEwkKgtFVdlB/tBe53c4TvOw7Un0xTA5E7EX2dpzIyZPm9uT338OXX8K07ufwKF8Sli+H0aNh9Wo5EEn4JCedhNamiK5yZUiZ0nStqxvyjelC8McfZtp6jx5yIJLAvMgKKKb/4vpl/se01nO01l5aa6+0adO+zB9hL9HaEESFRbC/bF+KTGjBmaRe6ENHKPqBl9URCseLtXwEycl/JXpbEODO8StcyFiO4mcXsan0p5S8uorU2V6xNkZhBVnIOtKzm6/RTZlC1HZ/xo0zbVyTJTM3m997z/FhCktJTjrS83JSa/jgA4587k/hwvDTT+Z2yOTJf22HLhI0Wbc6icuXNDNzTWTAjqqotGnwPHmIJE3qWh2WcDzZ23ESK1eam5PBwaZYoEPq1aZ31q1bsHkzDBwoB5b2IDnpBEJD4f33zW2t6tXh0L4Icn/ZG5o0gQIF4NgxKF/e6jBFHHiR/5e9CmSO9nMm4HrchCOeevKSefkyunZtLqYrSam949maqytvX99OpqLprI5QWEPy0QrR8hEfH37rPRm8ipLh0Tl29lpLjb1DcPOQRatNyULWkdq1i/lABCAoiIA67ejfH95918wPKVjQseEJpyA56Uht2vxtTqbp14506Uw+Nmrk2NCEU5B1q1WiFfPs2hTEkdwt6H2tNwGl6pHm/EFU7resjlBYQ3LSYpGRZixBo0aQPz8cORBBqe8GmMVr7txw9ChUqWJ1mMJxJCctdv26Gd/z1Vdm1t3aL2/xaoMqMHGiOSXZudMMVhcJ0ovMFDkM5FRKZQeuAU2B5nEald09U3WngoPJEXyUwxX7UGXH53Jby94kHx3t2SrYoCAyT/yI6y6ZuLVyFxUb5LY2PmE1Wcg6yvHj5i7z5csxfhykPGkZ5svUqWb9Kt+VtiU56QhhYTBzpmkn8ByBeLKkii8H10DSpA6MTTgTWbdaIdraNaJ6LTKEZ6QsFwnoOYr0EwZI9bm9SU5a6P59My99/Xpo3x6mD7tNojZNTc526mSuUyZKZHWYwrEkJy20f785j3z40NzeapDxAHg1gHv3YOFCaNXK6hBFHPvHFZHWOgL4ENgM/Ax8o7U+pZTqpJTqBKCUSq+Uugr0AgYrpa4qpZLHZeAJ1nPaECig2KEZqJ3+1sQlnILko4P9TT5m8LhL3lQ3rIlLOJOnC1mllAdmIbvW4pgSlitXTDV60aLmn7t1+8uAkEA8af+aH6P2efPhh3IgYnOSk3FJa1ixAvLkgZ49TTP02bNjzMntPf0YuMVbDkRsTNatFnhm7eoWHkIOLhA2fDRpJw2SAxGbk5y0zq/z/AlMm42Qjf7MmAFftj9AolJFzK7s/Pmm0EAORGxHctIaWsOcOWbmnacnHNivaXB7pmmRlTixyUs5ELGFF7kpgtZ6A7Dhmd/NivbPNzGVeOK/+ofWILRrB5cuOTQk4VwkHx3ob/JRhQRLPgq01hFKqScLWVdg3pOF7OPPZyml0gNHgORAlFKqJ5BHa/3AssDjgwcP4LPPzNVlraFfP9Nf+dVXoX59dG0fVHAQgXgyqqQf09d7kyqV1UELq0lOxqG9e6FPHzOsJ18+2LABatQApYh8IydRtXxwDw8iSHlyZbofdTt7Wx2xcAKybnUgf3+0jw8qhmKexONGQPkSZuiWsDXJSce6eROWdvSn4zofkhLE5kQ+uJ7pAD1mQqZMZvO1UCGrwxQWkpx0rN27oW9fSHLQnyuJ25FkzCyST1gGCxZArVqweLHpTiBs4YUORYRj3Np3gXuh2clNzK1B8PQEX1/HBiWEXWnNxUodyOY7FJeY2tFLPorHZCEbyyIiYO5cGDYMbt+G5s1h9GjImhWAkBCY9YM3uxL5MSm4Hfs7+jJyprcUv4qnJCdj2blzMGAArF4Nr79u8rNtW3B1JSoKVq2EoUO9SR/ux7