{
"cells": [
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n"
],
"text/plain": [
""
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from IPython.display import display, Latex\n",
"from IPython.core.display import HTML\n",
"css_file = './custom.css'\n",
"HTML(open(css_file, \"r\").read()) "
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Python version 3.10.6 (main, Nov 14 2022, 16:10:14) [GCC 11.3.0]\n"
]
}
],
"source": [
"import sys #only needed to determine Python version number\n",
"print('Python version ' + sys.version)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# M62 TP 3 - Implémentation de schémas\n",
"\n",
"\n",
"Compléter le notebook en ajoutant l'implémentation des schémas indiqués et en vérifiant l'impléméntation sur l'exemple donné."
]
},
{
"cell_type": "markdown",
"metadata": {
"toc": true
},
"source": [
"
\n",
""
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "WyG-bTRQE3f6",
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## Implémentation des schémas"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"On écrit les schémas numériques : \n",
"+ les $N+1$ nœuds d'intégration $[t_0,t_1,\\dots,t_{N}]$ sont contenus dans le vecteur `tt`\n",
"+ les $N+1$ valeurs $[u_0,u_1,\\dots,u_{N}]$ pour chaque méthode sont contenues dans le vecteur `uu`.\n",
"\n",
"Comme `len(tt)` $=N+1$ et `range(1,N)` produit 1,2,3,N-1 : \n",
"- pour un schéma à un pas $u_{n+1}=F(u_n)$ on initialise $u_0$ et on calcule $u_{n+1}$ pour $n$ de $0$ jusqu'à $N-1$, autrement dit `n in range(N)` soit encore `n in range(len(tt)-1)`\n",
"- pour un schéma à deux pas $u_{n+1}=F(u_n,u_{n-1})$ on initialise $u_0$ et $u_1$ et on calcule $u_{n+1}$ pour $n$ de $1$ jusqu'à $N-1$, autrement dit `n in range(1,N)` soit encore `n in range(1,len(tt)-1)`\n",
"- pour un schéma à trois pas $u_{n+1}=F(u_n,u_{n-1},u_{n-2})$ on initialise $u_0$, $u_1$ et $u_2$ et on calcule $u_{n+1}$ pour $n$ de $2$ jusqu'à $N-1$, autrement dit `n in range(2,N)` soit encore `n in range(2,len(tt)-1)`\n",
"- etc.\n"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"IPython.notebook.set_autosave_interval(300000)"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Autosaving every 300 seconds\n"
]
}
],
"source": [
"%reset -f\n",
"%matplotlib inline\n",
"%autosave 300\n",
"\n",
"from matplotlib.pylab import *\n",
"# rcdefaults()\n",
"rcParams.update({'font.size': 12})\n",
"from scipy.optimize import fsolve"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"### Schémas explicites"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "y69SGZjfIDo9",
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"#### Schéma d'Euler progressif = de Adam-Bashforth à 1 pas\n",
"$$\n",
"\\begin{cases}\n",
"u_0=y_0,\\\\\n",
"u_{n+1}=u_n+h\\varphi(t_n,u_n)& n=0,1,2,\\dots N-1\n",
"\\end{cases}\n",
"$$"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"colab": {
"autoexec": {
"startup": false,
"wait_interval": 0
}
},
"colab_type": "code",
"id": "_Bgo6mNyIQgu",
"scrolled": true,
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [],
"source": [
"def EE(phi,tt,y0):\n",
" h = tt[1]-tt[0]\n",
" uu = [y0]\n",
" for i in range(len(tt)-1):\n",
" k1 = phi( tt[i], uu[i] )\n",
" uu.append(uu[i]+k1*h)\n",
" return uu"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "bJ2pbhejIQM2",
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"#### Schéma de Adam-Bashforth à 2 pas\n",
"$$\n",
"\\begin{cases}\n",
"u_0=y_0,\\\\\n",
"u_{1}=u_0+h\\varphi(t_0,u_0),\\\\\n",
"u_{n+1}=u_n+\\dfrac{h}{2}\\Bigl(3\\varphi(t_n,u_n)-\\varphi(t_{n-1},u_{n-1})\\Bigr)& n=1,2,3,4,5,\\dots N-1\n",
"\\end{cases}\n",
"$$"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"colab": {
"autoexec": {
"startup": false,
"wait_interval": 0
}
},
"colab_type": "code",
"id": "g38fKrIgSiBQ",
"scrolled": true,
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [],
"source": [
"def AB2(phi,tt,y0):\n",
" h = tt[1]-tt[0]\n",
" uu = [y0]\n",
" uu.append(uu[0]+h*phi(tt[0],uu[0]))\n",
" for i in range(1,len(tt)-1):\n",
" k1 = phi( tt[i], uu[i] )\n",
" k2 = phi( tt[i-1], uu[i-1] )\n",
" uu.append( uu[i] + (3*k1-k2)*h/2 )\n",
" return uu"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "nI8swyc6RxIR",
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"#### Schéma de Adam-Bashforth à 3 pas\n",
"$$\n",
"\\begin{cases}\n",
"u_0=y_0,\\\\\n",
"u_{1}=u_0+h\\varphi(t_0,u_0),\\\\\n",
"u_{2}=u_1+\\dfrac{h}{2}\\Bigl(3\\varphi(t_1,u_1)-\\varphi(t_{0},u_{0})\\Bigr),\\\\\n",
"u_{n+1}=u_n+\\dfrac{h}{12}\\Bigl(23\\varphi(t_n,u_n)-16\\varphi(t_{n-1},u_{n-1})+5\\varphi(t_{n-2},u_{n-2})\\Bigr)& n=2,3,4,5,\\dots N-1\n",
"\\end{cases}\n",
"$$"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"colab": {
"autoexec": {
"startup": false,
"wait_interval": 0
}
},
"colab_type": "code",
"id": "3ymFHJHrSkOh",
"scrolled": true,
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [],
"source": [
"def AB3(phi,tt,y0):\n",
" h = tt[1]-tt[0]\n",
" uu = [y0]\n",
" uu.append(uu[0]+h*phi(tt[0],uu[0]))\n",
" uu.append(uu[1]+h*(3*phi(tt[1],uu[1])-phi(tt[0],uu[0]))/2)\n",
" for i in range(2,len(tt)-1):\n",
" k1 = phi( tt[i], uu[i] )\n",
" k2 = phi( tt[i-1], uu[i-1] )\n",
" k3 = phi( tt[i-2], uu[i-2] )\n",
" uu.append( uu[i] + (23*k1-16*k2+5*k3)*h/12 )\n",
" return uu"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "awcWzBp7SXvQ",
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"#### Schéma de Adam-Bashforth à 4 pas\n",
"$$\n",
"\\begin{cases}\n",
"u_0=y_0,\\\\\n",
"u_{1}=u_0+h\\varphi(t_0,u_0),\\\\\n",
"u_{2}=u_1+\\dfrac{h}{2}\\Bigl(3\\varphi(t_1,u_1)-\\varphi(t_{0},u_{0})\\Bigr),\\\\\n",
"u_{3}=u_2+\\dfrac{h}{12}\\Bigl(23\\varphi(t_2,u_2)-16\\varphi(t_{1},u_{1})+5\\varphi(t_{0},u_{0})\\Bigr),\\\\\n",
"u_{n+1}=u_n+\\dfrac{h}{24}\\Bigl(55\\varphi(t_n,u_n)-59\\varphi(t_{n-1},u_{n-1})+37\\varphi(t_{n-2},u_{n-2})-9\\varphi(t_{n-3},u_{n-3})\\Bigr)& n=3,4,5,\\dots N-1\n",
"\\end{cases}\n",
"$$"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"colab": {
"autoexec": {
"startup": false,
"wait_interval": 0
}
},
"colab_type": "code",
"id": "-r1BaNeLTrHq",
"scrolled": true,
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [],
"source": [
"def AB4(phi,tt,y0):\n",
" h = tt[1]-tt[0]\n",
" uu = [y0]\n",
" uu.append(uu[0]+h*phi(tt[0],uu[0]))\n",
" uu.append(uu[1]+h*(3*phi(tt[1],uu[1])-phi(tt[0],uu[0]))/2)\n",
" uu.append(uu[2]+h*(23*phi(tt[2],uu[2])-16*phi(tt[1],uu[1])+5*phi(tt[0],uu[0]))/12)\n",
" for i in range(3,len(tt)-1):\n",
" k1 = phi( tt[i], uu[i] )\n",
" k2 = phi( tt[i-1], uu[i-1] )\n",
" k3 = phi( tt[i-2], uu[i-2] )\n",
" k4 = phi( tt[i-3], uu[i-3] )\n",
" uu.append( uu[i] + (55*k1-59*k2+37*k3-9*k4)*h/24 )\n",
" return uu"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "heLmvMe_S0y6",
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"#### Schéma de Adam-Bashforth à 5 pas\n",
"$$\n",
"\\begin{cases}\n",
"u_0=y_0,\\\\\n",
"u_{1}=u_0+h\\varphi(t_0,u_0),\\\\\n",
"u_{2}=u_1+\\dfrac{h}{2}\\Bigl(3\\varphi(t_1,u_1)-\\varphi(t_{0},u_{0})\\Bigr),\\\\\n",
"u_{3}=u_2+\\dfrac{h}{12}\\Bigl(23\\varphi(t_2,u_2)-16\\varphi(t_{1},u_{1})+5\\varphi(t_{0},u_{0})\\Bigr),\\\\\n",
"u_{4}=u_3+\\dfrac{h}{24}\\Bigl(55\\varphi(t_3,u_3)-59\\varphi(t_{2},u_{2})+37\\varphi(t_{1},u_{1})-9\\varphi(t_{0},u_{0})\\Bigr),\\\\\n",
"u_{n+1}=u_n+\\dfrac{h}{720}\\Bigl(1901\\varphi(t_n,u_n)-2774\\varphi(t_{n-1},u_{n-1})+2616\\varphi(t_{n-2},u_{n-2})-1274\\varphi(t_{n-3},u_{n-3})+251\\varphi(t_{n-4},u_{n-4})\\Bigr)& n=4,5,\\dots N-1\n",
"\\end{cases}\n",
"$$"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {
"colab": {
"autoexec": {
"startup": false,
"wait_interval": 0
}
},
"colab_type": "code",
"id": "yPXMx8CITt4C",
"scrolled": true,
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [],
"source": [
"def AB5(phi,tt,y0):\n",
" h = tt[1]-tt[0]\n",
" uu = [y0]\n",
" uu.append(uu[0]+h*phi(tt[0],uu[0]))\n",
" uu.append(uu[1]+h*(3*phi(tt[1],uu[1])-phi(tt[0],uu[0]))/2)\n",
" uu.append(uu[2]+h*(23*phi(tt[2],uu[2])-16*phi(tt[1],uu[1])+5*phi(tt[0],uu[0]))/12)\n",
" uu.append(uu[3]+h*(55*phi(tt[3],uu[3])-59*phi(tt[2],uu[2])+37*phi(tt[1],uu[1])-9*phi(tt[0],uu[0]))/24)\n",
" for i in range(4,len(tt)-1):\n",
" k1 = phi( tt[i], uu[i] )\n",
" k2 = phi( tt[i-1], uu[i-1] )\n",
" k3 = phi( tt[i-2], uu[i-2] )\n",
" k4 = phi( tt[i-3], uu[i-3] )\n",
" k5 = phi( tt[i-4], uu[i-4] )\n",
" uu.append( uu[i] + (1901*k1-2774*k2+2616*k3-1274*k4+251*k5)*h/720 )\n",
" return uu"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "OldEmxFfTJfq",
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"#### Schéma de Nylström à 2 pas\n",
"$$\n",
"\\begin{cases}\n",
"u_0=y_0,\\\\\n",
"u_{1}=u_0+h\\varphi(t_0,u_0),\\\\\n",
"u_{n+1}=u_{n-1}+2h\\varphi(t_{n},u_{n})& n=1,2,3,4,5,\\dots N-1\n",
"\\end{cases}\n",
"$$"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"colab": {
"autoexec": {
"startup": false,
"wait_interval": 0
}
},
"colab_type": "code",
"id": "BCR9Z7VzTxEN",
"scrolled": true,
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [],
"source": [
"def N2(phi,tt,y0):\n",
" h = tt[1]-tt[0]\n",
" uu = [y0]\n",
" uu.append(uu[0]+h*phi(tt[0],uu[0]))\n",
" for i in range(1,len(tt)-1):\n",
" k1 = phi( tt[i], uu[i] )\n",
" uu.append( uu[i-1] + 2*h*k1 )\n",
" return uu"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "dADQEhyYTVQz",
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"#### Schéma de Nylström à 3 pas\n",
"$$\n",
"\\begin{cases}\n",
"u_0=y_0,\\\\\n",
"u_{1}=u_0+h\\varphi(t_0,u_0),\\\\\n",
"u_{2}=u_{0}+2h\\varphi(t_{1},u_{1}),\\\\\n",
"u_{n+1}=u_{n-1}+\\frac{h}{3}\\Bigl(7\\varphi(t_{n},u_{n})-2\\varphi(t_{n-1},u_{n-1})+\\varphi(t_{n-2},u_{n-2})\\Bigr)& n=2,3,4,5,\\dots N-1\n",
"\\end{cases}\n",
"$$"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"colab": {
"autoexec": {
"startup": false,
"wait_interval": 0
}
},
"colab_type": "code",
"id": "bS1FABgRTzdC",
"scrolled": true,
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [],
"source": [
"def N3(phi,tt,y0):\n",
" h = tt[1]-tt[0]\n",
" uu = [y0]\n",
" uu.append(uu[0]+h*phi(tt[0],uu[0]))\n",
" uu.append(uu[0]+2*h*phi(tt[1],uu[1]))\n",
" for i in range(2,len(tt)-1):\n",
" k1 = phi( tt[i], uu[i] )\n",
" k2 = phi( tt[i-1], uu[i-1] )\n",
" k3 = phi( tt[i-2], uu[i-2] )\n",
" uu.append( uu[i-1] + (7*k1-2*k2+k3)*h/3 )\n",
" return uu"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "LsgdqQnfTf66",
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"#### Schéma de Nylström à 4 pas\n",
"$$\n",
"\\begin{cases}\n",
"u_0=y_0,\\\\\n",
"u_{1}=u_0+h\\varphi(t_0,u_0),\\\\\n",
"u_{2}=u_{0}+2h\\varphi(t_{1},u_{1}),\\\\\n",
"u_{3}=u_{1}+\\frac{h}{3}\\Bigl(7\\varphi(t_{2},u_{2})-2\\varphi(t_{1},u_{1})+\\varphi(t_{0},u_{0})\\Bigr),\\\\\n",
"u_{n+1}=u_{n-1}+\\frac{h}{3}\\Bigl(8\\varphi(t_{n},u_{n})-5\\varphi(t_{n-1},u_{n-1})+4\\varphi(t_{n-2},u_{n-2})-\\varphi(t_{n-3},u_{n-3})\\Bigr)& n=3,4,5,\\dots N-1\n",
"\\end{cases}\n",
"$$"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {
"colab": {
"autoexec": {
"startup": false,
"wait_interval": 0
}
},
"colab_type": "code",
"id": "dbDTaW5LUcss",
"scrolled": true,
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [],
"source": [
"def N4(phi,tt,y0):\n",
" h = tt[1]-tt[0]\n",
" uu = [y0]\n",
" uu.append(uu[0]+h*phi(tt[0],uu[0]))\n",
" uu.append(uu[0]+2*h*phi(tt[1],uu[1]))\n",
" uu.append(uu[1]+(7*h*phi(tt[2],uu[2])-2*h*phi(tt[1],uu[1])+h*phi(tt[0],uu[0]))/3)\n",
" for i in range(3,len(tt)-1):\n",
" k1 = phi( tt[i], uu[i] )\n",
" k2 = phi( tt[i-1], uu[i-1] )\n",
" k3 = phi( tt[i-2], uu[i-2] )\n",
" k4 = phi( tt[i-3], uu[i-3] )\n",
" uu.append( uu[i-1] + (8*k1-5*k2+4*k3-k4)*h/3 )\n",
" return uu"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "p4f0txAsIwNG",
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"#### Schéma d'Euler modifié\n",
"$$\n",
"\\begin{cases}\n",
"u_0=y_0,\\\\\n",
"\\tilde u = u_n+\\frac{h}{2}\\varphi(t_n,u_n),\\\\\n",
"u_{n+1}=u_n+h\\varphi\\left(t_n+\\frac{h}{2},\\tilde u\\right)& n=0,1,2,\\dots N-1\n",
"\\end{cases}\n",
"$$"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {
"colab": {
"autoexec": {
"startup": false,
"wait_interval": 0
}
},
"colab_type": "code",
"id": "O5rOYvtPI7TO",
"scrolled": true,
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [],
"source": [
"def EM(phi,tt,y0):\n",
" h = tt[1]-tt[0]\n",
" uu = [y0]\n",
" for i in range(len(tt)-1):\n",
" k1 = phi( tt[i], uu[i] )\n",
" uu.append( uu[i]+h*phi(tt[i]+h/2,uu[i]+k1*h/2) )\n",
" return uu"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "_50Xo95mT9tC",
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"#### Schéma de Runge-Kutta RK4-1\n",
"$$\\begin{cases}\n",
"u_0\t = y_0 \\\\\n",
"K_1 = \\varphi\\left(t_n,u_n\\right)\\\\\n",
"K_2 = \\varphi\\left(t_n+\\frac{h}{2},u_n+\\frac{h}{2} K_1)\\right)\\\\\n",
"K_3 = \\varphi\\left(t_n+\\frac{h}{2},u_n+\\frac{h}{2}K_2\\right)\\\\\n",
"K_4 = \\varphi\\left(t_{n+1},u_n+h K_3\\right)\\\\\n",
"u_{n+1} = u_n + \\frac{h}{6}\\left(K_1+2K_2+2K_3+K_4\\right) & n=0,1,\\dots N-1\n",
"\\end{cases}\n",
"$$"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {
"colab": {
"autoexec": {
"startup": false,
"wait_interval": 0
}
},
"colab_type": "code",
"id": "rbRn1INwGY-8",
"scrolled": true,
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [],
"source": [
"def RK4(phi,tt,y0):\n",
" h = tt[1]-tt[0]\n",
" uu = [y0]\n",
" for i in range(len(tt)-1):\n",
" k1 = phi( tt[i], uu[i] )\n",
" k2 = phi( tt[i]+h/2 , uu[i]+k1*h/2 )\n",
" k3 = phi( tt[i]+h/2 , uu[i]+h*k2/2 )\n",
" k4 = phi( tt[i+1] , uu[i]+h*k3 )\n",
" uu.append( uu[i] + (k1+2*k2+2*k3+k4)*h/6 )\n",
" return uu"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Schémas implicites"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "y69SGZjfIDo9",
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"#### Schéma d'Euler régressif\n",
"$$\n",
"\\begin{cases}\n",
"u_0=y_0,\\\\\n",
"u_{n+1}=u_n+h\\varphi(t_{n+1},u_{n+1})& n=0,1,2,\\dots N-1\n",
"\\end{cases}\n",
"$$\n",
"avec $u_{n+1}$ zéro de la fonction $$x\\mapsto -x+u_n+h\\varphi(t_{n+1},x)$$"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {
"colab": {
"autoexec": {
"startup": false,
"wait_interval": 0
}
},
"colab_type": "code",
"id": "_Bgo6mNyIQgu",
"scrolled": true,
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [],
"source": [
"def EI(phi,tt,y0):\n",
" h = tt[1]-tt[0]\n",
" uu = [y0]\n",
" for i in range(len(tt)-1):\n",
" temp = fsolve(lambda x: -x+uu[i]+h*phi(tt[i+1],x), uu[i])\n",
" uu.append(temp[0])\n",
" return uu"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "23PyYGzhQwuo",
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"#### Schéma de Crank-Nicolson\n",
"$$\n",
"\\begin{cases}\n",
"u_0=y_0,\\\\\n",
"u_{n+1}=u_n+\\frac{h}{2}\\Bigl(\\varphi(t_n,u_n)+\\varphi(t_{n+1},u_{n+1})\\Bigr)& n=0,1,2,\\dots N-1\n",
"\\end{cases}\n",
"$$\n",
"avec $u_{n+1}$zéro de la fonction $$x\\mapsto -x+u_n+\\frac{h}{2}(\\varphi(t_n,u_n)+\\varphi(t_{n+1},x))$$"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {
"scrolled": true,
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [],
"source": [
"def CN(phi,tt,y0):\n",
" h = tt[1]-tt[0]\n",
" uu = [y0]\n",
" for i in range(len(tt)-1):\n",
" temp = fsolve(lambda x: -x+uu[i]+0.5*h*( phi(tt[i+1],x)+phi(tt[i],uu[i]) ), uu[i])\n",
" uu.append(temp[0])\n",
" return uu"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "23PyYGzhQwuo",
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"#### Schéma de AM-2\n",
"$$\n",
"\\begin{cases}\n",
"u_0=y_0,\\\\\n",
"u_1=u_0+\\frac{h}{2}\\Bigl(\\varphi(t_1,u_1)+\\varphi(t_{0},u_{0})\\Bigr),\\\\\n",
"u_{n+1}=u_n+\\frac{h}{12}\\Bigl(5\\varphi(t_{n+1},u_{n+1})+8\\varphi(t_n,u_n)-\\varphi(t_{n-1},u_{n-1})\\Bigr)& n=1,2,\\dots N-1\n",
"\\end{cases}\n",
"$$"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {
"scrolled": true,
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [],
"source": [
"def AM2(phi,tt,y0):\n",
" h = tt[1]-tt[0]\n",
" uu = [y0]\n",
" temp = fsolve(lambda x: -x+uu[0]+0.5*h*( phi(tt[1],x)+phi(tt[0],uu[0]) ), uu[0])\n",
" uu.append(temp[0])\n",
" for i in range(1,len(tt)-1):\n",
" temp = fsolve(lambda x: -x+uu[i]+h*( 5*phi(tt[i+1],x)+8*phi(tt[i],uu[i])-phi(tt[i-1],uu[i-1]) )/12, uu[i])\n",
" uu.append(temp[0])\n",
" return uu"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "23PyYGzhQwuo",
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"#### Schéma de AM-3\n",
"$$\n",
"\\begin{cases}\n",
"u_0=y_0,\\\\\n",
"u_1=u_0+\\frac{h}{2}\\Bigl(\\varphi(t_1,u_1)+\\varphi(t_{0},u_{0})\\Bigr),\\\\\n",
"u_{2}=u_1+\\frac{h}{12}\\Bigl(5\\varphi(t_{2},u_{2})+8\\varphi(t_1,u_1)-\\varphi(t_{0},u_{0})\\Bigr),\\\\\n",
"u_{n+1}=u_n+\\frac{h}{24}\\Bigl(9\\varphi(t_{n+1},u_{n+1})+19\\varphi(t_n,u_n)-5\\varphi(t_{n-1},u_{n-1})+\\varphi(t_{n-2},u_{n-2})\\Bigr)& n=2,3,\\dots N-1\n",
"\\end{cases}\n",
"$$"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {
"scrolled": true,
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [],
"source": [
"def AM3(phi,tt,y0):\n",
" h = tt[1]-tt[0]\n",
" uu = [y0]\n",
" temp = fsolve(lambda x: -x+uu[0]+0.5*h*( phi(tt[1],x)+phi(tt[0],uu[0]) ), uu[0])\n",
" uu.append(temp[0])\n",
" temp = fsolve(lambda x: -x+uu[1]+h*( 5*phi(tt[2],x)+8*phi(tt[1],uu[1])-phi(tt[0],uu[0]) )/12, uu[1])\n",
" uu.append(temp[0])\n",
" for i in range(2,len(tt)-1):\n",
" temp = fsolve(lambda x: -x+uu[i]+h*( 9*phi(tt[i+1],x)+19*phi(tt[i],uu[i])-5*phi(tt[i-1],uu[i-1])+phi(tt[i-2],uu[i-2]) )/24, uu[i])\n",
" uu.append(temp[0])\n",
" return uu"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "23PyYGzhQwuo",
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"#### Schéma de AM-4\n",
"$$\n",
"\\begin{cases}\n",
"u_0=y_0,\\\\\n",
"u_1=u_0+\\frac{h}{2}\\Bigl(\\varphi(t_1,u_1)+\\varphi(t_{0},u_{0})\\Bigr),\\\\\n",
"u_{2}=u_1+\\frac{h}{12}\\Bigl(5\\varphi(t_{2},u_{2})+8\\varphi(t_1,u_1)-\\varphi(t_{0},u_{0})\\Bigr),\\\\\n",
"u_{3}=u_2+\\frac{h}{24}\\Bigl(9\\varphi(t_{3},u_{3})+19\\varphi(t_2,u_2)-5\\varphi(t_{1},u_{1})+\\varphi(t_{0},u_{0})\\Bigr),\\\\\n",
"u_{n+1}=u_n+\\frac{h}{720}\\Bigl(251\\varphi(t_{n+1},u_{n+1})+646\\varphi(t_n,u_n)-264\\varphi(t_{n-1},u_{n-1})+106\\varphi(t_{n-2},u_{n-2})-19\\varphi(t_{n-3},u_{n-3})\\Bigr)& n=3,4,\\dots N-1\n",
"\\end{cases}\n",
"$$"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {
"scrolled": true,
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [],
"source": [
"def AM4(phi,tt,y0):\n",
" h = tt[1]-tt[0]\n",
" uu = [y0]\n",
" temp = fsolve(lambda x: -x+uu[0]+0.5*h*( phi(tt[1],x)+phi(tt[0],uu[0]) ), uu[0])\n",
" uu.append(temp[0])\n",
" temp = fsolve(lambda x: -x+uu[1]+h*( 5*phi(tt[2],x)+8*phi(tt[1],uu[1])-phi(tt[0],uu[0]) )/12, uu[1])\n",
" uu.append(temp[0])\n",
" temp = fsolve(lambda x: -x+uu[2]+h*( 9*phi(tt[3],x)+19*phi(tt[2],uu[2])-5*phi(tt[1],uu[1])+phi(tt[0],uu[0]) )/24, uu[2])\n",
" uu.append(temp[0])\n",
" for i in range(3,len(tt)-1):\n",
" temp = fsolve(lambda x: -x+uu[i]+h*( 251*phi(tt[i+1],x)+646*phi(tt[i],uu[i])-264*phi(tt[i-1],uu[i-1])+106*phi(tt[i-2],uu[i-2])-19*phi(tt[i-3],uu[i-3]) )/720, uu[i])\n",
" uu.append(temp[0])\n",
" return uu"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "23PyYGzhQwuo",
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"#### Schéma BDF2\n",
"$$\n",
"\\begin{cases}\n",
"u_0=y_0,\\\\\n",
"u_1=u_0+h\\varphi(t_1,u_1),\\\\\n",
"u_{n+1}=\\frac{4}{3}u_n-\\frac{1}{3}u_{n-1}+\\frac{2}{3}h\\varphi(t_{n+1},u_{n+1})& n=1,2,\\dots N-1\n",
"\\end{cases}\n",
"$$"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {
"scrolled": true,
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [],
"source": [
"def BDF2(phi,tt,y0):\n",
" h = tt[1]-tt[0]\n",
" uu = [y0]\n",
" temp = fsolve(lambda x: -x+uu[0]+h*phi(tt[1],x), uu[0])\n",
" uu.append(temp[0])\n",
" for i in range(1,len(tt)-1):\n",
" temp = fsolve(lambda x: -x+4/3*uu[i]-1/3*uu[i-1] + 2/3*h*phi(tt[i+1],x) , uu[i])\n",
" uu.append(temp[0])\n",
" return uu "
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "23PyYGzhQwuo",
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"#### Schéma BDF3\n",
"$$\n",
"\\begin{cases}\n",
"u_0=y_0,\\\\\n",
"u_1=u_0+h\\varphi(t_1,u_1),\\\\\n",
"u_{2}=\\frac{4}{3}u_1-\\frac{1}{3}u_{0}+\\frac{2}{3}h\\varphi(t_{2},u_{2}),\\\\\n",
"u_{n+1}=\\frac{18}{11}u_n-\\frac{9}{11}u_{n-1}+\\frac{2}{11}u_{n-2}+\\frac{6}{11}h\\varphi(t_{n+1},u_{n+1})& n=2,3,\\dots N-1\n",
"\\end{cases}\n",
"$$"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {
"scrolled": true,
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [],
"source": [
"def BDF3(phi,tt,y0):\n",
" h = tt[1]-tt[0]\n",
" uu = [y0]\n",
" temp = fsolve(lambda x: -x+uu[0]+h*phi(tt[1],x), uu[0])\n",
" uu.append(temp[0])\n",
" temp = fsolve(lambda x: -x+4/3*uu[1]-1/3*uu[0] + 2/3*h*phi(tt[2],x), uu[1])\n",
" uu.append(temp[0])\n",
" for i in range(2,len(tt)-1):\n",
" temp = fsolve(lambda x: -x+18/11*uu[i]-9/11*uu[i-1] + 2/11*uu[i-2]+6/11*h*phi(tt[i+1],x) , uu[i])\n",
" uu.append(temp[0])\n",
" return uu"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Schéma RK1_M\n",
"$$\n",
"\\begin{cases}\n",
"u_0=y_0,\\\\\n",
"u_{n+1}=u_n+h\\varphi\\left(\\frac{t_n+t_{n+1}}{2},\\frac{u_n+u_{n+1}}{2}\\right)& n=0,1,2,\\dots N-1\n",
"\\end{cases}\n",
"$$"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [],
"source": [
"def RK1_M(phi,tt,y0):\n",
" h = tt[1]-tt[0]\n",
" uu = [y0]\n",
" for i in range(len(tt)-1):\n",
" uu.append( fsolve(lambda x: -x+uu[i]+h*phi( (tt[i]+tt[i+1])/2,(uu[i]+x)/2 ), uu[i])[0] )\n",
" return uu"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Schémas predicteur-correcteur"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "23PyYGzhQwuo",
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"#### Schéma de Heun\n",
"$$\n",
"\\begin{cases}\n",
"u_0=y_0,\\\\\n",
"\\tilde u = u_n+h\\varphi(t_n,u_n)\\\\\n",
"u_{n+1}=u_n+\\frac{h}{2}\\Bigl(\\varphi(t_n,u_n)+\\varphi(t_{n+1},\\tilde u)\\Bigr)& n=0,1,2,\\dots N-1\n",
"\\end{cases}\n",
"$$"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {
"colab": {
"autoexec": {
"startup": false,
"wait_interval": 0
}
},
"colab_type": "code",
"id": "1ewZyxhHRYxg",
"scrolled": true,
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [],
"source": [
"def heun(phi,tt,y0):\n",
" h = tt[1]-tt[0]\n",
" uu = [y0]\n",
" for i in range(len(tt)-1):\n",
" k1 = phi( tt[i], uu[i] )\n",
" k2 = phi( tt[i+1], uu[i] + h*k1 )\n",
" uu.append( uu[i] + (k1+k2)*h/2 )\n",
" return uu"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "23PyYGzhQwuo",
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"#### Schéma AM-2 AB-1\n",
"$$\n",
"\\begin{cases}\n",
"u_0=y_0,\\\\\n",
"u_1=u_0+h\\varphi(t_0,u_0),\\\\\n",
"\\tilde u=u_n+h\\varphi(t_n,u_n),\\\\\n",
"u_{n+1}=u_n+\\frac{h}{12}\\Bigl(5\\varphi(t_{n+1},\\tilde u)+8\\varphi(t_n,u_n)-\\varphi(t_{n-1},u_{n-1})\\Bigr)& n=1,2,\\dots N-1\n",
"\\end{cases}\n",
"$$"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {
"scrolled": true,
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [],
"source": [
"def AM2AB1(phi,tt,y0):\n",
" h = tt[1]-tt[0]\n",
" uu = [y0]\n",
" uu.append(uu[0]+h*phi(tt[0],uu[0]))\n",
" for i in range(1,len(tt)-1):\n",
" pred = uu[i] + h*phi(tt[i],uu[i])\n",
" uu.append(uu[i]+h*(5*phi(tt[i+1],pred)+8*phi(tt[i],uu[i])-phi(tt[i-1],uu[i-1]))/12)\n",
" return uu"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "23PyYGzhQwuo",
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"#### Schéma AM-3 AB-2\n",
"$$\n",
"\\begin{cases}\n",
"u_0=y_0,\\\\\n",
"u_1=u_0+h\\varphi(t_0,u_0),\\\\\n",
"u_2=u_0+\\frac{h}{2}(3\\varphi(t_1,u_1)-\\varphi(t_{0},u_{0})),\\\\\n",
"\\tilde u=u_n+\\frac{h}{2}(3\\varphi(t_n,u_n)-\\varphi(t_{n-1},u_{n-1})),\\\\\n",
"u_{n+1}=u_n+\\frac{h}{24}\\Bigl(9\\varphi(t_{n+1},\\tilde u)+19\\varphi(t_n,u_n)-5\\varphi(t_{n-1},u_{n-1})+\\varphi(t_{n-2},u_{n-2})\\Bigr)& n=2,3,\\dots N-1\n",
"\\end{cases}\n",
"$$"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {
"scrolled": true,
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [],
"source": [
"def AM3AB2(phi,tt,y0):\n",
" h = tt[1]-tt[0]\n",
" uu = [y0]\n",
" uu.append(uu[0]+h*phi(tt[0],uu[0]))\n",
" uu.append(uu[0]+0.5*h*(3*phi(tt[1],uu[1])-phi(tt[0],uu[0])))\n",