LE7Ui81Jfc78jGqxCOpDUEN26DpxTXCeEUHj2C8ePh0Gf+rAgxByIArqFBMGUKlCgBGzfK5qsQDvLzz2Y5u3YtNErjz9cePriHBEHTWuZLdNgwGDpUblTajPzXdgIPLwawv1h3UpXJTeabhziUuxU6SZL/f8jTE/z8pLpHCAc4v/gAP6Uuzxu+Q7jhkolIt2euMks+ChH7tDZ5VaAAdO4Mb70Fhw7B119D1qxPRxi8+SZ89BH8UcSbWwcv0XS2HIgIESdu34YPP4S8eWHrVhgxAn75Bdq3R7u4smGD6WrXuLF5f+y2ypvXgv7X3p2HR1Udbhz/niRAEghB1gACsoWlKBYDLqwRZA2LVm1dqkVBrUqx1bbWWqqtWrrYWqWKS8UfrSJaKsSAgEjABREoKCJrCIuYhEXAANmT+/vjBAnJBCYhc+cm836eZx4IuUneGfN679xz7zm7idWAiIir1nyQz9NdnqbgUOVr/OhiHhF3FBbCzJn2eHXlo6m8VXhqQOQ0n38On37qfkCREJORAXfcYW9yXrEC/n17KnNPJFGvoLSXjmOnrhs8WAMiIUj/xYOo4GgOH499HLp0pu+6Z1nZ+XYOfZxGvy2zMQsXnpqfWSdgRVyR9f521l1wLV1+eDnNj6ax9JqZND2aTvjSd9RHkUDasAGGDYOxY+2dIm+9BStXQt++FBXZ8zjdusHdd9sbRpYvh/feg379gh1cpA7KyYHHH7dndGbOhMmTIS0NHn4YGjZk5UoYMADGjLGz3M2eDRs32oUqtZ6PiHt2bCvh75e+SotB3ZmaPpXj3RIonvFchTV+dOwqEniOYw9fe/Wy1/bEx8PiuIk0KD7L3VsiEhDZ2fCb30DXrnbZnilTYO//pXLTq6MxueV6mZ9v1+NK1RrOoUaDIkHgFBax9sf/5HDzrlye8jCfNRvK1jc3MSxtJh0ua203Sky0B68dOuggViTAsnfs5+NL7qH54J5027OEJVc8Sv3dOxg+706iYiLUR5FA2bfv1CLqn30GzzwDX3wBEyZQ4hjmzLHrOd92GzRrZmcZ+PBDVVAkIIqL7QhkfLwdALnySti0CZ59Flq1Yu1aGD4chgyxM/A895ydiuCHP4Tw8GCHFwkdB/Y7/GPcEnK692HqmpuJjGtC7vwlnL9lGeH33GWPVXUxj4hrVq2yFwtcc43dHy5YACv/+zUNBl9W+Rfp7i2RgCgogBkz7LU9jz1mr7nbsgWeum83sTePtXMx+6KBypCkQRE3OQ6f/yGFXbG96TtzEvvrt2f1nz+g/4G36HVt94rbJybad506iBUJiPyvj/PxqN8RFt+FhPUvsCL+To6sSWPER9No2r7R6RurjyLVk5oKF1xw+pU3x47Zk65du8LcuXYR9Z074d57cSLq8dZb0Lu3XU6kQQN75d3atd+u6Swi58JXJ5csgT597Ahk27bw/vswfz50786mTXD11fbOrPXr4ckn7Y0jd90F9esH7VmIhJwTJ+Clu9ayue0w7nl7JG1jsjn6j1dp/dX/iBo//NQOUhfziLhi2zY7ENK/P6SnwwsvwMYPsxm34VFMp47wxhv2aoLIyNO/UIOVIjXOceA//7Gzvk6ZYv9cswZe//t+Oj81xV70U1AAEZUsra2BypCkQRGXpL++hk3Nh3DhQ2OhoJDl98yjV/YqLntggE7wiLispKCINZOe55tWXbl88W9Z33IEO976gmHb/kH7vq2CHU+k7khNtbci79lj/1y2DJ5/3l668/jj9p3k1q0wfTpO41gWLYKEBPvPBQUwZ469gWTCBA2GiNSI8p186SV7wmbkSLsq7Ny5sHo1DBxIWhrcfLNd5mf5cvjd72DXLvjZz6D80nciEjhFRTD3sR281/x6Jj3fj++Gb2T/r5+m+aGtNLn7Rt9zoOtiHpGAycqyU2SVXXIr7fNcJmc/SUR8J3jkEbjqKrtuyJIlsGiR7t4SCaAPPoDLL4frrrMX1C1cCMv/e5S+Cx6Gzp3t7c0/+pEdvVy6VNNMyrcqGSKTmrJ/1U723vwQfXe9wQHTkiXj/sGgf02mU+N6wY4mEnoch42PJRPzxIP0y9vKhuj+7Hr8vwy67/JgJxOpe06efM0pnbM1J8eefHUcGDjQHnj27QvYE64PPwwff2wvYH/lFbjppsov5BGRavDVycmTISYG/vY3e4anQQP27bMneP75T3snyC9+AT//uZ3CTkTc4ziwdHYWh+/7HdcefZHCsAbsnTiN9k/dT2zjxsGOJxJyjh+Hv/zFPvLz7R2T035VSMuUl6H37+yKzsOH2zl7So9xgVN3b02caK9E14lXkRqxZQs8+CAkJ0ObNvbY9dbrcgh/bgbcPB2OHIHvf99e2RMfb7/o/PNtH08eE2tAJKTpTpGa4GMaguydB1nV9yc07d+dnrtSWHLpNMLT0xix4G6iNCAiElg+Opn279VsajaIi6ZNoLjIIXXqfHpnf8ClGhARqXnlT76e5Dj28p1HHoG+ffnoI7tswdChsHevXdN52za7zIgGRERqUGWdBHsZeu/eHPimAT/9qb2Ra9YsO0aycydMn64BEZGA8nHcum55Nv/XYRoDftSZa4++yJcj7yBqXxrtX34UNCAi4qrCQnuM2qULPPoojBoFmz8vZsblr9JycA87OnKyw0uWnD4gcpLu3hKpMRkZcMcd0KuXrd0TT8COzYXcVjCT8G5d4Je/hEsvtfO+vv76qQGRkzTNpJTSKYdzVfZNZlISha//h3XPr6fXoj/Sz8lhRZdJxP/7t4y4tHWwk4qEhnKd/Prx50h/Kpm+e+aRZeJY+r3nGfTKbXRppP/9iQREURH84Ae+T74C5OeTf9NtXP3d3bzzDrRsCU89BXfeWXHKZRGpAZs22TnoKutkbi5Hrp5Ip6Ld5ObaQclp0+z5HREJsHLHrV/N+C9L/r6NsZ/9ngQOkXbJ9XSY/RidenYNdlKRkOM4dnmtBx+E7dvtjc7z33K47EAyXPew3b/27m1Pqo4erbleRQIsOxv+/Gf461/tYOW998LDD5XQYvlcuOQ39mqeK66wAyGDBp35m50cqJSQprOC58LHNAQR40ZzOfBh8wk0mfkHhn3PxwLqIhIYPjrZ9Ke3EkUkS654lL5zfsbw8guoi8i5cxw799WcOXZRyQMHKt00LzyaUVmz2PiJvQL93nuhYUMXs4qEgj17bB9fe83OaR4WZh8lJRU2zSGaa76ZxZjr7RWw3XXoKuIOH8etrW8bxW047LogkYav/JEug31ccS4iAbdqlZ06ctUq6NEDFiyAsQ2XY376EHzyCXTtak+8Xned73V9RKTGFBTACy/YWbAOHrQzYj3+mEPnbYtgxK/tIpQXXQRvvw1jxmiAUvym/3tXVyXTEBiguF4D+s/9Cb00ICLinjN0MjLSMOKxgTTVgIhIzXEcewD64IPQsSP0728XbR40CObNg8WLKyxid4Jorm2QQuKjiezaZe9s1oCISA05dMguJDlwoL3N41e/suuFzJgBmZmwbJnPTv7+0hT+uj6RuXM1ICLimtRUHB/HrWE4OPUb0PGfDxOtARERVxUUwNo/pXIg+gJ+3T+V9HR7Inbji58w7ulhmGFD7bw9L70EmzfbM7MaEBEJmAMHYOEDqRxseAHzpqTSsyesWQOv3/MBnScOsud/jh2DV1+FDRvsxxoQkSrQnSLVsP/DHcSO+R6Rub6nIQgvzIfbJupWLBEXOIVFbHvpAy64bzyRBb47GZaXaxe2UydFzt3OnfYK9Dlz7BvC8HC46ip76c6ECdC48bfjJZt+kML3XkkiqiSHHKKZc2MKs59JpGnTYD8JkTri+HF7+eprr8HSpXb6up494fHH4YYb