" for i in range(2,len(tt)-1):\n",
" k1 = phi( tt[i], uu[i] )\n",
" k2 = phi( tt[i-1], uu[i-1] )\n",
" pred = uu[i] + (3*k1-k2)*h/2\n",
" uu.append(uu[i]+h*(5*phi(tt[i+1],pred)+8*phi(tt[i],uu[i])-phi(tt[i-1],uu[i-1]))/12)\n",
" return uu"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## Comparaison sur un exemple\n",
"Considérons le problème de Cauchy\n",
">trouver la fonction $y \\colon I\\subset \\mathbb{R} \\to \\mathbb{R}$ définie sur l'intervalle $I=[0,1]$ telle que\n",
"$$\\begin{cases}\n",
"y'(t) = \\sin(t)+y(t), &\\forall t \\in I=[0,1],\\\\\n",
"y(0) = 0\n",
"\\end{cases}$$\n",
"\n",
"1. Calculer la solution exacte en utilisant le module `sympy`.\n",
"1. Calculer la solution approchée obtenue avec la méthode d'Euler explicite avec $h=1/N$ et $N=8$ (pour bien visualiser les erreurs);\n",
"2. même exercice pour les méthodes *multipas explicites*;\n",
"3. même exercice pour les méthodes *multipas implicites*;\n",
"4. même exercice pour les méthodes *predictor-corrector*.\n",
"5. Pour chaque méthode, afficher solution exacte *vs* solution approchée ainsi que le maximum de la valeur absolue de l'erreur."
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "ve4iOfOIGsYc",
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"**Correction 1** \n",
"Calculons la solutions exacte en utilisant le module `sympy`:"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {
"colab": {
"autoexec": {
"startup": false,
"wait_interval": 0
}
},
"colab_type": "code",
"id": "W3EcAN2eGz2j",
"scrolled": true,
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAMEAAAArCAYAAADBnex4AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAIZUlEQVR4Ae2c/XXWNhTGnZwMQOkG6QaBTFDYgNIJSjeAw1/JfznpBiET8LFB6QQhbBA2IM0G6fNTZWPLkiy9tnntF91zFNn6sp7HurpXst7s3d/fV6lyenp6pLKXCocK73T/Z2rdUq4wsFQGDnI6pkH/WeUfKUZz/s6pW8oWBpbKwH5ux6QAT2ydj7l1S/nCwBIZyFYCgXiq8EXKcLdEQKVPhYFcBjZRAixBsQK5TJfyi2UguibQbM8C+Fzhi8JXBQY/i+MzhSKFgZ1gIKgE1vd/L5QshFGCSnG9GC6WYCdefwEBA153SIP9gfJQgFe1AlBYgjJ8VlpZDxg6yp9dYMCrBAKGC/RAg/2NA7KsBxxCyu36GQgpwXNB67g81jqwRqhdovWjLwgKA2KgpwR2sOMOuYMdxaiU31EO0ooUBtbMQE8JWmDMYrh1z/cBvhijCM8UsApFCgOrZ6CnBBrcLHqZ7ZtBzqDXPVujnxSQp0pzleT/nIn+pipZarmJujV7Mzl4csrO3vEtPyCVC1+5nhJYLL8pPlaFlwr1dwIswUPSFF/YcrNE9hkoXYoc2vIpZRddJhM3WHYG+5gXk8lbj7O9nFOkYzqaWleAsDoo4KuMOijmneq4u1mpTWy93Ca46bTqLRq7+odHca3Advvk70dtjh4vi1ICAWJB/o/iR4p7YvMhtOeOKY/0XxWv7huGxRXEDRG2zOqwq99sq7PJ8kbXkx69t5wEeUvlLOQOwfs2BNcr5mpBKDPLradz1KP+GmUIN5hmxc5gVXgxNXlqk/XlT4onVQDbzyHekjhbmhI8F1kxkxk8wWrrUR9rsjYZwg2eubHD2yzc6Z3MZZ2HeEvibDFKIKLw7YZ2nNDsDwohob75nhEqsLT0RNx0e+ewj3kXibwlcXYwpiOxuuokswrm9ReFa903M7zNu1TMLlQtaG3vQ5zKAARTSnu4QkdK41zTleK/FLeF+rTTPKud+b2u1a8c7F7c9FXtLB67+sguHv1ktgc38rvSOXjJ++JdEX/UvXnfts6lTX+nGLeGSRA5VvC9W5PZ+uPlTW1nc3bQanTqy9fqEDsCgANwe2AyW9eg6+c+1kVvPaD6DGwIpDx+K+BDcqMMSEgStcXzksvbRjlA2FZe37NysHtx06ieMxt2X6dz09Q/Bv254s470b3x/xVjmVEGFvSN6L7+mS7v66ECE5uZ0BSjVEyaHxRinoGXN9XJ5mwWJbBArixqCHIXsj4thlC3nG3CRNSBvJhQn1knSdTPyRdrG2Afwg2WybEnETRciIH4WJg5bHnXKu5OZqH3yiBnYmsmFV0zydAUk1N74iStLUO8JXM2ixKop/z8sh6wzPpn7d7rGoBuGjNCm0iniqkTWw9QHlIhZ5uSi30IN1jgaxLsei8h60c/KuX7Jgav9VNZLDQD/F+uFbMVygzuuqlKDkp9CsEtMPQeh3hL5uxAHU7/nytuN517tbVHkmIzmBXTEcA0Gq20I5sGaUmiOrTBDA/JMRkiJlZ3krylY1f/fIO8UjruJl9TcwYwnPFN57UC9fHtcY8m/yagdpNFz88aLyiBGbjJT8griJlzf4SDYvB1t7YUdYvMKHTeJ9SpVKdRHF27Jpgi1KedJFEboVkxVt87K3oqpGKP4abZWbB7+pudJP6YmG4V83XffOHXNZshF3Cr4L7j7GdEKsR4y+LsIPKQKbIgyV3c+NYDPItylPdJx78Tucw6lHdJxhK4z/O1Z9LUjndWDFbIy0jFHsPNE2fBngclWBqrDs7GeohTrAB9Zr3gvh8lTSYx3rI425+sS/6GOgNS5KChBJ9bA2HH/mbMDoJpS20YU6fYRzCm2ZceaHbW5FTsMdx0sFHshWJnJ8y14Nw3Vtuy7Japsdns7CjGWxZnc1sCTCTfA/AVvyrwzQBxCSLtrQJ7yj6hHcyr+ayvuJl5nMIo2Jyzu/O46G0q9hhuHrBk7HfqH+u9F3onioz8rL+sC9ggwFKwXsAqVLrn/f6hgPUgnXxcY9LPFEiv3x/KxUHKZudIeW2J8ZbHGadIv1c4OTk5V7gOPU95NwpHofxYuuodUj9WZpt56lsQO/1W2Ag3mFR3NHa18Uzh5TY5yn22+rsxb23OopZAWoim8qELDc36B7yqy+z/RLE5EaoYc8hMzkwQEuowE9SzQaicLx3tp/7WZQPsY3CDdwrszOqENckY3hrO9mOI9TLZCWEQM4A7fjyDWuFGAQXxCYvXt60MlIlFU3C/W3mYVrbpQm22mvt2actTr9mK/Za7lass7JviBtlU2NUOe/5L4S/ppdn+jh4vUUtgScbPRlw/nnQG6y2ZHkHT6l+isRbAp3fb8FSr8AHxEVnhpwpbnZtYj9T2c8ttgn0T3PRradhzuRpbfhPeupwN+WHynfBle7620i586UPtpeSrXXzcJP+UcpRPaXfpZXJwg2WXsI95Nzm8+Tgb/GWZZm8OP31S3Jlpdc/hJz6RM+sVKQysloGOO6QBjXvDYoM9brY0cV9YHJ8pVMrHBUIZWCNQNnasWdlFCgPLZ6CxBHaA44u7/4CXgc/P45qdA12z8HuveM4jF8tnr/RwJxjYB4UGMzM7CpD6D3g7n6Vpo0hhYK0MGCVQ53GB2PJ0t8iwAr4dnVD6Wnko/f6BGaiVgDP/ncFurQN+f+/7gNJ66T8whwX6yhnYt4O99zFMuMwP1pXfUQ6lYwWqdrptg+QihYHVMVBbAjreOfWo+8bv1yBv/wPeJp1K5CnCMhQpDKySASwBuz7M9s1AtgObrdH6p2/t//j2UOkpx5pVrEhhYPkMmC1SDXrcIc72XClwFJYzPygHC2bSOFdizukrRln47MxuUqV7dzFNcpHCwGoY+A8LIcqgSYZtlQAAAABJRU5ErkJggg==\n",
"text/latex": [
"$\\displaystyle \\frac{d}{d t} y{\\left(t \\right)} = y{\\left(t \\right)} + \\sin{\\left(t \\right)}$"
],
"text/plain": [
"d \n",
"──(y(t)) = y(t) + sin(t)\n",
"dt "
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQ0AAAAsCAYAAAB/le0vAAAACXBIWXMAAA7EAAAOxAGVKw4bAAALVElEQVR4Ae2d7XXVOBCGLzkpYIEOoAMgFSx0AGwFQAdw8gv+caADSAV8dABUwEIHsBVsNh2w7yM8iuUrf8a+dq5nzlEkyyN59EoajcbyzebXr18bD47B0sbA8+fPb3SRqStfl7r2nacrVm18BxsnR2BhCLx48eKpRLrVUawbBX9H9nWyjYmpK411jqHBrdbgY5L+p/B4cCUNBVXvfd2+rvhjA1u8Jb7PXCieRJ74oEucEDajYnoFk8zJEeiKgAbgXfF+Unir9JOu5brwqb4/xPdF8e0cf3H/m+7dU/pnmUfX5P+p+Kycv/Z0gdmomLqlsfZR1bP9GoSs7FcVj6owCjFeKX7TIBIK64bCaYaHcpR3ShEYHVNXGinAftUBgQlX84eq+22DCPd072fu+UU5ymOtOJ0jMDqmrjTOwfXUjAhosrPvTrYcGXGwNJp8HZR/mCm3yqypMD1cJZre6FoENNB4a8HkxDdgq/Zfyr+twNbggwLxZ10/ULxRTJkTBfLfK2ASowSgI4Wv4nkdrur/YEUEp2aZReWQha0QslD/LeUhQ65OylNPk7Wi27sjyYrc4AGeRsgelV+J50fBcFPxB+VHPJSu7RerNBNPgqkrjQzSa82ywauYwRZJ18F/oZiVHOWB0zGSrr/rgnwG/TUFJnZQEooZ7N8Uf1RosiTuiG/Ln6EyTBwUFEroruJENuWVieejZBZBkhUlB1aPlA5KQjHyoRDYZn1XAB+UYOLcVf4n7im8VgiKR3HSdl23+ZUmwfRAwjo5AoYAg+xOMUgtj7g6mXOOSPhQCkzs8iqKQoHaJjMTo65eyjNhrC6uc0R5JupSCGWAcoh46Jp2QmZ5wJNTqM+U/0plUSpd+0WsCU2CqVsaCcbrvtAAZUVn4nEOgxWeV6sM6LatRRm4v8sXpbRNllJWksRCsYmU3CguUDrlyZfjQWm1PSdXbvQ8YYYcTPgEO+XThtAOpbmPkvuqkJDuYYWQx9bwmcKQfpkEU7c0kq6a90IDAzN+7pWSMxIMdORgL/5DMlUtDWXvjvR8JiDyoMSaqG2SNJUd+571478NFRtPk7JEsUCj9stFMD34LY//nRuBohPZwzbt+ycVU88Og1gxK9tNhSt6IPvmx0rb4J1KBlbSOishbG0kQ9kxmOMlj3qWQNaPODXryHhybbEybG+G9sskmLrSsK6ZP2ZifJ9ZDBRDchxbA5Y3EZjT7KunJCZQmByZhyT+DMl0v4YXS8MmYqaa3WVJxjM9jf7M4kYbFLgPX+Lg1PVG94KiVBKfx9B+mQTTUZSGGljX2bQ/Ule+WGAFCTBRYBtA2JBWmHpVb0L2WM+vrnxcx1W+KFzlIZtJO5SYQLyezVFUBoVsYJZTsJjwufxcnbvI45U0slYVMX1tcv6pNAewqn0OD29ODPeu/aJikSbB9MLfnqhRfJFY9RBHqcsJ8aI94+u48r21p4UNr+ZeKm5z9k0GVdE/rHrlffh1XfP6DycpA/tYwVZBBvQjBRYN8rEAWDnJf6lAPtsb+EO+6ghnO3SdUFE3ryK3zHnlUQ9+FVbdja6z5zCUzyvXJ4ptosE+K0kWlGtYEBTbOYzkbYl4aB9vS8AICu21digGv9p+CSUyf1SO/hod0wspDQnFIDlSTIM7kXhRMmeKsx3fqZIJmSQXnczKQCdZJ/JEJg4faYWJoLhzmyncRqqPLwf5pqP8zLZie3VfbWdSPVBsq3Dn9qkM/UIfbSmdzpXsIeMUmB4MxUnCMLkwmbKTh/sIrEBnRtI1nnlWA8oviiQTCu2fQigGbwzKO9U1qx0efFsxCtaLRao3rMSKV6swCgRZkdsOLNWBzTi0Fb2OZ435o2M6WGkUHcQkqiMmAgrjNMNAucV0sCYrCg5lwIDl82r2kskE1rVtG2jT2OYvZmSoU89Blur+Vrf3n9RurE98AMlC09bygp9yi7Re2+Sf8v4UmF5EaYz+9dyU4LXU/UX38XJzFLrJNGZPzdZqbA89JrUd8DlWeuz6VeWlIXweTYtRriHwD7VQcvXtW96omA5SGpo0+DLaBjaWhq3OuU6g/OxfJKotWDys7HwfkFgXGaGxmt5n8i+axaDnXAS+lHcd5Ljo8xZbvmg721e2iq1U8MHfNh5b69pXhrExDY5QVYp/gQHLisepxGjmFfdOFEevt9IMclbcxJ+haxQFGp/6SGNyMxG/6l71OC2TFZMy1qvrnZKejRmMf4K3P60ONPHQLmRuska22lCUO9YNeyvBszhABTZOjsClQuCwkDY4NDWIsSBOFKLSUBprgPwyYcqjOBJSeZTE6F8kql6ehRLqQ5zdb1NIZtJutSX3INXHJO+rMJCb+uNbAdWDZXOskChdXTs5AotH4LAYwLaf5jUjJniZyKs6/lhxq3zVMm2Ti/KdHF6S0SZ3+RljpE0ZNm2jap8jucABpYp5zMGihJRH+4KDVekyHigS8p0cgUuHAJYGprkNaCbAy0orGODVvGvKazKtKdM2EdmDMunmJNqxUfs77YfFx5uN0G7FWAu0E6prh1kwlLM9ejws9bto/7/IoVI4b+uem6s0Wjq5m+Sp3r37lWm1ie9nasmxrIWm9gaWhk0CJgCDMG5NdI+JQV7V0lBWnopOsBU2z/Q7t03xNJUd6x7WTqeJp3ZhlaBcgoLVNTFbILNWdLlFQXmKJ/HnbHH1zFB99NmWZdOzmi121ds4wbYK7EGGY9m/Ew9LRdj/MwkYkEYMehyeZolYftNko8xGZaKiUTqu0FaBYiYr9bSSyrNih3pbmc8Zuvg0kPGx6se52WZtHImnzXo6f/p5yrZ+5zmecgQuMQJlpYF1UJ04OX8GzYWvzh9BmahkNNGSFZrCBWFpVJ9n95JYdUzl0+ANDm+NkLHWGtDz4atu0ZTVSrSP7cgWgYvCECW0VZdnOAK7ROCg9LBkAmtAs7ITcg47lMJRqWw5GZWB6sCaqHtFiXkdlUu5gl2lJR9txsLiy1KUR0JgoBAUhuKyBZbwNVxQNrGQVA9WF5bTrG1vkNlvOQKNCJQtDV7/cR6Dgc55Aju3ELcZpZreKc3pyBxRzxvVEyah4roVnMk0lQWRkyubJ/n44vCqbqI4UJCmHE6V5gvBwa9FVZYP3FASYGrfq3A9e7slj5MjMAiB2q9ci4HOSpt1uCmfSdDqkc9JpbJsbfbii0S1ha0NCseUbK7Jq88r+twU8B0BglLmgJtbXANGx5x4hu2JBGDQ83sOgZRmW4Gl0LSPZ/UcumIyeCjvtAIEigGO9cl5FjvTgrLg9HGyfVsBHBdu4tx4mk+D1ZIth9GJEpjWtY463ePVLP4KrIbOVPBTLr7a7Vx4QYy0QwHFx8nOkNa1ncVYkKSLEGVrgRFWLBxsBeu2uYsQfKFCzIqn+TTowGvFoMfMZlXI+TKqGOJEpNN5Y9KVcAIOtVC6PmNyPuGDE9XM7cmfd8kfgDXBb6tUf2SIMcZbJJRu4oi/5O2dWvxZ8QxKQx1Wa1E0tV7lzhQwN58q1Dk8YxXw6QJ+HyARlVUkUA78zKM5mauNZjvs1B2BWfGsdYR2l985HYFhCEiJ4EzHyljdSdRhiDWX2hWe5tNolsbvOgIjI6ABzicK+MN8izcCtrvE05XGCB3mVQxCAF9Y33/5OOhBKym0Mzx9e7KSEbWkZmpVxBnOtqSPA31JTViULLvG0y2NRXX//gujAc75H97UucIYobvnwNOVxggd51V0Q0ADnPNA/BYqr+oDKY3FgW/DqScCc+HpSqNnRzn7MAQ0wHF88vMCVccnioQj5U49EJgTT/dp9OgoZx2GgAY4lgQfA+YODPJ9k3+30wPaufG0E6E9RHZWR6A3AigMFMfWzw8ozz9Y6w1nUMCz4fk/KS3IYs/kSU8AAAAASUVORK5CYII=\n",
"text/latex": [
"$\\displaystyle y{\\left(t \\right)} = C_{1} e^{t} - \\frac{\\sin{\\left(t \\right)}}{2} - \\frac{\\cos{\\left(t \\right)}}{2}$"
],
"text/plain": [
" t sin(t) cos(t)\n",
"y(t) = C₁⋅ℯ - ────── - ──────\n",
" 2 2 "
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAFMAAAAyCAYAAAAgGuf/AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAFcElEQVR4Ae2b63UUORBGxz4bAHgzGDLgEQEmAyADIAM4/mX/84EMzEbAQgZABkAGQAa7ZGDubUuie9QPjafH9kxPnSN3SSo96utSSaoe752fn8/66OTkZE79mTLwj/pkt7EOne+i12fSKfybPh33+ypp/JL676QfpCd9sttaBwbfgu5H8N9JGlcr7XVZJo1e00IwX8C/bW29wYXopMW9J92D/zWkCjK3kNFCBdM2GliD/mrkQgbBQ1iBfAu/NUAGQP5Br/9I90mdVkZdg2j7i/SQwp8k3V7m8lotk0YfET7kucdzKwndNBZX3234QcuMICAbV6zWqQtItJ+4JqNlfmoW7XIBgXfhKUYNysAEbX2DVPy2LsQn8zf6yjuLGmdg1gT0KztaAoE+MJfoZicqAjswR7SDHZg7MEdEYMSudpa5A3NEBEbsasqW+XfA8WAsPFvv5mN1fhP74VJicEOKN5j3lHkQ/8hzpTjE6GCGG9RzJmcgoH6LqiZL/ZxyI1GveF45Me7aQomjgslEDR4ckU5JT8gnMOEfk4y2aBEGC7aORgETkLzPu3y0uofkG9EUUaPsA0lrVWYbgiiZr23bgFRWSlZ1ke39a9DU+GAWllpoJeDGBWOwYKH65meZe8RFA2pQm2W6DCVjmoNE5y5Zo9aNZd3R0ODJvx11m1Tsyos4pXm3WaY+7wcgDS5FZLRi/aTyH1Kv3YwWqd9ciRjLbzEr97PCJNwTZszBjTZRA8zaBLOQfGrRZF6EbJFi9O8Sz/xps8v+HO1dXr5E3cq1EHPQcDxGncE7l4oSmBQKyFOSG0ipT3t80c2sxCqD6J8H49wiPSd9/VPazyGrz/JTw71+yfXWMr6GJKBf4XVzs73j42PftMpoMc/CZGGHCdn/kRKQom9FyCkrGDOeTiD6Hc+dWeRaubGI/vt/IFAbCNkifWyCrAblvnFW34DcHJYl2/gyBikMqsVXy5y8z2+hfLD9qgKMUwzQJcaqjkn7DKIfi1bxE74y2cIOq02KNslv9LR7gFwFZI/MRlWhj0c9Px3rGt/UfaY+wGPL50JwEE03meg7LcuI/lwG1Q6YVW5oQdBJvdMlJYGpTggIqEs3BgMs7iTkXbbedV/DN44JNqLskFQBybPylZavQvSj3z0nFW9aq4zX1pax9fUeCfX1abXVfWZs564uOAJRctb0mng7tPGgH0GrXgp1owY06E+35Ev8QrouqnRiHo0oUxuYEUDPmpHvnbQKIqBVXwkxXvTxS49H2zmN4gu+D+9Lf0V5srCCTrXMTL4NzHjGLNqlCwa+MSIBSA/a6VICrxvyrPiINGg8yERcIk5Jv4bPTKVXwDCpOUlFjkgVT14/tE5yvMYKYkyt1JVVtE/UJqdFN6jNMhsC68qghG82Lrd1DbPYr8vTe/3ij7W0SOOtvtTM4hY76cpfm2V2TWjN5YJmUEZLbKO4hNvqBsuuzTIHZ7YGAUDs+mRRXVSozzaVZaYxNcvMsAFAgazv8JlMacHkwQQoNx7Pyr0//i8BdNJgAqAXFH1o1/IvwTDJTBZMAPT6e8AznTkTKpdkJgkmABqguFO3SHiPRfNL4lg1mxyYAOaGYzhw8YwrwNlBfBlwp3Y00vLccD4Bpv6yTgZ2VtqE+sA8qI+0JbxRLQHNwoWUlZ4xO3HJwOTtGOKi77LPEQpuCqHXpaNNNR3jLSm7RXX5TK9dmn1sWOtr8uxhQODdIhJdYEbnbERnRwGBYFxi4ofAzC20ghkEdcYv4d3lJk8BSH9TJbUe8lvBVJrGWqfJH4Mu7nyKTIbQ36XtNyfdXut/9ApG6z+iWhGJjubwFZjwo90WYv83/YnOnku1yFP43qPTb7pMx2dVw9UAAAAAAElFTkSuQmCC\n",
"text/latex": [
"$\\displaystyle \\left\\{ C_{1} : \\frac{1}{2}\\right\\}$"
],
"text/plain": [
"{C₁: 1/2}"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAPAAAAAvCAYAAADdPUdoAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAL/klEQVR4Ae2d65EUNxDHlysCsI8M7AyAywAyAByBTQa4+MY3ys4AiMCPDLAjwHYGdgY8MsD/n5B0kkaa0c7uzs7edlcJjaSW1Gr1S5rZ49bnz583BufLgRcvXtzV6v/u5YDwb/XiLo0n2n7QnP8p/2PpuQ8xn9bxSunp2Ni3xxqt7Sw48JNWeU+C8s8pr1b0P/LreH3K6yho/0nreqv0sKiPxYv4ZA9bcUBM/Vvpm606rQxZ9ON9N8pPXXm/0jKeax2j3mpl7J8kR+v5T0i/KX/WQjYP3OLMSL0YisDc9QwewVx903NRiAc+dfhNC3i15kVIVjD2b5VaRv/bmjyp7rXSvz7/VK7RFLjkSF/5gdBO3WshSN9IMOJ5Uc/U/ehZcF/5B8qqn71WPyZnbMbZe3jrx7+vvBlm+vUcLRNtGHz4ek/pUukBvFAiRA78VnUTME5vlB6XGKbAJUdGymI2Ak6YxnnrExug/BflswVc/Y8FCE4UHr82Lk2iIvj1cVR4qBQVfUuC4RkCjPAeAljDqGEQ7cyPEWEdhKWLg+Z14b1yLtp+9zT10sH6UPavlDIvfNE7guG5syI3nAgMTHzJs9LJKa9oRqDxWqlSYoyyMyTr82slRJ0Ffo6vlWdjzxqs3gmFIDQdAyImDAkRxdYg2vGYzDML1DdVumBEgmGbHNP3R86elMimwCVH+spc/qTC39drPVgo68uCHIScsxbKnQLrxPIjcLOgEOBZY9Q6aVx3Cae2v2rtSR1RBcY3VaSkefIRnpR8mexUIhQ8JJQm9QJrHITQpsC97PN42gQEnfB5rjBsOeN+0UU3gohH+b0YGUUdE/KdBbiYbx9F9mKM5jAHeOV6Q9uSORFNGi1AVy/8K0TuJTK4nZWs0MOB6H29MnARdEphdPXmWWsYWHfPDOflWmtUPe0IIgYtKPl3qufdMl6b8Jv8D5XdHL4PlzLU/6pERMC9AnCl9E44P7vS+D/gMu8A1B+aCNuhiXl4awAtvWMLde+AAqLEG9ECPz4oDc61jVmRMXAzfFPgglswSFUI+Xvf9K1yzrpBUCi/823glaGob1o+E43hcm0svH8kPNYwCcJDORF+J3RlB7XDKy5X4sUXOCq7865yLoxQ5OxLL5URRurxKpdKKJdTWOXMycUZFz1TF07M/0FpAOoLD1ASeELEkdE46LBAhWjILvJU7toHT1pYJ/sB/xxchAfLneBhtRE2bpZ/JumZK3wUNQBl3tlxqQFeUOzQfpRcdPCyH6+GN6uCx4H+XsBjoUgtb4hH4TIMRUqhnCMIX4rDMwqKcsXwVs9BONmLKUD5p/iP4oYxp8Zbc3tYJ2uOYB7Ys0KCg2XjfPI0ESJaEaR4bvFtzsPQuAYQTXgtXjXcUXpGuVhDIJO1dVl94aGEnC9bofVGbS4MFN5HnpXDpzGFV/MAuJypQWkUWjgt4xDw2b9oIEJlLdcaWHPNcDilUXtt3/9RfZNHzKP27h8cCLf1rXl1nabA1zsZvAZnjPDpGgrBt6hjIen1CEd6En3OwygnnIf250qZUKmNiCGsUY9t8LiXynvCTsJC5iNUxfsTUvORQk3Y1bxXwCtlHikdXTRgBIJhTpuqzy2aVc/auOtoRSLV8UKl+rWUMqD05GGdmSKbAl+zzlnquZt0PczxnkT7JyU88Q/KEbj0DMk5NjuD1ShVH4SVI0I0AIwFrvJ0PMrUcxHD2OFyxhkK1fFRiDMs9D0SOG8qOqIB1nN2CXQkuuZMGyISjFaEi/hkD3AgXE6dMjfCGThePEloUUpC22zzy0WqnVD8Snns63Hon1l+Xw9+9oGD+mJACFnve5xDZhiUINi1ebLzr2hjHc4Y1ZCXrhM92eXexPxVD2wKfM01hIGQeQB+4wf1a6wQrawDj4MXDsJNiEt43QThIthcWuGh8J4xqY6zc0v5n6stzBPGpxy9nq8scagOQulRts4wuGOGgvFd1OBpXM0rP9HDUQcD2AvsDxFWtg97CaE1aBmuVYnqxat2Pnwlnis7t4lehM6d6w4//V5ngGbCR5QYAf5Lebbxldm4gEJIMo/q8VqhMGOGkN2jOiPIOZgLMAQU4+GUTGUMxPdKzEM97Qgl9RgY6sMeYBiIBmIor7YSoAuDQ6qtj0gCQ+TWpHzWGbacdNey6GBvnGHZYiyOP6VR3Nza9S9yiBgsCZs1edPnCY/v/LYgfhFUvxa8MO8nAQRjFZv+hZz+f0U34RkKgaA8Vnlbgemf7IiYWtdHv76BcO+LLM3hQm/lO8uCxsApYFAwfNzed11wCY/9xBjRL8JOHliDsbA7yrsWJjxeO6DAeIaMkEjRER9EU9c6jkjiNlPj0fBsGNcbqbyeGb8q56x7MAXW2Hj3modX9daA7PONAYrcBR6XaIW1ZnCRlbYo+EEJc8oLDzcK7Up8HI8XiKAySsKZqnsBsbM9dHNA/CUiIsSs7k/3QOtHfCUSa2H/3igXL3E8OzscjYHDm4xUK4Q/oZ/6D4zIbAXWgJyzYF4LiPNR3trtJf3ob3BADmjD+VzxJnvfjdaHkQqfTB6Qm7sNLTrRBd6tz9kPjHDVEO+iwE9EzJhVIqwhfBtYDd+P/uaFd5ML6/2FA1yMcSm2ZkDWeb/OBV+8GPVlPHMV1E50wdm3qvizzsAajAmrAyZU4IHHwgX6ExqMGYFkOHs0DtQ5IHn8pPRSCeWoeqp6z+VqRReRAsmBynhklBO6B04OJI/DBSTOsApOgYWAdWAwvpPllyBRqXzbG+XpdX710kA4KC2vARgPArmw4iKl9hMuLh0YJ86lZwPjwCwOSM44IxKi8uOIQ15ozaIv7ST60LWglBgdPtetOTuMUap36TDuOXhgdxmlQfCsb5RSpcJLli7+vuoG51/1h3HhPAIjA5GqHgCvalD4SdA4zNWFmww2+ZF5gmuPN4ADkpNUble7Ik/nJK3CC+/Em2u5LSSup995DBSuvHSirrRoeNgSzw/hMvrEcCFtSJ7pj5eehJ6FTA5iCMaBG8gBPDAXTUHZ8La8P0wBz1fWXaquGrf7jvSphQS+2WWcgTEERwetv/vnXi1iNcboC3m1s9Y/lbZZM+efsDfVqfdBe3VgqzwJDuCBnSIqR+kQrujaVYd3pq70wKqqg/qAj2eNv6GtY7rvYN3cjfbFqkXzqPLtgxDNwVonfw207VxL0L4tTYa/HAfwwAE4LHNuTJUKpeaGr/QChL8oag3os1GfqPR65qOOdFxQ6M84k6C+dgae5JIhnCMHUgXGa5avhmrnX/gEXuv8mp1/pXzhlVNpBAjDy/kYewAaY/IwP+hkFcaBM+DARbLGTJmkNHhSUi0URhmvkr7pY1RMjYGXbf2Ei3CyVOp0HHs2DhgHJjiQemDeOfG+l69E3iuFv50UQ+FkrF/0zPvdGjAOX47wrmujvPUDAYyDeVaYZGAcmMmB5s8JvSI/UF69eFE973Enb0lrdKmvu+RSHoxEDe2odZ7G8FUP7705r5/kf6VyVEbueXLbl5yhLoQWU/gaJP55Dz0T+rrPvHL0rISnnutBUQz6rxK8kBBF8KspUgj3+UqNyMHgCBwQ7zH8ti8J78MZmIsmwuIA7mssMaz5LldtvG7ifAtTu8Hj0y++ruruvBziwDiJXowON+mto8Ny1J3vTLYvxd4HBXbCKSHlbwrzygYrF8LHoktW5NXT4JPKDGNYAH+u5x6OdpgavOxB/qOvw5B7NqPavhRbfZuylLXpaQv8rKh+vCMmxETxW5dVsQ94KoCf3XhHhPU8cHHHDzHwuDXgiGGwPAdsXwqeNy+xCjwrigNSaC7uCP8P/uWWMbyfA+e8LyGE7ufWmWJKSPislPN+z9HiTLm0/LLPfV9MgftljssrfnM6eVToH9Iw98CBs94XC6E7JEhKy8UboTOfiRqshAO2L5uNeeAJYZSQ8D6cv/RgyjvBqyWbbV++cNsUeETqJCS8Hx/8R1+q5yxscCQO2L5cM94U+JoX2ZOEhEurK+XlpRVKzWeVBkfggO1LznQ7A+f8cCUJCR6WX2HVfsjB9+Gr/Ya7spwbU2X7MtxK9yHHsPrsa1BelNj9oqrghv0EsmDIgkXbl4LZ/wNKal9rnohzUAAAAABJRU5ErkJggg==\n",
"text/latex": [
"$\\displaystyle y{\\left(t \\right)} = \\frac{e^{t}}{2} - \\frac{\\sqrt{2} \\sin{\\left(t + \\frac{\\pi}{4} \\right)}}{2}$"
],
"text/plain": [
" ⎛ π⎞\n",
" t √2⋅sin⎜t + ─⎟\n",
" ℯ ⎝ 4⎠\n",
"y(t) = ── - ─────────────\n",
" 2 2 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import sympy as sym\n",
"sym.init_printing()\n",
"\n",
"t = sym.Symbol('t')\n",
"y = sym.Function('y')\n",
"edo= sym.Eq( sym.diff(y(t),t) , sym.sin(t)+y(t) )\n",
"display(edo)\n",
"solgen = sym.dsolve(edo,y(t))\n",
"display(solgen)\n",
"\n",
"t0=0\n",
"y0=0\n",
"consts = sym.solve( sym.Eq( y0, solgen.rhs.subs(t,t0)) , dict=True)[0]\n",
"display(consts)\n",
"solpar=solgen.subs(consts).simplify()\n",
"display(solpar)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"On définit la solution exacte à utiliser pour estimer les erreurs:"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {},
"outputs": [],
"source": [
"sol_exacte = sym.lambdify(t,solpar.rhs,'numpy')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Correction de 2 à 5** "
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "cnwNf75iGe0F",
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"On initialise le problème de Cauchy et on définit l'équation différentielle : `phi` est une fonction python qui contient la fonction mathématique $\\varphi(t, y)=\\sin(t)+y$ dépendant des variables $t$ et $y$.\n",
"\n",
"On introduit la discrétisation: les $N+1$ nœuds d'intégration $[t_0,t_1,\\dots,t_{N}]$ sont contenus dans le vecteur `tt`. \n",
"On a $N+1$ points espacé de $h=\\frac{t_N-t_0}{N}$."
]
},
{
"cell_type": "code",
"execution_count": 72,
"metadata": {
"colab": {
"autoexec": {
"startup": false,
"wait_interval": 0
}
},
"colab_type": "code",
"id": "OLLu4aFJFENg",
"scrolled": true,
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [],
"source": [
"t0 = 0\n",
"tfinal = 1\n",
"y0 = 0\n",
"\n",
"phi = lambda t,y : sin(t) + y\n",
"\n",
"N = 8\n",
"tt = linspace(t0,tfinal,N+1)"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "SnKKU27oGyQb",
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"On calcule les solutions exacte et approchées et on les compare.\n",
"\n",
"Nous pouvons utiliser deux méthodes différentes pour calculer et afficher les solutions. "
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "SnKKU27oGyQb",
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"**Méthode 1**\n",
"\n",
"La première méthode est celle utilisée lors des deux premiers TP:\n",
"- on crée autant de liste que de solutions approchée\n",
"- on compare les graphes des solutions exacte et approchées \n",
"- on affiche le maximum de l'erreur"
]
},
{
"cell_type": "code",
"execution_count": 71,
"metadata": {
"cell_style": "center",
"colab": {
"autoexec": {
"startup": false,
"wait_interval": 0
}
},
"colab_type": "code",
"id": "ySox-VsNGt8p",
"scrolled": false,
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAB+gAAANoCAYAAADjyrO+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd5QTVR/G8e+lF7uiiCJYEDuiqIiKgIioq4goYgdBUAQFBOlFqthAsQHSRESULgLSFhV7b69dwV4ABWHp3PePm2iySXazu5md3cnzOScn7GQy+WU3eZiZe+deY61FREREREREREREREREREREvFXC7wJERERERERERERERERERETSgRroRURERERERERERERERERECoEa6EVERERERERERERERERERAqBGuhFREREREREREREREREREQKgRroRURERERERERERERERERECoEa6EVERERERERERERERERERAqBGuhFREREREREREREREREREQKgRro05gx5kVjjDXGfJrDOjbObZ0x5n1jTA9jzB5xnlPfGPOAMWalMWZj6DmjPXwfkxPUGXlrELH+oCTWb+1VvSKSel7kmTFmD2PM9caYmcaYb4wxW40x640xS40xGd6/KxEpDjzcn7rdGLPIGLPGGJMVyp/3jDFdjTEVvH1XIlIceJU/cbZxZcRzL0vpmxCRYsnD/Z+VOZynWeDtuxKR4sYYUz0iI55PsE7r0ONdQj+XNsa0MMY8ZYz5InSstcEYs8oYc0OhvgERKbbykz+hZdcaY+YaY74zxmwK5c/Hxpi7jTH7FtobkCKhlN8FiD+MMQcDFwAWON4Yc5q19p0Eq/8OPBF+KnAA0BS4F7jcGHO2tXZXxPo3ATcCWcCPQE0P3kI8Y4HfEjy2Os6yGcAXCdb/MAX1iEgh8DDPzgaeAv4ElgPPA4cALYDGxpg+1toRXrwnESkePN6fagvsBlaEnlsROBd4ELg2tP7WVL8nESkePM6fyNc5AHgU2IzLIRFJc4WUP3fHWfZVwSoXkYBrYYypY619N5f1jgRmAhtx53rmAvsDlwNTjDFnWWs7eFqpiARNsvkDcBVwFPAa8CtQBjgdGADcYIw53Vr7p3elSlGiBvr0dSNQEngAuBPXqJ7ogOo3a+2gyAXGmDLAG0Bd3MniFREPPwLch2v8PgfITGXhOXjCWvthHtZ/1lo716NaRKTweJVnvwLXAM9ba3dGrD8EeBsYbIx5ylr7c+reiogUM17uT50RrwHeGDMFuAG4FphQwPpFpPjyMn8iPQZswXVavLPAVYtIEHieP9mfIyKSi++B6sAI4Pxc1v0HuBWYYq3dEl5ojOmDO9fT3hgzwVr7tke1ikiw5CV/AFomONdzN66R/nagfyoLlKJLQ9ynr9bABqAfrhdyK2NMuWSfbK3dDqwM/XhAtsfetdZ+lugqDBGRFGuNB3lmrf3IWjs9snE+tPxr4DlcJ7czC1S5iBR3rfFufyrR1fGzQvdH5aVQEQmc1niUP2HGmBbAlUAHYFMBahWRYGmNx/kjIpJHH+OOkxobY87LaUVr7c/W2iciG+dDy/8ExoV+rO9NmSISQEnnD+hcj0RTA30aMsachRt2fmYoEJ4G9sEN5ZPsNkrjejpbNBy8iPjExzzbEbrfmeNaIhJYPubPxaH7hHO+ikiwFUb+GGP2x109P9Vau7jgVYtIEBTW/o8xppUxprcx5nZjTN2C1i0iaaEfsAt3FWt+6VyPiORHKvJH53rSkIa4T09tQvdTQ/dP4+b3agM8E2f9ysaYQaF/G9y8PE2AqkBPa22B5gEzxjQAGuThKSuttSvjLL/FGBNvDvqt1tp74ixvZYw5OcFr3KN5XUWKhULPM2PMHrgTUFuBV/NduYgUd4WSP8aYjsCBuJPf9YDTgIXAswV+ByJSXBVG/jwauu+aioJFJDAK6/hreuQPxpi3gFbW2tX5rlxEAs1a+6UxZhLQzhjTwlo7K9cnRTDGlMRNIwawLOUFikhg5Sd/jDHXAEcDewKn4NrH3gUe9rJWKVrUQJ9mjDEVgZbAD8ArANba740xrwONjDGHWWt/yPa0g4CBcTb3AvBiCspqkGD7OVkZZ1mHBOtuAOI10F+Vw/ZH4xrfRKSI8jHPHgEOBu621q7LV/EiUqwVcv50BI6P+Hka0EFTCYmkp8LIH2NMc9yx0lXa1xGRsELa/5mLO3/zIbARqAF0A24AXjLG1NLFFCKSg0HAdcBQY8zcPB4zDQBOxs1NrytYRSSvBpG3/LmG/66aB1gCXG+t/cej+qQI0hD36ecKXK+cadZaG7F8Ku7z0DrOcz6y1prwDXcV11XAGcBrxpijC1KQtXZQ5PaTuA1KsKnaCdbfJ8H6zXN4jb8L8p5EpFAUep4ZY/oBNwJLgaEFfwsiUkwVWv5Ya08IrV8ZaIWbD/EtY0yVlL0bESlOPM2f0ND2jwPzrLXPefQeRKR48nz/x1o72lq72Fr7m7U2y1r7kbX2RtzV+Ufz39WtIiIxrLU/4y6qOAZ37iYpxpjrgf64uaQ7e1OdiARZXvPHWpsR2jc6ANdQfwjwnjHm+JyfKUGiBvr0Ex6O7Olsy58DtgOtjTEmpw1Ya/8MnazphRtutVeqixQRSUKh5pkxpgswBDes/WXWWs1JJpK+Cn1/ylr7u7V2BtAcd0X9yHzULSLFn9f58wBQDjd6h4hIJD/PJ00I3Z+V5Poikr5G4EZTHWSMKZvbysaYK4BJwBfA+bp6VUQKIE/5A2CtXWetXQg0xTXWP+FhfVLEaIj7NGKMORJ31RXAZwmOmw7HDTmfmcQm3wndn1LAuhqQmjnoRSRNFHaeGWM6AaOAN4CLrLVZealXRILD7/0pa+17xpi/ImoQkTRRSPlzMrA38HOC7c8JLW9jrZ2cxGuISAD4vf8DrA3dV0hyfRFJU9ba9caY+3EXWNwGrE+0bmhan+nAd8B51to/CqdKEQmivORPnOf+ZIz5HKhrjCltrd3hVZ1SdKiBPr20BgzuYOm7OI8fADTD9YpO5oBq39B9QUdiaEBq5qAXkfTRmkLKM2NMR2AM7iRSU2vtpnzUKyLB0Rof96dC87/uDfyVzPoiEiit8T5/ZgPvxln3FKA2sAxYA3yVVMUiEhSt8fd80umh+9VJri8i6W0U0AnojWsoi2GMuRSYAfwANLTW/lp45YlIgOWaPzmoAlggt/nrJSDUQJ8mjDElcHNf7AKujbfTYYwpA/wCtDDGdLLWbsxle51CP75akNpCc8oPKsg2RCR9FGaeGWPa4+YPeh9oktN2RCT4Cit/jDEHA3tYa7/Otn4p3MFeCWBxAd+OiBQjhZU/1trBCdYfhGugf9RaOzefb0NEiqFC3P+pCmCt/THb+jWBobgT1s8V7N2ISDqw1m42xgzFXWxxe/bHjTEXA8/jcqthaO5oEZECyyl/jDF7AkdZaz/IttwA/YCDgIXW2t2FVa/4Sw306aMxUBV4MVGPQGvtdmPMNFxwXAWMDz1UOXRCJuwA4FzgBOBnYFjkdowxZwPtws8N3TcxxkwO/XuVtfbJAr2b+G4xxvyW4LG51toPsy1rZYw5OcH6GkZfpOgqlDwzxjTiv3l/XgO6xBnKUVkhkl4Ka3+qJrDCGPM6bi7EP4EDQ69/GPA/8j76kIgUb4V2PCcikk1h5c+pwExjzMvA17g5XGsAGUBpYIC19v1UvSkRCbyxQDfgyMiFxphjgFlAGeBl4KY453o+VIdEESmAuPkD7A+8b4x5H/gE+DW07GzgWFynoTsKsU7xmRro00eb0P3kXNabhDuguon/DqgOIvok8DbcsIYPAcPjzM9zFK53daRjQ7cwLxroO+Tw2Grgw2zLrspleysLUIuIeKew8uww3DCOAJ1zeJ2VuVYsIkFRWPnzBXA/bhqgZsA+wObQ8keBR6y1Wfl8DyJSPBXm8ZyISKTCyp/PgKnAabhpNfbAzd26GBhjrV2a/7cgIunGWrvDGDMAlyuRKgNlQ/++IcHTpwBzPSpNRAIuh/z5EzfsfUOgKa5xfiuuY+JQYJS1Nul566X4M9Zav2sQEREREREREREREREREREJvBJ+FyAiIiIiIiIiIiIiIiIiIpIO1EAvIiIiIiIiIiIiIiIiIiJSCNRALyIiIiIiIiIiIiIiIiIiUgjUQC8iIiIiIiIiIiIiIiIiIlII1EAvIiIiIiIiIiIiIiIiIiJSCNRALyIiIiIiIiIiIiIiIiIiUgjUQC8iIiIiIiIiIiIiIiIiIlII1EBfhBljDjfGbDPG3JZteWtjjDXGNPCnsn/rmGyMsdmWlTDG/M8YM8uvukQkecoZEfGL8kdE/KL8ERG/KH9ExC/KHxHxi/JHJD410BdtI4A/gCf9LiRZ1trdwBDgcmPMmV69jjEmwxizyhizyRizwRjzUl5fzxhT3xjzgDFmpTFmY+g/g9E5rH+hMeY5Y8xXodfcHArp0caYKnHWnxzaZk6367M9p6Qxposx5iNjzBZjzN/GmKXGmHNzqOuQ0Gv9ZozZaoz5zBjT1RiT6/c79J/jptzeuwSaciaBVORMaDtJfUeNc6Ex5gljzKfGmH9COfOuMeYOY0ypBNvfzxgzyhjzfWhn93djzNPGmOq51NXKGJNpjPnLGJMVyrbJxpg9s62X16wclEPmbYqzfgVjzJ3GmGeMMV8aY3aH1t0np/olEJQ/CRSH/Mnrd9f8d+Cd021CtufkKX/ivGae9nOMMaWNMR+G1v8w2deRYkn5k0AxyZ+TjTFDjTFvGWP+DG3/q1Be7J+gnuuMMWONMe8Zt79kjTGXJVh3D2PM9caYmcaYb0LbX2/ccVlGku8/x/zJz3uQwFD+JFBM8ifPxy7GmFLGmJtD3/e1oX2aT4wxA+M9Ly/7P/l8Dw1MzvtjdZL4NUvxpPxJoLDzJ7TukcadP3nBGPOLyeMxiEni2CWX73r3BM9pbIxZbIz5ybhzRV8bY540xhyVbb385E/N0LY+DOXhVmPMd8adbz812fcuxZLyJ4HilD/GmBuNO57KMsasM8bMMsYck2DdPLVzhfZ7EuXVgmzr5jl/Ip5bzhjTK1TX5lBd7xtjBub2/r2QsFDxlzHmeKAl0Mtau83vevJoBnAvMBBomuqNG2NaA5OA34EJuM9xK+AVY8yF1tplSW7qJuBGIAv4EaiZy/oXAXWAt4FfgN1ALeB24HpjTD1r7ZcR688FVsfZTkmgD2CB5RHvywAzgcuAr4HxQEXgcmCFMaaltTaqx5Yx5pBQPZWBWcB3QGPgQeAkoE2iNxN6vQmJHpfgU84klqqcyeN3tCywENgKZAIvAnsBGcBooKkx5uLQDmJ4+wcAbwJHAq+GXqM6cDVwQSiXvs5WU4nQe7sB+Ap4GpeDVYELgb2BfyKektesDJtCbAZuj7PegcD9oX9/D2wA9knyNaSYUv4kVlzyh7x/dz8E7k7wWGugGrAk2/L85k9+93P6AkflupYUa8qfxIpR/jwBnA68BTwD7ATOBboBLYwxda21v2UrayguZ/4Mvb+qObyFs4GnQusuB54HDgFaAI2NMX2stSNyeP/J5E9+3oMUc8qfxIpR/uTn2OV53HmeL4BpwC7c930QcJUx5jRr7eaI9fOy/5Of9xD2MrAyzvJfcnk/UgwpfxLzKX8AzsG9p53A58DBeSw92WOXNcDkOMtfz77AGHMHLjvWAXOA9cAJuFy6yhhzlrX249Dq+cmfE3F5+DqwCtgEHA5cgtv/ucZaOyOJ9yTFiPInseKUP8aYQaHnfA88BuwbqvX8UDZ8ErFuntu5IsQ7b/RVtp/ztf8TOo++FDgZdx79UaA0UCNUW6JzVt6x1upWBG/Aw7id9kPjPNYa17jbwOcaJ7uPUNzH7sU1YFdP8WvujzsA+h2oErH8KGAjLnxKJ7mtOsDxuAbzBqHf6egc1i+XYHmb0HOnJvm6F4XWfzHb8itDy1+JfC3ciaS/gLXAXtme83ToOW0jlpUEFoSWn5dDHR1xIdwtt/euWzBvypmEr5nKnEn6O4rbIegN7J1tGxVwO1kWaJntsUdDy+/NtvzS0PKlcWrqHv7OAyWyPVYizrK8ZuWgvHx2gD1wO437hn5eGXr+Pn5+9nTz9qb8SfiaxSl/UvLdxR3UbcWdBCqb7bE85U+25+ZpPwd30Lod1/HSAh/6+fnTzbub8ifhaxan/OkEHJ5tmQHGhNZ/LE5NjYHDQv8eFFrvsgT118J1diyVbXkN3HHZDuCQHN5/rvmTn/egW/G/KX8SvmZxyp887f/gOuKEz/OUzPbYs6HHbsy2POn9n3y+h/A2B/n5WdOtcG/Kn4Sv6Uv+hB47HDiD0Dlg8nAMQpLHLqHHVia5zdKh38U64OBsj90S2takbOvnNX/KAibOax8HbAF+9PMzqJs3N+VPwtcsNvkDHIM7vvkfsGfE8nqh5a9mWz8/7VwrE/0N4tST5/wJPb4g9FmM91ipZF475Z89P17UzxsRO6K4nvGv4Hpr/QqMJLTDjLuy8OPQfw7fAjdl287RwH24q4H+wp1Y/Azol/2LE9qWBWbEqadv6LH7I5aVxPVQez3Be0gYXLieIkNxPXPDJzvnArXirLs6dNsP14P/l9AHtEG231N9YAUuGL6PeP7kRF+a0BfcAv1T/PcL7xD0jfPYqNBjFxTgczE6H8/dK/TcN5Jcf2Zo/RbZloeD9MI4z3mA2JDdC9gGfBVn/Vqh9acnqKEa7grZewry3nXL9fOknEnjnCnIdzTO+leH1n8k2/KfQr/PinGe817oOUdGLKsQ+ix9Q7YTRHn8bI/OYZ1BiT47Sb7GStRAn+8byp/IdVej/PEsf+Ksl6/vLq6RygJjkvxsj05im3naz8H1Un8fdyVHCdRAn68byp/IdVej/Cm0/IlY/+DQ+p/mst4gcmigz+W5Y0PPvSLB4wU6zkr2PegW83tT/vy3rvKnCO3/4K4ss0C/OI9dH3qsexKf7dH5+L0mOob893OQyr9jut5Q/kSuuxrlT77zhySPQcjDsQt5a6CvHFp/WZzHqoYeW5DktvK0Dxd6zvuh55RN9jnpflP+RK2r/PEwf3DHNha4Ns5jc0KPHROxLE/tXKHlKxP9DfL4e020/1OPbB2NisItneegPwM3jOYfwDjgb+AuYLgxphvuysL3cENL7A1MyDY/wuW4K6e/Cq0zHvelH4Ibvupf1tqncMNhtAwNWwGAMeY0XDB8hAuwsFq4q4nezMsbihjquC8uhB4FXgDOA15PMHdFWVwo1ccNfzEWF1BhZwHLcENrPQ4sSrKcD3DB0Cgv7yEJ4b/B0jiPvZRtncJycej+09xWDP2NLsH1Epqf7eGDQver4zw1vKxBxLIzgTK4v08Ua+1HuN5XMb+LiCEXf8V9/sQ7yhknXXMmX9/RBHaE7ndmW34QsNZGD4kYtjp03yBi2fm4IRjnAqWNMVcaY3obNyfiYUnWkqxzjDF3GTdH40XGmLIp3r7kTPnjKH+ySWH+pMpNofuJqdhYPvdz+uCu2mhr4w8BK3mj/HGUP9kUQv6Ep9LxKq8gh5pSdJxVGO8hyJQ/jvInGx/3f/4Xuj/fGFMy22MXEmo8K+BrJJLbe6hhjLk9NA/r1aHPmuSf8sdR/mSTj/zJTV6PXfYxxrQzxvQJnftJNCz+77gG0NrGmIOyPXZR6H5FkjXmKUONMUfipvP4xha/IdCLAuWPo/zJJoX5k0yt9SOW5bWd61/GmFahc9W3G2Pq5q1MIHH+XBm6n2WMqRTKxV6h19srH6+TEuk8B31TIMNa+yKAMaY/7orCzrhePbWttWtCj00C3gXuxM3RBDAVeNBa++98uqED8nFAO2PM2dbaVRGvdwuul8bDxphXcF+MabgPyrXZ/vMJB8z7eXxPY4BjgWustdMj6hqKC+FxuLleIlUOvbcW2d5Lg9A/G4fqeyYvhVhrtxtjPgXOMMaUCO8wGGP2AbrkYVN/W2tHR/xcI3T/TZx1w/Msezp3qDHmItwwZeVxw441xfU+S2aOiutwgTnVWrsj22NrQ/fVcHN/RKoeuj86YllOvwtwv4+zjTEVszXedcD9h9LAWrvVfWzFI8oZJ11zJr/f0XhuDN1n3xFaCxyYYBvVQ/eRuXFq6H43rvdsjYjHdhhj+lpr78ullmQNzvbzL8aY6621yR7QScEofxzlT3ypyJ8CM8bUAmoDH1hrP0jRZvO0n2OMORF30D/EWpt9/0vyR/njKH/i8zJ/Wudx/TwxxuyBO4G5FTdnYXapOM5qHbr35D2kAeWPo/yJr9D3f6y1HxtjnsB9Vj42xizFNXrUxw0X28la+25BXiMHub2Ha0K3sC3GmH7W2gc9qifolD+O8ie+vORPQvk8dqmFa3ANs8aYp4BbrbVb/l1orTVuDvrJwCfGmDm4q6mPBy4AnsR9JpKRY/4YY47DzUleGjgMaIbrsHRrktuXaMofR/kTXyrypwbwj7X2jwTbh+ha89rOFWl65A/GmLeAVtba1UnWmih/wufEa+I+r5GN8uuMMVdZa5cn+Rqpk+jS+qDe+G9Ii+VxHnuSBMNV4D7ga5LY/ikkGCoq9Nq7cEPQTAyt1ynOeiNCj52f4DVak23oD+CA0LbjDjUD3B96zgkRy1aHlh2fw+/pnRze62RyGHYCWBjaRqWIZdVDy5K9rc62za9Cy2PmhAAqhR57qQCfi9FJrPtIthrfBY5I8nU+yv53iHjsRv7rPV02YnlV3H+mFvgyYnmf0LJ2CV7rxdDjB0csOwzXc+yxiGVJv3fd8vx5Us6kcc7k5zuaYL024WyI89ik0GMjsi3PiHh/YyOWPxFathN4A9cwtifuYOvH0GMZSXy2R+ewzmW4Ia+qAeVwO2j9cD1Us+J9FrI9f2XoNfYp6HcxHW8of5Q/tnDyJ866ef7u4uaii/s5yeFvNjqHdfK0n4PrrPwebv+sdMRyi4a4z/NN+aP8Ca1b6PkTWv8E3NDyfwAH5rLuoNC2L8vjZ3xyDp/BAh9n5eU96Bbzu1P+/LdM+VME93+AnrhjsMjfwzRymc82rzmSzHvANbZ1x3UQqABUAa7FTZ9myTb0sW65/q6VP/8tU/4UIH/I5RiEfBy74IYtPx13BfM+QEPcuSALPJXgORfgGtcif29vAuck+Z3INUOBK7Jt/3egSV6/f+l+Q/mj/LGFlj/bgZ8SPHZa6PmR559vDOcASbRzhR7rgutsUhm3f1ILmBJel4i57HOoM6f9ny9Cj+0MfT+qAfvjOgZtBTYAVQrynczPLZ2voP8ozrLfcnnsjPAPxpgSQFtciByP63ER2UX+4OwbsNauNMbch9sxPxNYbK19JM5r7R+6/yvntxDlNNy8M3sYYwbFefzY0P0xRA/FvsVa+1kO2y1IT95w/QcAfwJY19OlIJds+365t7W2E9DJGLM3LiiGA+8ZYy6z1r6c6HnGmDrASbj/DOINhz8NN8zrubie1YtxYdQCd6C0L+4/p383GS4pD+U/iRvmpmceniP5p5xx0jVn8vMdjd6AMY1wjeo/4U6aZDcANzRiL2NMPeBt3A7G5cAnuN6kkbkRntpmG9DcWhv+PL5kjGmLG5aoK7AgvzVba+dmW/QNMNQY8zuuh2sv3HyL4i3lj6P8ye8Gcs+fAjHGlMFdtbUNtw+UCnndz+mF25era2NHNpL8U/44yp/8biCP+WOMOQS371IGuNzGv7KjQIwx/XAnmpbi5sLMrkDHWYXxHtKE8sdR/uR3Ayne/wl9psbhrhTtgBuedwdutI1HgDeNMadZa38s6GtFvGaO7yH02Yj8fGQB04wxH+Ea/+4mRVMPpRnlj6P88U6ej12stT2yLco0xpyH+0xeb4wZbK3996pbY0w74DHgIVxGrcWdyx4NrAid+34x0eslm6HW2pludVMWd1FHN2CRMaa7tXZUMu9Noih/HOWPt/Ky/by2c2GjRxcA99m90RhTCnfu6FrcFAxxJZE/4XPiHwE321CrPfC4MaYq0Bv3PRiS3FtMjXRuoN8YZ9nOXB6L/H2NAToCa4DZuGDbjuuNdgduzot45vLfQfujCdYJDy9TPsHj8ewXuj+XnOeUqJjt5z9z2W5BTgyE688qwDay2xC63wvX2ybSXtnW8ZS1dgPwijHmQlwvninGmCNs4vl/cpxj1Vq70xjTFNfrqRWu986fuOCZhxtGMfLvFX6feyd4vfDvYyOAcfPCnA9cbK39J+d3JyminHHSNWfy9B3NzhhzNjA/VEMja+3P2dex1v5ojDkdN5z8BUBd4Dvc52ZPXK/SeLnxbkTjfNhSXEPZqXhjCu5A7yyPti/RlD+O8ie+AudPClyGO1ifYa3Ny8F6XHndzzHGHA30xw3l59XQsulK+eMof+JLaf4YN0fqcuAQoKW11ovpOLrgTtS8irvqfme2x1tTgOOswngPaUT54yh/4vNj/+cm3Mne2621kSeVZxljtode7y7cMMQFVpD3YK39NDSM7DnGmMOstT+koqY0ovxxlD/x5Zg/uUnlsYu1NssYMz20vXqEhsU2xhyDm5d7fraG/TeMMZcC3wP34K7GjVdjnvPHuqHQPwPaGmMOBO4zxrxorf0q328wPSl/HOVPfAXKn4jn5rb9f2vNRztXTibgGujPIkEDfZL5E65vQUTjfNgCXAO9V+fEE0rnBvp8Cx1A34rrbXGmjZivxRhzBi644j2vAm64jK24+X8fMsa8HOcgPvzh3I/khb9gw6y1/fLwvNx6vhSk582+oft/v2wpmJvja9wX5SjclaKRcptvwxPW2n+MMW8CzXFXrn6ffR1jTDngatx/StOzPx6xrS24HaT+2Z5/Q+if70Uszm0ukhrAr/a/uUVODt2/aOLPh3hHaK6hKdba1olqlMKhnElaUc6ZvH5H/2WMORM3fNJm3I7F19nXCQudOGkdZxvhzkCRuRE+yInZwbPWWmPMP0TPwZMy1s3Z9A+ux6QUYcqfpKV9/hRQuONiwh7QeXRy6D7Z/ZzjcFeq9jDGZL+yBKCWMcbihv6rnqIaJRfKn6Qpf9z6BwIrQq91jbV2ThL15YkxphMwCjcc7EXW2ngn5U4O3ef5OKsw3oMkR/mTNOVP3lwYul8Z57HwstqpeKEUvYfwnLE6ZitEyp+kBTJ/kpTqY5d43/XzcW1FK7OvbK393RjzOXCyMaaMjZjfG1KWP0tx0zWexX/nrsRjyp+kpXP+hF+jrjHmwDgjfcWtNY/tXDnJcd8kD/nzFVCH+J0ewsvy0pEkJdRAnz+H44aOWBYZWiE5XRk4CqiJC7atwFhcD6XW2db7JHRfg+S9gwuZunl4jteOBr7LdhJjH2BgHraxBjeMTtjLuF435xMbXBeE7l/JU5WpUSV0vzPB45fj3vvToSvv8+qa0P2MiGVv4nqzNc6+sjGmFnBQtvXfAPaIs+2DgYtwPRbfBF7LR32SesqZ5BTlnMnrdzT82BnAYtzV7I2ttZ8n8VrZt7EHcCluCKbIq7AyQ/fHxnnOAbihmjxpjDPGHIXboX3Li+1LSil/kqP8ySdjzKG49/gD7qrRVMjrfs5qEncOaIvreT2H/w4GpXAof5KT9vljjKmEy49jgBustc8lUVueGGM64j5H7wBNrbWbEqyar+OswngPkifKn+Skff7kUfiqwwPiPFYpdL+toC+SomPIkrj5hncCXoyeJIkpf5ITuPzJg9Wk9tjl9IjthuWUV+AyazfZzn2nMENzO7cu3lD+JCed8wdcrXVxtWafojCvbXLx2rlyEi+vgDznT2botWPOiUcsW5NkTaljC3nSe79vQAPcF3xQnMcGhR5rEOexle7XZcH9h2FxB9gmYp2jcb1oLDA52/MvDS1/Kfwc3HAOFrgy27r74/7Dey7Be2gdr07gudDyW+M8pwRwbrZlq4HVef09RawzOfw7ifNY+Hc0McV/v/1xPVp+B6pELD8K17vqO6B0tucciTvpUTqH7Ybf7+gc1qmfYPkNoed+lsNzl4XWaZjL+9srzrJOoefOjfPYtNBjbSOWlcTNa2ZxwZTsdyLhe9ctz59T5cx/y9I6Z/L6HcX15Psbd3B1chK1lgbKZVtWBngmtP0ucZ4TzqPWEcsMbp4eCwxP4rM9OsHjZYA6cZbvg9sRiltTvO8BsE8q/67pcsvpe4XyJ6nfU8Q6k1H+5KX2pL+7QL/Qunfn47M9Op/fiaSfF1r/w1T+bdPhpvyJWqb88Xb/Z3/cVT67idifycN7DX8eL8thnfah7b+XTK7l8rcener3oFvC3/WgHP7eDeI8pvyJXUf5k7faV5LD/g9uaFcLLAHKZPvbTQk9NiCJz/boHNbJa4bWBUpmW1YSNz2aJc65J91y/H0m/F6h/Enq9xSxzmTSKH/i1JKvY5BEz8PNHb9nnOWXhz4PvwLlI5bXC23rV+DgbM9pF3psRbblec2fM4nIwmy1/o1rZDsklX/jIN+UP1HLlD8e5k/oNXcC/4vMlVBu7ARWxXlO0u1cQFWgapz1a+KmXNgNnJLtsbzmz964TkxZwLERy/cA3g3V1SSVf+NkbrqCPh+stb8YY+bghjR/xxiTifuiXooLphaR6xtjKuN6ua3DHXzb0ENtcb2Ixhpj3rDW/hTa/jpjzGtAA2NMKZttjrsc3Ir7sjxmjGmH63mzCTgM9x/ggUC5/L7vPAr32JmXyo2GfjddcPO4v2+MmYELm6txQ1C0t9buyPa05bih5w8noqdNaG6KdqEfK4fumxhjJof+vcpa+2TEdl4ODefzPvATbhjo03BhsBH394xhjKkGNMKF6spc3uJbxpg1wOe4cDsHOAP4gP+Ggo10F+4/mXHGmAtCr9EYNzzKFGvtslxeT4oo5UxSinzOkIfvqDFmP9yJm71x8+ZcZoy5LNvrrLbWTo74+SDgM2PMS7jpNSrirtQ6HLdz+XCct3gr7kqviaHtf4PboToT91kZEblyHrOyAu7z+iHwIaGdTNzQjgfgejXGzEtljLmf/3ppHxO6f8y4eRkBultrdRVrIVH+JEX5Q/6+u8aN/9wad/AzKeEvg3ztq0kxp/xJivIHZuFO5H4MVDfGDIrzfqKWhf5uZ4d+PDl0f3vEaz1prV0VWrcRruMiuJOVXeIMXb/SWrsy+8I8yPN7EG8pf5Ki/CHP+z+PAjfirjj7X+i4bQfuHNGJuNHLoo7Z8rL/k8/38ASwX+jz+GPoufVD72U10BkpVMqfpAQqf+DfUQzvz7btwyK+62uttd0L8PZuAm4yxqzAXRW6Gzelxrm4KVhvtBFXTFtrXw+9/6uAz0OfyT9x+03n4xq17oqoPz/5MwI41hjzaqimErgGuAtwF450tknMXS+po/xJStrnj7X2C2PMUNyIAR8ZY2bjLsa6GpcNt8Z5i3lp5zoVmGmMeRm3b7QBN+pCBu7itAHW2vcj6s9z/lhrNxhjbsFduf+WMWYW8A9wMXAEriPKkjjvw1uF3SPA7xsp6FkU+nlP3JAUa3DDeHwG3I77cvzbswj3n8vi0LLL42y3Ke4/yBVAiYjl14eec1Gc57TOoc6KuB66H+DmXdiE+1BPz/76eNuz6CXgF6CUR3/HDNzJks24xvEluHlS4q27OvReqif4PSa6Tc62fm/cUNE/43r0bQ793UcRp4dPxPMGhrbXP4n3NQj3n9k/uHD7OPS65XJ4zqG4ntd/hOr6HOhGth7RSXwnRnvxt0rHm3Imat20zpnQY0l9R4Hq5JxJFncyOPI5ewJP4Xa8tuJ2YFYCrXJ5b9WBqbgG9O24xv37iN+7sXUuNU2OWLcs8BBuGPs/cCef/gZeBTpEfv4S/P4S3WJ+r7ol/Nsm/F6h/Enq9xSxzmSUPwnzJ9trJ/3dxZ0QssDyJH4PrXPZ/uQ8fCdG5+H3b9EV9Pn53Cb8XqH8Ser3FLHO5MjfSbbH0j5/yD17Yn534d9pDrfWcT4HOd0S/v3i/K1H5/C7S/o96JbU7zrm74LyJ6nfU8Q6kxN9/lD+ZH/tpPZ/cNN83Qt8EfpcbQW+xJ0Y3zeHz0Ku+z/5eQ+hz/Qy3IUnW0O/74+BoWgUs/x8bhN+r1D+JPV7ilhncuTvJNtjgcqf0Lq5fX/j/i7jbMcS/wr6psBs3PmiTaF6vgeeBGom2FZJ4DbcOZ1/cOd0fgaeBo7LY/3x8ucK4PlQTZtDNa3GXf1b1+vva9BuOX2vUP4k9XuKWGcyyp9c8yf093of18lnPS5jjk2w7iCSbOfCNcZPAj7FTde6A3fOej5wfj7qj7sPF3ruubg2vg2hz/uHuNwz8db3+hYegkKKGGNMOVzgvGOtvTzbY61xH9iGtmC99gsk1KPmRmutyba8GvAtLvSG+lGbiOROOSMiflH+iIhflD8i4hflj4j4RfkjIn5R/ogkVsLvAiQ+a+1WYABueIYT/a4nj/rghsAZ5XchIpKYckZE/KL8ERG/KH9ExC/KHxHxi/JHRPyi/BFJTHPQF21TcPNNHYwbDqLIM8aUwA21cYO1drPP5YhI7pQzIuIX5Y+I+EX5IyJ+Uf6IiF+UPyLiF+WPSBxqoC/CrLW7gRF+15EXxbFmkXRWHL+zxbFmEYlVHL/LxbFmEYlVHL/LxbFmEYlVHL/LxbFmEYlVHL/LxbFmEYlVHL/LxbFmKX7UQF88fQjcjevB46e5RaAGEfHGhyhnRMQfH6L8ERF/fIjyR0T88SHKHxHxx4cof0TEHx+i/JE0Zqy1fteQowMOOMBWr17d7zJEpADee++9tdbaSn7XkVfKH5HiT/kjIn5R/oiIX5Q/IuIX5Y+I+EX5IyJ+yW/+FPkr6KtXr867777rdxkiUgDGmDV+15Afyh+R4k/5IyJ+Uf6IiF+UPyLiF+WPiPhF+SMifslv/pRIdSEiIiIiIiIiIiIiIiIiIiISSw30IiIiIiIiIiIiIiIiIiIihUAN9CIiIiIiIiIiIiIiIiIiIoVADfQiIiIiIiIiIiIiIiIiIiKFQA30IiIiIiIiIiIiIiIiIiIihUAN9CIiIiIiIiIiIiIiIiIiIoVADfQikmfWwldf+V2FiKQj5Y+I+EX5IyJ+Uf6IiF+UPyLiF+WPiPilsPJHDfQikmdz58Ixx8DLL/tdiYikG+WPiPhF+SMiflH+iIhflD8i4hflj4j4ZdWQTMrUrM5HozM9fR010ItInuzcCb17ux2ks87yuxoRSSfKHxHxi/JHRPyi/BERvyh/RMQvO3fC3Dsy+bFkdc7e4W0DmYhIpF3LMqkzKIPqrOGkvhmQ6V0GlfJsyyISSBMnwpdful6MpZQgIlKIlD8i4hflj4j4RfkjIn5R/oiIXxb1zOSxHzOoSBY0y4AFC6BhQ7/LEpGgy8xk98UZlLdZAJisLMjwLoN0Bb2IJG3zZhg0yPWcvvRSv6sRkXSi/BERv4Tzp9PxmVx6R3VPe0+LiERS/oiIX5Q/IuKXLQszOe/BUOM8QLiBTDkkIl7KzMRenEHp7VnRyz3MIDXQi0jSRo+GX3+FkSPBGL+rEZF0ovwREb+MHg01f81k9DcZmDVrdHJIRAqN8kdE/KL8ERFfZGZS8rIMKlB4DWQiIgC0aYPZkhX/sawsaNMm5S+pBnoRScrata5hrFkzzT0mIoUrKn+2Z0L16jooE5FCsXYtvD4sk0UlMyi5TVdwiEjhUf6IiF+UPyLil103tKHMjsJtIBMRAdgwehJZVIj/YIUKMGlSyl9TDfQikpRhw9wQZyNG+F2JiKSbcP48dFmmOymkKzhEpJDMuCWT57ZkUG6XruAQkcKl/BERvyh/RMQvT5wxic2F3EAmIgIw6OWGXMo8bPahWytU0Bz0IuKf77+HRx+Fm26CY4/1uxoRSSfh/BnZNJNqt2W4k0Kgk0Mi4rnvv4eMWW3+m/swO13BISIeUf6IiF+UPyLil++/h67zGzLugtmxcxt62EAmIhI+/3xt/R8x1kKZMu4Bj7NHDfQikqv+/aFkSRg0yO9KRCTd9O8PDcmkW2ZE43yYGulFxEP9+0P70pPYXV5XcIhI4VL+iIhflD8i4pfw+eebzvgMrIWyZd0DapwXEY/17w8VS2zh+q8HwOmnw6JFUK2a59mjBnoRydEHH8C0adClCxxyiN/ViEg6CefPs+XbUGKLruAQkcITzp9T7mxIiQUvQIlsh006SSQiHonKnxcXuDPVkZQ/IuKRmPzR/o+IFJJw/vS65W/2fmQYXHBBoTWQiUh6C+fPtHqPUOrXn2DkSGjUCFav9jx71EAvIjnq3Rv22w969vS7EhFJN+H8Kf30JHcyKB5dwSEiHoja/9m6FXbvhtKl3YM6OS0iHorKn7JlYdcu5Y+IFIqo/NmxQ/s/IlJo/s0fcy+sXw8jRri8KYQGMhFJb717w+H7/EXT94fDRRdBgwaF9tpqoBeRhJYvh5degr59YZ99/K5GRNJJZP7scUlDdzKoVKnolXSSSEQ8ELX/s+cuuOsuOOoolze6gkNEPBSVP3tb6NEDKleGuXOVPyLiqbj7P4cfDi+8oPwREU+F82d4p18o98RouOYaqF3b77JEJA2E82fGySMosXGD6xxUiErlvoqIpKPdu12v6cMOg44d/a5GRNJJ3Pw55BD3QKlSsHOnGudFxBMx+TN5Mnz2GTz/PDRp4q7gEBHxQEz+zJkDr78O48a5KzmUPyLikZj8mTYNPvoIpk93w0wrf0TEI5H50/bnu935niFD/C5LRNJAOH/OqPIjdd54GK6/Hk46qVBrUAO9iMT1/PPw3nswZQqUK+d3NSKSTuLmT69erlF+8mS48043rL0a50UkxaLyZ9dmGDAA6taFFi38Lk1EAi4qf0rucPs+xx4Lbdr4XZqIBFxU/tgt0K8f1KkDLVv6XZqIBFw4f+bc8yWl+k5wvYSOOMLvskQkDYTz5+tzBmLWWhg8uNBrUAO9iMTYvh369HEdhq691u9qRCSdxM2fV191V5ENHeoaydRQJiIeiMmfe0bDL7/AjBlgjN/liUiAxeTPE+Pg66/d0NLZp/gREUmhmPy5/2H48Ud46ikooZlRRcQ7kfnT7O2+UL686yAkIuKxcP5cfvSnHPnaFOjSxU3pU8iS2tMyxlQ1xsw0xmwwxmw0xsw2xhyW7IsYY441xjxvjFlrjNlijPnSGHNH/ssWES+NGwfffQf33AMlS/pbi/JHJL3E5I+10L27G+K+a9dCrUX5I5JeovJn3R8wciRcdhmcfXah16L8EUkvUfmzeSPcfTecey5cfHGh16L8EUkvUfnz11oYPhwyMqBBg0KvRfkjkl7C+fN467cws2e5cz8HHuhLLcofkfQSzp/H9u2D2XNP11rvg1y7YhtjKgArgG3AjYAFhgKZxpiTrLWbc3l+ndDzVwLtgA1ADWCPAlUuIp745x83mkeDBtC0qb+1KH9E0kvc/HnuOXj7bTekfYUKhVaL8kckvcTkT+fBkJXlzlYXMuWPSHqJyZ8B98Gff8J99xX66B3KH5H0EpM/XYfCpk2uk2IhU/6IpJd/8+dcy5nzerqG+W7dfKlF+SOSXsL50/nkVznorRdgxAjYf39faklmrLSbgSOAmtbabwCMMR8DXwMdgAcTPdEYUwKYAiy31jaPeCgz3xWLiKfuv9+dD7r33iIxmqvyRySNxOTPtm1u/tVateD66wu7HOWPSBqJyp+vv4KxY6F9e6hZ049ylD8iaSQqf375GR54AFq1gtNO86Mc5Y9IGonKn+++hcceg7Zt4bjj/ChH+SOSRsL5M7b5YkyXl2HMGNhzT7/KUf6IpBGXP5bhlXtClSpw++2+1ZLMEPeXAm+GwwnAWvs98BrQLJfnNgCOI4cQE5Gi47ff3PmgK6/063xQDOWPSJqImz+PPAKrV7s9p8Kfb0P5I5ImYvKnd28oVw4GDvSrJOWPSJqIyZ+BA2HnThg2zK+SlD8iaSImf/r0gdKl3RQb/lD+iKSJcP60vGI3R0/sBUcc4TpH+0f5I5Imwvlzb7257PHJG26/pxBHbM0umQb644FP4yz/DBc+OQlP2FjOGPOmMWaHMeYPY8zDxpjyeSlURLw3ZAhs3ern+aAYyh+RNBGTP+vWwdChcOGF0LixHyUpf0TSRFT+vP46zJ4Nd90FBx3kV0nKH5E0EZU/n37qpvTp1MmdqPaH8kckTUTlz1tvuanFuneHgw/2qyTlj0iaCOfPQ2c8Ax9/7M79lCnjZ0nKH5E0MWQI7Niykzt+7Q3HHAOtW/taTzIN9PsBf8VZvh7YN5fnVgndzwCWAOcD9+Lm4ngmyRpFpBB8/TWMG+c6LNao4Xc1/1L+iKSBuPkzdChs3OjGW/SH8kckDUTlz1HWnZiuXNm3+Q9DlD8iaSBm/6dnTze0a9++fpal/BFJAzH7P3fd5eZ/7t7dz7KUPyJpIJw/Hdtuo/Kj/aF2bbjqKr/LUv6IpIFw/kw8ZxJlvv/SzT1fKplZ4L2T7KvbOMuSmZ063AHgaWvtgNC/VxpjSgL3GGOOs9b+L2bDxrQH2gMcdthhSZYoIgXRty+ULQsDBuS+biFT/ogEXEz+fPstPPoo3HQTnHCCn6Upf0QCLip/5syBN95wR2wVK/pdmvJHJOCi8mfFCli40HVM3H9/v0tT/ogEXFT+vPACvPKKm3/ev/mfw5Q/IgEXzp+hhz7hpjQcOxZKJHMNqeeUPyIB17cv7FMmi1ZfDIR69aBZbjNYeC+Z9PsL14sou32J37Mo0rrQ/dJsy5eE7k+O9yRr7ThrbR1rbZ1KlSolUaKIFMTbb8Pzz8Odd7qLxooQ5Y9IwMXNn9693fyHgwf7WZryRyTgovJn/x3Qqxccdxy0aeN3acofkYCLyp8Dd0OPHnDYYdC5s9+lKX9EAi4qfw7Y6UbvqFkT2rXzuzTlj0jAhfOnT6eN7PXwUDjvPDj/fL/LAuWPSOCF82d63Yco+fuvMHIkmGT64HgrmSvoP8PNw5HdcUBM7584z4XYHkjhd747idcXEQ9Z647HKlXyezSzuJQ/IgEWN3/eeMPtMQ0a5Of8h6D8EQm0mPwZN86Nd/bCC74PcYbyRyTQYvLn2Wfh/fdh6lQoV87v8pQ/IgEWkz8TJsAXX7hRhEqX9rs85Y9IgEXmz532fli7Fu65p0g0kKH8EQm0cP4cvf86znv3Hrj0Ujj7bL/LApK7gn4+UNcYc0R4gTGmOnBW6LGcLAK2AU2zLb8gdP9ucmWKiFcWL4aVK93QZv6PZhZD+SMSYDH5Y627lOPgg4tCjyHlj0iAReWP3Qh33w0NGsDFF/tdGih/RAItKn9Kb4U+feDkk+Gaa/wuDZQ/IoEWlT9mEwwc6E5QF4EhXlH+iARaOH/u6fIbZR95AFq2hDp1/C4rTPkjEmDh/Jlx0jDMpk0wfLjfJf0rmQb68cBqYJ4xppkx5lJgHvAjMDa8kjGmmjFmpzHm3xmsrbXrgBHALcaY4caYxsaYXsAAYIq19psUvhcRyaNdu1zvoSOOgPbt/a4mLuWPSEDFzZ9Zs9wV9EOGFIX5n5U/IgEVkz/33gt//unui8YVHMofkYCKyZ9HH4U1a+C++4rK/KvKH5GAismfBx6A3393+aP9HxHxUGT+3PjDENi+HYYO9busSMofkYAK5885VVdT67VHoXVrOD7egBn+yHX8RmvtZmNMI2AUMBU3PMdyoIu1dlPEqgYoSWyj/2DgH6Aj0B34FbgPGFLg6kWkQJ55Bj75BKZPhzJl/K4mlvJHJLhi8mf7drfHdMIJbmfJZ8ofkeCKyp8/f4YHH4RWreC00/wuDVD+iARZVP5sWu9OTjdtCo0b+10aoPwRCbKo/Fn/m2uYv+IKqFvX79IA5Y9IkIXz54VR31Cyxzi4+WaoUcPvsv6l/BEJrnD+fHfOAMyfJdyUqkWIsTb79BhFS506dey772okEJFU27oVatZ0c/+8/ba3F2wYY96z1haZcYuSpfwR8Ubc/Bk9Grp2deMOXXBBbptImvJHRCLF5E/7dvDUU/Dll3D44Sl9LeWPiESKyZ+7ursOQh9+CCedlNLXUv6ISKSY/Ol4i5t//vPP4aijUvpayh8RiRSZP+8c2Qqz4AX49luoXDnlr6X8EZFI4fypV/EjnvmiNqZHDxg50pPXym/+5HoFvYgE02OPwQ8/wMSJRWU0RRFJFzH589dfMHgwnH9+ShvnRUSyi8qf/30KkybBHXekvHFeRCS7qPz5YTWMGeNGDUpx47yISHZR+fPl5/Dkk9CxY8ob50VEsgvnz/O93sN0nAH9+nnSOC8ikl04f947vTdmn32gVy+/S4qhBnqRNPT33zBsGDRpAued53c1IpJO4ubP8OHugfvu87EyEQm6mPy5uCfsuSf07et3aSIScDH5c21fKFnSdVAUEfFQTP406wUVK0L//n6XJiIBF5k/p8/uBfvvDz16+F2WiKSBcP70qJPJAW8vcuec993X77Ji6LpZkTQ0ciSsXw/33ON3JSKSbmLy5/vv4eGH3RVktWr5WZqIBFxU/qxYAQsXusb5/ff3uzQRCbio/HnvPTcZYteucOihfpcmIgEXlT+vvALz57sryCpV8rs0EQm4cP48etlSWLbMXT2/115+lyUiacDlj2Xglp5QtSp06uR3SXHpCnqRNPPzz26q52uvhdq1/a5GRNJJ3Pzp08ddQTZkiJ+liUjAReVPrd1wWg847DDo3Nnv0kQk4KLy52QL5/WAAw6Au+7yuzQRCbiY/KnbAw45xE3vIyLioXD+XHfNbo4a3xOqVYNbb/W7LBFJA+H8eejsmVRc9Y6b2rBcOb/LiksN9CJpZtAg2LVLbWEiUvhi8uett+DZZ93wiocc4mdpIhJwUfnz7LPw/vswdWqRPUgTkeCIyp9FiyAz040etPfefpcmIgEXlT/PPw9vv+1OUleo4HdpIhJw4fx54Izn4JkP3LFX2bJ+lyUiaWDQIDA7d3Drj33g+OPh+uv9LikhNdCLpJHPP4eJE93FYocf7nc1IpJOYvLHWujeHQ46SHOQiYinovLn4K1u5I6TT4ZrrvG7NBEJuKj8OWwXXHIXHHUUdOjgd2kiEnBR+VNlG/TuDSeeWKRPUotIMITzp0vH7Rz4UF846SQde4lIoQjnz7PnPknpzG/ghRfcyK1FlBroRdJI795QsaKbblVEpDDF5M/cubBqFYwdC3vu6WdpIhJwUfnz6KOwZg08+SSUKOF3aSIScFH5M3kyfPaZu4q1TBm/SxORgIvKnyeegO++g8WLi/RJahEJhnD+DDpkvMuehQt17CUihaJ3bziwwiZafHo31K8PF1/sd0k5UjKKpInXXoN586BnT6hUye9qRCSdxOTPjh3uh2OPhZtu8rs8EQmwqPwpuR6GDoWmTaFxY79LE5GAi8qfCpthwACoWxdatPC7NBEJuKj8Kf23G+O+cWNo0sTv0kQk4ML507/LP+w5ajCce647/hIR8Vg4f549YxQl/vwdRo4EY/wuK0e6gl4kDVjrDswqV4YuXfyuRkTSSdz8GTsWvv4aFiyAUtoVERFvxOTPwOGwYYM7SBMR8VBM/owaBb/8As89V+RPEolI8RaTP0PugfXr4d57lT8i4qnI/Llj14Pwxx8wf76yR0Q8F86f4w/8k/pv3QuXX+46RxdxuoJeJA3Mn+96EA0a5IYYKrDMTKhe3d2LiOQgJn82bHA/NGoEF13kc3UiEmRR+fPnahgzBlq3dnMgioh4KCp/Nv/hOgY1bw5nneV3aSIScFH5s+4HGD0arrsOatf2uzQRCbhw/tzT7Q/KPHy/ayA74wy/yxKRNBDOn+nHD8Vs2QLDh/tdUlLUQC8ScDt3urk3jj4a2rZNwQYzMyEjw83fmpGhRnoRSShu/owY4a7guP9+9aIWEc/E5E/fvm7ew8GD/S5NRAIuJn8GD4YtW9w+kIiIh2Lyp39/98CQIb7WJSLBF5k/168Z6vZ9ikkDmYgUb+H8aVT9O05Y9bjbCapZ0++ykqJxZUUCbsoU+PxzmDUrBSNJhxvns7Lcz1lZ7ucFC6BhwwLXKiLBEpM/a9a4Kziuv15XcIiIp6Ly56P34Jln3BHboYf6XZqIBFxU/nz3lZvap0OHYnOSSESKr6j8+fRDmDoVevSAatX8Lk1EAi6cP4se/Y4SXZ6Am27Svo+IFIpw/rx0dj/M76Vg4EC/S0qarqAXCbCsLBgwwI0m1Lx5ATeWvXE+8kV0Jb2IZBM3f/r2dVfNDx3qa20iEmxR+XOZdSemDzjATUgmIuKhmP2f3r2hXDm3UETEQzH507Mn7LuvyyEREQ9F5s8Fr/V3V2gUowYyESm+wvlzwwnvU3XVdOjaFapU8buspOkKepEAe/hh+OUXmD49BSNJt2kT2zgflpXlHl+9uoAvIiJBEZM/774L06a5E0RVq/pdnogEWFT+LF7kOhE+/DDsvbffpYlIwEXlz+uvwezZboj7gw7yuzQRCbio/Fm6BJYsgQcfhH328bs0EQm4cP7Mv/sDzM2hkcsOOcTvskQkDYTzZ3SVXrD//nDXXX6XlCdqoBcJqHXr4J573MXt9eunYIOTJsW/gh6gQgX3uIgIcfLHhq5grVQJevXyuzwRCbCo/DlrF9S6C446yg0vLSLioaj8OcfCWT3g4IOhWze/SxORgIvZ/zn1Ljj8cOjY0e/SRCTgIvPn1Jm93cgdxayBTESKp3D+9DtjKfu+tRRGjSp2F2aogV4koIYPh40bYcSIFG2wYUOYOxcuuMA1toVVqKA56EUkSkz+LFgAK1fCo4/CXnv5WZqIBFxU/kyeDJ99Bs8/D2XK+F2aiARcVP7MmQNvvAHjx0PFin6XJiIBF5U/Tz8NH33kLqUvW9bv0kQk4ML58/BlK6DdS3D//Rq5Q0QKxfDh8M+G3fTZ2AuqVYNbb/W7pDxTA71IAK1ZA488AjfeCCeckMINv/OOa5wvWxa2bVPjvIjEiMmfHTvc1fM1a8LNN/tdnogEWFT+HL4ZLhgAdetCixZ+lyYiAReVPzV3wOW94PjjoXVrv0sTkYCLyp8jt8CF/eC006BlS79LE5GA+zd/brAc/kRPN53hbbf5XZaIpIFw/jxafwblX3kfpk4tlh0T1UAvEkADBrg5nwcPTuFGv/gC7r4brrjCDZPWpo0b1l6N8yISISZ/nnwSvvwS5s2D0qV9rU1Egi0qf0aPdhORzZjhFoqIeCgqf8aNg6+/dh2ZS+mUi4h4Kyp/HnoIfvrJnaQuUcLv0kQk4ML5c98ZM2HKu+48cblyfpclImlgwAAow3bafd8XatWCa67xu6R80dGiSMB8/LE7Fuve3XVcTIndu6FtWzc845gxULkyrF6doo2LSFDE5M/GjTBwIJx7Llxyid/liUiAReVP2T9g5Ei47DI4+2y/SxORgIvKn703uk7NDRvCRRf5XZqIBFxU/pRf68a4z8iABg38Lk1EAi6cP3d13cEBo/q6kYOuv97vskQkDYTzZ3ajsZRa/j2MW1RsOyaqgV4kYHr1gr33dvcp89hj8Prrbi7XypVTuGERCZKY/Bk5Ev78081BpitYRcRDUfkzYDBkZcE99/hdloikgaj8ufdet+9z773a9xERz0Xlz+ChsGmTOwYTEfFYOH/6V5ngRg6aPx9KlvS7LBFJA716waF7beTSDwdDo0ZwwQV+l5RvxbNbgYjElZkJixZB796w334p2uiaNS71mjSBG25I0UZFJGhi8uenn+DBB90QQ3Xq+F2eiARYVP6s/QrGjoX27aFmTb9LE5GAi8qfLT+7fZ+rr9a+j4h4Lip//vrWXVjRti0cd5zfpYlIwIXzZ8Cdm6l4/91u1LKMDL/LEpE0EM6f6XUeoMS6te7CjGLcMVpX0IsEhLXQsycceih07pzCjXbo4P49dmyxDjsR8U7c/OnXzz0wbJivtYlIsMXkz3W93byHAwf6XZqIBFxM/nQaALt2ad9HRDwXkz+t+0Dp0m6KDRERD0XmT6edo+G332DWLJ0zFhHPhfOn9sG/Ue/NB6BlSzjtNL/LKhA10IsExMyZ8M47MHEilC+foo1OnQovvQQPPwzVq6dooyISNDH588EH8NRT0KOHskNEPBWVPx+8DrNnw+DBcNBBfpcmIgEXlT/ffOKmA+vSBQ4/3O/SRCTgovLn47fguedgwAA4+GC/SxORgAvnz7SH1lK630ho1gzq1fO7LBFJA+H8+V/DIZhXt8HQoX6XVGBqoBcJgC1b3LBmxx+fwlHof//dnWCqVw86dkzRRkUkaGLyx1ro3t2Nc9+7t9/liUiAReXP9Rbqd3cnprt187s0EQm4mP2fS3rCXntB375+lyYiARez/9OoBxx4oDsGExHxUGT+tPpuOGzeDMOH+12WiKSBLVtgXpdMfit1HQe+/BvccgvUqOF3WQWmBnqRABg4EL79FpYtg5IlU7TRzp3djtaTT6ZwoyISNDH5s3ARrFjhRt7YZx+/yxORAIvKn/lz4I03YPx4qFjR79JEJOCi8mflcjcR4n33uQ6KIiIeisqfhS/Aq6/C44/Dnnv6XZqIBNzAgVD120wWHXA9JR79HVq3huOO87ssEUkDT7XJZOwvGVQkyy1o1MjfglJEDfQixdw778ADD0DbtnDeeSna6Jw58PzzbpiQY49N0UZFJGhi8mfnTjesfY0a0KGD3+WJSICF8+feCzM576bWbt7n445zJ4lERDwUtf/TcDfU6QHVqkGnTn6XJiIBF7P/Yy3UrOkCSUTEQ++8A+/dn8niUhmUXRtqIGvSxN+iRCQtfPF4JtfNiGicBzeM2X77QcOG/hWWAmqgFynGtm93x2GVK8P996doo3/95Ya0P+kkuOuuFG1URIImbv5MnAj/+5+bA7pMGV/rE5HgCufP5ftm0n1lBmwJHaR17AildHgjIt6J3P8Z3SwTDrwS1q2Dp5+GcuX8Lk9EAizh/s+QIVC6tL/FiUigbd8OT1yVyQs2g7I7IxrIbrrJTbFRzBvIRKTo2rEkk2q3ZVA+snEeICsLMjJgwYJinUEl/C5ARPJvxAj45BM3mlnKRpLu0QP++MM1tOkgT0QSiMqfDzLhsMOgVy846yy47DK/yxORABsxAvb/JJPpmzIwWyIO0oYNg8xM/woTkcAL7/88d2sme7TKcI3zxrgWexERDyXc/xkxQvs/IuKp6e0zefj7DCokaiBTBomIRza3bEN5mxX/wawsaNOmcAtKMTXQixRTn37qzkO3agWXXpqijS5fDhMmQPfucOqpKdqoiARNVP7smekOyH780Y3Acc017kS1iIgHPv0UVg3JZHHJDEpt0wkiESk84f2fwQ0zOWtEhssccENMX3qpskdEPKP9HxHxy6efQoMpbaKHlo4UgAYyESmaPv0Urtw0iW0ly8dfoUIFmDSpcItKMTXQixRDO3e6UYT23hsefjhFG928GW6+GY46CgYNStFGRSRoIvPn8ZahxvmsiAO1Hj10ckhEPBHOn4m2DWV36QSRiBSecP5cVD6Tfm9m2/cBNZCJiGe0/yMifgnnzx17TcKWC24DmYgUPeH8+XCfBpQ4/rjYFSpUKPbD24Ma6EWKpdGj4Z13YMwYqFQpRRvt3x++/x6efBLKJ9jpEpG0F86fGbdkss91OkEtIoUnnD9f95nkDsbi0QkiEfFAOH+mlWkTPbR0JDWQiYgHtP8jIn4J50+rJxpgTjwhdoWANJCJSNETzp+FzcdT+uP3oEuX//aDApQ9aqAXKWa+/tq1pV96KVx1VYo2+tZbLvVuuQXOPTdFGxWRoInMn4ZT28Q2zofpBLWIpFhU/gxuCDfeGLtSgA7SRKToiMyfCjMmQZky8VdUA5mIpFjM/s9NN8WupP0fEfFA1PnnTRNcS1nnzoFsIBORoiWcP20br6HOs3dCo0bwwAMuc6pVC1T2qIFepBjZvRvatYOyZeHxx1M0zfP27dC2LRxyCIwcmYINikgQxeTPpEmJR9vQCWoRSaGY/Pnma5cxZ56pE0Qi4qmY/DmmJpQuDSWynUpRBolIisXkz3ffwsSJcPrp2v8REU9F5s+4Pqsx3bq6BrLRowPZQCYiRce/+VPG8ui2dhiACRPc8VfDhrB6daCyRw30IsXI2LHwyiuuw1CVKina6IgR8Nln8MQTsNdeKdqoiARNTP40bAjnnx+7ok4SiUiKReXPQbvcCB3lysHMmTpBJCKeisqfgy106AC7dsHkyWogExFPReVP5dDZ6lKltP8jIp77N3/u281BvW9yV4hNnBjYBjIRKTrC+bOg2XjKvroM7rsPqlf3uyzPlPK7ABFJzg8/wF13QePG8Uc1y5dPP4Vhw+Caa+Dii1O0UREJmrj5s3w5zJ8PV1wBCxe6Ye11glpEUiwmfx5+BF57zTWOVanibqtX+1yliARRTP5Mm+b2cx58EK6/Hg491HUYmjRJ+z4iklIx+fP4E7ByJTz5JFSt6m7a/xERD0Tlz9bHIDMTxo93nYJERDwUzp9rzlrDWXNCQ9t36OB3WZ5SA71IMWBDF2vs3g3jxqVoaPtdu9zQ9nvv7YYoEhGJI27+/POPy4+jj4annoI339QJahFJuZj8+fYb6N0bLroIbrjB7/JEJMBi8uf33+D226FePXcP/11BJiKSQjH5s/p7d7a6SZMUXq0hIhIrMn8m9v4ak3EXXHihO/8jIuKhf/Nnl+VJIoa2T0lDWNGlBnqRYmDqVFi8GB56CA4/PEUbffhhePtteOYZqFQpRRsVkaCJmz89esCPP8KqVW4eep2gFhEPROVPtd3QsC2UKZPC3ooiIvFF5U91C81vgS1b3PCuJUv6XZ6IBFhM/jRu54aVHj9e+z8i4qlw/jw8ahdV+7d2k9A/+aSyR0Q8F86fZVeNp/yMZfD444Ee2j5MDfQiRdxvv0GXLu5ijU6dUrTR776Dvn0hIwNatUrRRkUkaOLmz9KlbkKg7t3hzDP9LE9EAiwmfx57zE1ENnEiHHKI3+WJSIDF5M+zz8K8eW7+w5o1/S5PRAIsJn/GjYMVK9zx12GH+V2eiARYZP7ctv1BeP11ePppN6WYiIiHwvnT/JQ1NHrxTjjvvMAPbR+mBnqRIq5TJze184QJrtN0gVkLN98MpUq5nkjqBSkiCcTkz8aNbmizY46BwYP9Lk9EAiwqf1Z/Bz17wgUXQOvWfpcmIgEXlT9//u4W1K0LXbv6XZqIBFxU/vy4xnWKbtzYncMREfFQOH+m9v4fJa7oD82bwzXX+F2WiKSBTp0ga7NlatnQ0PZpNHKHGuhFirBZs9xt+HDXHpYSEye6HthPPAGHHpqijYpI0MTNnzvvhJ9/dj2py5f3tT4RCa6o/Dl6N5zX1g0praFdRcRjUflT08IVHWHzZg1tLyKei8mfC252F1ho/0dEPBbOn3uG7OCIu2+EPfd0542VPSLisXD+LLxsPBXnps/Q9mFqoBcpotavh9tug9q1XafplPjlF9fAdu656oEtIgnFzZ+XXnI9GHv2hDPO8LU+EQmumPwZOxZWrnQnp6tW9bs8EQmwmPx5/nmYPRvuuQeOPdbv8kQkwGLyZ8IEN7XYY4+l1UlqESl8Ufmz8x549123D3TggX6XJiIBF86fi45fQ9Nl6TW0fZga6EWKqK5dYd06WLwYSpdOwQathY4dYds2d5I7JePli0gQxeTPhg3Qrh0cdxwMGuR3eSISYFH58/Nq6NEDzj/fTa8hIuKhqPz5+093tui001wHZxERD0Xlz68/QLdu0LBh2p2kFpHCF86flx/6kJLXDYarr4YrrvC7LBFJA127wrq1lmerh4a2nzAh7UbuUAO9SBG0aBE89RT07Qsnn5yijc6cCfPmwb33Qo0aKdqoiARN3Pzp1g1+/dVdRVaunJ/liUiAReVPLQvnt3MHZxraVUQ8FrP/c1Un2LgRJk2CUjptIiLeidn/ubA97NrlRi/ThRUi4qFw/gzouY2aw26AAw6ARx7xuywRSQPh/Jl74Tj2XLTMTatRrZrfZRU6HWmKFDEbN7pO0sceC/37p2ij69ZBp05w6qmua5KISBxx82fhQjfvau/e7ioyEREPxOTP+PGwfHnaHqSJSOGJyZ+ZM+G552DYMDj+eL/LE5EAi8mfSZPc1GJjxsARR/hdnogEWFT+2MHwySewYAHst5/fpYlIwIXz57yj1nDpq93d0Pbt2/tdli/UQC9SxPTqBT/9BK+9BmXLpmij3bq5ST2WLNEVICKSUEz+/PUX3HyzOzk9cKDf5YlIgEXlz29r3JDSjRql7UGaiBSeqPz5Z62bFuzUU+Guu/wuTUQCLip//vzJnbupX9/lkIiIh8L589G4tyjV4R646Sa4+GK/yxKRNNCrF/z0o+Xj09phfiMth7YPU0udSBHy8svw+OPQpQuceWaKNrp4sRsvpF8/qFUrRRsVkaCJmz9du8Lvv8P8+SnsMSQiEi0qf+pauOBmsNYN7ZqmB2kiUjhi9n+u7gx//+1G8FDHZhHxUMz+T0YH2L7djV6moe1FxEPh/OnRaQsn3n8jHHIIPPig32WJSBoI58+MRuPYZ0X6Dm0fltQenzGmqjFmpjFmgzFmozFmtjHmsLy+mDGmtzHGGmNW5b1UkWDLyoJ27dwoZkOHpmij//zjxgs55hjXQF8MKX9EvBc3fxYsgClT3ND2p57qa31+Uf6IeC8mfyZOhKVL4d574fDD/S7PN8ofEe/F5M+cOfDsszBgAJx4ot/l+Ub5I+K9mPx56ik3tdiIEXDkkX6X5xvlj4j3IvNnmOkHX37pjsH23tvv0nyl/BHxXjh/zqm6mivf7g6NG6f9qIm5dgk3xlQAVgDbgBsBCwwFMo0xJ1lrNyfzQsaYI4C+wB/5L1ckuAYOhG++cRdrVKyYoo326QM//girVhXLq1+VPyKFIyZ//vrL7SCdeGLEZPTpRfkjUjii8mf9j25o1wYN4JZb/C7NN8ofkcIRlT9b18Gtt0Lt2tCzp9+l+Ub5I1I4ovJnwy/uMvqzz4bOnf0uzTfKH5HCEc6fd0e9Suluo9yUGo0b+12Wr5Q/IoXD5Y/lrVPaYf5CoyaS3BD3NwNHADWttd8AGGM+Br4GOgDJjn/yODANqJnk64qkjXfecSMJ3Xyzm241JVatgkcfdQd49eqlaKOFTvkj4rG4+XPHHfDnn+4q+jJlfK3PR8ofEY9F5U9DCxe1h5073fxj6T20q/JHxGMx+z/X3QHr1sFLL0Hp0n6X5yflj4jHYvZ/Lu0AW7dqaHvlj4jnwvnTqfUmTh3T2o1YNnKk32UVBcofEY+F82fq2ePYb9XytB/aPiyZPb9LgTfD4QRgrf0eeA1olsyLGGOuAU4BeuenSJEg274dbroJDj4Y7rsvRRvdutWNF3LYYTBsWIo26gvlj4iH4ubP/PkwdaobgeOUU3ytz2fKHxEPxeTPlCmweDHcc48bbzG9KX9EPBSTP/Pnw7RpbkqwWrX8Ls9vyh8RD8Xkz7RprlP0sGFQo4bf5flN+SPiocj8ub/kXfD99zB5Muyxh9+lFQXKHxEPhfPntEqrufZDDW0fKZkG+uOBT+Ms/ww4LrcnG2P2BUYBd1lr1+etPJHgGz4cPv3UdRpK2XQ/Q4a4OYTGjSvuO1rKHxEPxeTPunXQoYM7Od23r9/l+U35I+KhqPzZ9LMb2vWcc+C22/wurShQ/oh4KCp/dq13+z4nnQS9dT4V5Y+Ip6LyJ+tXuP12OPNMN4KZKH9EPBTOn5kdllJ2wuPQtas7/hJQ/oh4yuWP5YXK7TCgoe0jJDPUxn7AX3GWrwf2TeL59wFfAZOTL0skPXzyiesofc01kJGRoo1++KEbnqh1a2jSJEUb9Y3yR8QjcfPn9tth7VpYtCidh7YPU/6IeCQqfy62cEkH16VaQ7uGKX9EPBKz/3NjVzetz8KF2vdxlD8iHonZ/2l+K2RlwaRJULKk3+UVBcofEY+E86ftFRuoO+4mOOYYGDrU77KKEuWPiEfC+fPkaeOo9I6Gts8u2bkwbJxluXZxMMacA9wAnGKtjbeNRM9rD7QHOOyww5J9mkixsnOnG9pj333hoYdSsMHMTNcoX6YMHHAAPPBACjZaJCh/RFIsbv7MmQPPPAN33w0nn+xneUWJ8kckxWLyZ+pUePFFGDUKjjrK7/KKEuWPSIrF5M+LL8JTT0H//lC7tt/lFSXKH5EUi8mfZ5+FefPg3nuhZk2/yytKlD8iKRaZP4+U7gq//AJvvAHly/tdWlGj/BFJsXD+nLTXatr8T0Pbx5PMJSp/4XoRZbcv8XsWRRoLTAB+MsbsY4zZB9cpoGTo57LxnmStHWetrWOtrVOpUqUkShQpfkaNgnffhTFjXHt6gWRmuktAfvgBvvkGbr0V9ov3tS12lD8iHojJn7Vr4ZZb3MlpDe8apvwR8UBU/uz41Q3petZZ0Lmz36UVJcofEQ9E5U+pv93JoRNPdHPPS5jyR8QDUfmz63fo1AnOOAO6dfO7tKJE+SPigXD+zGy9gHLTJ0GvXnD66X6XVdQof0Q84PLH8mKVdpQwaGj7OJK5gv4z3Dwc2R0H/C+X5x4but0S57G/gK7A6CRqEAmUr76CAQOgWTNo2bKAGws3zmdl/bfs3nuhfn1o2LCAG/ed8kckxeLmT+fO8NdfsGwZlC7ta31FiPJHJMWi8udKC5d1gK1b3dD2Gto1kvJHJMVi9n/adoPff4f58zW0fTTlj0iKxez/XNkRNm/W0PaxlD8iKRbOn+suXMc5U2+Gk05yCyQ75Y9IioXz57GTxlL5Yw1tn0gyDfTzgfuNMUdYa78DMMZUB84CeuXy3Hitg6OBkkBn4JukKxUJiN27oV07KFsWHnusgJ2G4jXOg/s5IwMWLCjujfTKH5EUips/s2a5IRaHDnVXkUmY8kckhWLyZ/oz8MILcP/9cPTRfpdX1Ch/RFIoJn8WL3INY336wKmn+l1eUaP8EUmhmPyZ+TzMng0jRsCxx/pdXlGj/BFJocj8GVu2M2btWli0yC2Q7JQ/IikUzp8apVfT4dseGto+B8k00I8HOgHzjDH9cPNxDAF+xA3hAYAxphrwLTDYWjsYwFq7MvvGjDF/A6XiPSaSDp54Al59FSZMgCpVCrixNm1iG+fDsrLc46tXF/BFfKX8EUmhmPz58083Jcapp0LPnn6XV9Qof0RSKCp/SvwGt98OdetCly5+l1YUKX9EUigqfypugJtvhuOO0xVk8Sl/RFIoKn9K/QG33QZ16kD37n6XVhQpf0RSKJw/y2+dSYXHp8OQIXDyyX6XVVQpf0RSyOWP5edj21HiJ6Oh7XOQ6xz01trNQCPgK2AqMA34Hmhkrd0UsarB9QxKZl57kbS0Zo1rAzv/fNd2XmCTJiUekrFCBfd4Mab8EUmduPlz222wYQNMngylkumzlz6UPyKpE5U/ra3rGKShXRNS/oikTsz+T/fu8Ouvbt9HV5DFUP6IpE5M/nTqBBs3uv0fHXvFUP6IpE44f66s/zsNn7/VdQzqlduF4OlL+SOSOuH8GX3MWKp8vtyNmqih7RNKao/QWvsD0CKXdVbjQiq3bTVI5jVFgsZa6NDB3Y8bl6JOQ5UquQ2VKOHGDgmrUCEIw9sDyh+RVIibP889B88/D8OHwwkn+F1ikaT8ESm4mPx5bgbMnQsjR8Ixx/hdXpGl/BEpuJj8WbrEXb3Rsyecdprf5RVZyh+RgovJn1kz3bHXsGE69sqB8kek4P7Nn92WSeVuwfzzD0yZoo5BuVD+iBRcOH+q7lpN5x9DQ9vffLPfZRVp6u0jUkieegpeeslNNVa9ego2+Pff0Lw57LsvzJjhGuUhUI3zIpIaMfnzR2h4xdNOgx49/C5PRAIsKn/K/+6uHjv9dOjWze/SRCTgovJnv41uIsRjjoFBg/wuTUQCLip/9lgLHTvCKafo2EtEPBfOn9ktplFxyVwYOtRN7SMi4jGXP5aXqralRAkNbZ8MdZ0SKQS//QZdu8JZZ7k2sQLbvRuuv97NL79ypdvw/vu7cdMmTVLjvIj8KyZ/rHUniDZu1ND2IuKpmPy5qhP884+GdhURz8Xkz6094Oef4bXXoFw5v8sTkQCLyZ9rO7sLLJYtg9Kl/S5PRAIsnD/N6vzM+S90dkHUtavfZYlIGgjnz71HjKXqVytg7FgNbZ8EnRkTKQS33QZZWTBhghuNvsCGDnVXyY8Z43a2wDXKr16dgo2LSJDE5M+zM2DWLDe8tHpRi4iHovJn1vMwc6abVkPZIyIei8qfFcvcGNPdu0Pdun6XJiIBF5U/8+bAs8/C4MFw0kl+lyYiAXfbbZC12fJ0+XaY7dvdRRklS/pdloikgdtug0qbV3PnNg1tnxdqoBfx2MyZMHu2G9qsZs0UbHDhQjcs4/XXp+hyfBEJqpj8+e03lxtnnAF33ul3eSISYFH5s9+fbuSOU0/V0K4i4rmo/KnyD1zQDo4+2jWQiYh4KCp/DlgHt94KJ58MvXr5XZqIBFw4f168fAJ7zF7sLuo66ii/yxKRNODyx/L9kW0p8YeGts8LNdCLeGjdOtcWdsop7oKNAvv2W7j2WqhVC554QkEnIgnF5I+17gTR5s3qRS0inorJn+s6w4YNmlZDRDwXkz+394QffoBVq6B8eb/LE5EAi8mf1ne4hYsXa2h7EfFUOH8uPn41Fy7p6kZZ7djR77JEJA2E82dY1bFU/1ZD2+eVzpCJeKhrV1i/HpYsScH56M2boXlz1yg/ezZUqJCSGkUkmGLy55npMHcu3HcfHHOM3+WJSIBF5c+8WTBjBgwZAiec4HdpIhJwUfnzaiY8/rhbWK+e36WJSMBF5c/C+TBtGgwc6K6gFxHxUNeu8Ne63UyvdhPGGJg4MUVzrIqI5CAzE3tJG87fMoKe5XrA+edraPs8UgO9iEcWLICpU6FfP3fBe4FYC+3bw6efwqJFcPjhKalRRIIpJn9+/RU6dYIzz3RHbiIiHonKn0PWQpOOULs29Ozpd2kiEnBR+XPkJmje1g3tOnSo36WJSMBF5U/V9dC0g5tzvk8fv0sTkYB7Y3gmg6e24dY6l7DnO5kwfjxUr+53WSISdJmZ7LwwgwO2ZfGUuY4StqyGts8HNdCLeOCbb9wU8bVquQO0AhszBp55xp1cuuCCFGxQRIIqJn+shQ4dYMsWDW0vIp6KyZ82t7tLyZYu1dCuIuKpmPzp3htWr4aXX9bIYyLiqZj8ad8V/vwTXnwRypTxuzwRCbCfn86kVt8MKpBFtXcfgdNPh7Zt/S5LRIIuM5PdF2VQalsWACXsbti1y03PfNhhPhdXvGisE5EU++cfaNbMtYHNmQNlyxZwg6+8Anfe6Tbau3dKahSRYIqbP08/DS+8AMOHw9FH+12iiARUOH/O3Z3JO2urU/beITB9OvTv764gExHxSEz+PD4aHnkEbr8dzjnH7/JEJMBi8ufBEfDUU+7czSmn+F2eiARY1ouZ7HeDa5wHMACffAIrV/pZlogEXWYm9uIMSmzNil6+fTtkZEBmpj91FVNqoBdJod27Xc/pL7+E555LwUj0v/wCLVvCEUfAlCmaP0hEEorMnyW9Mzm8YXV4/nl3cvqss9y9iIgHwvlz8BeZzNqWQemf18CAAXDkkepcKCKeips/3brBwQfDsGF+lyciARY3f/r0cUNLp2QoRRGR+HYvz6REswzK22wNZFu2qIFMRDxlW7fBbMmK/2BWFrRpU7gFFXNq7RNJoSFDYN48eOABaNSogBvbvh2uuAI2bXKXwu69d0pqFJFgCufPjFsyOWVABqxZA1df7XaOJk3S0PYi4pkhQ2DDvEwWlcyg5LaIA7Wff4ZVq/wrTEQCL27+WOum13j7bX+LE5FAS7j/89tv8Prr/hUmIoG3sUUbyu1SA5mIFL6nGk5iMwmmEKtQwZ2DlqSpgV4kRebOhUGD4MYbU3Shateu8MYbLtSOOy4FGxSRoArnz4gmmVw+KcMdkIGb/8da+OknP8sTkQCbOxdWDspkcckMSu/IdpJo61ZdwSEinskxf7ZtU/6IiGe0/yMifpk7F5pvmMT2kuXir6AGMhHxyNy50HpKQ1Ydc3PsgxUqwIIF0LBhoddVnKmBXiQFPvvMDW122mnwxBNgTAE3OHkyPPYY9OgBV16ZihJFJKDC+XNLzUx6rsrAZGU7QbRjh04QiYgnwvnzTJk2lNUVHCJSiJQ/IuIX5Y+I+CWcPztPOYNS1Q6JXUENZCLikXD+tDtmFU2+eRTOOMNlDih7CkAN9CIF9NdfcNllULEizJ4N5RJ0YEza++/DLbe4MfKHD09FiSISUJH5M2ZTm9jG+TCdIBKRFIvMn1JTJ0H58vFX1BUcIpJiyh8R8YvyR0T88m/+VLAsrtaeEt9/ByNGqIFMRDwXzp8jy/3ME+uuwBx+OCxe7DKnWjVlTwGogV6kAHbtglat3FTPs2fDoYcWcIPr1sHll8OBB8Kzz0KpUimpU0SCJ3v+lJo66b8Ds+x0gkhEUih7/lRqfjYcc0zsijpJJCIpFpM/VzZwV29kp/wRkRSLyZ8W9eGEE2JXVP6ISIpF5s8bVz9MxTnTYPBg6NVLDWQi4qlw/vy6ehuvHtiCkls2u7Hu99nHZc7q1cqeAlADvUgB9OkDS5bAo49CvXoF3NiuXXD11fDrrzBrFlSqlJIaRSSYYvKnYUO47rrYFXWCSERSLCZ/7rwTPvgAevbUFRwi4qmY/Bk+HFauhPbtlT8i4qmY/OnVC955B7p1U/6IiKfC+TPr9pc5/JE7oVkztxDUQCYinnL5Y3m37m3s+b+3YMoUOO44v8sKDDXQi+TT9Olw771uNPqbb07BBvv3h6VL3dzzp52Wgg2KSFDFzZ/582H8eGjQQCeIRMQzMfkzfjyMGeNOTt9zj67gEBHPxOTP3LnQr5/roPjEE8ofEfFMTP5MmQL33w+33QYPPKD8ERHPhPOn13U/ccnUlnDUUfDUU1BCzToi4q1w/kw7ZyzHrJoAffu60Z8lZTR+tkg+fPABtG0LZ58NDz2Ugg3OmePmDWrf3m1YRCSBuPnzySdw7bVw6qmwcCG8+aabc37SJJ0gEpGUicmfV16Bjh2haVN31Ab/XcEhIpJCMfnzySeuYf70011HIWOUPyLiiZj8efNNd+6mYUMYNcqtpPwREQ+E86dhvW0M+7IFZGW5kYP22svv0kQk4ML5c+tJr3H1m7fDhRfC3Xf7XVbgqIFeJI/++AMuuwz23x9mzoQyZQq4wS++gBtvdCeXHn44FSWKSEDFzZ8//oBLLnEHaPPmQfnyOkEkIikXkz+/rIYWLeDII1236pIl/S5RRAIqJn82/AmXXgp77+06Opcr53eJIhJQMfnzx0/QvDkceig8/zyULu13iSISUJH5s+CIzpR4+m2YPRuOPdbv0kQk4ML5c9w+vzDmtyswhx0G06bpvI8H1EAvkgc7dsCVV7qQWrUKDjqogBv85x93cFeunDvaK1s2JXWKSPDEzZ9t29zQQn/84a5krVLF7zJFJIBi8qfiJmjSzD0wfz7ss4/fJYpIQMXkz77b4fwr4Ndf4dVXte8jIp6JyZ+9tsA5l8GmTbBsmWs1ExHxQGT+fHHneCoMGw+9e7tzyCIiHgrnz9+/b+Ozo1tQ8rt/YPlS2Hdfv0sLJDXQi+RBt26uDWzqVDeSdIFYC61bw9dfu7nnq1ZNRYkiElAx+WOtmwTxtddgxgyoU8fvEkUkoKLyp/ZuuOIG+PRTWLQIjj7a7/JEJMCi8ucUC7fe7hZMmwanneZ3eSISYDH5c81N8P77btSy44/3uzwRCbBw/iwc+BbVRnSCCy6AIUP8LktE0kA4f75qeDt7ZL7pRgw64QS/ywosNdCLJGniRHjkERdS112Xgg3ee68bmuiBBzRHtIjkKG7+PPAATJ4MAwdCy5Z+liciARaTPwPvdkNKjxoFTZr4XZ6IBFhM/jz2OIwdC716wTXX+F2eiARYTP6MuAeefRaGD3fTi4mIeCScPwM6/M6FT7aAQw6BZ57R0NIi4rlw/jzXeBw1lo1zI3dccYXfZQWaGuhFkvDmm3DrrXD++TByZAo2uGwZ9OkDV10FXbumYIMiElRx82fBArjrLjfm0IABvtYnIsEVkz/PPw+DB0ObNnDHHX6XJyIBFpM/K1bA7bdDRgYMHep3eSISYDH5M38+9O0LV1/tOgiJiHgknD9Nz9vBoM+uhPXr4Y03YL/9/C5NRAIunD+3n/YGV7yskTsKSwm/CxAp6n75xU3xfOihrsN0qYJ2a1mzBlq1gmOPhSefBGNSUqeIBE/c/Pn0U3dyqHZtdwV9Cf1XLiKpF5M/n3wAN94I9erB449r/0VEPBOTP2u+dZ0Sa9Z0Q9vrCjIR8UhM/nz5GVx7LZxyCkyYoP0fEfFMZP7MOaoHZtWrMH481Krld2kiEnDh/Kld+VdG/dACU7WqRu4oJLqCXiQHW7e6cNq4EZYsSUGHxS1b3AZ37HDDw+6xR0rqFJHgiZs/f/7phlTcc08392GFCn6XKSIBFJM/O36HZs1g//3d9Dxly/pdoogEVEz+lNoIl17qHpw/H/bay98CRSSwYvLHrnP5s8ceMHculC/vd4kiElCR+fNW56cp1+chN2LZtdf6XZqIBFw4f7Zs2M7yo6+gxFcbYOlLGrmjkKiBXiQBa+G22+Ctt2DWLDjhhBRt8P333cmlGjVSUqeIBE/c/Nm+HVq0gN9+g5dfdt2qRURSLCZ/amyDRpfD2rXw2mtw0EF+lygiARWTP8fugsuuhS+/dK1lRx7pd4kiElAx+VNzB1xwJfz0k469RMRTkfmz7P4Pqdq/PZx7Ltx3n9+liUjARebPt03uoOKS12HGDDjxRL9LSxtqoBdJ4NFHYeJE6NfP9SIqsHHjYNIk6N/fXQErIpJATP5YCx07wquvuiGGTj/d7xJFJKCi8qe5hba3wuuvw3PPuak1REQ8ErP/07sfLFgAjzwCjRr5XZ6IBFhM/nTqCpmZbkqxunX9Lk9EAiycP8O6reO8R5q7q1ZnzIDSpf0uTUQCLpw/cy5+kiNefAJ69oSWLf0uK62ogV4kjpUroUsX145+990p2OCbb0LnznDhhTBwYAo2KCJBFTd/Ro92cx726+fmnxcR8UBM/jz00H+dC6+80ufqRCTIYvLnmWfgnnugQwfXSVFExCMx+TN2rDtjfeedcOONPlcnIkEWzp9mGbvo/ck1biLoV1/VqGUi4rlw/nQ/+02aLb0NmjSBYcP8LivtlPC7AJGiZs0adw66Rg14+mkokd9vSWYmVK/uxkdr0QKqVnUbLFkyleWKSIDEzZ9Fi6B7d5cjKekxJCISKyZ/li1xJ6abN4dBg/wuT0QCLCZ/3nsH2raF+vXh4YfBGL9LFJGAismfV1+GTp2gaVMYOdLv8kQkwCLzZ8bR/TFLl7jOQRoxUUQ8Fs6fMw//jZHftsAccghMn652Kx/oCnqRCFlZcNllsGMHzJsHe+2Vzw1lZkJGhttgy5ZQqhS8/bYbpkhEJI64+fO//0GrVlCrFkyZUoAeQyIiicXkz29fwVVXwQknwFNPKXtExDMx+bPpF7egcmXX0blMGb9LFJGAismfdd+7TtFHHqmT1CLiqcj8WX7bbMp2HgHt20O7dn6XJiIBF84ftm9nyV5XUOKXv2HxG2q38oka6EVCrHUXanz0kZvq8Oij87mhyMZ5gN273f369SmpU0SCJ27+rF3rxlksX96dMapY0e8yRSSAYvLnwL+h7qWuc+G8ebDHHn6XKCIBFZM/VbdAg+awYQO88QYccIDfJYpIQMXkT5VNUK8Z7NwJ8+fDPvv4XaKIBFRk/qx87H9U6XEjnHGGGzVIRMRDkfnz/UVdKf/ia65T4kkn+V1a2tLlMCIh990Hzz7rptq46KJ8biR743zY9u1ueWZmgesUkeCJyZ/t2+GKK+Dnn10DWdWqfpcoIgEVlT8X7IKrr4Zvv3VXrlav7nd5IhJgUflzoXVXjr39thtn+sQT/S5PRAIsKn+a7oYbboDPPoPnnivA1RoiIrkL58/9/TdQf1RzqFABZs6EsmX9Lk1EAi6cPy80n0i1Fx9zU6q2auV3WWlNV9CLAIsXQ69ebjT6Xr0KsKE2bWIb58Oystzjq1cX4AVEJGhi8sdaN+/hyy+7E9RnnOF3iSISUDH506OnWzhunJv7WUTEIzH5c//9br9n6NDQmIsiIt6IyZ+Bg2DOHBg1Cpo08bs8EQmwcP5cdeVuun54A3z3HSxfDoce6ndpIhJw4fzpfd7bXLTgVmjcGEaM8LustKcr6CXtff216yh00kkwcSIYU4CNTZqUeJ7EChXc4yIiIXHz5+GHYfx46N0brr3W7xJFJKBi8uepKfDAA66D0M03+12eiARYTP4sfBF69oSrroI+ffwuT0QCLCZ/nn8OhgxxF1PccYff5YlIgEXmz1M1h2Hmz3fHX+oYLSIeC+dPw2N/Y+jnl2OqVHGX0pfS9dt+019A0trGjdCsmcuiuXNTMMXz2rVuzrISJf6bex5c4/yCBdCwYQFfQESCIm7+LF4M3bq5K8eGDvW5QhEJqpj8+fgNN7T0eee5q8dERDwSkz8/fO6m1qhdOwW9pUVEEovJn68+gNat4cwz4fHHlT8i4pnI/HnpjoWUaTsQrrsOOnf2uzQRCbhw/pQvuZ0XK1xJie/Xw+uvw/77+12aoCvoJY3tDk0z9tVXbpqxAk+zOnu2O7lUrx688IJrlAc1zotIjLj58/nn7sqxE0+EqVNdRx8RkRSLyZ9SP0Hz5lC1KsyYoR7UIuKZmPzZaz1ccok7Xpo797/jJxGRFIvJn/K/u7PV++/vzuVo7mcR8Uhk/rww6hsO6nYt1KoFY8eqY5CIeCoyf96ufyfl3l0FTz4JJ5/sd2kSojNwkrYGD4Z582D0aGjUqIAbmzfPNaydcQYsXAh77uka5du0ccPaq3FeRCLE5M+6de4EdblyMH8+7LGH3yWKSEBF5U/dLDinGWRlwYoV6kEtIp6Kyp/6O6FpS/jxR1i50nUSEhHxSFT+nLUNGl3uRkBctQoqV/a7PBEJsHD+PDJyM2fed7m7GGP2bHVMFBHPhfPnpasnU3X6I27U1muu8bssiaAGeklLc+bA3XfDjTfC7bcXcGMvvABXXgmnngqLFrnGeXCN8qtXF7RUEQmYmPzZsQOuuOK/E9SHHeZ3iSISUFH509nCNTfBBx+4jkHHHed3eSISYDH7P3d0g+XLYfJkN7y0iIhHYvZ/2t3qhnadMQNOOcXv8kQkwP7NnxssHd9vC5995s4dH36436WJSMCF82fQxe9w/uxb3BViI0f6XZZko/FzJe189pkb2uP00+GJJwo4mtDCha5h7eST4aWXYK+9UlWmiARQTP5g3ZxjK1e6IYZ0glpEPBKTPyOGuxPTI0ZARobf5YlIgMXkz5PjYcwYuPNO12ImIuKRmPwZ87Ab5bBfP2jZ0u/yRCTAIvNn/LEPYmbMgGHDoEkTv0sTkYAL50/T2r8z4MPLMZUra0rDIkp/EUkr69e7acb22MONJlSuXAE2tnixm7P1xBNhyRLYe++U1SkiwRM3fx551M071rMnXH+93yWKSEDF5M9L89yJ6Wuvhbvu8rs8EQmwmPx551W47TZo2lRXcIiIp2Ly55UlbmjXyy5zl5SJiHgkMn8W3LmC0lffBS1auHM/IiIeCufPPhV3MLdMS8y6tW7koAMO8Ls0iUMN9JI2duyAq6+GH35wF6seckgBNrZ0qTuoO/541zi/zz6pKVJEAilu/ixdCl26uLnnhw/3uUIRCaqY/Fn/iWuYP+00GD++gEMJiYgkFpM/O9fA5ZfDEUfA9OlQsqTfJYpIQMXkz+av4Kqr3DmcqVPdHNAiIh6IzJ/Xn/2BSh2ugpo13egdOvYSEQ/t2AH3XJDJ8m/bUPHcUyj78ituv6d2bb9LkwTUQC9pYds2dyy2ZIk7F12vXgE2tnw5XHopHHOMa2Dbb7+U1SkiwRM3f778Eq680s35PG2aThCJiCdi8ufotXDapW5KnrlzoXx5v0sUkYCKyZ+TNsFZl8LOnTB/vjo4i4hnYvLn+A1wxqWuU9C8ee6SVhERD4TzZ/uSTNbv15o9epeD7dvdZNB77ul3eSISYNu2wZBGmQx8N4OKZMHLa9zIHddd53dpkgO1CEjgZWW5YT3mzYNHH4V27QqwscxMd7VrjRqwbBnsv3/K6hSR4ImbP+vXuxwpU8adoNZBmoh4IDJ/5tyRSbsh1eC88+DXX13jfJUqfpcoIgEVN38uvBA+/dTNfXj00X6XKCIBFTd/mjSBb7+FmTPh8MP9LlFEAiqcPxvmZbKkdAZ7rP8BvvoKevRwV9CLiHgkKwv6n51J79dDjfNhixa59iwpsnQFvQTapk2uHezll2HCBLjppgJs7OWXISPDDcm4fLnm7RCRHMXkz+GZUK2169izejWsWAHVq/tcpYgEUWT+vNgjk4sezXBHbD/8AH36wOmn+12iiARUjvnTsaNrKBMR8UCO+dOlCzRo4HeJIhJQ4fwxKzNZUiaD0tsjGshGjICzzoKGDf0rUEQCa9Mm1zg/9KNsjfPg9oMyMmDBAmVQEaUr6CWwNmyACy6AV191U20UqHF+1Sq4+GKoVs01zleqlLI6RSR4YvLn8Ey3Q/TDD/DBB9C1K5x9tt9likgARebPkt4RJ6fDRo9WD2oR8USu+TN5svJHRDyRa/6MG6f8ERFPhPOn5CtxGufhvwYyZZCIpFg4f7p81Ca2cT4sKwvatCncwiRpaqCXQFq/Hho3hrffdqMoXnttATb2+utuSMZDD3VXvB50UMrqFJHgicmfKqHG+cgTRI88ooMzEUm5yPxZ0T+TxqOzZQ/oBJGIeEL5IyJ+Uf6IiF8i82fefm0olb1xPkwNZCKSYpH5s75t98QrVqgAkyYVXmGSJ0k10BtjqhpjZhpjNhhjNhpjZhtjDkvieXWMMeOMMV8YY7KMMT8YY6YZYzTpk3jmjz/ciB0ffwxz5kCLFgXY2JtvQtOmcPDBrnG+cuWU1SnJUf5IcRKTP/vFaZwHnSAqJpQ/Upxkz5/6k9rEZk+YThAVecofKU6UP8Gi/JHiRPkTLMofKU6i8me2pWLjMxOvrAayIk/5I8VJZP6s6v8Staf3hCpVoFy56BUrVNDw9kVcrg30xpgKwArgGOBG4HqgBpBpjKmYy9NbAccDDwMXAr2AU4B3jTFVC1C3SFy//OKmFfv6a5c9GRkF2Njbb7sxQg480DWiVamSqjIlScofKU7i5k8bnSAqrpQ/UpzEzZ+LLkr8BJ0gKtKUP1KcxM2fnIYvU/4UacofKU7i5s+VVyZ+gvKnSFP+SHESmT8vzt1Bxqw28OyzbiL6ChWiV1YDWZGn/JHiJDJ/3uk+gzOGXgI1asD778PChf9lkLKnWCiVxDo3A0cANa213wAYYz4GvgY6AA/m8NyR1to/IxcYY14Dvg9td0B+ihaJ54cf4Lzz4LffYNEiOPfcAmzsvfegSRM44ADXOH/IISmrU/JE+SPFQtz8sRYaNUp8EkgniIo65Y8UCzH5U9/C3YPh8cehfn14993ojkI6SCsOlD9SLMTd/xk3DkaMgFq14KuvYMuW/56g/CkOlD9SLMTNn9Gj4f77oU4d+Owz5U/xo/yRYiEyf16avZlzxrR0jWKDB0O/frBy5X8jKSp7igvljxQLkfnz4S2Pc/SI2+Dss+GFF2Dvvd3UzAsWuAvCJk1S9hQDyQxxfynwZjicAKy13wOvAc1yemL2cAotWwP8CajFU1Lmu+/cOeg//4QlSwrYOP/BB3D++bDvvq5xvqo6u/lI+SNFXtz8sRa6d3c7Q02aqAd18aT8kSIvJn/qh7Jn0CBo3RqWL3dZox7UxY3yR4q8uPs/998PHTq4ETzeeANefFH5U/wof6TIi7v/M2QIdO0Kl18Oq1Ypf4on5Y8UeZH5s+K5tZwz6DxYvBjGjoX+/cEYlzULFkC1asqe4kP5I0Xev/nzh+Wzq4dw9KiOrjPQSy+5xvmwhg1h9WplTzGRTAP98cCncZZ/BhyX1xc0xhwLHAh8ntfnisTz5Zdwzjnwzz9umvgzc5jyJ1cffQSNG8Oee7rG+cNynWpGvKX8kSItbv7s2gXt2sGDD0Lnzu6SDjWQFUfKHynSYvLn9F2uYSycPRMmQKlSOkFUPCl/pEiLyZ+6FgYMgB49oGVLmD0bypdX/hRPyh8p0uLmz113uQy64QaYMQPKllX+FE/KHynSIvNn1dOrOa3r2e488qxZ0L599MpqICtulD9SpIXzZ9PG3Xx1cVcOGz8Arr/e5U/58n6XJwWQzBD3+wF/xVm+Htg3Ly9mjCkFPIHrQTQhL88ViefTT117urVuBKETTyzAxj7+2I0RUrGia5yvXj1FVUoBKH+kyIqbP9u2uXlXZ81yJ4kGDYruQa0hhooT5Y8UWTH5c8wOuP5GmD4d+vSBoUNd9oSFTxBJcaH8kSIrJn+O3w1du8FDD0Hbtu4KspIl/3uC8qe4Uf5IkRWTP8ftgltvc7nTsSOMGQMlIq5DUv4UN8ofKbIi8+fNcR9To31TN43G0qVueGkp7pQ/UmSF86fk7h18fdZN7Dv9aejSBR54IHq/R4qlZBroAWycZSbOstw8AtQDLrbWxgs9t2Fj2gPtAQ7TFcySwPvvu5Gjy5Z1I7gec0wBNvbpp65xvlw51w37iCNSVqcUmPJHipy4+bN5sxtScckSGDXK7SxF0gmi4kj5I0VOTP5U3wotWro5x+65B3r29LtESQ3ljxQ5MflTYxfc3B4mTnT7PQ8+GN05SIor5Y8UOTH5c+QOuKE1PPMM9OoFw4crf4JB+SNFTmT+vD7iZaq1bQZ77AGvvgonnOB3eZI6yh8pcsL5s3fpLD46riV7LHjRXZDRp4/2ewIimS4Wf+F6EWW3L/F7FsVljBmBC52brLVLclrXWjvOWlvHWlunUqVKyb6EpJE334RGjdzF7q+8UsDG+f/9zzXOly7trpw/6qiU1SkFpvyRIidu/vz1l9tjWrbsv5PUUtwpf6TIicmfQze5OcdeeAEefVSN88Gh/JEiJyZ/jtgOV1/t9nsGDlTjfHAof6TIicmf6lvhyitd4/zw4TBihPInGJQ/UuRE5s97fWZRrf0FUKUKvP66GueDRfkjRU44fw4u/zefHnoBe7yyEB5/HPr21X5PgCRzBf1nuHk4sjsO+F8yL2KM6Qv0Am631k5NvjyRWK+8AhdfDAcd5C52L1Ansy++cElXooRrnK9RI2V1Skoof6RIiZs/v//uGue/+AKef95dRS9BoPyRIiUmf/b6G5pcBG+9BVOmuHlXJSiUP1KkxORPpS1wWQtYtAjuvx/uvNPvEiV1lD9SpMTkz/6b4ZLLXMfoMWOgUye/S5TUUf5IkRKZP2+3eZz9Ot8Gdeu6ztH77+93eZJayh8pUsL5c/z+v/FKxaaU+eh/8Oyz0LKl36VJiiVzBf18oK4x5t8xv40x1YGzQo/lyBhzOzAU6GutHZPPOkUAdwzWtCkceqgLqgI1zn/1lWuct9Yd6dWsmbI6JWWUP1JkxM2f1avdfGPffOPmmFfjfJAof6TIiMmfcn+4aTPefdd1DFLjfNAof6TIiMmffTbChRfC4sVu3mc1zgeN8keKjJj82etv1zF6xQqYPFmN88Gj/JEi49/8OcTywSUD2K9fR9datmyZGueDSfkjRUY4f8448HtWmbMps/prd85ZjfOBlEwD/XhgNTDPGNPMGHMpMA/4ERgbXskYU80Ys9MYMyBiWStgNLAYWGGMqRtxOy6F70PSwIsvulFca9SAl192IwrlWWYmVK8OTz/tTmzv3OkO7o49NtXlSmoof6RIiJs/n3/uGufXrnV7T+ef73eZklrKHykSYvJn909Qvz58+aW7ekMdg4JI+SNFQkz+lF0HjRvDa6/BtGnQvr3fJUrqKX+kSIjJn9J/ugss3nkHZsyAG2/0u0RJPeWPFAnh/DnmqJ28f1oH9hw9BG66CebMgQoV/C5PvKH8kSIhnD8XHvoJL20+i1Ib1sPy5a6DogRSrkPcW2s3G2MaAaOAqYABlgNdrLWbIlY1QEmiG/2bhpY3Dd0ivQw0yHflklZmz4ZWreCkk2DJEtgv3qwwucnMdAmXleWuNNtzT1i1Co6PN4KNFAXKHykK4ubPu++67oylSrkzRied5HeZkmLKHykKYvLnr29d49j69fDSS3DOOX6XKB5Q/khREJM/236F85rA11+7By+5xO8SxQPKHykKYvJny89u/2f1apg3z43iIYGj/JGiIJw/p52whcyDWlHm6fluvuchQzTnc4Apf6QoCOfPdUe8zpO/XUyJihXg1VfVdhVwycxBj7X2B6BFLuusxoVR5LLWQOv8lSbiPPOMa08//XQ3zeHee+djI5GN8+CGtd++3V35KkWa8kf8FDd/Xn7ZnZTebz935fxRR/ldpnhE+SN+ismfnz5zI3Vs3+5G/zn1VL9LFA8pf8RPMfnz9xrXOPbrr7BwobuKVQJL+SN+ismfdd+5/Fm71nVOrF/f7xLFQ8of8VM4f86rvZ4XS11KqZdehzFjNJ1GmlD+iJ/C+XN7jUU8sKYF5tBDXS/F6tX9Lk08lswQ9yK+mTgRrrvOjSL90kspapwP27rVLc/MTEmtIhIscfNnwYL/JkJ87TU1zouIJ2Ly55v34Nxz3YMvv6zGeRHxTEz+/PZl9JQ+apwXEY/E5M/P/3OjBW3Y4IZ3VeO8iHgknD/N6/zIwk3nUOr90HQaapwXEY+F82fA0dN54JtLMccc466cV+N8WlADvRRZjz0Gbdu6i8UWLnQj0udLmzaxjfNhWVnucRGRCHHz55lnoHlzOOEEeOUVOOQQv8sUkQCKyZ8PX4WGDWGPPTS8mYh4KiZ/vvvINY5t3w4rV0Ldun6XKCIBFZM/X7/vOifu2uU6J552mt8likhAhfOn7Zn/Y8ZP9Sj584+weDFceaXfpYlIwIXz5+Gaj9L/i2sx9eq5i0kPOsjv0qSQqIFeiqQHH4TbbnOjSM+fDxUq5HND27blPDd0hQowaVI+Ny4iQRQ3fx5//L/LOZYvhwMO8LtMEQmgmPx59SW44AKoUgVWrYIjj/S7RBEJqJj8+egNaNAAypZ1HRNr1fK7RBEJqJj8+eA11zmxQmju1RNO8LtEEQmocP70OOt1xn1+NiV27XT7PQ0b+l2aiAScyx/L0zUH0+mLTphLLnGdg/I1hLQUV2qglyJn2DC480644gqYOdOdE8qXH35wV3y88AJcdVVsK3+FCm64au10iUhITP6UsTBiBHTs6KbEWLgQ9trL7zJFJIBi8ufF2e5M9dFHu5NEhx7qd4kiElAx+fPaCncZ6wEHuM5BNWv6XaKIBFRM/ryyFJo0gcqVXf7UqOF3iSISUOH8uafefEa+dx7mgAPg9dfh5JP9Lk1EAm7YMOh+525ePOoOrv1yINx4I8yaBeXL+12aFDI10EuRYS306+du110H06dDmTL53NiSJXDKKfDFFy7cnn3WNcaHG+nVOC8iEeLmT2kLPXtCnz5w7bXaURIRT8TNnxlToWVLqFPHDW924IF+lykiARQ3f156AS66CA4/3F25Wq2a32WKSADFzZ+Fc12n6KOOcp0Tq1b1u0wRCaDI/BlfdwJ3vdkcc+KJ8Nprbv9HRMQj4fwZ1G8Hq6pfz0XfjIFu3dxE9KVK+V2e+EAN9FIkWAvdu7veQ+3awZQp+cyk3bthyBBo2hQOPhjefRcuv9w91rCha5SvVk2N8yLyr7j5Y3ZBhw5w331uvLOnnoLSpf0uVUQCJm7+jHsMbrjBzbu6ZAnsu6/fZYpIAMXNn5nPumOnk05ycz5Xrux3mSISQHHzZ8Y0dxl97dqae1VEPPNf/lhmnzqMdm+2w5x/PqxYAZUq+V2eiARYOH8eHJbFe1Uvo97qZ9yorfffDyXUTJuu9JcX3+3eDZ06uXk3OnWCsWPzmUnr17ve1gMGwDXXwJtvumFhIzVsCKtXq3FeRIAE+bNzu8uQ8eOhb18YM0Y7SiKScnHz576R/03C+uKLsMcefpcpIgEUN38mjHf7P2edBcuXw377+V2miARQ3PwZPxauvx7q14elS5U/IuKJcP6MfnAXL5/YmebvhYbwmD9fx10i4p3MTGy16jzUPJMJD/7NJwc34cSfFrmdoF69wBi/KxQfqcVBfLVrF9x8Mzz2GPToAQ8/nM92sPffh1NPhWXL3MamToWKFVNer4gER9z82ZoFzZrBc8+5HoxDh2pHSURSLiZ/HrKU6N/XHZy1auWm1ChXzu8yRSSA4u7/jH4Q2rd3o5AtXAh77ul3mSISQHHz54H74JZb3NQaL76o/BERT+xalsn6varzzWMv8cHRraj/yaPuUtYpUwowv6qISC4yM7EZGZgf1tB+3sV8s/epHLHuHcxzz7njL0l7mthAfPPXX3DTTTB3rrvofdCgfLaDTZjgrjarVMnNk3jGGSmuVESCJm7+bPjbjcLxxhvw5JPQtq3PVYpIEMXkz4DdmC5d3Ggd7drBE09AyZJ+lykiARSTPwMt5u674e674cor4emndZJaRDwRN38GDnRTFF51lbvIQlOKiYgH/pmfSenLMzhgVxaLzEWU+Go3PPCAm/dZRMQrmZnYizMwW7IAqMAWym/4DnPffW5aHxF0Bb34ZOVKN7XhggUwapQ7J5TnxvktW1wDWrt2cM457ip6Nc6LSC7C+fPP/Ew27FuduxtkYv743U198fbbMGOGGudFxBMx+XPOMky7tq5xvls3GDdOjfMi4omY/Dl3Bab7ne5ArE0bmD5djfMi4om4+dOtq2ucb9sWpk1T47yIeOLDUZmUvCyDcrtcA1kJu9vt79Su7XNlIhJomZnsuvC/xvkwAzBwIGRm+lKWFD1qoJdCtWMH9O4NjRpBhQpumvguXfKxoe++c/MjTpzo5ohevNhdQS8ikkBk/jQkk5fKZLDXX2vg4ovdFBlffgkvvKBejCKScgnzp2lTmDzZDeNx//2aUkNEUi5h/lxwgespffvtbuQgdQ4SkRTLMX8eesidDBo/XvkjIim3YweMvyaTGt0yqGCjG8jYvt2NnqgGMhHxwI4d8NdlbSi5LSv+CllZroO0CGqgl0L09ddQrx7cc4/rJB2eNj7PFixwT/z+e9eYNnSoDuhEJEeR+XPvhZlMWZdBya2hHaUtW+Dnn2HkSHeySEQkhXLMn1273BVj9eurcV5EUi7H/Nm50+VPs2ZQQqcFRCS1ksqfSy7R/o+IpFw4f86f3pqKqIFMRApPOH+u3fgYu0yC9qoKFWDSpMItTIosHYmL56x1F7rXrg3ffgszZ7pO0hUr5nFDu3ZB//7uIK56dXjvPdfjUUQkgez58/KgTLqvjB1iCIBevdSDWkRSJun82bFDV3CISErlKX8uuUT5IyIpo/wREb9E5s9fX69lr6MqJ15ZDWQikkKR+VPmq0949pA7KWl3xU7hU6GCu/i0YUN/CpUiRw304qn166FlS3fF/Omnw8cfQ4sW+djQ2rVw4YXuavk2beD11+GII1Jer4gER7z8qT+pjespHY96UItIiih/RMQvyh8R8YvyR0T8Epk/bY5+jS8q1Ga/Hz6EO+5wDWKR1EAmIin0X/5Y7j50PKu2nc5eu/6GFSvgpZf+yyBlj8ShBnrxzMqVUKsWzJ3rRo5euhQOPTQfG3rrLTjlFHjlFTc/4sSJUL58iqsVkSBJmD9DhyYexlU9qEUkBeLmT+nfobKu4BARb8XNn4p/wZFHJn6S8kdEUkD5IyJ++Td/5lhWXHQ/D398LqXKl3EXd40e7RrE1EAmIh4I58+yOf/w2cnXcueX7TH1z4EPP3Q507Chy5xq1ZQ9Epca6CXltm+H3r2hUSO33/Pmm3DXXfmYJt5aeOwxOOcc9+TXXnNdIUVEEkiYPyUsjB0Lt9ziOviUKRP9RB2kiUgBJcyfBfPghBPgo4+gUyddwSEiKZcwfzKXwYknuo7ON92k/BGRlFP+iIhfIvPn4LLr+bNeMxou7IFp1gzefx9OPdWtqAYyEUmxyPw5pcSH/HrIqRz38Qx3YdjixXDQQf+t3LAhrF6t7JG41EAvKfXVV3DWWXDPPdCuXfT+UJ5kZcENN8Btt8H557v55vO1IRFJFwnz55df4KKLXOP8mWfC55+7nSX1oBaRFImbP0f/43647DKoWtXty4wZoys4RCSl4ubPcVugSxd3HLXHHvDGGzBhgvJHRFJK+SMifonMn2GXvMmb22uzz5uL4aGHYOZM2Hvv6CeogUxEUuS//LFMrfc4c3+vS7mdmyEzE/r2TTxyq0gc+rRISljrjrlq14bvvoNZs2DcOKhYMR8b+/prqFsXpk2DwYPhhRdgv/1SXrOIBEOO+fPss+7K1ZdfhkcecXP/VK2qHtQikhIJ8+ej1+Hkk92wrb17u8vJjjvOPUn5IyIpkDB/vgz1UHzoIejc2bWY1anjnqT8EZEUUP6IiF+i8udby0etR9F74TmUKGFg1Sq4/XYwxu8yRSSAIvPnz2828GO9Vlz7WkdMw4ZuSPv69f0uUYohNdBLga1fD1de6XpM160LH38Ml1+e5JMzM6F6dXcPMGeOO4D75Rd3hWv//up1JCIJJcyfdeugVSu4+mqoWdPtKN12W3SeqAe1iBRA3Py5ZAf06+em59m923UOGj48dloN5Y+IFEDc/Gm2y+XNGWfAhg2uU+LDD8cOK638EZECUP6IiF8i86fxqX/x0+mXc9LkbnDxxfDBB3D66X6XKCIBFZk/1x/3Ht/sfSqHvjXLDePx4otQqZLfJUoxpZZPKZDMTDjpJJg/H+69F5YuhUMOycOTMzJgzRp336qVa1mrWdMNA9ukiae1i0jxljB/Fi1y8x3Ong3DhsGrr8LRR/tdrogESNz82fi5m0Zj2DC48UY35/zZZ/tdqogETNz82fadu2Kjb19o3hw++UTHUiKScsofEfFLZP5M6fwuc388hfLLF8ADD7iLvfbd1+8SRSSg/s2feZalzR7h8Y/rUWrXNndBRs+eurhUCkSfHsmX7duhVy847zw3jPQbb0CPHnnIo3DjfFaW+zkrC2bMgEsvdY1p1ap5VruIFG8J8ydrE3To4Oab339/ePtt6NMHSpXyu2QRCYi4+dPdUuKxR+CUU9xVYbNmwcSJsNdefpcrIgGSMH8mTYBateCzz+Dpp90xlaYHE5EUUv6IiF+i8qeC5Zs7xnDDE/Uwu3a588fdumlIexHxRGT+VC73N7+fcwWN53XGnH++G6n1rLP8LlECQA30kmdffQX16sHIkW5Yj/dD04wlLXvjfKRly+D111NWq4gES8L8WbXKnRwaPx7uugvefdfN/ywikiJx8+fgX6BpUzfPasOG8OmneZjnR0QkOXHzp+of7mrVdu3g/+zdd5gT1f7H8fcXlm4BpVgBe71W7A1U1J9iL9cOiNi9clFAQRCUIgqKBRUsYAELdrGji167qNgVURBsCNI77J7fH2dWQ0iyyW6SSfm8nifPytQzmcnHOXNmzuy1l+9n+qyzdJFaRNJK+SMiYYnMn8vPXcDXO51G8yH/8b10fPaZf8+GiEgGRObPDcd/zEdle9Dof8/DzTf7rjw23DDsIkqBUAO9JM05uO8+2H13mDbN9x49cqS/gzolHTvGbpwHP7xjx2qXVUQKS9z8qbncN8gffLCf8O23/dlTnTrhFlhECkbc/Hn5Sf86jf/9D+66y793bKONwi6uiBSQuPnz5gs+f155BW65xd/k3Lx52MUVkQKi/BGRsETnzxs3f8pt7+xJyQvP+Os9ahwTkQxZI39+cnzecRi9XjyAGuVBrx1XXaUu7SWtdDRJUubOhVNPhc6d/Q2KX3zhb5hO2ezZPuHiqV8fRo2qcjlFpPDEzZ/Jk/0TGzffDBdcoPc9i0jaxcyfQxf4d8yfeipstZV/euPii/XUmIikVcz8abvYn/McdxxsvLHvMei//9VFIhFJK+WPiIRljfzZxzG12z0c2ms/WL4cJk70D2god0QkAyLzp+2ec/ll7xPZZdR/4f/+T712SMbo/2hSqdJS2GUXf4PiTTfB66/DppumuJBly/xdjltvDS+8AMceC/XqrTlN/fowfrzvIlZEhDj502w1DBjgG+f/+gteegnuuQfWWSfs4opIAYmZPz++7V+nMWYM9OkD774L220XdlFFpMDEzJ+f3/P5c9990KMHfPgh7Lxz2EUVkQKj/BGRsETmz63XL2JC0zNpdM3F/jrxZ5/pgQwRyZjI/Hn40g945ufdqffmS3DrrfDss7DBBmEXUQqUGuglrpUr4eqr4bDDfLvXBx9At24p3qhYXu4vYm+/vV/YwQf726+ff953BVu/vp9OjfMiEiFu/kyd4itl114LJ58MX37p72QUEUmTmPnznxXUuKYHtG4NJSXwzjvQrx/UqhV2cUWkgMTMnytWUqPPtXDQQb5u9dZbcOONep2PiKSV8kdEwhKdP58//AVdHmmFjXvCP5zx0kvQpEnYxRSRAhSZP+s2KOenS4Zw9oiDsJo1/QMZXbqot0TJqJKwCyC5acoUOPNM+OQT34vZLbdU4V3zEyf693J88gnssQeMHr1mA3ybNr5RvmNH3629GudFhDj5U68c7rzLd2dWty48+iicfnrYRRWRAhMzf6Z9Bfuc7V+jccEFMHSoeuwQkbSLmT8zvoX9zoZPP/V1pmHDYL31wi6qiBQY5Y+IhGWN/OnsuH3X+6nT4XJo1AjefBMOOSTsIopIgYrMn/+e+xc3/dmektte9A+E3XcfNGwYdhGlCOgJelmDcz5/dt8dpk2Dp5+GESNSbJz/7js4/njf4P7nn/Dww/Dxx7Eb4Nu0genT1TgvIvHzZ+5MOPJIuPxyXzn76is1zotIWsXMn7vLaTDyVmjVCn7/3ff+M2KEGudFJK3i5s/9t/ubnGfM8AMfeECNYyKSVsofEQmLe7OURRu25IpdSpk2DZ4bs5gRy86lzmWdfa+JkyercV5EMiI6fyYOeJdb3tyNkjdfhzvvhHHj1DgvWaMGegF8b2XPPOOvQXfuDPvt53uOPvHEFBby559wySX+XWSlpTBoEHz/PZx9dor94otIManIn4u2K+Xwzi25aLtSnz8nOH+Dz7/+Be+/798z/9JLsMkmYRdZRApE3PxpNRPatoWuXeGII/xJ0bHHhl1cESkgcfNnr1/8jYlXXOH7Wky5UiYikpjyR0TCUl4O/7u+lOWHt2PduT/zzKp2TO35AMfdsJd/RWq/fvDKK9C0adhFFZECEyt/ZhzVmUP6HOJf3/P++3DpperSXrJKXdwXudWr4YknYOBA+Ppr2Hprf3N0+/YptKkvWwa33urfRbZ0KVx0EfTpo5MpEUkoMn+afF3KS9aOeixlyPftsA8fgUce8U9sHHAAPPggbLVV2EUWkQKRMH/u+i8MHw6rVsG990KnTqqgiUjaJMyfe66EO+7wL0O85x7f17TyR0TSRPkjImGpyJ/Xe5Vy53SfPQB1y5dS96pOvkv7CRPg0ENDLqmIFJpE+cPY+6B1a3juOfUWJKHQY81FauVK3xC/ww5w1ll+2Nixvnf6jh2TbJwvL4eHHoJtt4VevfxJ1Ndf+65A1DgvInFE589eS0p5vXY76jl/gmRLl8JJJ/nupAcPhrfeUuO8iKRFUvkzYABsvLHvVvH883VxWkTSIqn8ueEG2Ggjnz8XXqj8EZG0UP6ISFgi8+fes0q56+d2NAgax9awfLlyR0TSKun8+egj/yJ6kRCogb7ILF8Od90F22zjHwhbf33ftdkXX8AZZ0DNmkku6M03fX/47dv7Stxbb8Gzz8J222Wy+CKSx2Llz/+uL+WBP9tRsjLGCVJJCey1VwrBJCISW8r58/PPMHNm9gsqIgUn5fyZMQN++SX7BRWRgqP8EZGwxMqfF5t0/PvGoLUsW+afGBMRqaZY+fPSBmfHz5+lS5U/Eho10BeJJUvglltgiy38qzQ22wxefhk+/hhOOCGF7uy/+QbatfPvI/vrL/9+oA8/hIMPzmTxRSSPJcqfA+/v6J/YiGX5cp0giUi1JMyfe9vHzx9V0ESkmpQ/IhIW5Y+IhCVW/rz21CI+Pu9u6jdI8IR8/fowalT2CioiBSc6fzbftJyPr3+Zj5sdQ725v8WfUfkjIdI76AvcggW+x/lbb/Xt6YcdBo8+CocckmLPQbNmwXXX+Xexrruu73b6P/+BunUzVnYRyW+V5s+HH0Lz5v5J1Vh0giQiVZQwf+bNhRvu9BPFo/wRkSpS/ohIWJQ/IhKWWPnzfP8vaPXx3Vj7R2DxYth9dzj5ZP9o67Jl/8xcvz6MHw9t2oS3ASKSt6Lz57hDFjDk5NFs/dpwrM8Pvvfn666DnXf2vUFH3qio/JGQ6Qn6AjVnDvTuDS1awLXXwr77wnvvwYQJ0Lp1gsb50lJo2dL/BR9Y/fvD1lvD/ffDZZfB1KnQvbsa50UkpoT5c3A59uJ43+vGvvvCl1/6FyHWq7fmQnSCJCJVkDB/tvkV63aVH3nddT6Hbr/d500k5Y+IVIHyR0TCovwRkbBE58+Be61gynVjmLD8QPY6f1ds9CjfKP/BB/4dz0OGwIsv/pNByh4RqaLo/Dl1p2/4/cRLeG7SpmwzvAvWuDGMHesfDOvbF045xeeN8kdyiJ6gLzB//AFDh8Ldd/u29ZNPhp49/U2KlSot9d3XL13q/152GTzyCPz2G5x0Etx4o395h4hIDAnzZ8UKGDXWV8a++cY/OT9smH8Z0DrrrJk/OkESkRQlzJ8ffoDON8FDD0FZGZx+OvToAf/6l595552VPyJSZcofEQmL8kdEwhKdPxcfNY0+zUbQ7MUH4JXZ/kGvIUOgQwfYcMM1Z27TxmdOx46+1w5lj4ikIDJ/li8pY+B+L3Dx6jtY9+03oU4dOOMM3661555rz6z8kRyjBvoCMWMG3Hyz74F+1So480y45hrYccckFxDZOAb+7003wfbbw+OPw4EHZqzsIpLfEubPggVw80jfGP/bb7Drrv7Gn9NOg1q1/lmITpBEpAoS5s9nn8Fpg+DJJ6F2bX9D0FVXwZZbrrkQ5Y+IVIHyR0TCovwRkbBE5k/ZyjJuPORlLii/m3Vfedl313rccXDJJb6P+xoJOu5t0wamT89auUUk/0Xmz7or/+K+3e7jpD/uovb7M2DzzWHQIH/e06RJ4gUpfySHqIE+z/34o3+w/cEH/b/bt/c3RW+9dQoLKS2Fo4+G5cvXHjdjhq/xiYhESZg/v/4K3W+De+6BRYt85WzUKGjbNv47NnSCJCJJips/Wzl46y3oeiO8+iqst54f0aULNGsWf4HKHxFJkvJHRMKi/BGRsETmTxP3J2N3u59jfx9BrYk/+/c79+4NnTvDZpuFXVQRKTCR+bOb+4wJW97B/j8/So3PlvtzmTtv9TcHlaipU/KPjto89c03MHAgPPqofwj1wguhWzffa3TS/vjDPx3fvTusXBl7mqVL/R3VqrSJSCBh/nz9NXQcAmPG+K4UTzvNj9xjj7CLLSIFIG7+bFbunwI7Z5B/v2HTpn7CSy6B9dcPu9giUgCUPyISFuWPiITl7/wZ62hd8g7vt7yLPaY/hU1a5RvGhg2B449fs4dEEZE0qMifcWNXcVrNp/iu8R1s+cd78Et96NDed2O/885hF1OkWtRAn2c++wwGDICnn/avCeva1X823jjJBSxY4GceOxbefBPKy/3jrj//HPtJ+fr1/VOvIlL04ubPRg7+9z+49GZ/gahePX/VqGtX2GKLsIstIgUgbv40XgWPPQaDB/sbhFq2hOHD/c2F9eqFXWwRKQDKHxEJi/JHRLKqtPTv11581rANAwbA608tpFPth/l1g7vZ6K+v4c/1/U1AF13kX4sqIpIOMfLn3af+4LJaI/iz/gjWX/I7NNgKbrnFT9ewYdglFkkLNdDnifff9xWzF1/0vZX16gVXXAGNGycx8/LlfsaxY/3fFStgq638Qs44A3bYYe130IOvAY4fr3eRiRS5uPnTqAyeew5uugk+/NAHUr9+vrKWVDiJiCQWN38aLIMHHvAvIPv5Z9hpJ3j4Yfj3v/X0hoikhfJHRMKi/BGRrIu4Lry8bTuGl93G0bUmMabWI9RZuQRa7gmD74PTT4cGDcIurYgUksj8Obwd95bfxGkl7/FYjXGUrFoFhx0Fl98HRx0FNWqEXVqRtFIDfY4qL/d3S7/2mm8jf+892HBDX0m79NIkeitbvdqH29ix/nbrhQv9u8cuugjOPBP22mvN90C3aeNXVNFIr8Z5kaIVmT+/jSnlyq87UrLeKAYMaOPzp/YyeOghGDIEpk6FLbeEu+7yL0GsXz/s4otIHqs0f9x8nzfDhsHs2bDffnDHHXDMMaqoiUi1KH9EJCzKHxEJS3k5/HBvKVte3o5aq/xDW3XLlnIfnXHUws46yz+EsddeIZdURApNzPwpX8pdXIarXR/rfInPn223DbmkIpmjBvoc8ttvvkL22mvw+uswZ44fvvvuvh3swgthnXUSLMA5+Ogj3yj/+OMwa5a/3frkk32jfOvWUJJgl1c00gfdiahxXqR4xMqf1pTykrWjHkt5ZlU7bKexcMeXcPvt/sJQq1bwxBNw0klQs2bYmyAieSqp/NnuIRj4Edx9Nyxa5O+cvvpqOPjgNW84FBFJgfJHRMKi/BGRsETmz8oXX+ORhcdRixVrTWclJXDuuWqcF5G0STp/nIPjj1fjvBQ8NdCHaNky/9rmV1/1ofTVV354s2bwf/8HRx4Jhx8Ozb4J3sGxR5xG82+/9Y3yY8fCTz9BnTr+Sfgzz4Sjj4a6dZMvVJs2MH16WrZPRHJXZflz7ualHHZrO2yZv4PRli2FE07wE/3f/0H37nDIIbowJCIpq1L+nHKKz5tTT/UXpnffPcQtEJF8pfwRkbAof0QkLNH58/1XKzmMNzi37jj+vXw0NXDxZ+zYUdeJRaTKlD8iiamBPouc85WwiruE3n7bvx6+dm1/A/S558IRR8Auu0S0eUW+G75du3+6nZ85Ex57zDfKT57suzU77DDo3RtOPDGJPvBFpJiklD+lb/ruEpcvX3tBdetCt26+Rw4RkSSkLX/q1PGv6tHFaRFJkvJHRMKi/BGRsMTKn7LlKzmq5A1ubjKOQ+o9S71l83C118MOOtxPsGLtJ1ipX9/3sCoikqTK8qd1vWeou2y+8kckoAb6DJs9GyZM+Ocuod9/98N33NHXsY480lfOYr62ObJxHvzfo46C7beHL77ww/bZB267DU47DTbaKCvbJCL5Ien8qefgu+9g4kQYOBGefNK/CCiW5ct1B6OIVEr5IyJhUf6ISFiUPyISllj5U4uVdNz8Da7fchy7z3iW2ovnwZL14JTj4dRTsSOO8DcBRV9/Bn+huuIhMRGRBCrLnz1mPEOtxfOVPyIxJNVAb2abA7cCbQEDJgBdnHMzkpi3LnADcDbQEJgM9HDOvV21Iue2lSvhvff+uUvo00/9nUMbbABt2/o7pI84AjbbrJIFlZb6O6iXLVt7BV9+6StovXrBVltlbFtEcoHyJ3lJ58+mEReERk30f//80y9k003h0EP9HYwrV669Et3BKEVE+ZM85Y9Ieil/kqf8EUkv5U/ylD8i6aX8SV68/GnWaCVd/vUGJ205jq2/epYaM+fBeuvBib5RjIpGsUht2vjGsIpGMjWOSRFS/iQvufx5hhoz5yt/RCpRaQO9mdUH3gRWAO0BB/QHSs1sF+fckkoWcT9wDNAN+Am4FHjVzPZzzk2uRtlzgnPwww8+jF591berL1kCJSWw335w/fX+Luk99oCaNeMsZPFi/x75r7/2n2++8QsrK4u/0jffhAceyNh2ieQC5U9iSefP7o6aPwQXhK6cuPYFoSOO8F3Wt24NW27p37GhOxilyCl/ElP+iGSO8icx5Y9I5ih/ElP+iGSO8iexRPlz0D4rGXP2Gxw+fxyN33kWeztolD8+QaNYtIpGso4d/U1Byh0pIsqfxJQ/IhnknEv4Aa4AyoCtI4ZtAawGulYy7674QOsYMawE+B54vrJ1O+fYc889XVLefNO5Fi383wwpK3Pur7+cmz7qTbe4cQs3pN2brkUL53xMObfVVs5dcolzzz7r3IIFMRawaJFzH33k3KhRznXr5tzRR7s1FgDO1a7t3C67OHfooc7VqrXmuIpP/foZ3U6RdAMmuSR+79Ef5c8/Usqf+eXOffutc3ff7dy//+1cs2b/TLjpps6dfbZz993n3NSpzpWXJ96u+vWVO5LXlD/Vl3L+fPONc3fd5dxppznXtKnyR4qW8qf6lD8iVaP8qT7lj0jVKH+qL5n8ufzCFe693i+5FWd3dK5RIz9ivfWcO+cc555/3rnlyzNWPpFcpfypPuWPSNVUNX/Mzxufmb0B1HXOHRA1/C0A59whCebtDfQGGjrnlkYM7wdcDaznnFuRaP2tWrVykyZNSljGNe40TvEO4+XL/XsyZs3yNzRXfCL/XfHfs2fDgatLGU87GrCUpdRn0AHj2fTsNrRtG9HbfOQT8d9888+T8T///M+Ka9f275LfaSf/2XFH/3fLLf3tR9HbVUF3UEseMrNPnHOtqjCf8ieZ/DncsdXq7/2TGRWfWbP8Sjbd1Jcn+gmNZJWW6g5GyWvKn9iUPyKZp/yJTfkjknnKn9iUPyKZp/yJLR35s/npB3Bs/TfY+J1x8OyzMK8KT6qKFDDlT2zKH5HMq2r+JPMO+p2A52IM/xo4NYl5p0WGU8S8tYGtg/+uuuhG7KVLcce0Y+bd45nWsk2lobNwYezF1qsHzZpB06bQvDm0agX7Liul/bh21Frl11WfpdzwydFwwH9ghEvcEL///tC5c+yG+Hj0Dg4R5U+i/Pn4KKi1P/T9ds0LQm3bVv2CULQ2bWD69KrPL5K/lD/KH5GwKH+UPyJhUf4of0TCovxJlD8ftIXP6/mHwtQoJpJuyh/lj0gokmmg3wCYF2P4XKBRNeatGF91sZ4wB2zZUjbrcBgr2ZL1WYdtguElNaGklm8XLymBktpQa6PgvyOHl0DNGsFMK4AZwDeL4aeffG8ekZYvh5tu8jPtuGPVGuIT0Ts4pLgpfxLlz8qV8NZbcNhhMGBAei4IiUgF5Y/yRyQsyh/lj0hYlD/KH5GwKH8S5U9ZGSxbBv37w1VXqVFMJL2UP8ofkVAk23Icqx/8ZGogVpV5zewC4AKA5s2bx5+wY8e1wqlCDRxb1PmNxfsfQZ06/kH2GtWpM7322trhFGmTTeDzz6uxggR0B7UUN+VPovxxDn74ATp1qsYKRCQO5Y/yRyQsyh/lj0hYlD/KH5GwKH8S5U9ZGdx7L/TqVY0ViEgcyh/lj0jWJdNAP4/Yd/o0IvbdQZHmArESplHE+LU450YCI8G/gyPu0keNinkHEQD161Nz/HjWT9cT53HuVqpYF6NHp2c9IhJJ+QOV58+oUelZj4hEUv6A8kckHMofUP6IhEP5A8ofkXAof0D5IxIO5Q8of0RCUKPySfga/y6NaDsC3yQx7xZmVj/GvCuBqUmsP76K7t/rRy0+E+9qz+a6RKSC8ifb6xKRCsqfbK9LRCoof7K9LhGpoPzJ9rpEpILyJ9vrEpEKyp9sr0tEgOQa6J8H9jWzLSsGmFlL4IBgXGXz1gJOjZi3BPg38JpzbkWqBV5LdHBkMjCyuS4RAeVPOOsSEVD+hLMuEQHlTzjrEhFQ/oSzLhEB5U846xIRUP6Esy4RSaqB/l5gOvCcmR1vZscBzwEzgREVE5lZCzNbbWZ9KoY55yYDjwPDzOx8MzsMeAzYArgubVtRERwtWmQ+MLK5LhFR/oS1LhFR/oS1LhFR/oS1LhFR/oS1LhFR/oS1LhFR/oS1LpEiV+k76J1zS8zsUOBW4GHAgDeALs65xRGTGlCTtRv9OwIDgP5AQ+Bz4Cjn3KfVLn2kNm1g+vS0LjIn1iVSxJQ/Ia9LpIgpf0Jel0gRU/6EvC6RIqb8CXldIkVM+RPyukSKmPIn5HWJFLFKG+gBnHMzgJMrmWY6PqSihy8DugYfEZGUKH9EJCzKHxEJi/JHRMKi/BGRsCh/RCQsyh8RCUMyXdyLiIiIiIiIiIiIiIiIiIhINamBXkREREREREREREREREREJAvUQC8iIiIiIiIiIiIiIiIiIpIF5pwLuwwJmdls4OckJ28MzMlgccKkbctP2javhXOuSSYLkwnKn79p2/KTts1T/uQ3bVt+0rZ5yp/8pm3LT9o2T/mT37Rt+Unb5il/8pu2LT9p2zzlT37TtuUnbZtXpfzJ+Qb6VJjZJOdcq7DLkQnatvykbSsehfx9aNvyk7ateBTy96Fty0/atuJRyN+Hti0/aduKRyF/H9q2/KRtKx6F/H1o2/KTtq14FPL3oW3LT9q26lEX9yIiIiIiIiIiIiIiIiIiIlmgBnoREREREREREREREREREZEsKLQG+pFhFyCDtG35SdtWPAr5+9C25SdtW/Eo5O9D25aftG3Fo5C/D21bftK2FY9C/j60bflJ21Y8Cvn70LblJ21b8Sjk70Pblp+0bdVQUO+gFxERERERERERERERERERyVWF9gS9iIiIiIiIiIiIiIiIiIhITsqpBnoz29zMnjSzBWa20MyeNrPmSc5b18xuNrPfzWyZmb1vZgfHmK6GmV1jZtPNbLmZfW5mJ6d/a9Zab5W2zcxamdlIM/vOzJaa2QwzG2NmW8SYdrqZuRifEzKyUf+stzr7LVZ5nZntFjVdvu23vgm2bXnUtGHtt83M7I7gt7I0WGfLJOfN6d9bVSh/Ys6n/CEv95vyB+VPjOny7ThW/pCX+035g/InxnT5dhwrf8jL/ab8QfkTY7p8O46VP+TlflP+oPyJMV2+HcfKH/Jyvyl/UP7EmC7fjmPlD3m535Q/pGG/Oedy4gPUB34AvgJOAI4HvgR+BBokMf8YYD7QGTgMeBpYBuwWNd0AYAVwFdAGGAGUA0fn4rYBQ4B3gUuAQ4AzgW+Bv4DNo6adDrwC7Bv1aZSL2xbM74BRMcpcP8/322YxtukwYBXwRNj7LVhva2AW8BLwarAvWiY5b87+3kI6jnP2+6jmcaz8yc/9pvwJab+FdBzn7PdRzeNY+ZOf+035E9J+C+k4ztnvo5rHsfInP/eb8iek/RbScZyz30c1j2PlT37uN+VPSPstpOM4Z7+Pah7Hyp/83G/Kn5D2W0jHcc5+H9U8jpU/+bnflD9p2G8Z2/gqfFlXAGXA1hHDtgBWA10rmXfX4MvtGDGsBPgeeD5iWNPgy+oXNf8bwBc5um1NYgxrEezk66OGTwceyZf9FkzrgP6VTJN3+y3O8s4JtveYsPdbsN4aEf99frIBleu/t2zv61z/PpQ/CedX/ih/Qv8of+LOq/zJw/0WZ3nKnyzst2zv61z/PpQ/CedX/ih/Qv8of+LOq/zJw/0WZ3nKnyzst2zv61z/PpQ/CedX/ih/Qv8of+LOq/zJw/0WZ3nKnxT3Wy51cX8c8IFzbmrFAOfcNPzdM8cnMe8q4PGIeVcDjwFHmlmdYPCRQG3gkaj5HwH+FavbjDSp8rY552bHGPYzMBvYNM3lrIrq7Ldk5d1+i6M9/o6dV9NTvOpxzpVXcdZc/71VhfInBuUPkIf7LQ7lj6f8WVPOHsfKHyAP91scyh9P+bOmnD2OlT9AHu63OJQ/nvJnTTl7HCt/gDzcb3Eofzzlz5py9jhW/gB5uN/iUP54yp815exxrPwB8nC/xaH88ZLeb7nUQL8TviuFaF8DOyYx7zTn3NIY89YGto6YbgUwNcZ0JLGeqqrOtq3FzHbA353xbYzRxwbvU1hhZh9k+j0OpGfbLg7Ku9TM3jSzg2KsI6/3m5lthu/iYkzwY46W7f1WHbn+e6sK5U+SlD9rrIMU1pMq5U9suf57qwrlT5KUP2usgxTWkyrlT2y5/nurCuVPkpQ/a6yDFNaTKuVPbLn+e6sK5U+SlD9rrIMU1pMq5U9suf57qwrlT5KUP2usgxTWkyrlT2y5/nurCuVPkpQ/a6yDFNaTKuVPbFn7veVSA/0GwLwYw+cCjaoxb8X4ir/znfP9DCSYLt2qs21rMLMS4B78HUT3R41+Abgcf+fGWcBy4BkzOzvVAqegutv2CP79IocDFwAbAm+aWeuodeT1fsN371EDeDDGuDD2W3Xk+u+tKpQ/SVD+rLWOivGZoPyJLdd/b1Wh/EmC8metdVSMzwTlT2y5/nurCuVPEpQ/a62jYnwmKH9iy/XfW1Uof5Kg/FlrHRXjM0H5E1uu/96qQvmTBOXPWuuoGJ8Jyp/Ycv33VhXKnyQof9ZaR8X4TFD+xJa131tJlYqXOdEbAmBJzGdJzpvsdJmQrvXeCeyPf4/DGgeJc+7yNRZu9gzwATCItbtZSKcqb5tz7pyIf/7PzJ7D37XTHzgwYln5vt/OBT5zzn2x1grC229VlQ+/t6pQ/lRO+ZPiOqpJ+bO2fPi9VYXyp3LKnxTXUU3Kn7Xlw++tKpQ/lVP+pLiOalL+rC0ffm9VofypnPInxXVUk/Jnbfnwe6sK5U/llD8prqOalD9ry4ffW1Uofyqn/ElxHdWk/Flb1n5vufQE/Txi31HQiNh3K0Sam2DeivEVfxuZWfQXFD1dulVn2/5mZoPwd9mc55x7rbLpnXNlwDhgMzPbONn1pCgt21bBObcIeBHYK2Jwvu+3vYHtiX330FqytN+qI9d/b1Wh/KmE8idv95vyJ/F0uUD5UwnlT97uN+VP4ulygfKnEsqfvN1vyp/E0+UC5U8llD95u9+UP4mnywXKn0oof/J2vyl/Ek+XC5Q/lVD+5O1+U/4kni6uXGqg/xrfZ3+0HYFvkph3CzOrH2PelfzzDoCvgTrAVjGmI4n1VFV1tg0AM+sFXA1c4Zx7OIV1Vxwcse7kSIdqb1sM0Xee5O1+C7QHVgNjU5gn0/utOnL991YVyp8ElD/5ud8Cyp+1pwPlT+R0JLGeqlL+pEb5o/zJNuVPAsqf/NxvAeXP2tOB8idyOpJYT1Upf1Kj/FH+ZJvyJwHlT37ut4DyZ+3pQPkTOR1JrKeqlD+pUf4ofzznXE58gC74nbhlxLCWwCrgykrm3Q2/I9tHDCsBvgVeiBjWFFgBXBc1/wTgy1zctmDa/wTb1zPF9ZYAk4Cfc3XbYixvPWAG8Fa+77dg+trAX8BzubTfYqzz/OAYa5nEtDn9e8v2vs7170P5k9LylD/Kn6x/lD8J51f+5OF+C6ZX/ih/8vo4Vv7k534Lplf+KH/y+jhW/uTnfgumV/4of/L6OFb+5Od+C6ZX/ih/8vo4Vv7k534Lplf+VGO/ZWXjk/yCGuDvPPgSOB44Dvgc+AlYJ2K6FsFB0ydq/sfw3S6cDxwGPAksB/aImu7GYHhXoDVwN1AOHJuL2wacHpTvZWDfqM+OEdOdEXwH5wJtgvn+FxxIp+fotl0F3AucGeyL9sFyVgIH5fN+ixh3UrAPToqzjlD2W8T6Twk+dwfrvDj49yH5+nsLY1/n8vdRzd+o8icP91vEOOWP8idvj2OUP3m53yLGKX+UP3l7HKP8ycv9FjFO+aP8ydvjGOVPXu63iHHKH+VP3h7HKH/ycr9FjFP+KH/y9jhG+ZOX+y1inPKnGvstoxtfhS+rOfAUsBBYBDxL1B0N+Ds4HNA3ang94Bbgj+AL+RBoHWMdNYFrgZ/xdzd8AZySq9sGjA6GxfpMjJhuX+BNYBb+DpcF+Ds1jszhbTsWeBeYE5T5L+B5YO98328R454Ltqt2nOWHtt+C9Sc8tvL195btfZ3r30c1fqOjKztGwj6Oq7Ftyh/lT858qrOvc/37qMZvdHRlx0jYx3E1tk35o/zJmU919nWufx/V+I2OruwYCfs4rsa2KX+UPznzqc6+zvXvoxq/0dGVHSNhH8fV2Dblj/InZz7V2de5/n1U4zc6urJjJOzjuBrbpvxR/uTMpzr7Ote/j2r8RkdXdoyEfRxXY9uUP8qfhB8LFiIiIiIiIiIiIiIiIiIiIiIZVCPsAoiIiIiIiIiIiIiIiIiIiBQDNdCLiIiIiIiIiIiIiIiIiIhkgRroRUREREREREREREREREREskAN9CIiIiIiIiIiIiIiIiIiIlmgBnoREREREREREREREREREZEsUAO9iIiIiIiIiIiIiIiIiIhIFqiBXkREREREREREREREREREJAvUQC8iIiIiIiIiIiIiIiIiIpIFaqAXERERkaJlZi3NzEV9VprZDDN72Mx2iDHPdDObH2d5pwbzzzGzPYNh9c3sSjMba2bfm1l5sJ6G1Sx7h4gyj0ow3dCI6bpUZ50iIiIiIiIiIiJSPWqgl4yIutg9Ls40HSq7UGxm+5pZmS4oi0gy4jS0RX8mRkxfMWyRma0TZ5k7R0w3OVvbIiJZ9z3QL/jcCfwGnA18ZGY7JrMAMzsPeBSYDRzsnPskGNUUGAKcAdQCFqS36KwGTo2VY2ZWApwVTCMieS4bNxXFmKaWmU3WuZBIfjOzF4Pf8VcJpklL/cjM2pvZJ2a21Mz+MrOnzGz7NG1K5HpSqv9FbGPMcotI9WUjazJ1A3QyzGx/M3vIzH4ys2VmtsTMvjWzu8xsj6hpJwblWmxmzeIsT5kkkuOylGu7mVl/M/vQzGab2XIzm2L+gYsN07xJkiNKwi6AFIWTzayVc25SKjOZWV1gFLAMaJCRkolIofoeeCzOuOlR/14NrAOcAoyOMX3HYBr9P1OksH3nnOsbOcDMhgOXAFcD5yaa2cyuAG7FZ8zhzrmfIkbPAdoCnzjn5gUXig9JW8nhFaAdcCr+3CnS0UAz4AXg2DSuU0TCFXmusx6wP/6mohPMbB/n3DeVLSC4qWgkMAtom2CeXsDW1S+yiITFzDYGjgQcsJOZ7eWc+zjO5NWqH5lZX+A6YBpwF9AIOB1oa2YHOOe+rPqWxJVK/U9EMiSLWVNxAzT4rFkANKxywZNgZjWBO4CLgRXAG8BT+G3dHmgPXGRmJzjnno+avQFwLXB5JssoIumXxVy7B9gb+BAYG0x3CNAV3762r3Puj2psiuQgNTZIpk0DWgKD8BemU3E9sAlwI3BDeoslIgVurYa2BL7BV+Q6EnXyFDx5ejbwMmrYEilGo/EN9DGfKq1gZn3wT95/g2/k+i1yvHNuMTAhQ2UEeBP4F9CBtRvoOwJ/AeNRjokUkkzeVBQ53S5AT+Aq4LZql1pEwtIeqAkMBa4EzgPiXVyucv0oeEr+WuBbYB/n3KJg+P3A2/gG+4OquzExpFL/E5HMyUrWkPkboGO5Ed84/xFwqnNuRuRIM9sAf3NSoxjz/gRcYGa3OOemZbicIpJe2cq1R4AzIjPCzAy4HbgM6IOv60kBURf3kmlf4O8mPNzMDkt2JjPbG393UA/glwyVTUQE/B2QDwIHmdmWUeOOwd+ZPTrbhRKRnLIq3ggzG4pvnP8EOCS6cT5LInNsq4iyNcHn2BhgZQjlEpHsGh38TeamomH4BrQDEzTOlwTLnIR/9YeI5K8O+CdMrwWmAKcHvRbGUp36UQf8RewBFY3zAM659/C9+RyYia7uRSRndCALWeOcW+ycm+Ccm5eOQlfGzLbFX6eeDRwT3TgflGmuc+4KYvfm0QeojX8YTUTySweyk2t3Rt/A45xzwMDgnwdXpfCS29RAL9lwLVCGf4q+UmZWB//017vAiAyWS0Skwujgb4eo4R3xd2aPz2ZhRCRndAr+vhdjnJnZSPyFmv8Bhzrn5mStZGsbHfxtHzHsbPw770dHTywiBS1dNxX1BHYEOjnnytNbRBHJFjM7ANgOeNI5txz/hFZD4KQEs40O/naIGl5Z/ajiCdbXY4x7NfirC8wiBSjLWZNt7fHtKCMqq/M551bEGPwivs54ppn9KwPlE5EMyJFcq3jYYnWK80keUBf3knHOue/NbBRwvpmd7Jx7qpJZ+gFbAic455zvyUNEJCXbB+8+jOUV59wHkQOccz+Z2dvAuWZ2XZA9TfHvbr7bObdSWSRS8CJzY13gQPz7v34C+seYfj2gM777+HbOuYXZKGQ8zrlpZvYW0L4ix/AVwM+dc5+Z2a5hlk9EsiKZm4o64y8QJ8yt4OJxL+AG59y3aS+piGRTx+Dvw8HfR/DXXTri33G6lmrUj7YBFjnn/owx7ofg79aRAxPU22KK05V9SvU/EcmIbGZNyqqZNfsHf0urUYRrgHfwT8Pq1WMi+SEXcq1D8DfWzY+S59RAL9nSF/8UV38ze9Y5VxZrIjPbC/9+w57OuR9iTSMikoTt8O/+imU+EOsCzSj8XY6HAm/wz5On0e9zFpHCFCs3pgEHOOf+iDH9EvyrfPYD7jOzM51zYd/RPArfndqhZjYf/176LmEWSEQyJmM3FUV0bf8dMDh9RRaRbDOzBsBpwAz8O+Arbup7D3++0DxWV82BqtSP1gNiNc4DVOTO+lHD49Xb4ukbY1hV6n8ikiYhZE1VVCdrNgr+/lrVlTvn3jWz8UA7M9s/ePWHiOSoXMg1M9sZn0WzgZtT3wrJderiXrLCOfcr/r2F27Nm16t/M7Pa+JCaDAzNWuFEpBA955yzOJ9hceZ5EljMP3cmdgQmO+cmZ764IpID/s4N/AWYG4AtgCeCxqpoq4Gj8Bd8TwXGmFnNrJU2tieBRfj86ojv5npMqCUSkUypaIy6Dv+qjb3556aiWN3WLwHeBzbE31SU6Gb9q4Fd8V3bx+0uX0Tywin4m3jGBL3rVHgYf02wQ4J5q1o/cpWMX3Pi+PW2mJ84i6lK/U9E0ieMrElJmrKmunoC5cCNGVq+iKRPqLlmZpviu8OvDZwVp3ciyXNqoJdsGgQsAPoG75mP1hN/oalTvCfsRUQyxTm3BHgCOMnMDgV2Ru9tFilKzrlZzrk+wL3AQcAVcaZbCByJb6Q/jZAb6Z1zSwlyDDgTGF/ZOxJFJG9l5KYiM9sW6A3c4pyblLHSi0i2VHTN+kjU8Cfw7zTtYHH6Wa1i/Wghaz8hX2G94O+CSpYhIvkn21mTbRU9qm1anYU4574EHgUOMrOjq10qEcmk0HLNzJrhn7zfFDjdOafu7QuUuriXrHHOzTWzIfiLR5cCc6Mm2Q1/TE6Ok223mtmtQL847xwTEamuUcB5wEPoyVMR8TcPngH0MrN7Y3UJ7ZxbaGZHAq8C/wacmZ0d4s2Go/Dvoa5H7l3YEpEMcM7NAvqY2Ub4buyvIEaPZFF5dRo+r86Kyqsd8U9pdDOzbjFWt6uZOeBn51zLNG+KiKSRmW0FHBz88+s411m2AFoT/73KqdaPfgD2NbOmMZ702ib4OzWqnH0rWeYadD1IJLeElDUpq2bWvIcvfxvgzWoWpTf+PGygmb1czWWJSAaEmWvB++rfBLYGznTOPZN0wSXvqIFesu1W4DLgGnxDfaTXgVhPeW2DD8QPgK+BTzNZQBEpXs65d8zsB3zuPKMnT0WKm3NujpkNB3rgG7yiz10qpqto9HoNOB3f6HVOGI30wbsNjwNqAi9le/0iEqp03FQ0Hbg/zvI74W+yfobY9TYRyS0dAMNfOP4pxvjGwPH4J8RiXlyuQv3oLWBfoC1rX4g+Mvj7dtTwdLyDXkTC04HsZ01VVCdrHsS/AugCMxvmnPsr3kxmVsc5tyLe+OAd1iPxD6+dkWKZRCQ7OhBCrplZE/yT89sD5zrnnqhS6SVvqIFesso5t8TM+gN3AP+JGjc81jxm1gHfQP+43h0mIllwGtAS+CLkcohIbhiKv7nwv2Z2W6wGL/i70esIfCP9GQCRjfRBL0KNg8m3D/7eZWYrg/++Kl0XopxzL6RjOSKSX9JxU1HwXsTzY81nZp2Amc65mONFJHeYWQ2gPVCGf2/p7zGmqQ38BpxsZpfFO8chtfrRaOAq/I1CzzvnFgXr2h84FnjXOfdd5AwZfNeziGRYiFmTsupkjXNuipndgs+3F8zsNOfcL5HTmFlD/NPxn+OfmE3kBnwD4PVVLZOIZEZYuWZmGwITgJ2A85xz6tW1CKiBXsIwAugKbBV2QUSkYG2foPuy+Ylu9gkuTE9Of5FEJB8552ab2d34izH/AfonmDbyydQz8I1e5waN9KcALaJmiXxioi96IlVEqi8tNxWJSN47HNgceDHWhWUA59xKMxuDP7/5N3BvnOkmk2T9yDn3XfBQxnXA52b2NNAQnzNLgYtT2orkVbn+JyLVEkrWQHZvgA5cAzTA59hUM3sd+DYYtw3+u2iAf6o2IefcLDMbBvRKY/lEJD3CyrWngF3wjfktY53X6DU/hUcN9JJ1zrlVZtYHeDjssohIwdqO+N2X/QwMy15RRCSXOeem47suSzRNN6BbxL9bJph2Ab5r1+jhceepKufcaJJ8z3wq04pI/krjTUUikt86Bn9HVzLdKHxWnEeci8upcs71NbPpwXIvBZbhc6aXc+7bRPNWg+p/IuEILWvI8g3QzrnVwCVBo9yFwEH4hjzwOTMWuMc591mSi7wZ39i/QbrKKCJpEVautQz+7hJ8YumbhvVIDjHnXNhlEBERERERERERERERERERKXg1wi6AiIiIiIiIiIiIiIiIiIhIMVAX9yIiIiIiOcDMGgJdkphU71IVERERERERERHJU+riXkREREQkB5hZS2BaEpP+nIl32ouIiIiIiIiIiEjmqYFeREREREREREREREREREQkC/QOehERERERERERERERERERkSxQA72IiIiIiIiIiIiIiIiIiEgWqIFeREREREREREREREREREQkC9RAnwPMbAszW2Fml0YN72Bmzsxah1Oyv8sx2sxc1LAaZvaNmT0VVrlEJHnKGREJi/JHRLJJmSMi+UjZJSLpojwRkUxTzoikhxroc8Mg4E/gvrALkiznXDlwA3CSme2XqfWYWTsze8fMFpvZAjN7tSrrM7NNg2D+w8yWm9nXZvZfM1vrN2BmW5lZXzN7wcx+C/6nMjnBsuub2ZVmNtbMvjez8mCehgnmqWlmXczsczNbZmbzzex1Mzukku3Yy8zGBduxwsx+MbNnzWzXiGnMzP7PzO4xs6/MbJGZLTGzSWZ2hZmVpGMbJO8oZ+III2eC6eua2fVm9mPwe55pZrfH+t2ZWevgNxnv0yqJ8t0VMX2sdfzHzF42s5/NbKmZzTWzT4JtqB9nmTuZ2eNmNivYhh/NbJCZNUhQjvbBcpea2V9m9pSZbV9J2U83s1IzmxfMNyX4rtetbLslJyh/4siT/NnOzO4zs8lmNidY/k9m9oSZ7VlJuZL67VYlf6Lm3yL4Dp2ZDYsxfjcz629mH5rZ7GAbppjZUDPbMM4yq3SuJjlBmZMEM3sx+M3MT2GedczsHDN70symBr+lucFvo12C+ZI+X7Bq1Euqer5gZqfaP+dIJyTzXVSHme0QnP/8FZTzEzM7t5J5tg22ZWbwHf5uZq+YWZtMl1eyRtkVRzrOl8zs4OD/+xPNbGG8c4aI6adb4vqXM7PNI6avyrnG2WY2IsiAFclkkJkdHvz2fwny4wfz52lbJ5hnEzO70/z523Iz+zP4Hk6t/JuTPKU8iSMdeRIsJ5P1r5TyJFj2rcF2/R4s/zcze9PMTjIzi5o+pfM581K6zhxjGbXM1ycTXmOPmifhNSwJnXImjnzImYh5Ur5GGzFvJq4zb2dmDwXZtMzMZpjZeItzw4eZNTKzAUE2LQ7Ocd4zf6NIzRjTJzqvuyrG9BMTTD8+me+pUs45fUL8ADsB5UD3GOM6AA5oHXIZR/tDZa3hNYCZwCsZWm/F9v8B3AYMB/4CVgGHp7CcTYFfgTLgCeBGYFKw7FEJ1rsK+CL478kJlt8ymMYBPwHzgv9uGGd6A54JppkC3A7cH8xXBpwcZ74LgvGzgQeAgcF83wFnR0xXN1j2MuAlYDBwd7CvHPAyUKM626BPfn2UMwnXG1bO1AQmBOPfCaZ/Lvj3F8C6UdO3DsZNBPrG+GxSSflaB8fA4ni/beBz4DNgVFCeOyIycBJQN2r6/YGlwGrgSWAI8L9g+g+AejHW0TciZ4YEGbYEWAj8K87+fzCY5/ugTIOBscAsYLMwj1t9kvptKH/irzdf8ucUYA7wPHBnMP3jwe+/DPh3nO8u6d9uqvkTNa8Bb0bk27AY03wQHIfvB9/10IjvaDqwUYxlpnyupk/4H2VO0mXoEBzLy4D5Kcx3VPAd/gk8ir8w9xD+/+UOuCbGPCmdL1CFekmqmRM1b+Ngeyoy5IQMf/f/wp/3LA/KfFNQZgdcF2eedsH0i4Ax+HrgCOAToFeYx7M+aTsulF3x11ux/dU9XxodLGcJ/hpKzHOGiOm7ELveVbGcb6OmT+lcI5hnekSmzqgsg4ArgmnmAPcGOfdisN5FwC4x5tkLmAusAJ4K8uMu/DngiLCPfX3S/1GeJFxvuvIk0/WvVOsujfHnWqXAyOB3fm+wnQ64M2r6lM7nqMJ15hjfQV/+OdeanMR33JpKrmHpE95HOZNwvXmRM8E8fUnhGm3UvJX+Rkn9OvO+Qc6sjNjmyGw6L2r6RkHZXZB/NwXf9y/BsAdjlKkiR/vG+OwfY/qJwTyxpj8zLcdMmD8UfRz4C35lxLhokOuBFoy7KfgxtkzzOjcEFuAvqGwSMXzrICR+AmoluaxHgu+xU8SwmsD4YPhhUdNvAexTERJU3kC/DnA40Cj4d8UPt2Gc6U8Nxr8dGURAC/wFqDnAelHz7IO/qPUOsH6MZZZE/Hct4Jro6YD6wEfBuk+rzjbok18f5UzcdYaZM+cHwx8CLGJ4j2D4DVHTtw6G963CdjYAfgSeTvTbJk4DGP9c8O4UNfzrYPgxUcNvCYb3ihq+fZBj3xBxYoi/cL8a+F+MdV8VLGsYa99YVCN6mD6591H+xF1nPuVPncjpIobviK88zYwxLqXfbqr5EzXNJUGGdK1YZ4xpLgO2iBpm+AqiA+6KGpfyuZo+ufFR5iS1/k2C4/gW/MWJ+SnMuytwBhF1j2D4NsEyVwGbRo1L9Xwh5XpJqpkTNf4J4Gf8RSlH5hvo3wn2cduIYfXwje2rge2ipm+Jb3j7Lvq7DcaXZLK8+mTno+yKu850ni+1wjco1OSfutWwKpTppmDeblHDUzrXCMYfDjQP/rtvogzCX+dZgL/Iv3HUuIuIccEeWB9/kfoPYKcYy1R+FOBHeRJ3nflU/0q17lIDqB2jnOvwz3nY1hHDUzqfowrXmaOm2wXf4PYfkmigJ8lrWPqE91HOxF1nPuVMytdoI6bJ1HXml4LhR0QN3znIpWlRw7sH0w+MGr4u8EMwrmXUOAdMTGGfTox3HKXtuMnkwsP8ENGYARyIv8C2GPgdf6dXzWC6c/F3biwLDqzoOzG2BW4GJuP/J7Uc/z+3a6N/UMGyHPB4jPL0CsYNiRhWE38n63txtiFuoAHrAf3xFfXl+JP0Z4FdY0w7PfhsANwD/IYP0dZR39PB+CeQFkYe8CQOtH2C+Xunef9VVDDWeiIAuDUYd2QSy1kPf6fwlBjjdg2W82gly6j05CFq+okkbqCvCNj/izFuKLED6rVgn21Zze/1DGLcPZnqNujz9/eknPlnWuVMCjnDP3dERz9FWgt/Ivcra55Q/f0dVmE77wyOq42r8tsGjgvmGRQxbOtg2Idxvo9y/MXuyG24MZjnrBjzPBOM2z5iWP2g3FMJfkv6rPGdRf6ulD/Kn4zlTyXr/zRYR52IYWn77RIjf6LGt8A3XN1IFS6243PRAV9FDU/5XK3QPyhzIqedTp5lTtQ6Xgj2TX1SbKCvZLkjgrKfEjEs5fOFGNNNJHHdqsqZA5wcLPsoKm8c2wh/MfInfO7OwmfFFimsb/tgHa/HGHc8MfIO/yScAw7J1DFRyB+UXZHTTifPsos0nS8lOC6GpThfSXDsrAKaJTlPzHONGNP1pfIMcsCEGOM2D8aNjxreMxjePp37pVg/ypM1pi3aPCHE+leyeRI1zy3Jblsw/Vrnc5VMn/A6Mz43PwXew99I4Ki8gb5a17Dy+YNyJnLa6ShnMnmdOaVrtFHj036dORj+Hf4cK9YDIj8Ci6OG3RMs58AY098fjGsVNdyRYw30xfAO+n3wjZt/4iu38/F3Vww0s674u+w/we+09YH7bc13S54EdMR3b3k/vouYMvz7KsZFrsg59xC+y8/TzKxDxXAz2wsfGJ/jg63CrviuGD5IZYPMrHEwTy98OA3HX2g5DHgvzjst6uDD6mB8t1Yj8MFV4QB8NxhL8d3UvJxkcT7DB8ahqWxDEir2wesxxr0aNU0i+wG18du2Bufc5/iASmY56dQs+Ds9xriKYa0rBphZI/yd1Z85534yszZm1j14z0/Cd7/GsCr4uzrF+SQx5YynnIkSK2fMrB6+q8HvnHO/RE2/Ct8tzyb4u5ejbRO8w+dqMzsj2E9xBcfZJcCVzrnfk9iWWI4J/n4VMSxujjnnFuJP1JoDW0aMSub7PjhiWFugIf5kvZb598NeY2adzax5CuUvdMofT/kTJQP5swYz2wrYDpjqnFsRMSqdv91Y+VOxfsMfs7/jj7+qWBn8jT4vSulcrcgoc7x8yxwAzL/nvB1wgXNuaZoXH6ueUZXzhVRVKXPMv8P1LuBh59wriVZgZtvgj+tL8U+Z3I7Py9OAj4I8TEai7J+Av6gWmdlG8JoR59xbZraXmV1pZl3N7OAYy5D4lF1evmVXus6X0uVofEP5S865WUnOE+9cI1Wz8A0Zu5tZs6hxRwd/34waXtEj0DNmtkNwDambmR0V672skjTliVeseRJa/YsU88TM6uK/xzLg22TmIfXrxpVN3xPf81on59//nVCarmEVAuWMp5yJksacSfUabcW6MnWdGXw9qwR/TESucyd8nTH6POeb4O9RUdOvAxyE/56+YW0Nzex8M+sZ1Bm3rqzAZnZ6UMf8j5ntW9n0qShJ58Jy1FFAO+fciwBm1ht/d/3l+Lt9dnfO/RyMG4V//8GVwFvB/A8DtzjnKv4nWFFRHgmcb2YHOufeiVjfRfiuIG43s7fxB8IY/P+ozoq6gFkRPJ+muE13ADvg33PwaES5+uPDeST+3XaRNgq27eSobWkd/OfhQfnGplIQ59xKM/sK2MfMalT8z9bMGuLf2ZWs+c65YRH/rgiMqTGm/SH4W+mPp5LlVCzrQDNr4JxbksTy0mFO8LcFa58gtQz+bhsxbHd8V0a/mNl4/gkxAMzsCeDcqGMrnvbB31jhK1WnnPGUM7FF58xW+DuHE01fse4pUePODD4VlpnZtc65W6IXYmb18SfibzjnHqh8M/6e7xKgKf5i9/74k7yXgMciJovMsej518OfrIPPsh+D/94GWOSc+zPGamN93xU3IJXj7wyOPJFcZWa9nHM3J7FJhU754yl/Yktb/pjZjvjGqFr4ytHx+Iu+F0cto8q/3STzp8KF+Ap1a+fccn/YpqxD8Df6vCjVc7Vioszx8i1zMLON8Rfz7nfOvZFKuSoTXAQ5Cf8kzP8iRlXlfCFVVc2c4cHf/yaxjofw73dt45x7u2JgcCHxbfz7JdslsZy4me2cW2Jmv7Fm9m+B/44+NrORQOfIecxsInCSc25eEusudsouL9+yK13nS+lyXvD3/hTm6RD8rdY1GOecM7Mr8E8Efmlmz+BvctoJOBK4D39MAGBmtfH7fzb+3fX98NeVKnxhZsc652ZUp1xFSnniFWueZPP6T7QOwd+YeRJcA+qO/603xd+80xzomcxvPcH5XCJxrzOb2b/wjbE3OOcqvUGgqtewCpRyxlPOxJaOnEn1Gm2mrzMD9ME3rI83s2eBafgbC04CPsQfp5Huw/cA0Suol32C713tuGD8yXFuSt8Vf9NKBWdmDwEXO+eWxdmMRyP/YWYfAqc756bHmT55LoOP54f54Z+uLt6IMe4+4nRjgT+Qf05i+XsQp7vhYN1l+O5bHgimuyzGdIOCcW3jrKMDUV2C4C8MlBHVdVXE+Ip35+0cMWx6MCzWO6cqvqePE2zraBJ05cA/74doEjGsZTAs2c/0qGVOCYav9U4soEkw7tUk9lNFl17nxxn/YjB+4wTLcKS3i/v2wfiJrNkl7Ob4/8k64PuI4acHw1bj7zA7Bv8ujV3wF4QccHMS5epYsd7qboM+f39PFb8f5YxyJumcwZ+MOOCRONN3C8afETFsJ/z7VbfHn2xsApyFf6egI6o7q2Ce24ElRHS9msxvG38HY+T39gjQIGoaw3fx6oCjosbdHDFv5DasBH6Js869gulHRAyr6KpoNfA+/maldfEXoGYG49pV93ecrx+UP8ofl538iRh3StQ2zSLq3WDBdFX+7ZJE/gTTNcffOX9XxLCKfT0syd/Qzvju8f8EmkaNa08K52rF8EGZk9eZEyzjOXxdomHUtsxPw/ExOtb+owrnCzGWPZHEdauUMwc4MRh+WsSwvsGwE+Icm/G6bn0yOIbWT+J7quiu/vA4478GVkT8e9+IbVuIP/dbH39B7alg3Ljq7r9C/qDsyuvsIk3nSwm2d1gK8zTFPyn6R6zyxJkn7rlGjGljZlCM6Y7E3/wU+b19ABwUNV1Fl/ir+efdz43x51DDg3EfkeRrjfRRnihP/p42a/WvqOkqzZNgX0Z+ByvxjbbJvr5sdLxjMM70ca8z4x8K/QT/9HWtiOGOONfYqeI1rEL6oJxRzrjs5AwpXqMNhmfsOnPEtFvhX80QOf2vQIc40zfAN/RHTr8c31tE/RjT3wzsjb8JuiHQBl+HdMBDMabvgr9hZiP89fhdgQeD6b8H6ibz2070KYYn6D+PMeyPSsbtU/EPM6sBdMKHy074d0BE3nW6cfQCnHMTzexmoAf+rqJXnHN3xljXhsHfeYk3YQ174e+IWcfM+sYYv0Pwd3vW7CZimXPu6wTLnZRCGaJVlL8x/u5cnL97pEqPMgWqM2+s5bg0LS8dxuDvvD4Ef9fyK/gf+Mn4xrZG+P9pVah4FUVN4CIX3D0XzHsS/qLXJcFTtDGfojezQ/EXr37BX9iR9FLOeMqZzExP8L1GfrdLgTFm9jm+0tMPfwLtV2B2EHAZ0NU5Ny3Z9QTr2jlYRjP8Se/NwIdmdoRz7rdgGmdml+Ev9o83s6fx75DdB38x+Tv88VEWvfgUilKRfSuAE51zFb+pV82sE77Lpf8C41PZvgKk/PGUP5mZ/m/OuSfxN97Xwd9J3RV42cyucs7dGjFplX+7yeRP4D58N389Ut2OYPmbBuuvjX/6NPqu8VTP1YqJMsfLq8wxs7PxTxKc6JybX42yxVr2tfibWl7Hv1Pyb9U4X0hFSpljvmv7u4HnnHNPJLH8iuN3szjHyMZBGbYBJplZF/zFnkjDgu891QyOrAde65wbE/x7gZmdgb8odLKZNXd6CrYyyi4vr7KrmvOm27n4BqeHnHOVdv2cxLlGyszsfPyrOW7Dv/91Dv7BjWHAm2Z2QsT1osj8uN05d3vEoi41s93xx+WBJP+krHjKE69Y8yRr9a+/F5Bknjjn5vjJrSawGf6BrwHAfmZ2mkvQxXyi87k401d2nflqfEPWvs53sV3Z8qp8DatAKWc85Uxmpq+Q9PSZvs4cjN8bX2/8DJ9HU/APSfQCRpnZts65nhHTNwWex1+fOQJ/w+J6+J5nBwJtzOzgyOxzznWLKl6pmR2G/12dY2bXO+emRkw/LGr6z4H2ZlYSrOcsUutZaS3F0EC/MMaw1ZWMi/xe7sC/V+Fn4Gl84K3EV7qvwL8LI5Zn+eei4fA401R0mVAvzvhYNgj+HkLid1Y0iPr37EqWW53KQkX50/kewwXB3/XwTypFWi9qmmSWs36c8RXLinUsZIRzbrWZHYW/G+p0fNews/E/5ufwlaPI/VWxDWVEvUvFOTfHzD7Av3txB/wdRmswswPxYTUXONQ592s6t0cA5UwF5Uxs0TmT7PSVrts591XQrc5BFRdng5OEB/BPRNyeeAkJlz0LeNzMpuJPegcD50SMfynoVupa/IlQbXwXV4fzz9P+kcfEQlLb5or/nhRxsb3C6/gL8Xsiyh9P+RNb2vMnuBnwa6BTUCG62cxedM5NiZq3yr/dRPlj/r14bYFjnHOLEi0nlqBS+AawKf7p2bW6Y6zCuVoxUeZ4eZM5ZrYBvjFnnHPu2XQsM2LZXfBPJ/wP/9TnWo1WVThfSFWqmTMUqIs/DpNRcYwcH3ziqThGurB2l/6j8TcVJZPBsc6FwL+j82/Od835Or7b+z0ANdAnpuzy8ia7Auk6X0qHjsHfSrt0TeZcI1Vmtj3+5qLnoy4uv29mx+G7gb0R/1QdJMiPwHh8A8yeqIE+VcoTr1jzJKv1r6rkiXOuDH98DTaz1finkzsSpxEpmfO5qOkTXmc2s22B3vgu1ittQE3XNawCo5zxlDOxpSNnkr5Gm43rzGZWC/8k/Gp81/QVx9mU4BrQjkA3M7s9os53C/7GlF2cc18Gwxbhr1FthH+o5ER8z2OJyrXUzB7F59b+xH9VQKT78Q30B6AG+swJ/id4Mf7OiP0iDgzMbB98oMWarz6+Er4c/y6828zsrRgXEStCZgOSV/HDG+CcuzaF+Sq7I6Y6T5g3Cv7+HZppeGfHD/iKwtb4H3+kyt7DEamy93tsA/zusvf+eQCCY6l38PmbmZ0b/OcnEYMrLngvjXPXYUW4rvU/xuD9Gy/hux851Dn3Q/Q0Ei7lTNIKKWd+xO+zRNMnu2745/2u9YO/6wTL3hoos9jvZZ4XDN/CVfK+HOfcJ2Y2Dzg4xrh3gf+LHm5mo/H7+7OIwT8A+5pZ0xh3fMfa5ujGvsj1OjNbxD8njVIFyp+kKX/iex3/3uUD+Oc3m7bfbpz82S34+2KcfLvC/DtaH3TOdYgcEdxQ8CZ++890zj2TYN2pnKtJEpQ5SUt35jTHfyenmlnMclUMd84l/dRH8GT8rfguAY92sd/vR7DcVM4XUpVq5uyGvxj1a5wMeSYY3tE5N5p/jpHOzrn7KiuMc65lgtFxM9vMGuBfYfRhxOAf8Tdp1yT2xby49UBJH2VX0nL5fKlazGxf/IXh95xz31UybdLnGilqi7+GOzF6hHNulpl9C+xmZrWdcyudc0vM7Dd8rig/coTyJGm5nCdZq3+lKU8qGvQPJkYjUirnc8H0yVxn3hF/Q2Y3M4t+WhVg1+Dc8+fgvCmt17CKnXImacWeM6lco83GdebtgS2Ap13Ue+CDOt3bQCv86z4qGuj/D5gb0TgfaSK+gX53KmmgD0RfW0/39HGpgT6xLfBdREyIPjDwFyLjuRXYDh94y4ER+DuXOkRNV3HwbEPyPsaHz74pzJNp2wI/Rf1PvCFwXQrL+BnfLVeFt/BPLLVl7UA7Mvj7dhLL/QB/h9jh0SPMbFegGfB4CuXMtDODv5FlmorvMmgzM9s0xhPwFd3A/Bw5MPif7iv4p0YOd859m4HySvUpZ5JTMDnjnFtmZh8De5vZZs65XyKmr4V//83v/HNCFpf5rsv2wN9hWJENK4h/994x+PfmPByUudKnT4MLxuuTZPdVwQWsLfDdYc2PGPUW/phqi+8+OlKs77s0+LtD1LSYWWN8N1S66ah6lD/JUf7Et0nwN/Ipi7T9duPkz/v4CmK0jYGj8U/3fwC8G7WsJvinT7YHznXJdW0dS6xzNUmOMic56c6cv4h/XvBv/AXUh1MpoJldgt8HH+PfLb84lfmDZcQ7X0hVqpnzNLG7w9wDfwFnAv77q2j4r8joffGv16iOt4K/bYGbosYdju/68+/sd84tN99b2gH47Xs3ap6Y9UBJO2VXcnL5fKm6zgv+Jnx6Po3nGrFUPO3YOM74JviL89HnZGfhs+LTqOmVH+FQniQnl/MkK/WvNOZJrPpaxTpSOp9L4TrzdOKfe3bCP1n8DP80cKX1GpYoZ5JU7DmTyjXabFxnTuY8p6IskfPUrrg5MYnpE9k7+Ds9Q9PH56r5Evtc/eDfZ+CAvjHG9Q3GtY4xbqL/Whz4/4k5fEXYIqbZFn93jQNGR81/XDD81Yp58F1hOuDUqGk3xJ9APxFnGzrEKifwRDD84hjz1AAOiRo2HZie6vcUMc3oiu8kxriK7+iBNO+/DfF39M4CNokYvjX+rqufgFpR82yFP3GJHj4mKGOniGE18d18OfxJRaKyOGByCmWfGMzTMME068UYdlkw37Mxxl0bjBsVdSyeEQx/L2r6VvhuFOcCu1Xh+690G/RRzkQNU86kkDP47kgd8FDUfu8RDO8fNf2+QM2oYTXxXZXFzI042xzzt41v2NomxvQlwMhgnuFR49aJLHswrBn+fVGrgb2ixm0fDP8GWDdi+P7B8HdirH9CsO4OEcMM/64zBwxM5zGRT59EvyuUP0l9TxHTjEb5A/HzZz+gdoxt2AV/rrEC2DRqXNK/XaqQP5Xs62Fxvu/Pg+OxQ2XLCuZJ6Vyt0D+Jfksoc5L6niKmGU2WMydBWabjn/yINS5e5lwQfM+fkERdgRTPF+IdQ4nWlUrmJFhGxXF8QoxxH+KfZD82xrhawIEpfOfvBt9f24hh9YLvczWwXdT0Zwfleo2ILMZfYK3owrYkG8dLPn4S/SZRdiX1PUVMM5osZxdpPF+Ks73DkihD/aAMi4F1KilrSucacY7HE+KM3z8Y/zuwcdS484Nxb0YNPzAY/gUR5zX4RpVFwWeDdO6zQv4oT9YYVtR5QubrXynlCf6J0rV+y/gnhD+Jc6ykej5XrevMEctxpPkaeyF9Ev1+UM4k9T1FTDMa5QzEz5mUr9HG2eaYv1FSvM6DfwXZAnz95rCoef6FfxXBIqBBxPDXYh0H+Mb/r4NxB0cM3yVyWyOGnxQc078D9SKGbw5sHmP67fBP8ZcDe1T3uNET9Ak4534zs2fw7yr42MxK8T/g4/CBdXLk9MG7De7HP6XQwQV7DH932JfACDN73wV3sTjn/jKzd4HWZlbiKnnHS4SL8T+iu8zsfPwdOYvx3RfuBzTFH9TZUHEnz3PpXGjw3XTB36H8qZk9jg+hM/AXMC5wa3f3/gb+fX9bsObdK93xwT3SzI7Eh+Hh+C5HHnTOTYhcSPCkxZCoZTcPumAEmOOcuypqniH8c4fP9sHfu8ys4u6dq5xzcyJm+dDMfga+xYfeQfh3ZnzGP3dnRxqK70K2A7CDmb0TbOcJ+IC/KKIsG+ADan38O4FOMLMTopY33fkuG6uzDZIGypmkFFzOBOv8N/5dO1ua2f/wTzEcj79gPThq+nuADYJ9ORP/+z4Yv4+mA5en/AWsaTvgTTN7D/gOf9LeNNiG5vgTtuui5jkB6G9mb+JPTDYJhq2L/+4+jpzYOfedmfUPlvO5mT2Nvzv1DPyJ1sUxynUx/mnZB4Icm4o/WdwPf7wPqsY2Fz3lT1KUP/53tkMw3c/4yvN2+LuqDbjcrd27Tyq/3arkT6qewlfGvgBamlnf6Amcc9HDUj1Xk0ooc5KSkcyporUyx8wOxZ+TgL/o1yVGF4cTnXMTI/59AimcLwTrSbVekunzhTPxT6I+H2ThZHwutMBnw9yIclbmIvx394KZPYZ/d+bx+Ium/Zxz30dNPwY4JZjmU/PvnW8SDFuN73o/2WNdqkDZlZScP18y/87k84N/bhT8PSLiOs87LvZrLE7BvyZjtEv8dGnK5xrBfjsw+Oduwd//RFy/uc85904w73vB9v8b+DY4JmcH87XF16e6R63vHTO7HfgPvv41Hn/Dwcn49/x2cs5FvyNXMkh5kpSczxMyX/9KNU9OAboHx9N0/tl3x+DPtx4HnqyYONXzuapeZ5ZwKGeSUvQ5U8VrtKlI6TqP8z2HXQ3cBbxqZs/jn/jfHN+AXge4zK35mupr8DctX2dmbfE9D6yLP9abAeOcc5E9FpwHnBfUS3/GN7DvDhwCLAPauzV7ndgTeNLM3grKsgB/k2M7/E3afZxz0T0Upa66Lfy5+iENdxwF/14X31XFz/juPb7Gn9xuQcQdR/gLlK8Ew06Ksdyjgp3+JlAjYvg5wTxHx5inQ4JyNgB64i8SLsEH2g/Ao