7IAlkJUFi3a1ZHefFB78MIlocsgLi2bXUyn8YYrmURZxS3ExrFl6hAu/dz2NKnkvaQry4bbbdNwq4oJvvoF33rG70mPJqczNSaIhOSypl0TJb54mcuHbcMcCaNFC872KuGDHDtvH+fOh/kepvI3t5LsNkgi/8SnMI/Nh0SJo3dpeDHT77VBP6zZL9WhQxA9OcQm731xLxswFtPlkPh3ztgBQgiEMp+IXREfbFSpFJCAKDh9n89+WkP/GfLrtWEh35wgF1KOYcMIprvgF6qSIf1JT7QDirFmnLziXkQFz59qBkLVr7b8NHAjPPgvXXgstWnD8OLz3HixcaI9Tv/oKIJEP41OYvn8izsuzmHSNTr6K+K2yPhYU2AGQ116z7xpzcqBdO/jZz+DGG+GiiyhxDBs2QMpsO9X5unX2S88/P5HzxqZw15qJRL42i15XqpMigZabCx/9K52DLydz/vpkLi98nwiKcbB3NFeg41aRgNq3D5KT7S40NdWuTTAhNpV5+Uk0wA5W1i/MgXsm2VuaH3sMpk6FRpp1QKSmlZTYt5cLFtjH5s3232/vnMqz9ZJsF4GI/By48w7bw+nTYcqUCndAi1SVBkUqUZyTz9Znl5P9rwV0+iKZjsWZtCOcDTGD2TH0Li6YOp6u4ekwttxtz9HR9t1not5kitSk7O1ZbP3z20QsXEDPzGVcTD5f05QN7cfC+Alc9MBwmu1cU3EKLXVSxD/lFnvltddg/347ELJypZ0uq08fu7rd978P7dqxcycsnGMHQlassOdqY2Jg+HA7neuoURAXlwjsDvKTE6llyvcxORnq17fTA7z5Jhw+DE2bwi232IGQ/v05kRvGsmWQMsN2MjPTziBw2WX2xpGkJLjwQjBGnRQJtEMHSvjkmTXkvpFMzx3JDHO+AODL2O+wfcgvaH/vOBqZEzBunI5bRQLMceya6CdPup68UKBrVzvWcWu75Xznl2MwxXkVv7ikxC7crAERkRqTnw/Ll9s+JifbY9bwcDsL8513wvUtUom7fQwU5lb84uJi6NdPAyJSI0JvUKSyq+6AnK+OsOXJRZS8tYAee97hO85xjtOQDa1GsWnUeHrcP5q+vcrO+dHBHrSefNOqg1iRqjlDHwGyVmwl/akFxK5YQI9vVtMPhz1hHfmg149pdON4Lr53AIkxZf431j5RnRSpDh+LvTJhgv17fDxMmwY33EBBx258+CEsfMqedN22zW7SrZtdMH3MGBgwwJ67FZFq8tXHq66yZ3Wio2H8eDsQMnw4uzPqk5ICC5+wX5afD40bw4gR9luMGmVn/BCRGnCW49b0TTls/OsyIt5JJiErhTHsp4hwdrYdxNakSXSaOpZ2PTqf/kU6bhUJiKIi+OijUwMh6en23y+9FJ54Aq4emUu3zBWYdxbB/TPtF/iSq2mYRWrCkSN2NoEFC+yUdceP2xuxRo60bztHX1VI062r7LqUDzxpb+HyRZ2UGhRagyLlr7pLSeHrJp3Z8ZcFRC1dQM9DK7mEIvabVnzS+UbqXTuei396JQNbnmHOyMTSk7BnOEAWER989NEZNJj011az/4UFtFm7gAvytxEHbGrQh2UDHqXl5PFceOOFdIg4w+JZ6qSIf/LzYeNGe+X5jBn2qpvyIiM5/PhzzM++koUPwbvv2rXs6teHIUPg7rvtQEjnzhW/VESqwHFg71545RU7TUf5kzOOA/XrU/z6m3x83mhSUiDlQfjCXnxOfLztY1KSBiZFAsLXceuQRD5bksXuGSnEvp/MZcfepRN5HAtrzO6eo8i5YRwd7x5Ft6bnVf59ddwqUmNycuzskvPn21p9/bXdHw4dCr/4BUz47h5arSud5/X3y+3J1agoSEiA9evtLc/laTo7kWrbu9feCTJ/vp14oKgIWrWyy96NHw9Du+whcsVimLcY7n7PvtGMiLDr423Z4ntgRJ2UGuTdQZGzXIlTre9X7qq7kiuH0gyHZmoXzlEAABGuSURBVMCOiO6s6HM/sbdO4OI7+jE0Msz/752YqFFKqftqspM++lg8dDjHTAydS47Qngg2xA5h+8gpdJo6jl6J7ehVle+vTkpdV9U+FhTYs6fr1p16fP555VfgnJSXR/Z1t3E7u2nb1h7AjhkDV16pWQRETlPVTmZl2R6uXXvqz4MHz/w1BQV8NeFuBpbsJiLCTjFw++22k/HxNfM0ROoEF95HFg0bQbrpzMXFW7kYyGrQga0DJhN3xzhaf38QF1ZlZFLHrVLX1XQny3zf4lsmsuSGWTy/LZGlSyEvD5o0sfvGCWMKGR37EdGpC+HpRacWK+jUCSZNgtGj7VU+kZEVew66e0vqrkB0MjUVZ+JEdj48i9cyEpk/HzZssJ/q3h3uvx8mjMyjX977hC1dDA+8A1u32g3at7d3QY8cad9oNm6sToor/BoUMcaMBP4OhAMvOY4zvdznTennRwM5wI8cx1lf7VQ+rsTx95e+8OgJDm3M4OjmDE6kZVKwO4PGWz6hx5Z5hDunXwUbhkNxWD32TnuRLtNupesZLj4X8QrX+wjV76TjcHzP1xzamEH21gxy0zNpuOFDeqydTbhz+lWw4U4RMU4260f/mrZ/fYB+3ZqcU2QRt3huH1lUZN/0lR0A+eyzb69+c5o0oeDCBI7cfD8ZrRP45lABA2ZNol5hToUflRsWzUcTZ/HpFLjoIrs+gYjXea6Thw+f6uLJQZB9+wBwwsIo6d6T4wPHcKB9X7KPwUWzf+6zjzlE8+qwWbwxya7bExtb7cQirvFcH8/AcSD7SDEHvjjI0a1ZHE/LInpNKpe8/zciSk6/iCCipJAubGfHwIk0//19xA26kDjtJKUWqE2dLC621wtkZp56ZGTYP5ttTOWhVUlEOTkM/nMSs1umMHlyItcNyOTy7MVELF4Id70L2dlQrx4MHnxqICQ+vuJB7cm7tjSdnbisNnUyL+/0Pp58NP5fKlPfTSKyJIfWk5NYQQpRVyTyx+kO1/beQafti+20WE+vsHdoNWhgO3nnnXYgpFs3dVKC4qyDIsaYcOAfwFXAPmCtMSbZcZzNZTYbBXQtfVwKPFf6Z9X5mkc5KYn8V99kf0xXvtmayYm0DAp3Z+BkZlLvYAZRRzOJPZFB84IMYpxjtAZal/mWJUBl932ElxTScdZv4be3ViuuiJtc7yP47KSTlMTxma+yv2EnsrdlkpeeQdGXGZisTBocyqBhdgZNcjNpUZRJIwrx94LycIrp88W/odtj1Y4r4iZP7CNHj6bkJ/eRf/gEztp1NNj6KeH5dlG6vPoxpJ93CZta/4S1JQmsPJHAusOdcD4w8MGpbzuEOBaSRDSnTsQ6UdFELUzhJh14Si3iiU6OGkXxLRPJyzpC+IZ1RO7b+e3m+2O7si1mEBs6JPBRQV9Sj1zMoc2NoEy6IfQghSQaluljcWQ0Dd5O4VfD1EepPTzRx6QknOS3OdzxEg5tyiJ7exY56VkUfpmFk5lFxKEsor7JIiYni+YFmTTnILGU+PXjwiih697lMPjlasUVcZtXOlk0P4XM7ok+T66WHfg4cMD37K5jG6Xy5Ak7IALQkBzmHB6BWXwBPLPDbtSmDVx/vb1lZOhQiIk5e15NZycu80onc99M4csuZ+/k0aMVv+XQsFSSS5KI5FQf36s/CtNiJDy/EXbtshvGx8PkyXYQZPBg/xZKVyclwPy5U6QfkOY4TjqAMeZ1YDynvX1jPDDbcRwHWG2MaWKMae04TmaV0vi6PQogJ4cGV4+hfbnNc4nkQHgbjkS15qtmF5HedCROXGvC27UhsmNrYrq1odmFbWi5bz1MGFvx+4Lmo5Paxr0+QqWdNDk5xNxyNeUPLQ9zHofqtyE7ujWHzu/GluZtoE1r6rVvQ3SXNsR2b03rY9tpdOs1GPVR6obg7yPz8gj703QgknX0ZR13sY4E1pHAPtOFVlFhxMXZ+Vv7xMHo0r/HxfHtv7dqlUj0mtOvxDG6Ekdqp+B3Mj+f8BdncoyWfMhA1jGJtfRlPX0IjziPuNhT/bs17tTfTz0SifosBcad6mO4+ii1U/D7mJMDw4bSDGhW7ksKqMfXEa34JiqOEy3akd60L+mt4ghvG0dUxzhiusbR4sQuoqdOxuTmVvyZOm6V2scbnRx+FelcwUFaAtC89JHQwM5kFRUJkVEQ2bXMxycfxw4QvnoVlJsFxBQVws6ddl7JKedwi7OmsxN3eaKT9cZcRWZpJyOAdkAHU9rDkx1sBpFtT+9k9PED1Fu3CkO5Phbk2xXVr7gCfv5zGDHCTltXHeqkBJA/gyJtgS/LfLyPiqOSvrZpC5xWUmPMHcAdAO3blx/iwI7++TpRWiqvUTM+f+h1GndvQ7NerWnaqQkdwg0dzvYMelx5+m1XJ+n2K6l9aqyPUAOdjGnOlifmE9ujDS0ujKNpyyianvUpdIRm6qPUGZ7ZRxae15Ksme+TEAdJpYMdjRtX4f2grsSRusEznWzYNIqo2f/huji4txW0bFmFBdCHqo9SJ7h33HqGPhogL+o8Pr39GRp2jiO2WxzNvhNHw/PPo3VY2GkzDFR0BXRpo+NWqSs8sY+MoJgB4as50TaeehEQUc+urezzkLWw9HGs9OPt233fPgJQUgLLlsFLL/n+vIj3eKaTA8NXk9MunogI28fw8Eo6mVf6gDP3EeCrr+DHP6788yJB5s+giK8eONXYBsdxXgBeAEhISKjweWbN8j1yCRAdTWTym/St7oGn5qOTuqHG+gg10MkFb/DdxP5nieyD+ih1h2f2kY3nvcL151ohXYkjtZ9nOhnzn1mMOZdOqo9S+7l33Hq2Y9aUeVym95EintlHhqek0Lg6HarsavfS76u7t6SW8Uwnw1JSaFTVTqqPUstVttRGWfuwd0+ddD6QUY1tzu7kAWf5ueVq6sDz5Pfv0EEHslJbuddHCGwn1UepG+rOPlKkblAnRbyj7vRRx61SN9T+TmrfK3VL7e6k+ii1nD+DImuBrsaYjsaY+sAPgORy2yQDtxjrMuCbaq1fABVLVdNlOnnVncoptZO7fYTAdlJ9lNqvbu0jRWo/dVLEO+pWH3XcKrVf3eik9r1Sd9T+TqqPUouddVDEcZwi4F5gCbAFeMNxnC+MMXcZY+4q3WwRkA6kAS8Cd59TKl2JI+JTUPoI6qRIJbSPFPEWdVLEO9RHEW+pU51U16UOqDOdVB+lljKO43PK1oBLSEhw1q1bF5SfLRJMxpj/OY6TEOwc5amTEorURxFvUSdFvEWdFPEO9VHEW9RJEW+paif9mT5LRERERERERERERESk1tOgiIiIiIiIiIiIiIiIhAQNioiIiIiIiIiIiIiISEgI2poixpiDwJ6zbNYcOORCHH94JYtXcoB3snglB/iXpYPjOC3cCFMVtayTXskB3snilRxQu7KojzXDK1m8kgOUxRftI93hlRygLL54JQfU7U7WttfZLV7J4pUcULuy1NY+Qu16nd3ilRygLL7U5X0k1K7X2S3KUpFXckAAOhm0QRF/GGPWeWXRIq9k8UoO8E4Wr+QAb2UJBK88P6/kAO9k8UoOUBa3eOm5eSWLV3KAsng5R6B45fl5JQcoi5dzgLey1DQvPTdl8W4OUBa3eOm5eSWLV3KAsng5R6B45fl5JQcoi5dzQGCyaPosEREREREREREREREJCRoUERERERERERERERGRkOD1QZEXgh2gDK9k8UoO8E4Wr+QAb2UJBK88P6/kAO9k8UoOUBa3eOm5eSWLV3KAsvjilRyB4pXn55UcoCy+eCUHeCtLTfPSc1OWirySA5TFLV56bl7J4pUcoCy+eCVHoHjl+XklByiLL17JAQHI4uk1RURERERERERERERERGqK1+8UERERERERERERERERqREaFBERERERERERERERkZAQ9EERY8xIY8w2Y0yaMeZBH583xpinSz+/0RjTJ4hZbirNsNEYs8oY0ztYWcps19cYU2yMuTZYOYwxQ4wxnxpjvjDGrAxEDn+yGGNijTFvG2M+K80yMUA5XjbGHDDGbKrk8679zgaCOln1HGW2C2gf/c2iTlb4vDrpTo6Q20f6m8WNTqqP7vBKH/3MEnKd9Eof/cmiTtYMdbLqOcpsFzL7SH+yqJM1wyud9Eof/clSZruQ6aT66A6v9NHPLCHXSa/00Z8sdbaTjuME7QGEAzuBTkB94DOgZ7ltRgPvAAa4DPgkiFmuAM4r/fuoYGYps91yYBFwbZBekybAZqB96cctg/jf5yHgj6V/bwEcBuoHIMsgoA+wqZLPu/I7G8TXOaQ66ZU+VuE1UScrfl6ddCdHSO0jq/C6BLyT6qM7D6/0sQpZQqqTXuljFbKok+68ziHVSa/0sQqviTpZ8fPqpDs5QmofWYXXRcetLv++BurhlT5WIUtIddIrfaxCljrZyWDfKdIPSHMcJ91xnALgdWB8uW3GA7MdazXQxBjTOhhZHMdZ5TjOkdIPVwPnByCHX1lKTQHmAQeCmONG4L+O4+wFcBwnmFkcIMYYY4BG2JIW1XQQx3HeL/3elXHrdzYQ1Mlq5CgV6D76m0WdrEiddCFHCO4j/c3iRifVR3d4pY9+ZQnBTnqlj/5mUSfPnTpZjRylQmkf6W8WdfLceaWTXumjX1lKhVIn1Ud3eKWPfmUJwU56pY/+ZqmTnQz2oEhb4MsyH+8r/beqbuNWlrJux45OBcJZsxhj2gJXAzMDlMGvHEA8cJ4xZoUx5n/GmFuCmGUG0APIAD4HpjqOUxKgPGfi1u9sIKiT1cjhUh/9yoI66Ys66U6OskJhH+lXFtzppProDq/0sTo/JxQ66ZU++ptFnTx36mQ1coTgPtLfLOrkufNKJ73SR7+yhGAn1Ud3eKWP1fk5odBJr/TR3yx1spMR5xzn3Bgf/+ZUYxu3stgNjUnElnRAAHL4m+Up4JeO4xTbgbqg5YgALgGGAlHAx8aY1Y7jbA9ClhHAp8CVQGfgXWPMB47jZNdwlrNx63c2ENTJ6uVwo4/+ZlEnK1In3clhNwydfaS/WdzopProDq/0sUo/J4Q66ZU++ptFnTx36mT1coTaPtLfLOrkufNKJ73SR3+zhFon1Ud3eKWPVfo5IdRJr/TR3yx1spPBHhTZB7Qr8/H52FGnqm7jVhaMMRcBLwGjHMf5OgA5/M2SALxeWtDmwGhjTJHjOPNdzrEPOOQ4zgnghDHmfaA3UNMl9SfLRGC64zgOkGaM2QV0B9bUcJazcet3NhDUyerlcKOP/mZRJytSJ93JEWr7SH+zuNFJ9dEdXumj3z8nxDrplT76m0WdPHfqZPVyhNo+0t8s6uS580onvdJHf7OEWifVR3d4pY9+/5wQ66RX+uhvlrrZSScAi7T4+8AOyqQDHTm1mMt3ym0zhtMXUVkTxCztgTTgimC/LuW2f4XALPzjz2vSA3ivdNtoYBPQK0hZngMeKf17K+AroHmA/htdQOUL/7jyOxus371Q66RX+liF10SdrPg5ddKdHCG1j6zC6xLwTqqP7jy80scqZAmpTnqlj1XIok668zqHVCe90scqvCbqZMXPqZPu5AipfWQVXhcdt7r8+xrM3z23np86We3XRPvIip+r0d/ZoN4p4jhOkTHmXmAJdrX7lx3H+cIYc1fp52cCi7Cry6cBOdjRqWBlmQY0A54tHTEschwnIUhZAs6fHI7jbDHGLAY2AiXAS47jbApGFuD3wCvGmM+xBfml4ziHajqLMWYOMARobozZB/wWqFcmhyu/s4GgTlY7hyvUSd/UycA/P6/0sQpZXOGVTqqP7vBKH6uQJaQ66ZU++psFdfKcqZPVzuEKddI3dVLHraHeSfXRHV7pYxWyhFQnvdJHf7NQRztpHKe2TIcnIiIiIiIiIiIiIiJSfWHBDiAiIiIiIiIiIiIiIuIGDYqIiIiIiIiIiIiIiEhI0KCIiIiIiIiIiIiIiIiEBA2KiIiIiIiIiIiIiIhISNCgiIiIiIiIiIiIiIiIhAQNioiIiIiIiIiIiIiISEjQoIiIiIiIiIiIiIiIiISE/wc5reFQQv8k8QAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "yy = sol_exacte(tt)\n", "\n", "schemas = ['EE','AB2','AB3','AB4','AB5','N2','N3','N4', 'EM', 'RK1_M','RK4', \n", " 'EI', 'CN', 'AM2', 'AM3', 'AM4', 'BDF2', 'BDF3', \n", " 'heun', 'AM2AB1', 'AM3AB2']\n", "uu = { schemas[s] : eval(schemas[s])(phi,tt,y0) for s in range(len(schemas)) }\n", "err= { schemas[s] : norm(uu[schemas[s]]-yy,inf) for s in range(len(schemas)) }\n", "\n", "figure(1,figsize=(28,12))\n", "idx=0\n", "for key in uu:\n", " subplot(3,7,idx+1)\n", " plot(tt,yy,'b-',tt,uu[key],'r-D') \n", " title( f'{key} - max(|err|)= {err[key]:g}' )\n", " idx+=1" ] } ], "metadata": { "colab": { "collapsed_sections": [], "default_view": {}, "name": "EdoExplicites.ipynb", "provenance": [], "version": "0.3.2", "views": {} }, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" }, "latex_envs": { "LaTeX_envs_menu_present": true, "autoclose": true, "autocomplete": true, "bibliofile": "biblio.bib", "cite_by": "apalike", "current_citInitial": 1, "eqLabelWithNumbers": true, "eqNumInitial": 1, "hotkeys": { "equation": "Ctrl-E", "itemize": "Ctrl-I" }, "labels_anchors": false, "latex_user_defs": false, "report_style_numbering": true, "user_envs_cfg": true }, "toc": { "base_numbering": 1, "nav_menu": {}, "number_sections": true, "sideBar": true, "skip_h1_title": true, "title_cell": "", "title_sidebar": "Contents", "toc_cell": true, "toc_position": { "height": "calc(100% - 180px)", "left": "10px", "top": "150px", "width": "196.475px" }, "toc_section_display": true, "toc_window_display": false } }, "nbformat": 4, "nbformat_minor": 4 }