9HrJ7N3HL0K/EaG7trHH/DvBtu4EH9CsF+caacH29IyxrjNgAfxF0BW4C+2diXqidRg2pbBcuJ91vouI9Yd79Myavq++P/JLcKH3hf4UKmb4LtoAAzEB/LKYFvGAtumWH6HP9Gq1jboo5yJcfys9duo7HuKmGZ05HcSNa7gciaYvh5wQ/CbXoF/lcUdxLgzODgeJgTTLA/K+gXQP9b0CbZ1IrHvbNwI39XqR/iTplX4u6M/wJ8U1o+xrF2B8fg7DFfi7xB9ksqfhOuA72JxGf6C9tPADgmmb4nvKmlWsJ5pwM3EeLq1mD6Jflcof5L6niKmGY3yJ1H+nAKMC6ZdEkw/Hd9otG+CbUvqt0sV8qeSfT0swXcX9xPnd5TSuVohfxL9llDmJPU9RUwzOtYxF4zLaObEWN904j9BX/G7aRnjO0z06Ru1nJTPF5L4zbaMMU9LqnG+QOVPr26Ib+j/Bn8OsxCftfcT9ZRHEuvaEX/+MzdY1qf4C0Lxpq+Fz8Nvgt/NPPwF8lbZOE7y+ZPoN4myK6nvKWKa0YSUXaThfInK82t0nOWVBuMPqqSM0ytZ/lrfXcV3muDTIWr6msCl+F49FuHPmX4FHgF2jFMuwz9V9yn/PH32BhG9eOiT9HEY93eC8iSp7yn62I8zLufzJBiXyfpXxXqTyhP80+33BsfS/CAbZgEvA6cnOA6SOp+jiteZ43wPDj1Bn2h74/5+UM4k9T1FTDM6+rcSMa7ocyZqfyV9jTbesRe9Dqp4nQf/XvmX8TeMrA7K9GqsYy2Yfgd8rwEzg3Usxr9S4fLo7yk4np8Ovp/FwXc0Df8as+1iLHsbfG/WX+HrXxXZ+jxpPI+q6LJCQmJmdfFB9LFz7qSocR3wB0Ebt+ZTCFkV3FHc3jlnUcNbAD/iw7B/GGUTkcopZ0QkLMofEckmZY6I5CNll4iki/JERDJNOSOSPjXCLkCxc84tB/rgu4f5V9jlSVFP/B0wt4ZdEBGJTzkjImFR/ohINilzRCQfKbtEJF2UJyKSacoZkfTRO+hzw4P4bh82xnelmfPMrAa+C45z3ZrvfhCR3KScEZGwKH9EJJuUOSKSj5RdIpIuyhMRyTTljEgaqIE+BzjnyvHvs8sb+VhmkWKWj7/ZfCyziKwtH3/L+VhmEfHy8febj2UWkfTKxxzIxzKLFIN8/G3mY5lFilk+/mbzscxS+NRAn9smA/3wd/aE6dkcKIOIZMZklDMiEo7JKH9EJHsmo8wRkfwzGWWXiKTHZJQnIpJZk1HOiCTNnHNhlyGhxo0bu5YtW4ZdDBGphk8++WSOc65J2OVIlfJHJP8pf0QkLMofEQmL8kdEwqL8EZGwKH9EJCxVzZ+cf4K+ZcuWTJo0KexiiEg1mNnPYZehKpQ/IvlP+SMiYVH+iEhYlD8iEhblj4iERfkjImGpav7USHdBREREREREREREREREREREZG1qoBcREREREREREREREREREckCNdCLiIiIiIiIiIiIiIiIiIhkgRroRUREREREREREREREREREskAN9CIiIiIiIpUpLYWWLf1fEZFsUv6ISFiUPyISFuWPiIQlS/mjBnoRERHJH6qgiUgYSkuhXTv4+Wf/VxkkItmi/BGRsCh/RCQsyh8RCUsW80cN9CKSMudgypSwSyEiRae0FKcKmohkW0XlbOlS/++lS5VBIpIdyh8RCYvyR0TCovwRkbBkOX/UQC8iKXvnhlJqb9eSz4fpxEhEsiQ4QTJV0EQkm6IrZxWUQSKSacofEQmL8kdEwqL8EZGwhJA/aqAXkZSUTSilVd92tORndumlEyMRyQJV0EQkLB07rp09FZYu9eNFRDJB+SMiYVH+iEhYlD8iEpYQ8kcN9CKSvNJSyo9pRz3ng8rUOCYi2aAKmoiEZdQoqF8/9rj69f14EZFMUP6ISFiUPyISFuWPiIQlhPxRA72IJKe0FHdMO2qt1BOsIpJlo0bh6qmCJiIhaNMGxo3DRQ+vXx/Gj/fjRUQyoU0blj2s/BGRELRpA2PHrj1c+SMimab6l4iEpU0bVj+W3fxRA72IJKdjR2yZnmAVkRC0acOYM8azipprDlcFTUSyYNWkyRiwwur6AcoeEcmSD+/+DAPKa9fxA5Q/IpItEyeCGdTV+Y+IZNdfb/j616qayh8Rya5P7vP5U1YrO/UvNdCLSFIWDBvFUvQEq4hk35w5cOdjjalJGZSU+IGqoIlINsyZQ/mgwTzDCXwz5CVo0ULZIyJZ8df3c9hjwmA+3Oh4arzyctbyx8w2N7MnzWyBmS00s6fNrHmS8zY3swfNbIaZLTWzKWbW38waZLTQIpJeP/wAw4fD+efDSzr/EZEsmjOHencM5vmaJ7DwMeWPiGTP4ulz2OGFwfxvw+zVv0oytmQRKSh932rDFzaeCdYWKy/7Z4QayUQkwwYMgD5Lr8at1xAeGg1XXOFvClLuiEiGLe89gFrLF/PKQQMZ0XUH6Do97CKJSJH46owBHMgSGo8cCG12hOnTM75OM6sPvAmsANoDDugPlJrZLs65JQnmbQBMAGoBvYEZwF5AP2Ab4N+ZLb2IpE2PHlCnDlx/PWy0UVbyR0QE4I/LB9Bk1WKmXzSQ407ZAU6ZHnaRRKRIfHXmAPZyi1n3zkHYoTtk5fxHDfQiUqlp0/zN09cd2wB7vgxq1YJVq9Q4LyIZN20afHVHKbfyEvQaDMcf7z8iIpk2bRolI4fzAJ249M4dwi6NiBSRmW9PY7/PhvPeth056Ngds7nqzsCWwHbOuakAZvYF8ANwIXBLgnkPwDfEH+mcey0YVmpmGwBXmVl951ycd6aJSM54+2145hm44QbfOC8ikiXup2ls+PhwxtTtRIfBqn+JSPbM+Xgae7w/nDdbnkfb07OXP+riXkQq1bs31KzhuOrP7tC0qa+sqYshEcmCPteWc2N5d1ZvvBlcfnnYxRGRIrKka29Wlpfw9SnXscsuYZdGRIrJjPa9KaMmW4/pl+1VHwd8UNE4D+Ccmwa8C1R2h2Tt4O/CqOHz8deeLE1lFJFMKS+HK6+EzTaDrl3DLo2IFJnfzu/NKlfC6p7Xsd56YZdGRIrJtHP6sJoStnywb1bXqwZ6EUnos89gzBi459gXqfPBW9CnDxxzjO/iQ43zIpJBn30GK8eOY083iZJB/aFevbCLJCLF4rPPaPDsGO6s2YWuQzcNuzQiUkS+e/QzDpg+hg/37cLGrbKePzsBX8UY/jVQ2aP8E/BP2g82sx3NbB0zOxS4ArgnUff4IpIjHn0UJk2CgQN9j4kiIllSNukzNi0dw4MNu3B2D9W/RCR7Zr4wmT2/H8Nbu3Vhq4Ozmz9qoBeRhK65Bho3KuPsr66GbbaBCy4Iu0giUiR691jJjTV6Urbjv+Dss8MujogUkUWXXs1fbMDiS3vQvHnYpRGRYrL48muYZ43Y/bEeYax+A2BejOFzgUaJZnTOLQcOxF9n+hpYBLwBjAcuizefmV1gZpPMbNLs2bOrWm4Rqa5ly/wFoD33hLPOCrs0IlJkZnX09a9mt/Sgdu3KpxcRSZe5F1zNPBqx+6Pds75uNdCLSFxvvAGvvgqPtH2Qmt997e+irlUr7GKJSBF44w3Y4vURbFH+EzWHDIaaNcMukogUiwkTWPf917il3rX8t+/6YZdGRIrIpze/Qau/XuWLdr1Yv0XDsIrhYgyrtHt6M6sLPA40Bc4BDgG6Af8GhsddmXMjnXOtnHOtmjRpUrUSi0j1DRsGM2fC0KFQQ5eLRSR7Vr40gU2+eo0HN7uWE9qr/iUi2TPl7jfY9Y9X+ejwXmy0fcOsr78k62sUkbxQXg49esC2my3liP/1hn32gZNPDrtYIlIEysvh+qsW8nSN6yk7qA01jzoq7CKJSLEoL2fhJT2YSwsa97mERgmfFxURSZ/y1eXU7duDX2o2Z5+HLg2rGPPwT9FHa0TsJ+sjdQJaA1s7534Mhr1tZguAkWZ2j3Pu87SVVETSZ9Ys/0DG8cfDIYeEXRoRKSbl5cy9oAfLacEe912i+4NEJGtcWTmuRw9m1GjBAWPDqX8p8kQkpnHj4JNP4NF9b8N+/w1uvhms0gcnRESqbdw4aDv5JjYsn0PNITcpe0Qka8ofe4L1fviUYRv25+IudcIujogUkQ+uHMeOSz9h+nk3ULdh3bCK8TX+PfTRdgS+qWTefwHzIhrnK3wU/N2hmmUTkUy57jpYvhxuuinskohIkVn8wBNs9OunPLFLf1ofqfqXiGTPF73Hsd2iT/j2jBtYr0k4+aMGehFZy8qV0LMnHLzjHHZ/7UY49lg46KCwiyUiRWDlShjW/TeutFso//fp0KpV2EUSkWKxciVL/9uLyezKHkPOpG5o7WMiUmxWLl7Jpnf1ZErdf7HfnaG++/l5YF8z27JigJm1BA4IxiXyB9DIzLaOGr5P8PfXdBVSRNLo66/h3nvhkktg223DLo2IFJOVK1nRzde/jnrwzLBLIyJFpHz5SjYY2pNva+9C65Hh5U9SDfRmtrmZPWlmC8xsoZk9bWbNk12Jme1gZuPMbI6ZLTOz783siqoXW0QyaeRI+OkneHCb/tjixXDjjaGVRfkjUlxGjoSOM/pSp+ZqagwcEHZxRKSIrB4+gnX+/IkRWwzmrHPCvY9Z5z8ixeX9jiNpsfonFlwzmJq1a4ZZlHuB6cBzZna8mR0HPAfMBEZUTGRmLcxstZn1iZh3NLAIeMnM2ptZGzPrBgwBPgHezdI2iEgqunWD9daDPn0qn1ZEJI3m3TiCDef/xOuHDWaX3VT/EpHs+eTCkWy+8if+6DKYOvXDq39VmnxmVh94E9geaA+cA2wDlJpZgyTmbwV8CNQBzgeOBoYCodY6RSS2RYvg+uvhjH1+osVLd8F558GOO4ZSFuWPSHFZtAge7fMtnbgfu/hi2HLLymfKIFXQRIrIwoWs6n09b3AoJ9x1BDVDPFPQ+Y9IcVn02yJ2fOp6PmvYmlbXHhVqWZxzS4BDgSnAw8AYYBpwqHNuccSkhs+UGhHzTgf2BSYD/YGXgM7ASKCtc64881sgIil57TV4+WW49lrYcMOwS6P6l0gxWbiQkoHXU2qH8u/7jwi1KKp/iRSXFXMWscUj1/PxOm04ZOCRoZalJIlpOgNbAts556YCmNkXwA/AhcAt8WY0sxrAg8AbzrkTI0aVVrnEIpJRQ4bA7Nlwx+7XYiUl0K9fmMVR/ogUkSFDoNu8a3AN1sF6XxtqWSIqaCvwFTSHv9hcama7BBewE83fKph/Ir6CtgBfwVsng8UWkSpaMWAI9ZbM4am9BjP8SAu7ODr/ESkik84YShs3m9m3DsZqhJ4/OOdmACdXMs10fCN99PBvgNMyUzIRSauyMrjqKn9T9GWXhV0a1b9Eisys7kNotmIOX5w9mDYtQj//Uf1LpIh8dtYQ9i2fzY+DBlOjZrj5k0wD/XHABxXhBOCcm2Zm7wLHkyCggNbAjsBF1SmkiGTHH3/A0KHQ47BJbPjao9CrF2yySZhFUv6IFIk//oD3bnqHfjwHPQdAkyZhF0kVNJFi8fvv2K1DeYx/0+nuVljo14d0/iNSLP784g/2ensI7292Kvt12Dvs4ohIMRk1Cr78Ep54AurUCbs0oPqXSPH4/XfWv28oT9f6N+fc1irs0oDqXyJFY+GUP9j5taFMbHYarS/bK+ziJPUO+p2Ar2IM/xofPokcGPyta2YfmNkqM/vTzG43s3qpFFREMu+GG2D5MkefJd2hcWPo3j3sIil/RIrEDdc7bljejdVNN4EuXcIuDsSpoOHfn3p8JfO2xmdUokqciOSIJT2ux1at5MN2/dlzz7BLA+j8R6RofHvWDdRlORs/MCDsoohIMVm8GHr3hv33h1NOCbs0FVT/EikSv150PTXLVjKnS3822CDs0gCqf4kUjW/OvIE6rKDJPf3DLgqQXAP9BsC8GMPnAo0qmbfi0dvHgdeAtsBN+K6GxiZZRhHJgh9+gJEjYdhRr1D/g1Lo0wfWWy/sYil/RIrADz/AnyOeYV8+oGRAP6hfP+wigSpoIsVhyhTqPnIvI2tcxH9u3zrs0lTQ+Y9IEZj++g/s/9VI3tvpAlq23Sbs4ohIMbnpJt+F2S23kAtdBwVU/xIpAu77KTR7/l4eaXAR5/RT/UtEsmfWOz+w5ycjKd3mAnY6ITfqX8l0cQ/+vT/RkjmDq7gB4BHnXJ/gvyeaWU3gRjPbMXhH2ZoLNrsAuACgefPmSRZRRKqjVy+oV7uMC6f1gK22ggsvDLtIFZQ/IgWuzzWrGOCuYdW2O1KrQ4ewi1MhXRW0O4GrgVbA9cDmwIlx5hORLFt4eU/M1eP383uzxRZhl2YNOv8RKXC/n9eLxtRh+7F9Kp9YRCRdfvkFhgyB00+HffYJuzSRsl7/0vmPSPb92r4n61OPegN7Uy+3bp9R/UukwM1s34sG1GG7R3Kn/pXME/Tz8CdJ0RoR+8Qp0l/B39ejhr8W/N0t1kzOuZHOuVbOuVZNwn8HrUjB++gjGDcORrd9hFrffgkDBkDt2mEXC5Q/IgXvo4+g4VP3sa2bQq0hN0JJsvcOZkVaKmjOuYnOuSFAP+AEM4v5BIiZXWBmk8xs0uzZs6tYZBFJ2gcfsN5rT3F7nW50Gdg07NJE0vmPSIH7etRH7PfLOCYdfCVNd9ko7OKISDHp1QvKy2HQoLBLEktW6186/xHJrtXvfMBmHz7FQ027ceqlqn8pf0SyZ/oTH9Hqp3H8b++raLF3s7CL87dkGui/xnczFG1HYK27f2LMC2ufYFWcXJUnsX4RySDnoEcP2LzxMk6YdC3stRecemrYxaqg/BEpYM7BdVcupp/1Y/X+B0G7dmEXKZIqaCKFzDkWXNyDWTSldo+uNG4cdoHWoPMfkQLmyh0ru/ZgtjVhz7FXhl0cESkmn34KDz0EV1wBLVuGXZpoWa9/iUgWOcesjr7+tdXwrtSsGXaB1qD6l0ghc47Fl3bnT2vKXo/lVv0rmQb654F9zWzLigFm1hI4IBiXyMvACuCoqOFHBn8nJVdMEcmUV16BiRPh0QPuoMavv/h3kdVIJhqyQvkjUsBeeQX2fmcoTd0sSobelEvvPwRV0EQKmnvxJdaf/Da3rX8dl/ZYJ+ziRNP5j0gBmzTgVXafP5FvT+7NupuuF3ZxRKRYOAdXXgmNG0PPnmGXJhbVv0QK2NInX2LTqW8zduvrOPJk1b9EJHu+vfUVdp7zFp8c04fGW6wbdnHWkEwr3L3AdOA5MzvezI4DngNmAiMqJjKzFma22sz+7sDfOfcXMAi4yMwGmtnhZnY10Ad40Dk3NY3bIiIpKivzT8/v0eIv9p84EI4+Glq3DrtYkZQ/IgWqrAwGd51Fd7uZ8hNPhn33DbtI0VRBEylUZWUsvPRqfmBrtrqxM/Xrh12gtej8R6RAla0sY72BPfi5ZEv2HXVh2MURkWLywgv+6Yx+/WD99cMuTSyqf4kUqrIyFl3m618HPtg5x57NAFT/EilYbnUZtXv3YFrNrTj4oc5hF2ctlTbQO+eWAIcCU4CHgTHANOBQ59ziiEkNqBljmdcD3YHTgJeAi4Gbgdz7NkSKzNix8OWXMGangdiiRTB4cNhFWoPyR6RwjR0Lp353PfVqrKDGjQPDLk4sqqCJFKiy0Q+z/oyvuGvTgbQ/v1bYxVmLzn9ECtf7/xnLdsu/4NeLB1B7ndphF0dEisWqVdCtG2y/PVxwQdiliUf1L5ECteDOh2n251e8sO9A9tpf9S8RyZ7J3caw1dIvmdphAA0a5V79qySZiZxzM4CTK5lmOv90HRQ53AG3BB8RyRHLl8O110K7naez3YQ7oX172HnnsIu1FuWPSOFZvhzu7zGFCYzALrgQtt027CKtxTm3xMwOBW7FV9AMeAPokkIFbRFwCXAV8Du+gnZDhosuIoksW8aybr35mr1pM/wUSpKqDWWfzn9ECs/y+ctped+1fFt/D/a95bSwiyMixWTECJgyxT9Fn6MnP6p/iRSoZcso79Wbj9ibYx88JezSxKX6l0jhWb14Oc2G9+bLOq1oPfzUsIsTU26elYlIxt11F8yYAR8c3hubWgOuvz7sIolIkbjrLrjs955Qrx52XZ/KZwiJKmgihWfF0DtZZ94vPLLzw9x+XO71rSgiheuD9nfRumwGn153PzVKknnboIhIGsyfD337wqGHwjHHhF2ahFT/Eik8s6+7kyZLfuG94x+my7aqf4lI9nzaaTh7r5rB1OtGUatObta/crNUIpJR8+fDgAFw8b6fsfGER6BLF9hss7CLJSJFYP58eLXfB5zCU5T0uAqaNQu7SCJSLObNo3zAQF7i/zhzZOtcfPehiBSoBT/PZ5cXBjBpwyPYo/vhYRdHRIrJgAEwdy4MHYpOfkQkq+bNo96wgbxa8/84Y0TrsEsjIkVk6W/z2XbcAN5f/0gOuu7QsIsTlxroRYrQ4MG+fnYjPWCDDaBHj7CLJCJFYvCNjl4Lu7Nqw2Zw5ZVhF0dEisiS3oOos3wBEw67kf32C7s0IlJMPj3jJjZwc1nnjhvDLoqIFJNp0+D226FDB9htt7BLIyJF5rfLB1F/1QJ+6nyjns0Qkaz6/KzBrOfmU2vo4Jy+P1EN9CJF5tdfYdgwGHToa6z3wevQuzc0bBh2sUSkCPz6K0y5ZTwH8z9q9e8L66wTdpFEpFjMnEnte27nETuHC4fvEnZpRKSI/D7pV/Z5fxjvtjyT7c/YPeziiEgxufpq/875/v3DLomIFBk3YyYbjr2dcXXP4ZybVf8SkeyZ9+Uv7DZxGBM3PYtWnXYNuzgJqYFepMj07Qvlq8v57x89oGVLuPjisIskIkXi+j6r6b+qByu32BY6dQq7OCJSRBZ26UN5meP7M69nu+3CLo2IFJMfzu5LCatp/qAayEQki95/H554Arp1g002Cbs0IlJkfjmvDzjHip7X69kMEcmqKWf2pQblbHr/DWEXpVJqoBcpIt9+Cw88APcdNpY630z27yKrUyfsYolIEfj2W3CjRrMD31J7yCCoVSvsIolIsfjyS9Z5+kHuKbmcy4e0CLs0IlJEfhz/LQd8/wDv73YJmx+8RdjFEZFi4Rx07Qobb+wb6EVEsqhs8pds+saDPNLwcs64WvUvEcme3yZ8Q6uvRjFxx0vZ7siWYRenUiVhF0BEsueaa2CD+ss58+tesMcecPrpYRdJRIrEdd2WMozrWNVqP2qdeGLYxRGRIjL/4muA9VjW5Ro22ijs0ohIMZnduSdNaMBOY3uFXRQRKSZPPAEffAD33w8NGoRdGhEpMr+1v4Z1WY8mt1yjZzNEJKv+6HgNDViHncf2DLsoSdET9CJF4t134bnn4NEDh1Pzlxlw001QQxEgIpn37ruw9YvD2MT9Rq1hN4NZ2EUSkSLhJr5Fw3df5I4G13Bpnw3DLo6IFJEv7n6Xff94lk8P70HjHZqEXRwRKRbLl/t3z++6K7RvH3ZpRKTIrHjtLTb/4kUe2ewaju2g+peIZM/U0e+wxy/P895BPdh018ZhFycpeoJepAg4Bz16wHZN53HYhwPgqKPgsMPCLpaIFAHnYFDX2TxqN7L6mOMpOeCAsIskIsXCOeZf1IMlbEqTG/7DuuuGXSARKRau3FfAZtXYiL3GdAm7OCJSTO64A6ZPhwkToGbNsEsjIsXEOf46vwflbMqu9/9Hz2aISPY4x6r/dud325h9xlwRdmmS9vYLmQABAABJREFUpsdnRYrA88/7J1gf23UQNn8+DB4cdpFEpEg8/zy0/ag/DVhCyU2Dwi6OiBSRsiefptH3HzK8aT86XVYv7OKISBH5qPcL7LLoXb4/vS8Nmqp7aRHJktmzoX9/OOYYPZQhIlm36MGn2WTmhzz1r34cdITqXyKSPV8NeI4d5r/PFyf1Y4PN86f+pSfoRQrc6tX+3fOHbDGDXd++Hc45B3bZJexiiUgRWL0ahl/5E+O5GzqdDzvsEHaRRKRYrFrF4st78gs70ur29nr3oYhkzerlq2k85Gqm1dqW/e87L+ziiEgx6dcPliyBm28OuyQiUmxWrWJZ157MYEcOe0iv1xCR7HGrVtNgwDVMLdmOg0d1DLs4KdET9CIF7sEH4dtv4cEWfTCAG24Iu0giUiQefBA6/tiLGnVqUeP6viGXRkSKycq772f9WVMYve0gTjpN9ySLSPa8f9GDbLXyW2Z1GURJPd0dJCJZ8t13cM89cMEFujFaRLLur5vup+m8Kbxx2CB23k31LxHJnk8uG8UWy7/j5wsHUW/d/MofNdCLFLClS6FPHzhr589p/tZD8J//QPPmYRdLRIrA0qXw5NWTOIPHqHlVV9h447CLJCLFYvFiVvbqy/84kGNHHqt3H4pI1iyds5StH76Orxrswz43nhh2cUSkmHTvDg0aQN++aV3s9OlwxBHw449pXayIFJLFi6nZvy/v2oGc+MCxYZdGRIrIqgVL2fz+65hcbz9aDzsh7OKkTA30IgXs9tvht9/g9vpXYw0b+r7uRUSy4PbbHN3mdGfl+o2x7t3CLo6IFJGlA25lncWzeH7/wRx8iFrnRSR7PjznDjYu/5WyQTdhNZQ/IpIlpaXwwgvQsyc0bZq2xZaXw3nnwfvvQ82aaVusiBSY33vcSsPls/j8zMFs3lznPyKSPZ+cexvNyn5n6XWDqVmSf/mjBnqRAvXXX3DjjdBz3zfY4KNXoFcvaNQo7GKJSBH46y+Y1P8VDqWU2jf0gfXWC7tIIlIsZs+mxtCbeJYT6DBy/7BLIyJFZO4Pf7HHK4P4qGk7dr384LCLIyLForwcrrwSWrSAK65I66KHD/dt/7feCi1bpnXRIlIoZs9m/RE3Mb7WCZxxh+pfIpI9i6fPYccXbuTdDY5lv+4HhV2cKlEDvUiBGjgQFi0o59oF3X239pdeGnaRRKRIDOpfRp+lPVix+VZw4YVhF0dEisjC7v2ptWopH580iJ12Crs0IlJMvjhjEOuykEb3DAq7KCJSTB5+GD77DAYNgrp107bYH36AHj3g//4POnVK22JFpMDMvLA/dcqWMvu/g/RcmIhk1VdnDqSBW8w6dwzK21cbloRdABFJv59/hjvvhOEHP069tz+Fhx5Ka0VNRCSen3+GeXc8wi58CUMeh9q1wy6SiBSLn36i/kN3M7pmJy6+bfuwSyMiReSXd39mv0/u4N2t23PQiTuHXRwRKRZLlvhu7ffeG04/PW2LLSuD9u39ZaT77iNvL3qLSGaVT/2JjZ69m8cbdOKMfqp/iUj2zJk0nd3fH87EFh047Mz8fTpDDfQiBahPH6jDCs6f1gt23RXOOivsIolIkbih5zL6lvVmxa57UefUU8MujogUkXmXXkud8hJmXdqXzTYLuzQiUkymn9uHxhhbPdwv7KKISDEZOhR++w2eeCKtrehDh/r3zo8ZA5tskrbFikiBmdn+Wpq4EmoN6KvnwkQkq346uzf/ogYtH8zv+pe6uBcpMF984Xs4e+SAuymZOQ1uuglq6KcuIpn3xRew4dg72JyZ1Bl2kx61EJHs+eQTGr3yKPfU/S+X9NeVZBHJnilPfsH+Pz3MB3v9h032bR52cUSkGJSWwuab+27tTzkFDjggbYv+6ivo3RtOPhnOOCNtixWRArPqg09o8d6jjGn6X066TPUvEcmemS9MptX3Y3hrtyvY6pD8fjpDT9CLFJirr4bN151Pu8/7Q9u2cMQRYRdJRIpE/65zGWmDWNn2GGq3bh12cUSkiPx1wdU4NqRO7+40bBh2aUSkmMy/5BoW2vrs+ujVYRdFRIpBaSm0awdLl/p/H3982ha9ahWcey6svz7cfbfutxaR+H5vfzX12ZAt7upOzZphl0ZEislfF1xNAxqy29geYRel2vRYrUgBKS2Fl1+Gx/cYTI25f8HgwWEXSUSKRGkp7P3GQNZjIbWH3hh2cUSkWJSW4po1Y8NPJ3BXo2s5/8r1wy6RiBSL0lJWbLARe89+iclHXUOjrTYIu0QiUuiiG+cBLrzQD0+DAQPgs89g5Eho0iQtixSRQlNaSnnTZjSfMoHHt7mWw05S/UtEsqS0lFUbNmO3P17lo8N6stEOjcIuUbXpCXqRAuEc9OgBrTb6hX0+GObfO7/77mEXS0SKgHuzlJ2OOocDmEX52e2psfPOYRdJRIpBcJHali6lHOOAzjtQp07YhRKRolBaimvXjjpB/ux34S5hl0hECl2sxnnw/27XDsaPhzZtqrz4Tz6B/v3h7LPhhBOqV1QRKVBBDtUIzn8Ov3wH9bQhItkR1L9qBflz0CX/CrtEaaEn6EUKxJNPwscfw5itr8PKy33NSkQk00pLKfu/djRd9Su1WE1Ju6PCLpGIFIOoi9Q1cBx650lpe4JMRCSuiJuDwOdPnTNPVv6ISGZ17Lh243yFpUv9+Cpavtx3bd+sGdx+e5UXIyKFLEb9a7urVf8SkSyIUf9qcE5h5I8a6EUKwLJl8FyXUmaVbMI2746Cyy6Dli3DLpaIFLrSUtwx7ShZ6U+QDPyFoQI4QRKRHBbnCTKreIJMGSQimVLZE6zKHxHJlFGjoF692OPq1/fjq6hPH/jmG7j/fmiU/73Fiki66fxHRMJS4PmjBnqRAvBQx1JG/NaOpqt/x5yDgw4Ku0giUugq7l5cVpgnSCKSwzL4BJmISEJFkD9mtrmZPWlmC8xsoZk9bWbNU5h/BzMbZ2ZzzGyZmX1vZldksswiRaF1a9hhh7WH169fre7t330XhgyBCy6Ao9QZmojEUgTnPyKSowo8f9RAL5Lnvru7lLMfb0cDIoLqrLPUOCYimVXgJ0giksNGjcLFe9l8NZ8gExFJaNQoymvXjT2uAPLHzOoDbwLbA+2Bc4BtgFIza5DE/K2AD4E6wPnA0cBQoGamyixSNEaMgE8/hf/+1+cNVLtxfskSaN8eWrTwjfQiIjGp/iUiYSnw+pca6EXy2KrXSmlxaVTjPOgJVhHJuFUjR7HcMtPFoohIQvvtx9J1mlLuX6zxj2pepBYRqczKvQ7gV7cx5dEjCid/OgNbAic45551zj0HHAe0AC5MNKOZ1QAeBN5wzh0XzF/qnBvpnLsl4yUXKWTTpsFVV0HbtjB0qM+bFi2qnTs9esCPP8Lo0bDuuukrrogUmP32Y0Ed1b9EJPvK9tmfP2hWsPmjBnqRPLbktI7Uc3qCVUSyb+B7rfnI7YmLHlEgJ0gikruW9uhHg79mcsemN+LS9ASZiEgy3j32RjZfNY3vz7whbU+w5pjjgA+cc1MrBjjnpgHvAsdXMm9rYEdAjfEi6VRe7q/t1KzpXxJv5vNm+vRq5c6ECTB8OHTpAocckrbSikgB+uOSfjRcOJNxe95YqOc/IpKjJp04gE1W/szkUwYUZP6ogV4kT331FZy6eBQraxRuFx8ikpu++gq+6/8kB/MOdsEFBXmCJCI56tNPqXPHzTxoHTj05e5Ymp4gExGpzA/PfMUBE/vzXvPT2WHMtWl7gjXH7AR8FWP41/jG90QODP7WNbMPzGyVmf1pZrebxet2SUQqNXw4vPUW3HorbL55Wha5YAGcdx5stx0MHJiWRYpIgVr10ac0HnUzj9XrwBGvdy/U8x8RyUG/vPg5e7w2iDc3OYvdn7imIPOnJOwCiEjqVq/2lanpDQ+hRpOt4buoayhqJBORDFm9Gv57zhzGll/Kqt33otbw4XD66f6pjlGjlDsikjmrVrHglPNY6pow6+pb+Ne/AIInyEREMmj1ijJWnNOJhbY+275yux/YpiDzZwNgXozhc4FGlcy7SfD3ceBO4GqgFXA9sDlwYqyZzOwC4AKA5s2bp15ikUI2darvh/7oo9PaQ2LXrvDrr/Dee1BPt8+ISDyrVjH3+PMopwnrjryFRo0o1PMfEckxbtVqlpzRifnWiO1eGoYZBZk/eoJeJA8NGwYffwwvt7uTku++8hU2PcEqIlkwbBh0mHwFG9SYT62HHoCSkrR0sSgiUpll/Qaz/rTPGdzibrr0q6ydSEQkfd45ZRg7L/mIKZfeTuMdmoRdnExb6w1GEP3Sx5gqri894pzr45yb6JwbAvQDTjCzmE/gB++ob+Wca9WkScF/tyLJKyuDDh2gTh0YOdJ3bZ8G48fDAw/A1VfDPvukZZEiUqD+vHIwzf74nEcOuJtjzlb9S0Sy5+PTh7Ldok+Y3OlONt21cdjFyRg10IvkmR9+gN69ofNhP7HHuGvg//4PBg0qyC4+RCS3/PADfNDzec5iLDX69Iaddw67SCJSLL75hpJBN/CEncY5T51A7dphF0hEisX0CVPZZ/y1fNTsWPa77fSwi5Np8/BP0UdrROwn6yP9Ffx9PWr4a8Hf3apeLJEidNtt8O67cPvtsOmmaVnkX39B586wyy7Qp09aFikiBarsy29oeOcNPFv7NNo/fULYxRGRIjLr7e/Z5enreLvxiRx2z6lhFyej1MW9SB4pL4fzz4e6tcu5Y9n5WEnJP3dSF2AXHyKSO8rLoUuH+dy3+iJW7bgrta65OuwiiUixKCtj/snnsbp8XaZcfgen7Rl2gUSkWJSvLmfeKefTiNo0f/FurEZ6nmDNYV/j30MfbUfgmyTmhbWfwK/40sqrUS6R4vLdd9CrFxx/PJx9dtoWe9llvpH+lVf8g/kiIjGVlfFnu/Oo5dal/LY7aNo07AKJSLFwZeXMOfF8alOP5s8Pp0bNwq5/6Ql6kTwyYgS8/TaMP24kdd4rhaFDYbPNwi6WiBSBESPg5Pe60sz+pNbDD0CtWmEXSUSKxPKbbqfhdx9y48a3cdVNujokItnzv3NGsvuCt/ji3KFstGd6nmDNcc8D+5rZlhUDzKwlcEAwLpGXgRXAUVHDjwz+TkpTGUUK2+rVvmv7+vXhnnvS1rX9E0/AY4/BddfBrrumZZEiUqBm97mdjWd8yIO738aJF6r+JSLZ80mnu9hp7jt8+O9babnfxmEXJ+PUQC+SJ2bMgO7d4cwDfmb/Z7vB4YdDp05hF0tEisCMGfBq11c5j1FYjx6wxx5hF0lEisXUqdTo04vxHMNJ486kbt2wCyQixeLXD2ay+2Pd+XSDwzhwVNHUu+4FpgPPmdnxZnYc8BwwExhRMZGZtTCz1Wb2dyfZzrm/gEHARWY20MwON7OrgT7Ag865qdncEJG8NXQofPghDB8OG22UlkX+8QdccgnstRf06JGWRYpIgSqfMpV1b+zFKyXHcPrzZ6brHiERkUrNmTSd7R+8mvfXP5K2j7QPuzhZoQZ6kTzgHFx4IZSXOe6zzphzcO+9abuTWkQkHufgv50WcseKzqzcegesT++wiyQixaK8nPmndmbZ6lpM6nQP+x+g8x4RyQ5X7vjt2AupSRlNnrm3GLq2B8A5twQ4FJgCPAyMAaYBhzrnFkdMakBN1r6mdD3QHTgNeAm4GLgZ6JzZkosUiK+/9i+HP+UU+Pe/07LIiutJS5bAQw9BiV52KiLxlJfze7vOrCivxbyB97DpZsVx/iMiOcA5fmt3AQ5jw3EjqFlSHPmj0zKRPPDww/4dYa+f/gD1Hnvd30ndsmXYxRKRIvDww3DYhKvZ1H6lxsPvosdXRSRbVg6/l4aTJ9Kr8Qh63qZX+ohI9rx78SMcOOdl3jpxGIccvEXYxckq59wM4ORKppnOP++WjxzugFuCj4ikYtUqaN8e1l8f7rorbQ9kPPQQPP883HILbL99WhYpIgVq7uB72fSHidy6/Qi6XKX6l4hkz2dXjGb3Wa/z8jF38n9tW4RdnKxRA71IjvvjD+jSBY7b81cOe6krtG4NF10UdrFEpAj88QeMu3QiL3A37r9Xwr77hl0kESkWM2dSflU33uBQDn+8Mw0ahF0gESkWf345ix3v7cKX6+7HQY9fFnZxRKRYDB4Mn3wCTz4JTZqkZZEzZ8J//gMHHwxXXJGWRYpIgXIzZlKndzcm1jiUE1/qrE5bRSRrFnz3O1vc2ZVPGhzE4U9dHHZxskpd3IvkuMsug6VLHGPWuRBbtQruuw9q6KcrIpl35UVLuG1xJ1Y23xq74fqwiyMixcI55p1+EWUry5h45r20OVRXh0Qke378v8to4BbT4NH7qVGrZtjFEZFi8PnncP31cMYZcHLCDiyS5hycdx6UlcGoUbqMJCIJOMevx14EZWXM6H0vLbdQ/UtEssQ5fjzyEuq45dR56D5q1SmuE5bi2lqRPPPUU/4z7vhHWOetF2HgQNhqq7CLJSJF4KmnoNVz17IlP1H74fuhfv2wiyQiRWLV6DE0eu8lhjQcQLe7twy7OCJSRN7v9jT7/fok7x9xHVses0PYxRGRYrBype/afoMN4I470rbYe+6BCRNg6FDYUqdTIpLA/OFj2OyLl7h/iwGc3UeBISLZ80Xvcewx41lKW/dj55O2Dbs4Wacu7kVy1Ny5cOml0Hbn32k34QrYf3+4/PKwiyUiRWDuXBjV+T2e5zbKLr6UmgcfHHaRRKRYzJrFqkuv4GP2Y59HLme99cIukIgUi3k/zmWrWy7hu3q7ccAz3cIujogUiwED/BP0zz4LG26YlkX++CNcdRUccQRccEFaFikiBcr9MYuaXa/gA9uPo168XL1tiEjWLJ4+h00GXcZXdfakzfNdwy5OKBS5Ijnqv/+Fv+Y4nmhyCbZsGTzwANRUF4siknnd/7OcIfPOY/XGzak5eFDYxRGRIjLvnMupuWwx40+4n6OO0XmPiGTPV0d2ZYPyOdgDD1Crfq2wiyMixeDTT30D/TnnwPHHp2WRZWXQoQPUqgX334/eIy0iCf1y4uXUXrWYr7vez7Y7qP4lItnz7ZFXsH75PFaNeIB66xbns+RqoBfJQS+/DA89BA8f9wQNS5/17yLbbruwiyUiReDll2GrMf3Ynu+p/eC9sO66YRdJRIrE6ieeptHr47h1nT50e0BdS4tI9nx8wysc9OODvLN/D7Y7ffewiyMixWDFCt+1fbNmcNttaVvsbbfBO+/43vI32yxtixWRArRw9NNs/sE47t+kD+1vVP1LRLLn68Hj2WvKWCbs1ZPd2+8SdnFCU5y3JYjksIUL4cILYf9tZvPv/10Ge+8NXYuziw8Rya6FC2F4x0k8y82UdehEzbZtwy6SiBSLuXNZ3ukSfmA3dhjVnUaNwi6QiBSLhb8sZJN+F/Bj7e3Z76XeYRdHRIpFv37w1Vfw4ouk68Tn22+hZ0844QQ4++y0LFJECtXcuZRffAmT2Y2DXuhOiVqJRCRLlv2xgA2vvYjva+3EQa/0Crs4odIT9CI55uqr4Zdf4Lnml2ELF6prexHJml7dVjJw1nmUNdmImsOGhl0cESki887rSt3Fc3j8iAc4/hR1LS0i2TP5qKvZuOwXlt7xAHXWrxt2cUSkGHz0EQweDOedB0cfnZZFrl4N554L66wD99yjru1FJLGZp3ZlneVz+OiiB/jXHqp/iUj2fHFUN5qs/p35Qx9gnQ1qh12cUOneKJEc8tZbcPfdcH+7p2k8/gno3x922insYolIEXjrLdhg5CB24Ut44AVYf/2wiyQiRaLsxVdo9NyD3FqvJ1c+oq6lRSR7Jt/2Fgd/fTdv7XYFh1ywX9jFEZFisHy579p+003hllvSttgbb4RJk2DcON9rvohIPIuffIXN33yQe5v0pMNtqn+JSPZMuedN9vn8Xl7d+UqOvHzvsIsTuqSeoDezzc3sSTNbYGYLzexpM2ue6srM7Bozc2b2TupFFSlsS5fC+efDHi3+ouOHF8Puu0P37mEXK3TKH5HMW7oUbj7nC66lP6tPPxvatQu7SCJSLBYtYsnZF/It27PpPb1p0iTsAuUGnf+IZN7SOUtp2O18ZpRsQatXB4RdHBEpFr17w3ffwf33p+2m6MmTfY/5Z5wBp5ySlkWKSKFatIgVHXz9a89ne1O7uB9e/ZvqXyKZt3LeEupfcT4/1dyafV69Puzi5IRKG+jNrD7wJrA90B44B9gGKDWzBsmuyMy2BHoBf1atqCKF7brrYOpUeHHrK7B5c2HUKKhV3F0MKX9EsqNf79X0m9kR13ADSu4cFnZxcoYqaCKZN/+iq1ln/kxGH/QAp56jrqVB5z8i2fLR/11Hy1VT+WvQvTRomvRPS0Sk6t57D4YOhQsvhLZt07LIFSt81/aNG8Odd6ZlkaFR/Usk82aedTWNlsyk9OwH2GN/1b9A9S+RbPn0mGvZbOU0frv+fhpuUj/s4uSEZLq47wxsCWznnJsKYGZfAD8AFwLJ9sd0NzAG2C7J9YoUjY8/9j2b3XHEC2z02hjfWr/rrmEXKxcof0Qy7OOPocatQ9iTT+G+J2HDDcMuUk6IqKCtwFfQHNAfX0HbxTm3JMnlqIImEkf5xLdpOPYu7q59BVc8tp/elfoPnf+IZNg3D37MQZNu4e3tO3PwVYeFXRwRKQZLl0KHDtCiBdx8c9oW268ffPkljB8PG2yQtsVmnepfIpm39JW32fyFu3iw0RV0HKlX+0RQ/Uskw3585H32fv82Xt/6Ytr2PDjs4uSMZLq4Pw74oCKcAJxz04B3geOTWYmZnQnsAVxTlUKKFLKVK+G882C7ZvO55MuL4F//gp49wy5WrlD+iGTQypVww5nfcp3ry6rjT4GTTw67SLmkooJ2gnPuWefcc/hMaoGvoCWrooL2bfqLKJLHli5l4Wmd+IktWPf2AWyySdgFyik6/xHJoJWLV1LrwvP4s8bG7Ppq+hrJREQS6tkTfvgBHngA1l03LYv84AMYPBg6dYJjjknLIsOk+pdIJi1dyuLTff1r2ycGUK9e2AXKKap/iWRQ2dIV1Ojcid9qbMbur94YdnFySjIN9DsBX8UY/jWwY2Uzm1kj4Fagu3NubmrFEyl8AwfCV1/BKzt1pcafs3zX9noBUAXlj0gGDepfxtVTO1Fj3QbUGpHn/SGmnypoIhm0oMt1NJw9lZGt7uWsC9S1dBSd/4hk0HvtBrLNiq+Y2ese1m+envc/i4gk9NZbcNttcNll0KZNWha5dCm0bw+bbeZ7ZCwAqn+JZNAvna6j6YKpvHzivex3uOpfUVT/Esmgj4+7gS2Wf8vUbiNpvOV6YRcnpyTTQL8BMC/G8LlAoyTmvxmYAoxOvlgixeHLL2HAALix9Ss0nzAKuneHPfcMu1i5RPkjkiFffgkLB9zB/rxP7btvh2bNwi5SrlEFTSRD3Ecfs869tzCqpDOXPHWYurZfm85/RDJkylNfcsBbA3i3xZnsfX27sIsjIsVg8WLfbeJWW8GN6XtqrGdPmDLFP+OxXmFc61b9SyRDlv/vYzZ+7BYeXbczHR7Wq31iUP1LJENmPD+ZVm/cyJubncshg44Kuzg5J9l3YbgYwyq9lGZmBwHnAns452ItI958FwAXADRv3jzZ2UTyyurVvo62+foLuWpKZ9hhB+jTJ+xi5SLlj0iarV4Nvc/8kbHlPVlx5LHUOfPMsIuUi7JeQVP+SFFYuZJ5J53HUjbG3XQzOtTj0vmPSJqtXr6a1eeex3xrxPav3hZ2cUSkWPToAdOm+afoG6TnqdXSUv9A/uWXw6GHpmWRuUD1L5FMCOpfZWzMxg/fnK4YKkSqf4mkWfmKVfw/e/cdHkX1tnH8e1IghN5BqnRQAQUUBOlNRRDBCgqI8rNXVLAXrNgLIkgRxYKggKBSQ5Ui0gSkQ+iE3kL6ef+Y5TWGDSm7m81u7s917RUyO+WZnc3DnHlmzonrdTdHTCnq/PaBHs5wIzNP0B/DOUlKqzjuT5xS+wIYBewxxhQzxhTDuSkg1PV7fncLWWtHWGsbW2sbly5dOhMhigSeDz6AFStgVsOnCD2wz7ntOSLC32HlNso/Ij7wwXspPLauP2GR+cg/6nN0hpQuTxto92elgab8I3nByUFvUGLvOj67dDh9H1XX0unQ+Y+IDyzq8QH1Ylew5eFPKFm7lL/DEZG8YM4cGDYMHnsMrrnGK6s8dAj69oWaNb36QH5uofaXiJftffANyh9ex88dh9O6m9pf6VD7S8QH/rz1XWqdXsXf//uMiy519ycmmXmCfj1ON0Np1QM2ZLBsXdfrPjfvHQMeBz7MRAwiQWXzZudh+ReunkP1OSNg4EC46ip/h5UbKf+IeNnmzbD7+S94ivnYj0dBhQr+Dim38loDzTXt/xtowFlrbbyX4hQJGHbt30R++Drfh97BPZO7EJKZW4XzJp3/iHjZjhmbuerXF1lWrhvNPrjF3+GISF5w8qTTbWKtWs7Yhl6QkAA9e0JMDCxcCJGRXlltbqH2l4iXJa78mzJfvs7PBe7grgka2ucC1P4S8bL9URtpMOUVFpTuQbthPfwdTq6VmQL9VOBdY0w1a+12AGNMVaA5MCiDZdu4mfYhEAo8DGzNdKQiQSIlBe65B0rkO82Lu+9xbnt+9VV/h5VbKf+IeFFKCjzXO5rRSU8T17IDEXf383dIuZkaaCLelJTE0e53k2yLc/zlj6he3d8B5Wo6/xHxopSkFE7ecg8lyE+V6cMwIeo5SERywMCBsGcPLF4MBQp4vDprnS7tFyyAb7+Fxo29EGPuovaXiDclJRFzw92EU5yCX35EUT08fyFqf4l4kU1K5thN/clPJFWnfaqOWy8gMwX6kcBDwBRjzPM43Q29BuzGuUMRAGNMFWAb8Kq19lUAa+28tCszxhwHwty9J5IXDB/u3Om8vu1gwqKindaVFxprQUr5R8SLhn9uuefPAUTkh/BxI9W1/YWpgSbiRadeeZ+S21fwQs3veXmwupbOgM5/RLxoYe/htDq5kIV9R3HNFRf5OxwRyQtmzICRI+Hpp6FpU6+sctgwGDECBg+G22/3yipzG7W/RLxo/1PvU2HfCj5t8T0P3aH2VwbU/hLxoj/7fsaVx/9gxh1f0enKcv4OJ1fLsGNJa+0ZoC2wGfgaGA/sANpaa0+nmtXgnPios0qRdERHwzPPwBONF1Bv7qfO7c8tWvg7rFxL+UfEe6Kj4e8nx9KJmYS99zZUqeLvkHK7kcBOnAZaN2NMV2AKbhpoxpgkY8yL56ZZa+elfQHHgROu3/fk5I6I+N3mzeR/4yWmmm7cMfkWQkP9HVDupvMfEe/ZsziaK354hr9KdKDFKPUcJCI54Phx6N8f6tWDV17xyirnzoVHH4UbboAhQ7yyytxI7S8RL0nasJniH73Eb/m6cfvPGtonI2p/iXjPoWXbuWT8YJYU60z7r+70dzi5XmaeoMdauwu44EAB1tqdOEkqo3W1zsw2RYKNtfC//0FESixvHbobqlWDN97wd1i5nvKPiOeshcF99jEs/nHirmpFxP3uev6T1Ky1Z4wxbYEPcBpoBpgDPKYGmkgWpKRwuFt/QlMiiB40jK711HNHZuj8R8RzNsVyoNv/KIal7JQR6tpeRHLG44/DgQPw888QEeHx6rZtg5tvhtq14ZtvICRIWx1qf4l4SUoK+6/vTyEbQfInwyhZSuc/maH2l4gXWMv+GwZwMSGUnvQFoWHKPxnJVIFeRDw3bpzTy9nKNi8QHrUNoqKgYEF/hyUiecC4ryy3zb+PguEJhH/zZfBe1fEyNdBEPHf63c8ptXERL1cZzXOvqmtpEck5i/83jhZHZjC/x8e0alHV3+GISDCLioJ+/WDAABg7Fp57Dpo08Xi1J09C167ODddTp0KRIp6Hmpup/SXiuYMvf06lnYv4rNFoHhyg9peI5Jy/HhhFo0Nz+L3rMDq3rezvcAKCCvQiOeDAAecm6gGXLaHhvA/g/vuhdWt/hyUiecCBA7Dooe8YyS+kvPU+1Kjh75BEJK+Ijib0uUHMNB3pPrkv4eH+DkhE8oqYtQe4ZNTjrC3cnGu+f9Df4YhIMIuKgi5dIDbWKcxffDG88ILHq01Jgd69YdMm52GP6tW9EKuIBLXk7dEUfn0Qc8M60uOXvv4OR0TykGPr9lLziyf5q1BL2k34n7/DCRh6hE4kBzz4ICSfiePjM3djKlWCt9/2d0gikkc82/8gb515mLMNmhLy6CP+DkdE8gprOdR9AMlJlvUPf0GDhuraTERyzvZrH6SAjaXQD6MICdNlDxHxkdTF+XP274c//vB41S+8AL/8Ah9+CO3aebw6EQl21rLn+gGkpFiOv/0F5cqr/SUiOcRadl57P2E2kQLjRxGeX+2vzNInJeJjEyfCTz/B781eJv/2jTByJBQu7O+wRCQPmDgROv/6MEVDT1Pgu9EQGurvkEQk2EVFQdWqxD0+iNKrZvJx+bd4cGhVf0clInmBK/+sv/llmu77iaWdXqbatbX9HZWIBCt3xXmAuDhnelRUtlf93Xfwxhtw773OAx8iIulynf8cv28QVTbOZFy9t+j+eFV/RyUieYEr/2y9/QUu3/ML89u9Rr2u6rk1K9TFvYgPHTniNKZ61/6TpguHQv/+0LGjv8MSkWAXFUXyXf3YfrQfT/Mjya+8AXXr+jsqEQl2qS5U5//oHdZyKR1+foB8+fwdmIgEvVT5p170K0Tnq0mLyQP9HZWIBLN+/c4vzp8TG+u8v3Nnllf7119w993QogV8+ikYPQQrIulJdf5TdMQ7rAu5lBt+fUB5Q0R8L1X+qR79OtvC69B26mP+jirg6Al6ER96/HE4fSSeEUn9MOXLw3vv+TskEQl2rhOk0D3RPBX7MnGVaxL6tC5Qi4iPpXmKzAB1w7bSJHa+f+MSkeDnJv9UYjdhSxb6Ny4RCW5jxkCBAu7fi4x03s+iAwegWzcoUwYmTUI3OYpI+tyc/9QJ3Uql7Wp/iYiPuck/F5ud5F+2wL9xBSAV6EV8ZMkbUbz6dVUW1b2XAtvWwxdfQNGi/g5LRIKZmxOkiJjdsGiRf+MSkeCWThev4Umed/EqInJB6eSfkATlHxHxsebNoXr186dHRsK0adCmTZZWFx8P3bvDsWMwZYpTpBcRcSud85+wRJ3/iIiPqf3lVSrQi/jA3m+iaPBcF6oSTcN1X0OHDnD99f4OS0SCmQ/HQBQRuaDMdPEqIuILyj8i4g/Wwv33w7p18MILTlEesl2ctxbuuw+WLoVx46BhQ++HLCJBROc/IuIvyj9epQK9iJfFTo+ixF1diOTfJ1hZtEjFMRHxLZ0giYi/+KCLVxGRTBkzBqv8IyI57aOPYPRopzj/6qtOUb5KlWwV5wE+/BDGjoWXX4YePbwdrIgEHbW/RMRf1P7yKhXoRbwoZU4UId26UMCmKZKdPasnWEXEp1JGjSE+RCdIIuIH11zDyQp1sGmnZ/MpMhGRzEq5phX/RFyh/CMiOef33+HJJ+Gmm5yKOji5ZufObOWcGTNg4ECnMP/CC16NVESC1TXXcKiU2l8ikvPsNS3ZFllf+cdLVKAX8aKTPfoRkawnWEUk5w1Z0JJVKTpBEpGcd2LAUxTZuopRJZ/GFvCsi1cRkaxY0OE16h1bzNoWD3rcxbSISIY2boRbb4XLLnP6og/x7LLq5s3/ru6rrzxenYjkEXvveIrSu1cx8eKnsTr/EZEctLzzC9Q4soxlVz2q9pcX6NRPxEsmT4buJ8aQEBrhfgY9wSoiPjJ5MoS/+jxNWQaPPqYTJBHJMXEjxlF0zId8kf8R2ix7GzPdsy5eRUQya9ngybSe9zKLqveh/vxPPO5iWhzGmErGmInGmBPGmJPGmJ+MMZWzsZ7BxhhrjFnkizhFctzRo3DDDRARAVOmQMGCHq3u+HHo2hXy5fPK6kQkjzjywTgq/Pgh44o9QoeVb2N0/iMiOWTt8xO4as6bzKx6L1cu/kDtLy8I83cAIsFg/Xq4805o2vAywvYXhYNx/51BRTIR8ZH162HKbd8xhrdIuud/hH34AXTr6vTYMWaM8o6I+EzK0uWE3D+AubSh+s/vUr06UN3VxauIiA9tnbqBem/dyfqCTWi8YjgmxPzbxbRkmzEmEpgLxAN9AAsMAaKMMfWttWcyuZ5qwHNAjK9iFclRiYlwyy2wa5czdGGVKh6tLjkZbr8dtm2DuXM9Xp2I5BFxC5ZT6MkBLAhtw5UL3qVYMXT+IyI5Yve0NVR/vR+rClxNsxWfEhKq9pc36Al6EQ8dOwY33ghFIxP5JfIWQo4fh88+0xOsIuJzx47Bc53/Ylj83cRfeQ1hn33svOHBGIgiIply4ACnO93E3pTybHp1Au2vDfd3RCKSRxzfcYywnt04G1KQElE/EVEsnR7MJDvuBaoBN1prJ1trpwBdgSrA/7Kwns+B8cA/3g9RxA+eeALmzIEvvoCrr/Z4dc884wxlP2wYXHONF+ITkaBn9x8gtvNN7LPlOfvVBOpcpvaXiOSM0zsPY266kROmOMXnTqJwyXz+DiloqEAv4oHkZLjtNoiOhj9bPknEH1EwYgQ88IC6+BARn0pOhvu6H+STPTcSUrY0+X+Z6PSPKCLia/HxHGnTg9CTxxjVZTL3PV/K3xGJSB6RnJDMliZ3cFFiNAeH/UT5JhX9HVKw6QostdZuPTfBWrsDWAx0y8wKjDF3AFcAg30SoUhOGz4cPv0UBg6Evn09Xt1XX8F778FDD8G993oenojkAfHx7GvWg/xnjzHnocl06qX2l4jkDJuYxPYrb6VU4n52f/wzVZuW83dIQUUFehEPPPsszJwJs24fTfmJn8Djj8Nddzlv6glWEfGhF55J4KH5PSkffoT8v06GMmX8HZKI5AXWcrT3w5Tc+AevVx/D8z82wBh/ByUiecXCa56lyZHfWXrnZ1z2P8+fYpXzXAKsczN9PVAvo4WNMcWBD4CnrbVHvRybSM6LioKHH4brroO33vJ4dUuXwoAB0LYtvP++F+ITkeBnLbtvfJgK0X8woukY+n/cwN8RiUgesrzVQOofmkvUbSO46qEm/g4n6GgMepFs+u47eOcdeLv7Ulp9fz+0b+9MEBHxse++tVR572GuYRF8/T1ccYW/QxKRPOLMe8MpMXEkHxcczIPzbyFCPUuLSA754+HvaL38HRbUu4+W4/TYqY+UAI65mX4UKJ6J5YcCm4GxXoxJxD+2bYOePaFmTfj2WwgN9Wh1e/ZA9+5QsSJMmADh6p1aRDIh5tXhVPp9JF+WHsyA2bfo5mgRyTGrHvuKq5Z8xO91HqPzt3f5O5ygpAK9SDasWgX9+0O3Jvt4aulNTgvrhx8gTH9SIuJbq1bB0r7D+YgRJD89mNBbb/V3SCKSRyRFLSD/04/wm7mOJr+/RoUK/o5IRPKKjd+touGn/VlTpAVNl33k73CCnXUzLcNygDHmGuAu4Aprrbt1pLfcAGAAQOXKlTO7mIhvnTwJXbs6/546FYoW9Wh1Z8/CjTfC6dMwezaULOl5iCIS/M78toDiLz/CrPDraL/kNQoW9HdEIpJX7PhhOXU/+h/LC7el1fKhujnIR1RNFMmimBinYXVRiTh+TOqOOXnS6ee+RAl/hyYiQS4mBt7sPJ/xiY8Q3/568r/xmr9DEpG8Ytcuzl7fk322Gkc+/ZZrW3j2FJmISGYd2nCIQnfeyPHQkly0eCL5CuXzd0jB7BjOU/RpFcf9k/WpfQGMAvYYY4q5poUBoa7fz1pr49MuZK0dAYwAaNy4caYL+yI+k5wMd9wBmzc713pq1PBoddY6D3isXAlTpsAll3gpThEJaik7d5F4Y0/2UI2In76lanW1v0QkZ5zYuJ/IXt2JCSlPhYU/UKCwysi+ojHoRbIgMRFuvhliDlqWXn4f4auWw9dfw6WX+js0EQlyiYnw8A07+SymJ0lVa5B/4niPu1kUEcmU2FiOtOxOytl4JvaeQu8HPXuKTEQksxJjE9lz9c2UTI7hxNjJlL60rL9DCnbrccahT6sesCGDZesC9+EU8s+9mgNNXf++33thivjQ4MEwfTp88gm0aePx6t5+2xki8fXX4YYbvBCfiAS/2FgONOuOSYjnz+emcE0Xtb9EJGckx8azt1kPCiUf59CoKVRoUMrfIQU1FehFsuCJJ2DBAlhw88eUmvYVvPSSM4iYiIiPDXr4DIOX30jRyEQKzJjicTeLIiKZYi2Hb7qX4tGreKf+eJ4eXcffEYlIHvJH0ye4/MR8Vt43krq9G/k7nLxgKtDUGFPt3ARjTFWcQvvUDJZt4+a1Bljn+vdEH8Qr4l1ffQVDh8KDD8J993m8ul9+gWefhdtug0GDvBCfiAQ/a9nV6V7KHVjF2Pbj6fWa2l8ikkOs5a+rH6Le8SUsvmcsjfrW93dEQU99E4hk0ujR8Omn8HnPOTT57kmnn/sXX/R3WCKSB4weZbnqi37UN38TMmk61Krl75BEJI84+dJ7lJrxLe8WH8ITc7sQHu7viEQkr1jYbzSt/v6UeY2eoPXnvf0dTl4xEngImGKMeR5nPPrXgN04XdgDYIypAmwDXrXWvgpgrZ2XdmXGmONAmLv3RHKdP/6AAQOgbVv44AOPV7d+vdNT/hVXwKhRaOxWEcmUfQPfo/KibxleaQj3Teui3CEiOWbFPcO5cs2X/NrwWa4bebO/w8kT9AS9SCYsXQr33w93Nt/O/+beAnXqwLhxEKI/IRHxraVLYef/3uAWfsS++RZ07uzvkEQkj0iYNoOCrz3Dz6E96TTvWUqW9HdEIpJXrPtyKVeOvZ+/SnSgxaK3/R1OnmGtPQO0BTYDXwPjgR1AW2vt6VSzGiAUXVOSYLFrl9M7YqVK8OOPeHpH4pEj0LUrFCwIkydDZKR3whSR4HZiwgzKvv8M0yJ60m3ps+TP7++IRCSv2DJqAQ1GP8Li4tfTfslr/g4nz9AT9CIZ2LcPbroJal10mtHHbsSkpDgtrMKF/R2aiAS5fftg+HVTGZv8PPE9e5H/6YH+DklE8gi7ZSuJPW5jI5dgxo7hsvp6dENEcsaBlfso9b+bOBBWkWrLvycsQpctcpK1dhfQI4N5duIU6TNaV2vvRCXiQ2fOQLduEBcH8+ZBiRIerS4xEW65BfbscVZXsaJXohSRIJe0cSshvW5jg7mEcr+NofxFan+JSM44smoXxQf0JDqsOjWWjidfhO7BzSn6pEUuIC7OKc6fPGFZVLMvYRvXww8/QI0a/g5NRIJcXBw80XkDHx/rzdl6jcg/bqT6RRSRnHHqFEdbdiMuIYQ5D0/hxt6F/B2RiOQRcSfiOdSqB4VSTpIwYQrFq3tWKBMRuaCUFOjTB9auhe+/h7p1PV7lk0/C3LkwYgQ0a+aFGEUk+J06xaHm3UhICmHL0Ck0bq32l4jkjMQTsRxp2Z3wlHjOfjeFsrWK+jukPEUFepF0WAsPPgjLlsGybq9TdNYkGDoUOnb0d2giEuSshafuOcZrf3cjX7FICsyYDAUK+DssEckLUlI4dO1dFD2wiY+unsCjH17s74hEJI+wKZY/mzzAZaeXsu6pcdTsfqm/QxKRYPfKKzBpErz7Llx7rcerGzkSPvkEnnjCqfuLiGQoJYXoVndR+ugmfrhpAjc9qfaXiOQQa1lz5b3UOL2Kvx4fz2U9a/s7ojxHBXqRdHz2GYweDd/cMpVLvnsBeveGxx/3d1gikgcM+ziJG8bfysUh0URM/0n9IopIjjn25BBKL57Mu+Xe5anf2xGi1oKI5JAFt37GNVtGM6/F8zR95yZ/hyMiwe6HH+DVV6FfP3jsMY9Xt3Ch85BHp07w9tuehyciecOe+4ZQZdVkRtR8lwE/tPN3OCKSh/x523s03vwtv1/9Gm3f7+LvcPIkDeYm4sa8eU777IHWG7jjt97QuLHTP5m6lxYRH5s3D+IfH0RHZpEy/Eu4+mp/hyQiecTZ76dQ/MOX+D7fndy88FEKF/Z3RCKSV6z+cB7NJz7GsrI30DLqFX+HIyLBbsUK6NsXmjeHzz/3+FrPzp3QowdcfLHTU36YrraKSCYcHTOFiiNf4qdCd3LrH48qd4hIjvnnwxlcMeEZFpTpScd5z/o7nDxLaV8kjehouPlmaFTtGB/v6oaJjISff1b30iLic9HRMOGGrxlm3yNhwEPku7e/v0MSkTzCrt8Ad/bmTxpTetIXVK+hmxJFJGfsWRxNxSduJjpfTequ+IaQMHXdISI+tH8/3HgjlCkDP/0E+fN7tLroaGjbFhISYOpUKFbMK1GKSJCLX7WB/Pf05q+QxtSa+wUlS6n9JSI54+DirZR/4ja2hF/CJcvHEBau/OMvKtCLpBIb67TTkhOSmVv2NkKXRUNUlLqXFhGfi42F5zos58vT9xJ7VRsiP33f3yGJSF5x7BjHWnYjIakgq174mQFddFOiiOSM2MOxnO5wI4VtIiFTp1CkYhF/hyQiwezsWeeiz/HjsHixU6T3wI4d0KYNnDgBs2ZBbQ3dKiKZYI8e43irbtiUgsSM+Jlrm6j9JSI5I/7wKc506EaYDYEpUyhZpZC/Q8rTdGu6iIu10L8/rFkDf3YYTMFFM52B6Js393doIhLkrIUn79jP21u6k1K2PJHTJkB4uL/DEpG8IDmZg+3voNDRaEZ2msS9r+imRBHJGTbFsrpRf2qdXcPml7/l4k61/B2SiAQza+Hee2H5cvjmG2jQwKPVbdsGrVvDyZMwezY0aeKdMEUkyCUns6vFHRQ/Fc20vpO49l61v0QkZ9jkFNY3uovKZzex/sUJ1Ln2Yn+HlOepQC/iMnSoM1bY5JvHU33SUHjgAafxJiLiY++/Gc9dU26idL4TRM6cAqVK+TskEckjDg94lrIrf+fdKp8y8Ofmng7BKiKSafO7DOXqXd+zoOPrNHnpOn+HIyLB7u23Yfx4eP115yl6D2zZAq1awZkzMHcuNGrknRBFJPhF93qWKv/8zpcNPuXuUXooTERyzvKuQ7hi12RmdniXlq+083c4grq4FwHg999h0CB4pv1f3DD1HmjZEj780N9hiUge8PtvlhLP3U8zlmLHT4T69f0dkojkEadHfkep0e/wVYH76LN4AAXUs6KI5JAVQ36n5W+D+KPSLbT6bZC/wxGRYDdlCjz7LNx+Owwe7NGqNm1yurVPTHSK82q+iUhmxXz0HVV+eIfvi9/HnQsHEKJHJ0Ukh/w9ZApX/foScyveReffHvV3OOKi/wYkz9uyBW67DVrXPcgb/9yIKVMGfvxR3UuLiM9t2QJRN31CP8aQMOhFTM8e/g5JRPKIpD9XEXZffxaZFtT+/SMqVPB3RCKSV+yctYWaL9zGloj6NFgxGhOirjtExAeioqBqVRg1Cnr1ch5zHzUKT7oL2rDBeXI+OdlZvYrzIpJZZ/9YReHH+7MktAWNF31E4cL+jkhE8op9szdw8Yu9+TuiMY1XDCckVO2v3EJP0EuedvIkdOsGBUIT+DWyJyE7jsDixVCmjL9DE5Egd/IkvNl+DiPinuBMxxsp+PpL/g5JRPKKmBhOtbuR0ykl2fX+RO5omc/fEYlIHnFy7ymSu3QjyYRRcNZkCpYp6O+QRCQYRUVBly4QG+sMXViihPMUvQfdBa1bB+3aQUiIs/q6db0Yr4gENXswhtMdbiTOliR+/ERq1FP7S0RyRuzeYyRd340zFKTgjJ8pUlZdJ+YmeoJe8qyUFLjrLti8GVZc/QgRKxbB6NFw+eX+Dk1EglxKCjzVYztDd91CXNU6FJw4DvVtJiI5IjGRgy1vJuJUDN/fOpk7Hi/r74hEJI9ISUrhn8Z3UiVhM7uGTqBii6r+DklEglHq4jyAtc5g8Zs2ZXuVa9c63dqHhcG8eSrOi0gWJCayq+nNFIqNYd5jk2l9q9pfIpIzbFIymxvfQbmEaLa/M4lqLSv6OyRJQ9UAybNefdW5gXrmTcOpMO0LZxD6227zd1gikge89dwpHp7dlYKRlkKzp6C+zUQkpxzs9ThlNy3g/bpf8tjXjfwdjojkIQvav8pVB6awuPt7XP5kW3+HIyLBKG1x/py4OGd6VFSWV7lqlVOcj4iA+fOhdm0vxSoiecKOGx+nys4FjG3+Jb3fV/tLRHLOsvbP0vDA78zp/inNBjb3dzjihgr0kif9/DO88gq83nkhbX5+GK69FoYM8XdYIpIH/DwphTpv9aGu2Uj+yROgenV/hyQiwc41Buvp+5+i7I+fMbLIk/xvQS/Cw/0dmIgEPVf+2XDbq7Se/wqLqveh5cRH/B2ViASrfv3OL86fExvrvJ8Ff/3ldGtfqJBTnK9Rwwsxikjwc53/HL77KS7+9TO+LvskfWf1wmjYZxHxNVf+2Xrb8zSd/w6zqt9H50kD/B2VpENj0Eues36907X9DQ12MfivHphq1eDbbyE01N+hiUgwi4oioVc/zhxqTW9+JvGdDwnt0N7fUYlIsEv1JFnB4e+y0jTiqqi3KFXK34GJSNBLlX/qRr/Ejog6NF4xHBOiq9Mi4iNffuk8gJGUdP57kZEwZkymV7V8OXTsCMWL//+1bhGRjKU6/yk55l1WhzWizdK3KKBhn0XE11Lln+rRr7M54lKu/vMj3RyUi+kJeslTjh6Fbt2gdMFYJqZ0x8THO/3cFyvm79BEJJhFRWGv70K+/dH0TvqKs607Ef6knh4TER9L082rAeqHb6D+iYX+jUtEgp+b/FOFaCJWLfFvXCISvBITYfRopziftpugyEiYNs3pqz4Tli6FDh2gZElnzHkV50UkU9yc/1wWuoGKO9T+EhEfc5N/arCNgqsX+zcuuSAV6CXPSEyEtzpFMWdbVVZW7Eq+datg/HioU8ffoYlIMIuKwnbpgjn7b1eLBZYvdK70iIj4SjpjsIYlnM32GKwiIpmSTv4JiVP+EREfiY+Hm2+G776Dt96CGTOcojxkuTi/eLHz5HyZMk6TrUoV34UtIkEknfOf0Hid/4iIj6n9FbBUoJc8IT4eXmkdxUsrulCFaIr9NQfuvttJUCIivnKuOJ92HMTYWJ0giYhveXkMVhGRTFP+EZGcFBsLXbs6vSN+8gk884xTjJ82zamuZ6E4v2ABdOoE5cs7xflKlXwbuogEEZ3/iIi/KP8ELBXoJejFxsILLaIY/EcXCpIqUX33nYpjIuJTKX36nV+cP0cnSCLiSx99hDXpnOpncQxWEZGsiPvwc5LTu9Sg/CMi3nTyJHTuDLNnO93bP/TQv++1aQM7d2a6OB8V5QxfX6mSU5yvUMEnEYtIkLIffkSKzn9ExA8SPvxM+SdAqUAvQe30aXjuaufJ+f8U50FPsIqIT50+DW8VfJUUjPsZdIIkIr5y6BCHH3yJRBtCgsn/3/ey2M2riEhWnD5wmn/6vYMhheTQfP99U/lHRLzp6FFnoPglS+Dbbz26+Xn2bLj+emes+XnznCfoRUQyy8YcYv+Al0gihMQQtb9EJOecPXCCrf1ex4LaXwFIBXoJWidOOF2TPbam3/nF+XP0BKuI+MCJE3B/i7+5e+PTJEYWhYiI/86gEyQR8ZX9+zl8WWsK7t3EG02nwW+/ZXsMVhGRrDix6wTba3XisuMLWXL/N4TO+l35R0R8IybGySerV8OkSXDrrdle1YwZcMMNUKOG8/xG2bLeC1NEgl/K3v0cqNOa4oc2MfKGaYTOVPtLRHLGmV1H2FWrHTWOr2Du/RPV/gpAKtBLUDp6FNq3h+XL4dTtA9KfUU+wioiXHT0KDzdbwYdrWlO0RCj5/1oCv/6qEyQR8Tm7azdHLmtFxMFohrb5jecWdCJfp+yNwSoikhXHth1lb9321D21nD8H/kDzYb2yPQa0iMgF7d0LLVvCli1ObunaNdur+vVX6NYNateGuXOhTBkvxikiQS95525i6rWi8LFovrr1Nx6Y0omQdjr/ERHfO7X1IPvrtqHKqXUsenIyHYZ1V/srAGWqQG+MqWSMmWiMOWGMOWmM+ckYUzkTyzU2xowwxmw0xsQaY3YZY8YbYy72PHQR987dSL12LSx77Dsu/fElqFULChT474wqkgUE5R8JJDEx8PiVi/nkn3YUKFOEAn8uhDp1dIIkIj5nt+/gWP2WhB05yEfXzeS5Wa0JD3e9mcUxWMX/dP4jgeTQ+hhiLm1D9di1rHrhZ5oN7fHvm8o/IuJNO3bANdfAvn3Oo+8dOmR7Vb/8At27wyWXOMX5UqW8GKdki85/JJAkbt7BkUtbUuDkQX64eyb/+6415twIhzr/CTjKPxJIjq3by+HLWnNR7FaWvzCNtu9e9++byj8BJcMCvTEmEpgL1AH6AHcCNYEoY0zBDBa/DbgE+Bi4FhgEXAGsMMZU8iBuEbf27YPWrZ0bqVfd9wVXvNcLmjeHP/+E6dP1BGuAUf6RQLJvHwxqModh2zoSVrEckSsWQLVq/86gE6SAowaaBIqUjZs5Xv8aOHGCz3vMYfAvVxMa6u+oJLt0/iOB5MDKfZy8ojWV4raw7s1pXPlqF3+HJCLBauNGpzh//DjMmeP8O5smT4YePaBBA2f8+RIlvBalZJPOfySQJKzbzMkG1xB25gSTH5pD/1FX/1ucl4Cj/COB5MjKaE41akWpuD2senMGLV9t7++QxANhmZjnXqAaUNtauxXAGLMW2AL8D3j/Asu+ba09lHqCMWYxsMO13hezE7SIO7t2Qbt2cOAArLvrHap9/Axcfz38+KPz9Py5J1j79XO6tVeRLBAo/0hA2LULXms6nWH7e5B0cU0KLZmtwQsDXKoGWjxOA80CQ3AaaPWttWcusHjqBtp6oALwAk4DraG1drdPg5c8JXnNOk43a0/i2RS+vmsez4ytr4tDgU/nPxIQ9i7ZRWKrdpRJPMDmD3+j0aOt/B2SiASrtWudcQyNgXnzoH79bK9q0iS47TZo3Bh+/x2KFvVemOIRnf9IQIhbsY7Y5u1JTkhh9jPz6PNW9vOR5BrKPxIQYv7YSlKrdhROOsmGj2bT/JGr/B2SeCgzXdx3BZaeS04A1todwGKg24UWTJucXNOigUM4F6tFvGL7dmcIskMxln9uepZqXzwDt94KP/30367t9QRroFH+kVxv+3Z4s9FEPtvfnaQ6l1Loz3kqzgeHcw20G621k621U3ByUhWcBtqFvG2tbW6tHWatnW+t/RboDBR3rVfEKxKXryL2qtacORvCD/fP5wkV54OFzn8k19s1bzv2mpYUTzzEzi9m0lDFeRHxleXLna4S8+eHBQs8Ks5PmOBcKrrySqeHfBXncxWd/0iuF7t4FfFXtyYuIYQFr87nDhXng4Xyj+R6++ZuxLZsSf6kM2wfOZerVJwPCpkp0F8CrHMzfT1QL6sbNMbUBcoA/2R1WRF3Nm1yejY7fTKFLR0fpOK4N2HAABg/HvLl83d44hnlH8nVNm2CDxt9zaeHbyWhQRMKLZ0DJUv6OyzxDjXQJFdLWLiM+BZtORpfkF8GLuDhYXVVnA8eOv+RXG37b5sIb3cNkSmn2PfNXC4b0MzfIYlIsFqwwHlyvnhxWLgQatfO9qq+/RZuvx2uvtp5cr5IES/GKd6g8x/J1U7PWUZSq7YcTyzIn+8uoOcLdf0dkniP8o/kant+XUu+Di0hJYXdX8+j0T2X+zsk8ZLMFOhLAMfcTD+K8yRYphljwoDhOBeoR2VlWRF31q2DVq2AxES2XH0XpSd+Dk89BcOHo8FXg4Lyj+Ra69bByCYj+PB4H85e2ZpCi2fqEYzgogaa5FrxsxeS1KYDBxNLEPXyAv43tIa/QxLv0vmP5Fpbfl5HoS6tCLNJHP5xHnV7XeHvkEQkWM2cCZ07Q4UKTqG+atVsr+rrr+HOO52eF3/7DQoX9l6Y4jU6/5Fc68S0hdCxA4eSS7Dh8wV0e1LtryCj/CO51s5Jf1GwSxsSbD4OTVxAw96X+jsk8aLMFOjBGXc1rew8o/MpcDXQ21rrLuk5KzZmgDFmhTFmxaFD5z2EJgLAypVOL2eRIXFsvKwnxaePhzfegLffRo+QBRXlH8l1Vq6E76/6gHdP/Y/YltdSaN40KFjQ32GJd+V4A035RzLj7LQ5pHTqTHRyBZa9s4C+L1Xxd0jiGzr/kVznn/ErKdGjNcmEcmrafGr1uMzfIYlIsJoyBW64AWrVgvnznSJ9No0ZA336OCMdTp+uZlsup/MfyXWOTZxDvq6d2WMrsGPsAq69T+2vIKX8I7nOtm+WUOLmtpwyRTg5bQGX3lTL3yGJl2WmQH8M5yJ1WsVxf+HaLWPMm8AA4G5r7cwLzWutHWGtbWytbVy6dOnMbkLykKVLoW1bKFPgFOuqXk/huVPh009h8GAV54OL8o/kOkuXwvSrX2dI7BOc7tSDQrN+hgIF/B2W+EaONtCUfyQjZ378lZCu17MlpTobPpvHHU9pxIQgpfMfyXXWfbmUi3q35WxIQRJmLaDadXX8HZKIBKvvvoMePeDyyyEqCsqUyfaqRo6Eu++GDh3gl18gMtKLcYq36fxHcp3D434l8pbr2Up1Yn6YR/s+an8FKeUfyXU2j5hH2Ts7cCSkDAmzF1Dnumr+Dkl8IDMF+vU43bymVQ/YkJmNGGOeAwYBj1prv858eCLnW7DAaVxVL36UVaU7ELl8PowbBw8+6O/QxPuUfyRXWTDfsqjls7wQ/zxnbrqTQtO+h3z5/B2W+EaON9BELuTUuJ/Jd+uNrLeXsGtsFD0eKOvvkMR3dP4jucqaTxZQ5d4OHA8rhVm4kCptq/s7JBEJVqNHQ69e0Lw5zJrljD2fTcOHw4ABTi/5U6bonuoAoPMfyVVivviZIn1uZIO5hNNTo2h5s9pfQUz5R3KVfz6aSaX/Xcu+8CqYhQuo0aaSv0MSH8lMgX4q0NQY8/+3aBhjqgLNXe9dkDHmEWAI8Jy19pNsxikCwOzZTuPq8nL7WRrRivzrV8HEic5gYhKMlH8k15g9y/J3u8cYmPgmZ3oNoOCPYyEszN9hie+ogSa5xvHPv6NAn5v5i0Yc/mEOXfqU9HdI4ls6/5FcY+U7s6n5SGdi8lUk/7IFVGhW2d8hiUiw+uQT6N8fOnb0aKD4xER44gm4/364/nqYPBkiIrwbqviEzn8k19j/wXeUuO9mVoc2ImXmHJp1UfsryCn/SK6x7s1fqPbYDezIV5vIZfOo2qy8v0MSH8pMgX4ksBOYYozpZozpCkwBdgNfnJvJGFPFGJNkjHkx1bTbgA+B34G5xpimqV71vLgfkgdMnw5dukCrKjuZm3QN4bt3wK+/wo03+js08R3lH8kVpk9NZlfnATyY/DGxAx6j4NfDISQz/4VKAFMDTXKFo++PpcgDvVgS0py4KTPpeEsxf4ckvqfzH8kV/nx5OvWe6cLuiJoUWTmfcldc5O+QRCRYvfUWPPKIc31nypRs90W/Zw+0bg0ffOCs7qefIH9+r0YqvqPzH8kV9r4+lrJP9GJ5WHMi5s+kUbti/g5JfE/5R3KFtS/8SO1nb2JTRAOKr5xLxcs1/EGwy/DRP2vtGWNMW+AD4GucsVfnAI9Za0+nmtUAofy36N/ZNb2z65XafKB1tiOXPOWnn+C226BrzX+YcKwDIWfPOI/TN23q79DEh5R/JDf4+cck4m7tw932W84++TyRQ18Fk51hyCXAjAQewmmgPY8zHv1ruGmgAduAV621r7qmnddAS7Xek9baTD2BL3L4tc8p9eIDzA3tQIEZk7mmnQZOzQt0/iO5wdKnf+KKobexNbI+5dfOpHh1d6O+iIh4yFp44QV4/XW44w4YOxbCw7O1qtmznVWcPQs//AC33OLdUMW3dP4jucHuZz+n0psPMD9fB8r8MZm6jdT+yguUfyQ3WPXkN9R/vw9rI5tRce2vlK5exN8hSQ7IVN+81tpdQI8M5tmJk4xST+sL9M1eaCKOb7+Fu+6C3vVWMnpfJ0LCQmH+fKhf39+hSQ5Q/hF/+v6rePL3vZ3b+Zm4F9+gwCuD/R2S5BA10MTfYgZ/QJm3nuD38C6UjvqRRs3VN2teovMf8afFD37LVcPu4p9CV1J5/W8UrVzU3yFJDjLGVMI5/+mAk2Nm45z/7MpgucbAAKAlUBk4DCwEnrfW7vBp0BKYrHX6ov/wQ7jnHmfQ+NDQLK8mJcWp77/0EtSr54yCWKeO98MV39P5j/hT9OMfUOXDJ5gd0YWqf/5IjUvV/spLlH/En/66/0suHz6Avwq3pvq6qZSoXMjfIUkO0eC5kquNHu200x6sv5CPd3TBFCvm3BZds6a/QxORIPfV8LOUuf8mruV34t76kIhnHvV3SJLD1EATfznwyBuU++Q5fsnfg6qLv+WyRvn8HZKI5BEL+42m+dh7WFu0JdU3/ELhi7I3BrQEJmNMJDAXiAf64PQgNASIMsbUt9aeucDitwGXAB8D64EKwAvACmNMQ2vtbp8GL4ElOdkZJH7kSHj0UadP+mz0UnbkCPTuDb//7vwcPhwKFvRBvCIS1HYOeIOqI5/jt4I9qLvyW6rWUvtLRHLGir6f0virh1lSrDP1/vmJouUK+DskyUEq0EuuNWwYPPggPHv5bwz55yZMlSowaxZUquTv0EQkyI18/xQ1nuxKK+YT/9lIIh64x98hiUheYC37732R8qOGMKlALy5ZPpY6l+p0XURyxvzbhtHqhwdZUbIj9Tb+TGQpdeuaB90LVANqW2u3Ahhj1gJbgP8B719g2bettYdSTzDGLAZ2uNb7otulJO+IioJ+/eDLL52u7MePh+eeg9dey1ZxfvlyuPlmOHDAKcwPGKCRyEQki6xl+50vUm38EKYW6UWjtWOpUEXtLxHJGctvGcqVPz7NopLdaLjpBwqVzO/vkCSH6X8cyZXefx+efBLeajSBp9f0wlx2GcyYAaVL+zs0EQlyn71+nCuev5YrzZ8kj/6a/H17+TskEckLrGVvr6eo8N17/FCoP01WfkG1mlnv5lVEJDvmdXuf1lOfZFnZG2i4+UfyF9HFoTyqK7D0XHEewFq7w1Vo78YFCvRpi/OuadHGmEM4T9NLXhYVBV26QGwsdO7sPEH/xhswOOtDiFnrPNDx+ONw0UWweDE0buyDmEUkuFnLtpueovrk9/ipeH9arP+CMuXV/hKRHGAty24YwlXTX2ReuVu5cuPXRBYN93dU4gchGc8ikrNef90pzg9r9CVPr7wN07Sp05hTcV5EfOz9Zw/T7Pm2NDF/kfLDj4SrOC8iOSElhT3dH6bCd+/xTdEHuXrdCBXnRSTHzOvwOq2nPsmSCj25fOtEFefztkuAdW6mrwfqZXVlxpi6QBngHw/jkkCWujgPTnE+PByaNs3yqk6fhjvugIcego4dYeVKFedFJBtSUth67cNUn/weE0o/SOvNI1ScF5GcYS3L2j/HVdNfZG7Fu2i2bbyK83mYCvSSa1gLzz/vvL654n3u/+teTKdOzpPzRYv6OzwRCWLWwluP7qfTm624NPQfzNQphN/c3d9hiUhekJzM7msHUHHKZ4wpOZD2/3xCpSo6RRcR37Mplnktnqf17OdZdHFvmmz9jnyFNOZqHlcCOOZm+lGgeFZWZIwJA4YDh4BRnocmASltcf6cxERnelRUple1YQNceSVMmOA8fD91KpQo4eV4RST4JSezte0Aasz4jG8vGkinzZ9QopTaXyKSA6xlWfPHuWrum8yq9j+u2TqG/JG6OSgv0/8+kitYCwMHwuuvW6Ze/iK9Vj4JPXvClCkQqbEPRcQHoqKgalXs3CiGDNhFj49bUj0smrAZvxLa5Vp/RyciwcyVf5g9m91t7qLSzFGMLPcCN/zzDuXKa/BUEfGhc+c/c+Yy/8qBtF78Ogtq38PVm78iLEIj4AkA1s207Pzn9ClwNdDbWuuu6O+s2JgBxpgVxpgVhw6d10u+BLp+/c4vzp8TG+u8nwnffgtNmsCRIzB7ttMzfoiuaIpIZqVqf229+i5qzB/FuCov0HXjOxQtpvaXiPjQufbX7Dksb3Q/Vy35iBl1HqXNxs8Jz6+TmbxOLXDxu5QUePhh+HxYClH1H6P1qk/g7rthxAgI1R1EIuIDqZ7kSOx4HfcmF6FIvnjyzZ1FSPNm/o5ORIJZqvyT0qkzlVKS+bzyG9y+ZjDFivk7OBEJaqnzT4dOtLZJzL/sIa5Z+REhYbo4JIDz9Ly7Z5KL4/7JereMMW8CA4A+1tqZF5rXWjsCGAHQuHFjdzcHSKA6dQpq14boaPfvR0bCmDEXXEV8PDzxhDPmfIsW8MMPzrjzIiKZlvr8p2NnathkxtR8g9vWDKZAAX8HJyJB7T/5pxNX2mR+azCITn+9QUiobg4SPUEvfpY8O4qjRaqyadhsll/Sj9ZrP4HHH4cvv1RxXkR8I003i/mS4yhLDAU+flvFeRHxrTT5JyQlmUQTTt/Pm6o4LyK+lSb/hNokkkPCaPlBdxXnJbX1OOPQp1UP2JCZFRhjngMGAY9aa7/2YmwSSFasgCuucB53v/PO83tGjIyEadOgTZt0VxEdDddc4xTnBw6EuXNVnBeRLErb/rJO+6vXJ01VnBcR3zqv/ZVMUkg4nd/roOK8/D+1xMVvTk2NIrFzF0qdiWam6Uzj9ePglVfgvffAKEmJiA+kMwaiAcwTT2RpDEQRkSxJJ/+E20QK3Jy1MVhFRLIknfwTmpKE6XqD8o+kNhVoaoypdm6CMaYq0Nz13gUZYx4BhgDPWWs/8VWQkoulpMDQodCsmfP4+7x5MG6cU4w/V6TPRHH+11/h8sth0yb46SdnleHhObMLIhIkLtD+yneT2l8i4kPp5J+wlES1v+Q/VKAXv1j9QRShN3YhIvnfOxgJD3duj1ZxXkR8xUtjIIqIZJnyj4j4i/KPZN5IYCcwxRjTzRjTFZgC7Aa+ODeTMaaKMSbJGPNiqmm3AR8CvwNzjTFNU73q5eROiJ/s3w+dO8PTT0O3brBmjXONB5xi/LRpUKXKBYvzycnw/PNw/fVQuTL89Rd0756D+yAiwUPnPyLiL8o/kkkq0EuOSkyEkXdEUfOJLkTa2PPf7KI7GEXENxIT4ZvL3yMpvf/6MjEGoohItpw6xcHitdN/X/lHRHwkMTaR1ZFXk+7A3so/koq19gzQFtgMfA2MB3YAba21p1PNaoBQ/ntNqbNremdgSZrXMJ8HL/41fTrUrw+LFsGIEfDjj1C8+H/nadMGdu5MtzgfEwOdOsHrr8Pdd8OSJVCjhu9DF5HgY0+eYk8htb9EJOclnTrLPxGXpz+D8o+kogK95JgtW+Dqq6HDd/0oiO4gEpGcs2ULDKo3lU6T78OGhGLT9o+YiW4WRUSy4+y8ZRyq2JBSq2fzS/E7SYnI+hisIiLZsXPWFraUvpqG/3zH2krXYdMOtqr8I25Ya3dZa3tYa4tYawtba2+01u5MM89Oa62x1r6calpf1zR3r9Y5vBuSU+Li4NFHnYctLrrIeeT93nuz3DPi4sVOl/aLF8OoUc5L40OLSHacmLmMgxc1pPz62cwoeycpBdT+EpGcsee3v4kueyV1N01meaUeWOUfyYAK9OJz1sLo0U5ja//WM0Q0rJP+zLqDSES8yFoY9/kZFtS7j/e2diO8akXC/16NmTEjS2MgiohkWXIye+8fQnib5pw5mcyIO+bT6cA4Qn7N2hisIiJZZVMsC/uNplTHyyl/dhtLBk6kwa7pmOnTlX9ExHv++QeaNoWPP4ZHHoFly6Bu3Sytwlr44ANo3dopyC9Z4jw9LyKSZcnJbL97CAU7NSfuTDLf3zef9nvHETJd7S8R8TFr+fPOjyh1XRMKxR1i3jO/ceWuiRjlH8mACvTiU0ePwi23QP/+cFu9Newo2Yhya2ZC797/JqdzlKRExIuOHoVBHf7iqgeuoF/SCE7d9xTFNi6FevUyPQaiiEh2JG+PZneNNlQY/gLTCtzCrimruX98C/LlQ/lHRHzq2LajLK18C9eM7c+WYlcSt2wtzYb2cN5U/hERb7AWRo6ERo1g71745Rf46COIiMjSak6cgJ494Ykn4IYbnIfvGzb0TcgiEtwStkSzvWobqo15gd8K38LxqNX0+rwFoaHo/EdEfOrkloOsqXAdTb55jL+KdyBhxd+0fquz86byj2QgzN8BSPCaNw/uvBMO7LfMuPFzOvz2BKZ4cZg9G9q2dW6L7tLF6dZexXkR8aJ5c5JZetM7DDn5ImeLlsNOnEPh9mnyy7kxEEVEvOjwZ98T8eh9FE1O4eMmX9P7t16UKJmmm1flHxHxgdUfzqPMwDtpnHyAede+zTWTnyQ0X+h/Z1L+ERFPHDvmdGE/aRK0bw/jxkH58llezdq10KMH7NgB777rFOmz2Cu+iAgAe9/7niLP3Eep5BRGt/maW6f2omAhtb9ExPc2DJ1OmUH9qJVyit+6fEbHn+8nNEz5RzJPT9CL1yUkwODBTg2+XP5jxLTsScfJD2LatIE1a5w3QHcQiYjXJSTA2w9EY9q3ZdDJZznVvjtFdqwlNG1xXkTE206dYmerPpR66HbW27rMfHs1Dy/rfX5xXkTEyxJOJzCv2WDqP96W+JBItn69lNa/Pn1+cV5ExBMLF0KDBjBlCrz9NsyYka3i/NixcNVVcOaM82DHk0+qOC8iWWdPnmJTsz5UGHg7G01dlg1fzd1ze59fnBcR8bKkU2dZduVD1Hu6C4fCyrN5/Aqu/eWB84vzIhnQE/TiVZs3Q69esGIFvNn1D55edTshC/fB0KHOLdEhae4J0R1EIuIlmzfDuM7fMnDHA0SEJxP/6VhK3HuXrvaIiM+dmbuMM93uoNLpnXxZ4UVaz36Bq+roNFtEfG/HjM2cvakXrWNXsKDOvTSa/wEFyxT0d1giEkySkuC112DIELj4YvjjD2jSJMurOXvWGar+yy+dS0HffQdly/ogXhEJesd+X0ZcjzuoEbuTr6u9SLuoF2hSWe0vEfG9Pb+uJb7nHVx1dj2/13ucq+e9SZHS+f0dlgQoPUEvXmEtjBoFl18OO7al8HevNxk0vSUhYaGweDEMHHh+cV5ExAushXGfnGBVvV4M2dGL5Nr1iNi4hvwD+qg4LyK+lZzM7v8NIX+75sSeTmZMn/n02fEKNVScFxEfsymWhX1HUabz5ZQ7u52lT02i5T8jVJwXEe+KjobWreHVV6F3b1i1KsvFeWudThMvv9wpzj/7LMyapeK8iGRDcjJb+g6h8LXNiY9NZuJD8+m15RUuUnFeRHzMJqfwZ++PKHX9lRSMO8K8wTPovP59FefFI/rfSzx29CgMGOAMQdaj+QG+CbmTiPGz4ZZbYMQIKFrU3yGKSJA6ehQ+uGkh/effSSWzh5NPvkLJt56FMP33JiK+lbQtmn1te1N51yKmFLydMj8O455ri/k7LBHJA45tO8rGVgO4Zu8kVhZvS/mZ42jauIK/wxKRYDNhgnOxJyUFxo+HO+7I8irWrXM6U5w1C2rXdnrF79jRB7GKSNCL2+S0v2ruW8T0IrdTedowbr2mmL/DEpE84MSmA+xs3ZcmB2awuMQNVJk9itaXl/Z3WBIE9EizeCQqCurXh6lTYcI9M/lxSwMiViyGkSPh++9VnBcRn5k3K5FvqjzHy/NbU7RkGGbRIoq8+6KK8yLicwc/+p6ztRtQbNcaPr/6a1rvGU8zFedFJAesej+KuFr1abR3KvOue4eGMbMor+K8iHjTmTNwzz1w661OVX316iwX52Ni4L77nCHrV6yAjz6Cv/9WcV5Esmf30O9JqNeAUvvW8FWHr2m7fzyXqTgvIjlg/dvTSKxXn1oH5vPbDcNoenAKFVWcFy9RgV6yJSEBBg2Cdu2gaGQi0b0Gc/OXnTClS8OffzqNOXUtLSI+kJAA7w7YTMGOV/PI6Tc4dkMfiu9YRcjVTf0dmogEOXvyFNta9KHsY7fzD3WZ98Fq7l/cm6LFdM4jIr6VcDqBeU0H0eDJdsSFFmTb10toPf0pQsLUpBcRL1q1Cho1gtGjYfBgWLQIqlXL9OLx8TB0KNSs6QyD+NBDsHWrM/Z8eLgP4xaRoGRPnuKfq/pQ6enb2RxSl7++XE2fmb0pEKn2l4j4VuLJsyxt8hCXDLqBmLCL2PzdSq6dej+hYco/4j1qzUuWbd4MV18Nb78Nz9y6k7XFW1J+7FtO12fLl8Mll/g7RBEJUps3Wd6pOZL7R15OvfzbiPtmIqWmjobChf0dmogEuVOzlhJzUUOqLv6GMZVfpOymhXR9LPMXrEVEsmvHjM1sLXs1rZe9zaI691Bmz0rq9m7k77BEJNBFRUHVqs7PlBT44ANo2hROnYLZs+GNNzJdVbfWGfawXj14+mlo2dLp3v6jj6BECd/uhogEp6O/LuVAuYbUWv4N39Z4kUo7F9Kmv9pfIuJ7u6evZXe5xjRd8Rm/X/IElfYuo8Ftdf0dlgQhFegl06yFL7+Eyy+HHTtg6VOTePO3hoRu3OB0Z//FFxAZ6e8wRSQIWQtff3CYTZd05/ldAzhTvxkFt/1NRK8e/g5NRIJdcjI7+r9GgY4tOHsmmfH3zueu7a9QpbqG0xAR37IploV9vqRM58spd3YHS5/+iZb/jKBgmYL+Dk1EAl1UFHTpAtHRcP31TmH+iSegc2dYswbats30qlauhNatoWdP55LQzJnwyy9O7/giIlmWnMym3q9R5PoWJJxNZvJj87l98yuUraD2l4j4lk1OYfkdH1KmSxMi444y/9kZdF73HoVL5fd3aBKk9D+bZMrRo84D8pMmQedWZ/mx8hMUGjocmjRxivNZ6PJMRCQrjh6Fz7rO4J7FfSlpjnLixfco89JjEKJ7zETEtxK2RLOvbW8u3rOIXwrdToUpw7irbTF/hyUiecCxbUfZ2GoA1+ydxMribSk/cxxNNda8iHjDueJ8bKzz+9mzzlCFjz7qPEWfyeEK9+2D556Dr76CUqVg+HDo3x/CdKVRRLIpblM0e9r0pvb+Rfxa7HYu/nUYPZoV83dYIpIHnNi4nx1t+nHlgRksKtmVqrNH0aphKX+HJUFO1Q3JUFQU1K8PU6fCl0/+w69Hr6LQ18Nh4MAsj0cmIpIV838/y8+VH+WFxZ0JK1uSsL+WU/SVJ1ScFxHvSt3Fq8v+D74nvm4DSuxZw5etvqbN/m+5QsV5EckBq96PIq5WfRrtncq8696hYcwsyqs4LyLekLY4n9rIkTBvXoarOHsWhgyBWrXg22+dS0NbtsD//qfivIhkkpv2V/Tb35NQrwFl9q9hfOevabv/W+qqOC8iOWDdW9NIuqQ+tQ4s4Pdun9PswGQqqjgvOUAVDklXQgIMGgTt2kGhgpYtg0fT//PGmAMH4NdfYehQyJfP32GKSLBI1UBLSIAP715LyWub0P/Mx8Tc+jCld/xJyOUN/B2liASb1F28dumC/WUam6/uQ/knbucfU48/PlvNPfN6U6iQvwMVkaCU+vzndALzmg6iwZPtOBtWiG3fLKX19KcICVOzXUS8pHdv98V5cKb365fuotbCd985Xde/8ILTG/6GDfDOO1C0qI/iFZHgk6b9lfLLNNY36UOVQbezKbQea8auptdvvYmI8HegIhKUUrW/Ek/EsrTxg1w6+AYOhlVk2w9/0XnyfYSGZa43IRFP6d5WcWvzZrjjDvjrL3ik70nei72fsFe/dcYh+/pruOgif4coIsEk1ZMcKdd1YUqhPtx/eBRxBYoT9+1vlLmxs78jFJFglPYpsthY6NqV6sDXF79I26gXuLKKTpdFxEdSn/9cex37qEzr+M0sqDOARvPf11jzIuI90dHw2mtw4ED680RGwpgxbt9auhQef9z5efnlzmWhVq18FKuIBK902l91gO9rv0j7eS9QqpzaXyLiI2naX4dTytA0cRczLn2S5vNep1BJjTUvOUu34st/2LlRnCpZlUfrR7FjB8x9ZwUfLbyCsInfO32YzZyp4ryIeFeaBlpIXCw3H/6c07UbUzT6byJUnBcRX0ini1eDxYblo9fI1lRQcV5EfCXt+U98HFXiN7Ph1ldo+c8XKs6LiHfs3QsPPAA1azpV9YcegokTnWJ8apGRMG0atGnzn8m7dkGvXtCsGezc6dTvV6xQcV5EsiGd9leIq/1167DWKs6LiO+4aX+VTdzFmt7v0Onvd1WcF79QgV4ASEmBha9GEde+C4WPRvNzYheib3iQNs9dDfHxMH8+PPcchIb6O1QRCSZRUdh0xkAsuXs1rFuX8zGJSN7Qr1+6XbyGJcUT0j/9Ll5FRDySzvmPAer98vZ/xmMVEcmWgwedR96rV3fGlr/7bti6FT76CHr0cIrx54r0borzp0873djXrg0//QTPP++MM9+3L4ToSqKIZEcG7S9zt9pfIuIj6bS/QoAGP72s9pf4jU6r87ikJPj2W+hfPYorXupCAeskqYiUWAp9NQyaNIE1a6BFCz9HKiLBJikJzvTsg8nmGIgiItl25gz7Lr8Om977F+jiVUTEE0lxScR1vUXnPyLiG0eOwDPPQLVq8MknztiFmzfD8OFQqdK/87Vp4xTlq1T5T3E+JQXGjoVatZxOFLt3h02bnN7xCxXyzy6JSOCzp8+w6zK1v0Qk5yXHxhPftafaX5IrqUCfRyUkwOjRULcujOwVxbDoLhTETZJavdop0IuIeElCAnz7wUFGlR4ERw+nP6MaaCLiZfbESbbc/SbHi1flosmf83doQ5LC0nRjlk4XryIinkg4ncDCfqPZU6QuEacPk4JxP6POf0QkO44fhxdfhIsvhqFD4cYbYcMG58LPxRe7X6ZNG6ffetc5z4IFzjMa/fpB5cqwZInzQEflyjm1EyISbFKOn2T9nU77q/K0z1kfrvaXiOSMxBOxLO/9EYeKVif/6aOkpFcKVftL/EgF+jwmLg6GDXOGH+vfH4oWhV9L9P7/J+fPozuIRMRL4uJg3JBdfFvyYbo/UZV7j7/DsRZdSfliZKbHQBQRyY6Uw0fZeNtLnCpZhZpjnmVlSBMmPLKIGidXETbztwt28Soi4om443HMv20YMcVqcs3Y/sSGF2XZoJ9h1iyd/4iI506dgtdfd4rwr70GnTrB33/D+PHOY/CZsH079OzpjCt/6JCz6JIl0LSpj2MXkaCVfOgof/d4idMlq3DJN8+yJl8TfnlmEbVOq/0lIr4Vf+gkS296mxMlqnLl+MfYnb8mC16cjVX7S3KhMH8HIDnjzBn44gvnRuoDB6B5sxQm3TODRks/xfy1L/0FdQeRiHjozBn4YchmCnz0Fref/Rpj4EDHu6jw8TNUrO26aFSzOpwbC0gnRyLiJcn7DrLpvvepMn0YdVJOMyOyO7GPP8d1LzQi/7kHN8518dqvn3POo9wjIl5wJuYMf977BXWnDaVVygHWFr6aA09/QaNnO2FCXE/PT5um8x8RyZ7YWPjsM3j7badb+xtugFdfhYYNM72K/fvhgw+cYenDw536/hNPnH/tWkQksxJ2H2TjgPepNmMYl9nTzCrcnaSnn6PDoEaEnatCqP0lIj4Qu+coa+/5mDozP6apPcaSop3ZNPg5rn66BeZc52Vqf0kuowJ9kDtxAj791Gl0HTkCXVud4N0eY6kx8zPMi1ugXDl46SW49FLo08dJTucoSYmIB06cgAnPraH0yDfom/AjiSH5Odj9fip8MJCKVdL0k6gGmoh4UcL2PWwZMJTqc0dQ2ybwe5FbsYOfpfPAS/+9MJTauS5eRUQ8dGLXCVb1/5TL5nxAa3uElcXbsf/F72jwSKt/C/Pn6PxHRLIqLs55+uLNN+HgQeeJ+VdfhSuvzNTiiYkwfbrT8/2vvzpjzvfp4zyEf9FFPo5dRILW2S172DxgKLXnj+ASm8Cs4rcS9uKztHvkUkLc9d+r9peIeMmpbTGs6/8+ly34jKb2NAtL3Uj+V56j6f2N/y3Mn6P2l+QyKtAHqcOHnbugP/nEKZLd13IDL5X8lHIzx8H8M9CsGbzyCvToAfnyOQuVLKk7iETEY4cPw09PLaHyN69zb9J0YsMKs//OZ6gw9DEqli2b/oJqoImIh+I2bGfrgLepuXgstUjh15J3UuDlQVz7QC33F4ZERLzkyKbD/H3PR1y+6BNac4LlZa5n32vPccWAZhdeUOc/IpIZCQlOVX3IENi7F1q3hokToUWLTC3+zz/O4uPGQUwMlC8PTz0Fd9/tDIEoIpIdZ/7eztZ736bOsrHUI4WZZe6k0JBBdLqn1vmFMRERLzr29x423fsu9ZeN4CriWFDuVoq89SzX9Lnswguq/SW5iAr0QebAAXjvPfj8c4g7k8wbzX7h/qRPKLxgLuTPD7ffDg89BI0anb+w7iASEQ8c2G+Z+ugcak96gwEpUZzMV5J9D7zGRUMeJLJ4cX+HJyJB7PTKTey89w3qrBxPTUL5tVx/ir/5NF37VNWFIRHxqZi1B9jQ/z0ar/iclsSyrEIPig99litvv9zfoYlIIIqK+u81maQkp6r+2mvOxeSrr3Z+b9s2w1WdOgUTJsCoUc6Y8mFhTk/4d98NnTvjvlchEZFMOPnnJnYMeINLVo+nDqHMqNifMkOf5rpb1f4SEd86vHw72wa8TcM1Y2lMMvMr30mZ9wbRumdtf4cmkmU6HQ8Su3Y548uPHAmFE47wZcMvuenAMPIt2QWVKjndn/XvD6VLX3hFuoNIRLJo184Ufn/wFxr+9gYD7HKOFriIAw+/T7kX7qVIoUL+Dk9EgtiJhWvZff8b1Fs/gWpEMKXyI1z03pPc2KOCLgyJiE/tXbKLrf8bylV/j+QaElly8R2U+3AwzbrW83doIhKooqL+7dWwSxd47DH48UfYsgUaN4Zhw5zK+gVOcqyFxYudp+UnTIAzZ6BuXXj3XejdGy7UoZmISEaOzlvLngfe4NJ/JlCTCKZVe4TKHz5J1xsq+Ds0EQlyB+ZtZNf9b3LFxvE0JJSFNe6m4ifP0K5zVX+HJpJtKtAHuG3b4K234KuvoKFdxexqn3B19HeErIpziu2ffgBdu+rWaBHxum2bkph73wSazXuTAazjUOGLiXn6C8o81cfpsUNExEeO/P4nBx5+nUu2TsFQmEk1B1H948fo0bmMv0MTkSAXPXcb0Q+8RdNNX1EaWFq7D1U+e4YW7Wr4OzQRCWSpi/Pg/HzjDahWDSZPdq7rXKAwv3+/82D96NGweTMUKuR0oNi/P1x11QUXFRHJUMz0Pzn4yOtctn0KYRRmSp1B1Br2GDe2UftLRHxrz/Q17H/kDRpt/5EiRDDnkkeo+fmTtL9GNwZJ4NNonAFqwwbn7ud6NROJG/s9G0s2Z3nSFbTY8wMhffvA33/D3Llw000qzotI9kVFQdWqzk+Xf1bH82XTkdg6dbh3Xi9Klkjh8AdfU/roZso8P0DFeRHxDjf55+CkRWyo0pmS115J+a0LmHjpy+xeFM3Nm9/gChXnRcRb3OSfrVM3sPji3lRsV4srN33Nksv+x6E/ttJy40iqqDgvIp6YOxeuu+7f4nxqBw5AkSJuK+yJiTBlilO7r1QJBg2CMmWc3vEPHHB6WGzaVMV5EckkN+c/+yYsYn2lzpTpciUVti/g5wYvc2BpNN3/eYNLVJwXEW9xk392/LCclZW6UrFLQ2pv/42Zlw/i8J876bTufaqpOC9BQpXbQJBqDLJVxdrw+uuweNIBHgr/gpjILyh6Zj8UrA7vv+/MV6yYvyMWkWCQpovFrW/9yMIvN9Nh7bvcw152l23E0Td+onzfbhCi+71ExIvS5J9DD7/C0a+mUfvAfAylmdj4LS4fcT89Ly/i70hFJNikyT+7Hv+AvWNnctXenyhHJAsbP0HdkU/QqmF5f0cqIoHMWli+HH76ybmWk5Tkfr7YWOc6T6qhCDdudJ6UHzcODh6EcuVg4EBnbPlatXImfBEJMmnOfw4++ApHx02j7sH5hFGan69y2l/d66v9JSJelib/7HngdY6M+5UGMbMoSnF+b/YKDb58mM71ivs7UhGvU4E+t0uVoOLad2FkyjvcEvYH34f8SFhiIrTrDA9/6YxDpgKZiHiLmy4Wqz9yPTWAHZVbceLd0VTq2UGPY4iI97nJP6XffgooycQWH3LlyHvpWSfSryGKSJByk38qv/4/ShDJghbPcdmXj9K6din/xigigSs5GRYtgkmT4OefYc8ep8fDhg1h7VpISDh/mchIGDOGU6ecMeVHj4Y//nAW69LFKcpfe606ThQRD7g5/yk79ClCKcnPrT6k6ah76V5d7S8R8QE3+afiu49TkGL83uZtGo+6n84XF/ZvjCI+pFP4XColBbaMjKLaw10IT3QSVERKLMN4CJsvEnPvA/DAA7o9WkS8LmVOFLZLF0Lj/tvFogFs/vxcPPYlaNPGP8GJSFCzv/2OvfFGQhLiz3uvVIGz9Hy1Pqg4LyI+kDJ7DlzfhZCEuPPeK1jA0vrVtqDivIhkVUKC04X9Tz85Y8kfOgQREdCpkzPGfJcuULz4+ReoARsZyfq3pvH+122YcAOcOQN16sDQoXDnnVC2rP92S0SCw4XaXyULnKX7S/VBxXkR8YGUGTOha1e3+adYgXg6v9AEVJyXIKcCfS6ybx/MnOm8EqbP5JuTXQnn/ARlrIVu3VScFxGv2bfX8ufovzn10yx6rH6eApx/cRrAxMef18WiiEi2WcuJJRvY+cUMQufO5JI9M0ivPyBz9vwuXkVEPHFg5T62DpuJmT2TptE/EEqK2/nM2bPKPyKSebGxzoWdSZPgl1/gxAkoVMgpwN90k/PIe6FC/12mTRuYNu3/i/SJ4ZHcU3Ia4x5pQ6FCcNttztPyzZqpEzMR8YC1HFvstL/ComZy6V61v0Qkh1jLwYWb2TliBvmiZtJg36+EYN3OqvaX5BUq0PvR2bOwcCHMmOG03TatS6Adc7gr4kdujRubboJCCUpEPHT2LCyfvI+942ZTeMksmpyYRTcOAnCoYGXyn91HSIqbcRBdXSyKiGRX4oEjbPtiNmcmz6TihpmUTdhDA2BTSB2WXnQTTWKmE5Z0/g2Kyj8i4qmzR8+y4YuFnJo0gwrrZlIzfh3lgJiQsmwo3456h+YTmpR+F9MiIuk6eRKmT3eelP/1V6dIX7w4dO8OPXpA+/bOk/NuHD/uDEe/bFkbTtWbxoMr+tE3cQxJVdow+hW4+ebz6/kiIpmVsP8IW4fPJnbKTCptmEnZxD0UBzaH1GFZhZtocnA6oWp/iYgPnN13jM2fz+HslJlU3jiDixJ3URbYHlqDVRW70vDA78o/kqepQJ+DrIV16/59Sn7BAkiOS6Bz2ByGlv6R1gV+JuLscWy+Iphr2jszxCtBiYjnrIX1y8+waeQCmD2LOrtm0squB+BYeGn2N2xPQveOVOrXntKVKrrtYpHISOepDnVvLyJZYBMS2fvTMg58NYMiS2dS4/if1MFyjGKsKtGeZc07cVHfjjTsWpnaYSj/iIjX2BTLlp/XsW/sTAotmcklRxbQiDjiyce6Ei2Z1+4uyvfpSK2e9SkTYpR/ROR8UVHOAxJjxpyfB44cgSlTnKL8rFlOd/blykGfPs6T8q1aQXj4fxZJTob162Hp0n9f//zjvGcM1K3bBvP0TobfDbVr59A+ikhQsQmJ7J64jAPjZlB02UxqHv+Teq721+pS7fmzeScq3t2Ry66vTK1QdP4jIl5jE5PY/sNyYsbNoOjymdQ+sZwGpHCCIqwt3Y51LQZT8e6O1LmuGtVCUP6RPE8Feh87dAhmz/73Kfn9+yGcBPpVmsOr1X7kil0/E376OJwpAj27wc03Yzp2hPz5laBExCOHDqaw8suVnPxpFuXXzaJJwmIuJYF4k5+dla5hU/u7qHxPR4pfVZ/iIWk6NUvTxaJyj4hc8AJ1GifX7GDbsBmYmTOoHj2XivYk5Qlhdf6rmN7oJQr17MTl9zahbcnQ8xdW/hERDxz+5xCbh80m5bcZ1Ngxk1op+6kFbM1fj+WX30fBmzpR776WNCrlZjxV5R8RSS31NZkuXZx8ULu2M5b8pEkwf75Tca9SBR56yCnKN2sGqdpWBw/CsmX/FuP//BNOn3beK1UKmjaFXr3gqqugSRMoWtQ/uyoiuVAW2l8nVqdqf+2aS2V7kgqEsCbiKn5r8hKFe3ai4b1NaFNc7S8RyYQs5J8jf+1k2+czCJk9k5q75lDdnqAqIayLaMLsK5+jyM2dqH/PlVxTLPz8hZV/JK+z1mb4AioBE4ETwEngJ6ByJpeNAIYC+4GzwBKgZWaWtdbSqFEjG0ji462NirJ28GBrGzWy1hhrwdqyxePtmy1/tZua97PJRYs5E4sUsfbOO62dOtXauDj3K5w719rISGf+yEjnd5EAA6ywmfybT/tS/klj7lxrq1Rxmwvi463947uddtK1I+2M4rfYQ5R0cgfYHcUa2LWdBtqY8TOtjY31yvZEAoHyj5dkcD6SeOyU3fD2VLusyYM2OqLm/+eeaFPZzqhyr/3tnol221/HbEpKFrep/CMBTPnHiy50/nMq3q76IMpGNRts10c2ssk4DbAjpoRdXOlWu6DvKLtv+W6vbU8kECj/eEHqc59zr5CQf/9du7a1zz5r7V9/2XMnOPHx1i5bZu1HH1l7++3WXnzxv7OHhVnbuLG1Dz1k7TffWLt1q83aeZFIgFD+8ZIM2l8JR0/Z9W9NtUsbu2l/Vb3Xzhgw0e5YdSzr29T5jwQw5R8vySD/xB8+af9+Y6r9o9FDdmf+f/PPblPJzr74Hjv7vgl295ojWd+m8o8EsOzmH+Msmz5jTCSwBogHngcsMASIBOpba89ksPx44HrgKWA78CBwLdDMWrv6ghsHGjdubFesWJHRbH5jLWzZ4jwdP2OGc3PRmTMQFgbXXJXAvdXm0P74j5RaNBlz7BgUKQLdnCflOfekfEaycMeSSG5kjPnLWts4G8sp/6SW+gmOyEjsL9PYVqwRm4ZHYWfOotauWdSymwE4lO8i9l3SgULdO1C1f3tCLyrr5+BF/EP5xwvS6dHn0LPvs33FUQoumkGtw3+Qj0TOEMnqoq05flUnyt7ViQY31yI8n/Ff7CJ+pPzjJWnPf6b+ws6kiuz6ciYFFsygXkwUhThDImFsKNKMY006UubOTtS+/QpC87l5SkwkD1D+yYakJNi5EzZtcsaSHznSmZZWeDh88QW2bz927/5vV/UrV/47SmHFis7T8edeV1wBBQrk6B6J+IXyjxek0/6KGfw+2/88SqHFM6h15N/215pirTnR1Gl/1e9Zi7Bwtb8kb1L+8QI3+cdGRnLw6ffZseIIhf6YSe2j/+aftcVbc7JZR8r36cQlN9UmNEz5R/Km7OafzNwB9CiQDNRINe1iIAl4IoNlG+AktH6ppoUBm4CpmbmDINN3EOXAXTbJydYeOWLtzjFz7elSVey7XebaKlX+vSO6enVrH/5fvP3jhV9tfO9+1hYvbjP9pLxIECObdxAp//wrefZcm1Lgv09wJBFik3Ce4jhjIu3fla+za+/+wJ5auk6PY4i4KP94aO5cm5L26bE0r3XhDexv9Z+2US/OsUf26TxH5BzlH88lz5ptUyIK/CfnnHtC3oLdGVbdzrv0Abt08GR7YvcJn8UhEmiUfy7g0CFrFy2ydtQoa59+2tpu3aytW9fa8PALnu+kfh0sUMWWL//vpIgIa1u0sHbgQGsnTrR2dxY77RAJJso/HspE+2t9eAP7e4On7fyX5tij+9X+EjlH+cdDc8+/9nxe/snX0P5++TN20atz7IkY5R+Rc7KbfzIzBn1XYKm1duu5CdbaHcaYxUA34P0Mlk0Efki1bJIx5ntgkDEmv7U2PhMxXJi7ccEy+aR5XJwzTvzBgxAT8+8r9e/n/n3oELRIimIaXShILPdP68Lx5tOoNLA5N0TOofyiH2HCZMjuk/IiklZw55+zlsPbTnBs8yFOb4/h7K5DJOw9RMrBGEKOHCLf8UNEno6hbOwOqqRsI+09iKGkkBwSxqFB71L6xQe4VHlGxJuCN/9YS8LR0xzZcJCTW2M4s/0gCbsPkrw/BhNzkPCjB4k4FUPh2INUjt9CCOn3tpRYtiL19q/mEt0kLeJNwZt/gLjjcRzddIjjmw5yZkcM8btjSNoXAzEHCTsaQ8TJGAqfOUjp+N0Ut0fPO/8JwZIcmo9Db4+iypO9qeLxzohIKsGRf+LiYOtW2LzZeSL+3GvzZjh69P9ns/nykVilBrEVanO8flcOlajN3kK1SdofQ9fve5EvKZa0zhDJE8XH0K7tv0/H16/vPFgvIh4JjvzjjrXEHznN0X/+bX/F73LaXyGHstj+KleRuvtWU0/tLxFvCur8E3foFMc2HuTEln+v/6TsPwiHYsh39CAFTh2kSOxBKiZsu2D+SSpXkXr7V1HP450RkXMyU6C/BJjiZvp64OZMLLvDWpu2VbMeyAfUcP07+9J2uxEbi72+C7s/n8aOqm0yLLqfPOl+tQUKQNmyUKYMVK4MjRtD07NR9PmxC+GJzrYiieW1pR1gTQE4fVpFeRHvC7z8c9317Hv5C2IKVSd2ZwwJew+RfOAQ5lAM4ccPUeBUDIXOHqJo4iFK2UNUJJGKblZ9yhTmeL4ynIksTQWzj5B0QghNSaL0+I/g9cc92hUROU9A5p/9L3zGociqnI0+SOKeGOyBg4QePki+4zEUPH2QInEHKZEUQyRnKQ+UT7PaI5TgWFgZTkSUZVeJhhwJq0fDvdMJTUk8P4bISMK/G8d51TMR8VRg5p8XPycmsipno2NI2BODPehcdM53PIbI0zEUiTtI8cQYinKSi4CL0qw2lgIcCSvLifxlOF60MlWObMO46V0aIDQ5gXKfPA9P9vZoV0TkPIGXf669ltg77yM+HsyWTeTbsYnImJ1OXxsuRwtcxO4CtdkWdgsbS9fm7/ha/HW6NtsTqpC8JQy2nL+pjuHT+JkuRPLv7iTljyTp+2l8c6OGHhTxgcDLP95sfxVwtb/C69FwzwXaX9+q/SXiA4GZf57/jEMFq3J250ES9xzEHjhIyJEY8h8/SMHTBynqyj8FiHObfw5TkqPhZTkVUYadpRpxKPwyGu6elm7+Cft2nEe7ISLny0yBvgRwzM30o0BxD5Y99372uRuTBzBnY6nYtx0JVKMohajpmh4WCmHhzvjwYWEQlg/Cy7n+nXp6GISeq4bFA7uADadh+3anM4/UkpPh7FkYMgQGDlRRXsS7Ai//xJ2lwqC7qJBm9lOmMMfDSnOqQGliS1XmRLFG7ChVhtCypclXoTQFqpShcLXSlKhThsjKpSgcEUHhDLYFQGQkjBnj0a6IiFsBmX8ueu7u/xS9kgjliCnNsXxlORVZhsMla7GpeFls2bKEli9D/kplKVitLEVqlKFU3dKUKJGPkmkv+KQzBmJWnpgVkSwJzPzzbN//5J8UDEdMKY7nK8PpAmXYV74x0cXLYEuXIeRc/rm4DEVqlKFkvbIULFOQSKBSBtsCdP4j4juBl3/i4yn45UeEEMEG6rGZq9jEXWyiNpuoTUzRWuQvWYjixaFEiX9fN6f6Pe17xYtDgQJtIGrav9uMjCRs2jSK6txHxFcCL/9kov11pGQtNpUoiy3jtL8iKpcl8uKyFK1ZhpJ11P4SySUCM/88f37+ORxShuP5ynCqQFkOl6rDxhJloXQZQi8qS/7KzvWfojWd6z+lioVTKjPbU/4R8ZnMFOgBt31bZOZ+PZOdZY0xA4ABAJUrV05/xn793F+wwen68OL8+zh9dUfy54d8+SDEkzsMZ848vzh/TnIyjBwJzz3nwQZEJB0Bl38A4ouVYdfw3yhWszTFa5WmcKFUBfesatPGORHSCZJITgvQ/FOWnaPmUKx2WUrWLEHZfCGUzUTQ6Uqbg5R7RHJCgOafMkR/OZvitctQvEZJSkeEUToTQbul8x8RfwnI/JNcsiyHvvmL6iWgiavIXqwYhIZmIvL0nMtD/fo5NwUp74j4WkDmn3Ptr+J1ylKihtpfIgEqMPNP8bJEu67/lKhRgnL5QiiXiaDTpfwjkqMyU6A/hvs7fYrj/u6g1I4C7jJM8VTvn8daOwIYAdC4ceP0B74YM+aCT1WEevPuZj3BIeIPAZt/8v/0PTXbXJFBiFmgEySRnBbA+ec7are5JIMQs0gXqEVyUgDnn++p1eayDELMAp3/iOS0gM0/hX4cQ2dfpIY2bWDnTh+sWETSCNj8o/aXSMAL3Pwz6TtqKf+IBKz0hjVObT3OWBpp1QM2ZGLZi40xkW6WTQC2ZmL76TuXLCLTrN4XF25yclsico7yj7ttVqmivCPie8o/7ra7c6dyj4jvKf+426bOf0RygvKPiPiL8o+77ar9JZITlH/cbVf5R8TnMlOgnwo0NcZUOzfBGFMVaO56L6Nlw4GbUy0bBtwKzLTWxmc14POkTVI5cXEoJ7YlIqD8436bOkESyQnKPyLiL8o/7rap8x+RnKD8IyL+ovwjIv6i/CMifpGZAv1IYCcwxRjTzRjTFZgC7Aa+ODeTMaaKMSbJGPPiuWnW2tXAD8CHxph7jDHtgO+Bi4GXvLYXOflUhZ7gEMlJyj8i4i/KPyLiL8o/IuIvyj8i4i/KPyLiL8o/IuIXGY5Bb609Y4xpC3wAfA0YYA7wmLX2dKpZDRDK+UX/fsDrwBCgGLAG6GytXelx9Knl5LhgGoNMJEco/4iIvyj/iIi/KP+IiL8o/4iIvyj/iIi/KP+IiL9kWKAHsNbuAnpkMM9OnCSVdvpZ4AnXS0QkS5R/RMRflH9ExF+Uf0TEX5R/RMRflH9ExF+Uf0TEHzLTxb2IiIiIiIiIiIiIiIiIiIh4SAV6ERERERERERERERERERGRHKACvYiIiIiIiIiIiIiIiIiISA4w1lp/x3BBxphDQHQmZy8FHPZhOP6kfQtM2jdHFWttaV8G4wvKP/9P+xaYtG8O5Z/Apn0LTNo3h/JPYNO+BSbtm0P5J7Bp3wKT9s2h/BPYtG+BSfvmUP4JbNq3wKR9c2Qr/+T6An1WGGNWWGsb+zsOX9C+BSbtW94RzJ+H9i0wad/yjmD+PLRvgUn7lncE8+ehfQtM2re8I5g/D+1bYNK+5R3B/Hlo3wKT9i3vCObPQ/sWmLRvnlEX9yIiIiIiIiIiIiIiIiIiIjlABXoREREREREREREREREREZEcEGwF+hH+DsCHtG+BSfuWdwTz56F9C0zat7wjmD8P7Vtg0r7lHcH8eWjfApP2Le8I5s9D+xaYtG95RzB/Htq3wKR9yzuC+fPQvgUm7ZsHgmoMehERERERERERERERERERkdwq2J6gFxERERERERERERERERERyZVyVYHeGFPJGDPRGHPCGHPSGPOTMaZyJpeNMMYMNcbsN8acNcYsMca0dDNfiDFmsDFmpzEmzhizxhjTw/t7c952s7VvxpjGxpgRxpiNxphYY8wuY8x4Y8zFbubdaYyxbl43+mSn/t2uJ8fNXbzWGNMwzXyBdtxevsC+xaWZ11/HraIx5hPX30qsa5tVM7lsrv57yw7lH7fLKf8QkMdN+QflHzfzBdr3WPmHgDxuyj8o/7iZL9C+x8o/BORxU/5B+cfNfIH2PVb+ISCPm/IPyj9u5gu077HyDwF53JR/UP5xM1+gfY+VfwjI46b8gxeOm7U2V7yASGALsA64EegG/A1sAwpmYvnxwHHgXqAd8BNwFmiYZr7XgXhgINAG+AJIAa7LjfsGvAssBh4AWgF3AP8AR4BKaebdCfwONE3zKp4b9821vAXGuIk5MsCPW0U3+9QOSAQm+Pu4ubbbGjgI/ArMcB2LqplcNtf+vfnpe5xrPw8Pv8fKP4F53JR//HTc/PQ9zrWfh4ffY+WfwDxuyj9+Om5++h7n2s/Dw++x8k9gHjflHz8dNz99j3Pt5+Hh91j5JzCPm/KPn46bn77Hufbz8PB7rPwTmMdN+cdPx81P3+Nc+3l4+D1W/gnM46b844Xj5rOdz8aH9SiQDNRINe1iIAl4IoNlG7g+3H6ppoUBm4CpqaaVcX1Yr6RZfg6wNpfuW2k306q4DvKraabvBL4JlOPmmtcCQzKYJ+COWzrru9O1v9f7+7i5thuS6t/3ZDZB5fa/t5w+1rn981D+ueDyyj/KP35/Kf+ku6zyTwAet3TWp/yTA8ctp491bv88lH8uuLzyj/KP31/KP+kuq/wTgMctnfUp/+TAccvpY53bPw/lnwsur/yj/OP3l/JPussq/wTgcUtnfco/WTxuuamL+67AUmvt1nMTrLU7cO6e6ZaJZROBH1ItmwR8D3QyxuR3Te4E5AO+SbP8N8Bl7rrN8JJs75u19pCbadHAIaCCl+PMDk+OW2YF3HFLRx+cO3ZmeCc8z1hrU7K5aG7/e8sO5R83lH+AADxu6VD+cSj//Feu/R4r/wABeNzSofzjUP75r1z7PVb+AQLwuKVD+ceh/PNfufZ7rPwDBOBxS4fyj0P5579y7fdY+QcIwOOWDuUfh/LPf+Xa77HyDxCAxy0dyj+OTB+33FSgvwSnK4W01gP1MrHsDmttrJtl8wE1Us0XD2x1Mx+Z2E52ebJv5zHG1MW5O+MfN2/f4BpPId4Ys9TX4zjgnX273xVvrDFmrjHmGjfbCOjjZoypiNPFxXjXH3NaOX3cPJHb/96yQ/knk5R//rMNsrCdrFL+cS+3/71lh/JPJin//GcbZGE7WaX8415u/3vLDuWfTFL++c82yMJ2skr5x73c/veWHco/maT8859tkIXtZJXyj3u5/e8tO5R/Mkn55z/bIAvbySrlH/dy+99bdij/ZJLyz3+2QRa2k1XKP+7l2N9bbirQlwCOuZl+FCjuwbLn3j/387i1Tj8DF5jP2zzZt/8wxoQBw3HuIBqV5u1fgIdx7tzoBcQBPxtjemc14CzwdN++wRlfpD0wACgJzDXGtE6zjYA+bjjde4QAX7l5zx/HzRO5/e8tO5R/MkH557xtnHvfF5R/3Mvtf2/ZofyTCco/523j3Pu+oPzjXm7/e8sO5Z9MUP45bxvn3vcF5R/3cvvfW3Yo/2SC8s952zj3vi8o/7iX2//eskP5JxOUf87bxrn3fUH5x73c/veWHco/maD8c942zr3vC8o/7uXY31tYtsLznbQ7AmAysZzJ5LKZnc8XvLXdT4GrccZx+M+XxFr78H9WbszPwFLgTc7vZsGbsr1v1to7U/260BgzBeeunSFAi1TrCvTjdhewylq79rwN+O+4ZVcg/L1lh/JPxpR/srgNDyn/nC8Q/t6yQ/knY8o/WdyGh5R/zhcIf2/ZofyTMeWfLG7DQ8o/5wuEv7fsUP7JmPJPFrfhIeWf8wXC31t2KP9kTPkni9vwkPLP+QLh7y07lH8ypvyTxW14SPnnfDn295abnqA/hvs7Corj/m6F1I5eYNlz75/7WdwYk/YDSjuft3myb//PGPMmzl02d1trZ2Y0v7U2GfgRqGiMKZ/Z7WSRV/btHGvtKWA60CTV5EA/blcCdXB/99B5cui4eSK3/71lh/JPBpR/Ava4Kf9ceL7cQPknA8o/AXvclH8uPF9uoPyTAeWfgD1uyj8Xni83UP7JgPJPwB435Z8Lz5cbKP9kQPknYI+b8s+F58sNlH8yoPwTsMdN+efC86UrNxXo1+P02Z9WPWBDJpa92BgT6WbZBP4dA2A9kB+o7mY+MrGd7PJk3wAwxjwHDAIetdZ+nYVtn/tyuLuTwxs83jc30t55ErDHzaUPkAR8m4VlfH3cPJHb/96yQ/nnApR/AvO4uSj/nD8fKP+kno9MbCe7lH+yRvlH+SenKf9cgPJPYB43F+Wf8+cD5Z/U85GJ7WSX8k/WKP8o/+Q05Z8LUP4JzOPmovxz/nyg/JN6PjKxnexS/ska5R/lH4e1Nle8gMdwDmK1VNOqAonAkxks2xDnQPZJNS0M+Af4JdW0MkA88FKa5WcDf+fGfXPN+4hr/57N4nbDgBVAdG7dNzfrKwLsAuYH+nFzzZ8POAJMyU3Hzc0273F9x6pmYt5c/feW08c6t38eyj9ZWp/yj/JPjr+Ufy64vPJPAB431/zKP8o/Af09Vv4JzOPmml/5R/knoL/Hyj+Bedxc8yv/KP8E9PdY+Scwj5trfuUf5Z+A/h4r/wTmcXPNr/zjwXHLkZ3P5AdUEOfOg7+BbkBXYA2wHSiUar4qri/Ni2mW/x6n24V7gHbARCAOuCLNfG+5pj8BtAY+B1KAG3LjvgG3ueL7DWia5lUv1Xy3uz6Du4A2ruUWur5It+XSfRsIjATucB2LPq71JADXBPJxS/XeTa5jcFM62/DLcUu1/Z6u1+eubd7v+r1VoP69+eNY5+bPw8O/UeWfADxuqd5T/lH+CdjvMco/AXncUr2n/KP8E7DfY5R/AvK4pXpP+Uf5J2C/xyj/BORxS/We8o/yT8B+j1H+Ccjjluo95R/ln4D9HqP8E5DHLdV7yj8eHDef7nw2PqzKwCTgJHAKmEyaOxpw7uCwwMtpphcA3gcOuD6QZUBrN9sIBZ4HonHublgL9Myt+waMdU1z95qXar6mwFzgIM4dLidw7tTolIv37QZgMXDYFfMRYCpwZaAft1TvTXHtV7501u+34+ba/gW/W4H695bTxzq3fx4e/I2Ozeg74u/vsQf7pvyj/JNrXp4c69z+eXjwNzo2o++Iv7/HHuyb8o/yT655eXKsc/vn4cHf6NiMviP+/h57sG/KP8o/ueblybHO7Z+HB3+jYzP6jvj7e+zBvin/KP/kmpcnxzq3fx4e/I2Ozeg74u/vsQf7pvyj/JNrXp4c69z+eXjwNzo2o++Iv7/HHuyb8o/yzwVfxrUSERERERERERERERERERER8aEQfwcgIiIiIiIiIiIiIiIiIiKSF6hALyIiIiIiIiIiIiIiIiIikgNUoBcREREREREREREREREREckBKtCLiIiIiIiIiIiIiIiIiIjkABXoRUREREREREREREREREREcoAK9CIiIiIiIiIiIiIiIiIiIjlABXoREREREREREREREREREZEcoAK9iIiIiIiIiIiIiIiIiIhIDlCBXkREREREREREREREREREJAeoQC8eM8ZMN8ZYY8y6C8xjXa9TxphC6cxzaar5Vqd5r7Yx5ktjzGpjzGFjTJwxZrsxZoIxppGXd0lEAkRO5B8384a7clGG84pI4DLGVE2VF869UowxB40xS40x/zPGhKdZJu38Z40xB4wx840xbxhjaqezrdZulk39Wp1q3prGmGeNMQuNMfuNMQnGmJ3GmBHGmCo+/lhEJAfk4vxT1hjzmTFmuTEmxhgTb4zZ5Tofa+vjj0VEckiqHDT5AvPc6Jrn5ZyLTEQCTQ5dM25ojBlijFlmjDnkuma82RjznjGmpDdiTBNn6tcRY8xKY8xT7mI3xrR0xTHPGHPStcyHGcUkIp7LofzjUc3KV/nHGFPIGHOnMWaiMWarK66jxphZxpguGcUlOSfM3wFIYDPGlAc6ARa4xBjTxFr7ZzqzJwGFgJ7AWDfv93PN4+57eRlwI/AHsAg4DVwM3AD0MMbcYa39Ift7IiKBJgfzT1rPATWyHLCIBKpNwPeuf4cA5XDOP4YD7YGb08x/0PUeQD6gNNAEGAw8Y4x5D3jGWmvdbGsZ8Lub6QdS/fs14FZgDfATcAa4ErgX6GmMaWGt3ZCVHRSRXCu35Z9KQG9gKfAXcAyoAHQDrjPGPGWtfTcrOygiIiLBKQev2QzHaQ8tA751zdcKeALnmnFTa+0BN8tlNUb477mWAUoBnYF3gJtcbbHkVPPfDfQBYoHdgNsbJkXEuwKhZuXj/NMCGAccAuYAP+K023oA7Y0xz1pr37zAtiSHqEAvnuoDhALvAU/inHikl0g2AMVwktrY1G8YY8JwLvb8hpPA0voFmJT2YpIxph7OxaF3ARXoRfKWnMo/qeetDzwLDAQ+ynbkIhJINlprX049wRhTDPgbpyBezVq7PdXbB9LO71qmGfAN8BSQiHOzT1pL3S2bxu/A69bav9Os/ymchtm7wHUZrENEAkNuyz9rgBJpLjyfu7i0CnjNGDPcWns6g/WIiIhI8MupazbfALdba3ekWsYAHwMPAS8CD3ghRnBzrmWMyQcsAZri3BgwN9XbnwJDgY3ANUDUBdYtIt4TCDUrX+af/cAdwI/W2qRU878GLAdeNcaMs9buvcD2JAeoi3vxVF/gBPA8sBm4zRgTkc68FvgKuMYYUy3Ne9cDZXB/lxLW2nh3T3q4nhD7B6hojMmfnR0QkYDVlxzIP+e4TsrGAitwGlkikkdZa4/jNGrAuWs5M8sswbk7Og4YaIyplM1tj01bnHd5H+fJjJbZWa+IBAY/55/EtMV51/T9OE+NROA8mSEieZQxproxZowxZo9xhuHZY4wZZowpnWa+c8NrvOxmHW7fc02bZ5zhNsa5upKNdU27wrd7JiLZ0JecuWb8aerivGuaBd5w/Xqh9lFWYnQfuLUJwDzXr6XSvLfCWrve3fmTiPhUX3J/zSorMboPPJ38Y61dY639LnVx3jV9CzAB58HtZlnZlviGCvSSbcaY5jhd80y01sbh3LFYDLjpAouNdf3sm2Z6P+AwMC2LMVR3xbDVWhuflWVFJHD5Kf88C9QD+ltrU7IWsYgEE2NMUZxuo8/gdEGdKdbarTh3T+cDuns5LIvT7VpSRjOKSODKjfnHOOO7XgWcAqK9uW4RCRyu3jpW4jyxtQT40PX7fcBSY0wJL2ymGLAYpy04DueJtlbAHGNMOS+sX0S8IDdcMwYSXD/dto+yGaO79YTj5CELrM5ijCLiZbkh/2RUs/Jz/kl0/dS1o1xAXdyLJ/q5fn7t+vkN8Ipr+rfuFrDWbjfGLADuMsa8ZK21xpgyOF2xfm6tTXB6IXLP1T3ILUA4UBlnvEML3O+F/RGRwJGj+ccYcxlOd7CvWWv/8eJ+iEjuVyfVE1whOHdP3wAUBgZYa09kcX3zcboya+zmvabuniQDhqc3bmIq3YEiwMQsxiMiuVeuzD/GmIuAAThdMl4EdMW5oHS36wKTiASHOunkBYA6qX9xdbH6PZAMNEzdZjLG3IzztNarON1Ne6IBTrfVj517Ys0Y8xLwMk5bUOOpiuQOOX7N2I2+rp+zvBUjUC5VXjRASaAjUAl4xlq7OSsBiohPBELNyi/5xxhTCOcmgDhgYUbzi++pQC/ZYowpiJN0dgELAKy1O4wxfwBtjTGVrbW70ll8DM5dSW2BOTjjeIS7pmekHvBSqt9jgDuttbOzsx8iEnhyOv+k6tp+I/C2d/ZCRAJIbf577nHOOFw5KIv2u36665r6KtcrrclAugV6V7HsE5xG1ovZiElEcqfcmn8uShPXaaCftfabbMQkIrlXejnInS44F6SfSntDs7X2R2PMX8BteF6gPwM8m6Y72bE4BXp3Nx+JSA7z4zXj1DFcipMXDuGMAe+tGMviPi/+AkzPSowi4n2BULPyc/75FCgPvGKtPZLJZcSH1MW9ZFdPnCc3xqdpGH2N873qe4FlJ+JcxDk3Tz9gtbV2dUYbtdZOtNYanPENL8XpXuQ3Y8zjWYxfRAJXTuefQThPavS31iZeYD4RCU5TrLXGdf4RglOYGoCTi/5wde2cFRd67OOjc9tK81qd7sqMKYLTICsH3KdePkSCSq7MP67xVA1Od/k1gc+AccaYD7IYj4jkblPSyQuG84fKOHeDz6XGmJfTvoACQEljjLsbhLJii7X2TJppe10/i3m4bhHxDr9cMz7HGFMB53pxPqCXtTbGizGuSZMLywC34uTAxcaYWpmNU0R8IhBqVn7JP8aY53F6U5sFDMlonyRnqEAv2XWuG460T0lMwBnjp69Jp98PV2NqAnCTMaYtTtIam5WNW2vjrbXrrbX9gV+BoToJEskzciz/uPLKC8D71toVHsYtIgHOOvZba0cC7+J0JfZgFldT3vXzkKfxuO68/hW4AnjUWvuVp+sUkdwpt+UfV0yJ1tqt1tpBOEX6x4wx7byxbhEJOOfGl++D83RX2lc91/sFPdzOeUN7WGvPjaEa6uG6RcQ7/HbN2BhTFufJ1wrAbdbajLq3z3KMaeI9ZK2dgPNgRzHXTxHxn0CoWeV4/jHGPAa8htOt/Y2pzp3Ez1SglywzxlQHWrp+XW+MsedewFGcOxQvBlpfYDVjgEic7hkTgfEehDQLpyHW3IN1iEgA8EP+qeda51Opt+XaHkAD1+87s71TIhKo/nT9vCKLy7Vy/fToph9jTCROg685MNBa+4kn6xORgOLX/JOOcxfAW15wLhEJViddPzuk99S96xXtmi/F9dNdUb2I78MVEV/w5zVj13jRc4EaOE/O/+zDGNPK7rmZiHhJINSs/JF/jDEPAR8AS4DrrLWxWdkJ8S2NQS/Z0Rene8QoYLub90sB3XDuBopytwJr7SJjzBacLhF/ttYe9iCei1w/deePSPDrS87mn53AqHTe649z8vQz4EkOE5HAVNz1M9M3vBpjauCMNZaAM65ztriK89NwGnbPWmvfy+66RCQg+S3/XIDaZCJ523LXz6bAeeOtunHc9bOCm/cu90ZAIuIXffHDNWNjTGmcJ+frAHe5nir1WYxuZPncTES8ri+5v2blcYxupJt/jDEPAJ/gFPE7W2tPZ3KdkkNUoJcsMcaE4HRZloxzN+J+N/PkA/YBPYwxD1lrT6adx+UWoCqwNhPbbQb8Za1NSDO9PnAfzoWmuVnYFREJMP7IP65xhu5JJ57+wG5rrdv3RSR4uXLNfa5fF2ZymaY4d19HAK9ba3dnc9sRwFSgDfCStfbN7KxHRAKTn/NPI2Bj2vGfjTGVgMGuX2dkZ90iEvAmA7uBQcaYmdba5anfNMYUAOpba5e5Jm0CzgA3GGOKWWuPu+arBjySY1GLiNf48ZpxSZwbgy4B7rbWpvvEq5djTL3Oh1y/ZurcTES8KxBqVjmdf4wxA4BPgZVAx4zWJf6hAr1kVXuc8Q6nu0siANbaBGPMeJxG1a3AyHTmWw2szuR23wTqGmMWAtE4dwTVBjrh3HX0sLV2b+Z3Q0QCkL/yj4jkbXWMMS+7/m2AsjjnH1WBv4HP08xfLtX84UBpoAnQEKc716HACx7EMxxoB+wCQlJtK7UPz13oFpGAltvyz8PAjcaYeThtskSgGnAdkB94J21RTkTyBmttvDHmZuA3YKkxZiawAee6Y1WcITaWAJ1Tzf85MBBYaYyZgjOOfXecLmFvyvGdEBFP+euazSSgPk4xraq79pG19tw0T2Msl2b9pXDy26XAXuD11OsyxrTg34c+yrl+djTGjHX9e5G19ssM91BEMhIINascyz/GmLY4144AFgOPuRnWfp61dl4m91N8RAV6yap+rp9jM5hvDE4iuZt0kl0WfYqTlBoB1+J8d/cD3wOfWGuXemEbIpK7+Sv/iEjeVht4KdXvZ4FtwGs4xai0XYSVTTV/PE4XrptwGm5jrbWbPYynqutn5TRxpTaWf7uOFZHAldvyzzc44yhehXOjUH7gEE5B7gtr7e8erl9EApi1dpkxpiHwNM51mzZALLAHZyzXcWkWGYzzZFkf4AFgs+vnHlSgFwlE/rpmU9X1s77r5c7Lrp+expj6XAuc861o4CPgDWttTJr11MDJcanVdb3OUYFexHOBULPKyfxTGecGAXBusk7PvAxiER8z1lp/xyAiIiIiIiIiIiIiIiIiIhL0QvwdgIiIiIiIiIiIiIiIiIiISF6gAr2IiIiIiIiIiIiIiIiIiEgOUIFeREREREREREREREREREQkB6hALyIiIiIiIiIiIiIiIiIikgNUoBcREREREREREREREREREckBKtCLiIiIiIiIiIiIiIiIiIjkABXoRUREREREREREREREREREcoAK9D5gjLnYGBNvjHkwzfS+xhhrjGntn8j+P46xxhibZlqIMWaDMWaSv+ISEc8p/4hIoFC+EhF/Uf4REV9TnhGR3EZ5SUT8RflHxD0V6H3jTSAG+NLfgWSWtTYFeA24yRjTzFfbMcZ0McYsMsacNsacMMbMyM72jDEVXInzgDEmzhiz3hjzuDHG7XfaGBNhjHnVGLPN9Z/BbmPMx8aYYhfYRh9jzF/GmFhjzBFjzCRjTJ1MxjfM9Z+LTbsNY0whY8ydxpiJxpitrviPGmNmGWO6pLO+a40xE4wxm12f2xnXfxAfGmMucjN/Q2PMEGPMMmPMIdc2Nhtj3jPGlExnG/YCr4Fu5p93gfmnZeZzEp9Q/kmH8k/28k9W9+HcSW0GrzvTLBNmjLnXlbMOG2NOGmP+Nsa85GYfqmZi/dsy81mJ3ylfpcMf+Sqr5xquZUoYYz4wxuxw5YaDxphvjDFVMxlfuvkqO/vgmt+n+UqChvJPOgIl/7iWy/T5kjEm1BjzmDFmjTHmrDHmuHHOf1qlM/8jxpjfjDHRrvUfdW3rcWNMZCb2/2LXZ2iNMR+6eb+2MeZLY8xq45z7xBljtrs+h0YZrV8CgvJMOvyRZ1zzZ6ddFmGMGeTKHWdcuWOlMealCyxzmzEmyhhzzJU/NrviLJzO/E2MMT+69iPeGLPHGDPZGNMgzXw7M3HeUinV/FnKM+bfIsmFXqPS228JCMpL6cjpvGQc1xpjhhtj1hljTrlyzApjzKPGmLALbCNLeckY08y1Pydc+7fQGHO9p/uQav5LjDE/GKctGO/KsW8aYwqmM79HbUgJWMo/6QiE/GNyoNaUarkMz4s8yaGp1hFunHMka4xZndH8vpJhoJI1xphLgFuAQdbaeH/Hk0U/AO8ALwGdvb1yY0xfYAxwEBiF8/27DVhgjLnWWjs7k+upACwHyv0fe/cdHUXVh3H8exNqBAUEu4AdK+qLXYGgKGoE7AVFEERUVFCUjhTp0lRQUKmKBVFKFEQhgKIgIIqgAhbAhop0Qkty3z/uJmw2m2QD2Z1k9/mckxOZmd39bbJ5nJnbgCnAL8A1wBDgPKB5wPHxQDJwNbAQmAycCTwG1DXGXGGt3RHwmB64n8OvwEigoq/W+r7jv8ujvrpAa2AXEOxk5EpgAvAvMMdXz/HArcA1xpjO1tp+AY+5Aajle99/AhlATeBx4D5jzOXW2tV+x78CXAwsBiYBaUAd4EngVmPMpdbajUFqWw+MC7L9i9zeL9AzyLY1eRwvYaL8yZ3yJ0uB8+cg3sNUYF2Q144HOgPW99r+JgONgR+BN4F0XGb1AO40xlxkrd3lO3YrwXMHoK7vcbNz2S9FhPIqd17lFQU81zDGVAYWAacAn/leozpwN3Cd7/i1edRXl7zzKhKZO5WC55UUc8qf3BWX/PG9Rg9CPF8yxhjgPdy5xlrgVVzu3ALMNcbcYa0NHBnTwlfHXN/P4zDcOcYQoIkx5kpr7Z5c3r/B/fzycq6vni+Az4GdwEnATbjrtXuste/k8xxSRClnclfMrssqA58A5+POdUYAJYHTcPnRM+D4ON97a4q7J/IGkAqcCFwPHAEEvkYr4GVgMzAD2AgcDVyBy4lv/Q4fBlQI8uOoDtwP/Git/c1ve0Fz5pvA9+SnGVANXWcVW8ql3HmUS6WBj4A9QArwIXA4kIT7W29gjLnR10Do/xoFzaVrgJm4LHrL9/0OINkY09xaO+4Q3gPGmMuBT4FSHLi2ugToCCQaYxKttbsD6j/oa0gpnpQ/uStG+RORtqYCnBcdVIYG6AKcmsf+yLDW6qsQv4AXcA0LJwTZ1wx3o6+uxzWOc7/6oPsG4m5EVC/k1zwS2IYLm+P8tp8KbMeFRskQn+sN38+xhd+2zIstC1wdcHxL3/YJgPHb3sG3vXfA8TVwIfM9UN5v++W+7Z/lUdthwM/A+8A83/NXCDimJu7Eo0TA9tOALcB+4PiAfWVyeb3mvteYGLC9DXBSwDYDvOg7fmSQ57LAvAL8Tufl9jnSlzdfyp9cX1P5c+CYg8mfAr2HPOq7wXf8hwHbL/ZtXwDEB+x727fv/hBf4yvf8Rd5+TnXV0i/K+VV8Of1Mq8Keq4xwrd9YMD2hr7tn+RRW755dZDvIax5pa/o+FL+5PqaxSl/CnS+BNzOgXONMn7bq+HOfzYBh4dY0/jA9xbkmEd8dTzpO3ZYkGNK++eU3/azgN3Ab15+BvV1aF/KmVxfs9hcl/n2Jft+j3cE2VciyLb2mX/zQFzAvrgg2y7xZcXnwBGhvEYevy8LPB2wvVByBtcBag/wH1Day8+tvg7+S7mU62t6kku4RvVOgX/7QAIH7msEy56Qc8n3Gr/6/t7P9dteGfjN974rHex78O1b5dt+Y8D2Ib7tXQK2H/Q1pL6K75fyJ9fXLDb5Q2TamkI+LzrYDPU77jxgH65DuAW+8eyz59ULH8QHtq7vh9UDNwJwAa7351/AAHw39XE9VVf4/ufzM/BAwPOcDgzC9QzdgjvJXAV0DfzA+57LAu8EqaeLb9/zAR/6zcAXubyHXAMH18PjOdzowcwT36lAzSDHrvN9VcL1XvkTF3J1A35OtXE9/rcDv/o9fhy5B84lvsd3K+TfX2uC/I/Zt2+ob991ITzP4cBeYE2QfTV9z/NWwPZFuBA9IWB7SVwA/kH2C7T+vudpEuQ1PvDtq5FLfS/5PlfHkscN5zze3yjfY24L8fjDfcd/GeLxx/qOXxlkX0FDc15un6No+0L543/sOpQ/MZU/BX0PeTz/e77nvzVg+12+7V2DPOY+3772ITz/2b5jvyvMz09x+0J55X/sOpRXIedVPs+V41wD+N338zwsyGOW+R5zSi7PmW9eHcx7IMx5pa98f27+f1fKH+VPOPOnQOdLHLhhdX2Q4weTT4N7wPGZN5D75bK/Gm6EbH+/3/WwAv4uvvY9Tg1hOX82/n8/yhnlTDivyy73Pc/YEN9bgu+z9BMBnY7zeMxs3+/s5EP4mZbwff73A0cX4HEh5wzuprwFXizMz0O0fKFc8j92Hcqlwjj/udt3/EsB2wuaSw18x78aZN8Tvn0PHex7wDUiWmBxLj+PDNzoWf9sPehrSH0F/R37/10pf5Q/YcufPI4vzLamQz4vCuU94M6dvsaN4o/D4wb64rgG/SW4X9Y/wGjcVLfPAH2NMU/ieqouw00JcQTwusm+rtwtuJ74a3zHvIr7xffGTXGVxVo7ATeNxR2+6SYAtw4C7g/6W1zwZKqJ61m6qCBvyG96ly648BiBm8LhauALE3zNidK4MKmNm7ZiFC5YMl2Bm2ImFTctxMwQy1mO+4OuV5D3EILM38EnQfZ9HHBMXi7DTZuTY3oPa+23uAurrOcxxpQFLsJN9fV7wPH7cVNgHIcbPVqQWmsH7vB9zh4BnrLW/hXCewlmv+97WojHZ64ZtDLE4/fl8/wVjDEtjTGdjVsPOt9pPoxbX62Tces0XhpiHcWV8sdR/gSI1vw5yPeQg+9zdhNuhNr0gN3f+77X90096e96fCd0IdTfwvd9TAjHxgLllaO8ChAsr/KR27nG0cAme2D5CX/rfN/rBu4oQF5FInNzyCevJDTKH0f5E6AQ86eg50tH+76vC3J85ra6h1iT/9T2f+E+fwVmjDkFOAP4yRa/KUAjSTnjKGcCFOI5wu2+71OMMVV890k6+u5/HB6kpvq46eenAiWNMbf77pM8aIypGniwMaYiburZ5dbaX4wxicaYZ4xbNzXH+vB5uAE3ne1H1tq/Q3nAQeTMA77vus7Km3LJUS4FOIjzn9zuDRc0lwr63gr6HnI9v7LWbsc19FYFTg54TIGvISVfyh9H+ROgEPMnN4XS1lSI50WQ/3vojJtNqIXNewr8iCiOa9A3AJKstR8CGGO64XqoPobrjXOBtXa9b99YYCnwFDDf9/iJwBBrbeaHJ/NCejTQ0ri15D73e73WuB5qLxhjFuA+0G/ifsFNAk5mM4Ph6wK+pxdxa1/dY619y6+u53DhORq3xoK/Y3zv7daA91LX95/X+OqbVJBCrLX7jDErgUuMMXGZH1JjTAWgbQGeaqu1dpjfvzMvdH4Kcmzm2jKhrPmQ1/NkPteVxpjDfP+zPwXXEyav4zNfO3Pd9NOAHdbaf0Kt1RiTgPsf2Bxr7UFdtBhjyuH+h7gHtw5PsGNuwE0HXRY3WrQBrudbbuuEBWrm+x4s+MH9T/NVv39bY8wE4GHrt2ZQgLf8/2GMWQzcZa1dF2JNxYnyx1H+BBeN+XMw7yGYe3EnixN9N8GyWGtXGGNewX3eVxhjPsFdCNTGTWHbxlq7NJ/6S/peYx/u70yUV5mUV8EF5lWWApxrbAKOCvYcuHUEwfXE93/uguRVJDI3mFzzSkKm/HGUP8EVRv4U9Hxpk+97NeCHgOOr+76fThDGmEeAo3ANb5fjGvk+wi3DE+gh3I27utbaPe5jmzdjzFm4NTlL4m5iN8J1Tnw43wfHNuWMo5wJrjDOETJvBp+B+137N379Z4y501o7x29b5vEZuFGK/o39+40xXay1g/y2XYCbGvZ3Y0wyBzr/AGCMeRdoGkIDembj+eu5HXAoOWOMqemrdbm1dnl+x8c45ZKjXAou1/OfIO73fQ+8d1vQXMqrpp9xOeD/3gr6HvzPr7LxdRio6Pvn6b7Xg4O4hpSQKH8c5U9whZE/uWmWz/GhtjUV1nkR5PEejDHn4jp99LbWBl4XesN6NHS/oF8cmIpiTpB9r5HLNBO4D+b6EJ7/Qt9z9MjltdNx0x6M8R3XJshx/Xz76ufyGs0ImLIDt+5LOpCcy2Oe9z3mHL9t63zbzs7j57Qkj/c6jlym7PDt/8j3HFX8tlX3bQv1a13Ac67xbQ+2TlcV376PQ/g9dfYd2zKX/R/69h/r+3fm9D9v5HL80779d/tt2wf8nsvxF/mOHxWw/QVgF35rcVDAKaYzfy/BPoN+x7wU8HNeSojTfgDn4KZb/Ac4Ksj+QbgbYhVxN6ASgS99rzMhyPFtcScAx+Cmc6vJgTUZV5PLuo3F8Qvlj/LHxmb+HMx7yOW4bwM/S0GO6YA7mff/Xb5JCGs84ToXWOC9UN5vNH+hvFJe2YLnVcC+kM41gLG+/f0Ctif5Pfag86qg74EI5pW+cv3ZZf5dKX+UP+HOnwKdL+Fu0lhc3pT2234i7qalBVbn8nwrA2p6g+DTslbFjdAZ6bct83c9LI+f120Bz/83cG1h/E1G4xfKGeWMjcw5Am46XYu7PnkN1wB1JK5Rew9uzVj/9WJf8Tv+S9yN5vLAdbi1ni2u8STz+Lv8jv8TdyO6PG5N1AW+fYPy+TkchRsltjHYz9TvuIPOGdy5W9DPur5y/L0pl5RLIedSHs/T3HfcvCD7CppLs33Hn5rLa+3C7/ynoO8B15j2i29bg4BjB/n9zP2zdSwFvIbUV56fl8y/K+WP8ies+ZPL8YXW1kQhnBfl9x5wg9WX4e75lPTbbvFwivviOIL+2yDbNuaz75LMfxhj4nDT4DbD9co/HPc/lEzHBj6BtXaeMWYQrvHgMmCWtfalIK91pO/7lrzfQjYX4XryljPG9Aiy/0zf9xpkn0Zvt7V2VR7Pm+dow3xk1l8Z+BfAutHQ+Q8ByN2hPDbY89gwHZ8p5OONMVfh1uR60lr7awFfJ/M5uuJuHH2CW1sleFHWtgHaGGOOwDWI9wWWGWMaW2vn5/Y4Y8zxQDJuRNgtNshoE2vt0wGbUowxV+P+ru4zxvSy1v7kd/ywgOO/Be43xpQA7gGakEcv7mJK+eMof8JzfKailD8H+x78n78W7oRqibU22HSwcbier3fgRp7NwN1oqoe7Ub/IGHORtfa3PF5G0y7mpLxylFcFVIBzje64ZSg6GmMuB77C3SS6BfgO15s9PauggudVpDL3wBPkk1cSMuWPo/wpoAJe6xTk+d/EnSvUwc3WMwvXwfhW3FqoFfHLq4CazgEwxhyNu7k3CFhsjLnWWvun36Gv4aYT7VCAurDWvuee3pTGjZB5EphpjGlvrR1akOeKMcoZRzkTnuOBrCVBvwUetL47uMDLxpgTgU64z1DvgOP3AjdbazM/jx8bY1rgpqpth7sv4398PNDa+kY94jLqFlyj1yPGmK4299FiTXE3mydYa3OdivZgc8YYUwp3b2cvLkclb8olR7l0sE9gTD1cZ5/fcfdUAxU0l8KaldZaa4xpA0wDko0x7+PWnL8EuBTXoaAG2c+xCnQNKSFT/jjKn4N9gvzzJ/D4wm5rOuTzohDeQ0fcNealtgjNllgcG+i3B9mWls8+//f5Im7dy/XA+7hA2ofrxfEEbq2KYKZy4GJ7RC7HZE7LUDaX/cFU8n2vQ95rQRwW8O9/83neYNP9hSqz/tRDeI5A23zfD8eNUvB3eMAxoTzPEbnsz3yuzM9CqMf7v/b2UI/3NUaPwZ1QvJDLY/JkjGmLO3n6DGic14VVJmvtNmCBMeZ63Gj18caYk22QdTN8N5PmAMcDd1hrQ52iBGttqjHmLaAbrtd5blOl+HsddxF3BdHXQK/8cZQ/wUVj/hzMewiUX+P5A7gLgcettf6ZMcUYsw+3BvQzuKm5cjDGHIubzeNPDqzRJMqrTMqr4ALzKof8zjWstb8ZYy4GeuFGh12K76IJ19P5eXw//4PMq0hkbiB19ikcyh9H+RPcIecPBThf8j1fmjGmAW50yV24kWb/4q5VpuHOg/L8fVm3tvM7xpifcDf3BgD3ARi3/mZ94EZr7Y68nieP598LrAJaGGOOAgYZYz601ua1JEcsU844ypngCuMcIfO/k/0awTIl4xrC/hfk+KV+jfOZPsE1cgc7Pp2ANXCttZuMMYtwuXIm8E0udTf3fQ/pvOUgcqYxrmHlHWttQRpWYpVyyVEuBZfn+Y8x5krcvY/NQD1r7R95vEZBcylHTcYtE1iW4LkX8nuw1n7kmz68K3AtrrHua9xU4u1xDaj/+h0f8jWkFIjyx1H+BFcY+eN/fDjamg7pvCi/92CMOd33mkNsPsuoRlpxbKA/aL4Pz8O4XhqXWb91Dowxl+ACJ9jjEnDTXOzBrSc13BgzP8jFd2YIVCJ0mX8Yfay1XQvwuPx6xBx0jxkOrBGTFWqFsKbGWtxJwqm4m7P+8lsnw19+62+cBvxlD6yn8TPud5bX8YGvvRa41BhzVJDeP4HHl/M996lAugm+zuAW3/aTbMC67L6ehkNx03vcYK0tUMhba3f4AupmXI/DbCPSfBddc3313WOt/aAgz++TuaZQQpiOjwnKn5Apf4pW/hzMe/B/jTLA3bgT8reCHYPrPQ1u2tlAmdsuyOWx4Eb/xwPjrLXqaV0IlFchi6a8ylVe5xrW2g0cWHMsizEm80bxMt/3g8mrSGSuf82h5JWEmfInZLGePwU5X8p8rt24mzLd/LcbY5r6/nMZIbDWLjPGbAFq+20+3/f9w1zy7QljzBPAeGttsxBe5hPcVK9XcGA9bCkkypmQRVPOHMw5whqgFsFvjGdu829sWBOwL4tvlOkOsq8XnXl8ai6juIK9RhZjzKXAWcAX1tofgx2Tj1ByJt/17aVwKJdCFk25lMUYcxlu+uxduIaltYHH+BQ0l/xrClz/+xTcqNvA+1EFfg/W2oUcuK+TxRgzDvf7Xh5wfKjXkBIByp+QxXr+ZB4frramgz4vCvE9nIXrQPS0MSZwZD9ATWOMxS39UD3/t1B4YqqBHjgJ9z+fT/3DxueKPB43FDgDF0h7gFG4nkXNAo77zvf9NEK3BBcOlxbgMeF2OvBLQGNNBeDZAjzHemCY37/n40Yr1Cdn4Fzn+74ghOddhOvBdU3gDmNMTeBo4J3Mbdba3caYJcDFxpgTrLW/+x1fErf2xV8cCLLMWi/11Ro4jVdgrXvJ/WLlRtz67BN9NWf7H5Qx5hHc52gJbq2enbk8T36O833PNvLVGFMF15upBtDUWvvuQT7/xb7v68J0fKxQ/oRG+VOE8ucg34O/W3C/vzd8o+GCyeyJWznIviq+77lN6wgH/hbG5nGMFIzyKjRRk1chCHquEYwxphzQEDcFXGZP6oPJq0hkrr9Q8krCT/kTmljPn4KcL+XnHt/3kGoyxhyGG53iP5r0S1xHpEDHAjfgRqwuAhaGWFPImSsHRTkTmqjJmYM8R0jB5cOZ5JS5bX3A8f77/GuqjLvW8X/+n3BTsJ5gjDk+yGi1YK/h71Bn/ckzZ4wxJ+B+Txtw95UkvJRLoYmaXPLbdwkwC3e9dI219oc8XqOguTQfN6VzfSDwnnCw91Zo53C+TkQn4aY93xrC8cGuISUylD+hifX8CXdb00GdFxXgPawj93tSLXAj7z/gQOeByLEeLHx/MF+49d4s0CPIvh6+fXWD7Jvn3qYFdwJqcRfGxu+Y03G9XyxuBJ7/4xv6tn+c+RjcNHgWuD3g2CNxPYbezeU9NAtWJ+5/khZ4OMhj4oA6AdvWAesK+nPyO2Zc5s8kyL7Mn9GYQv79HYnr6fI3cJzf9lNxvaJ+AUoGPOYU3B984PY3fTW28NsWj1u32OL+GP2Pf9C3fULA772Db/tzAcfXwF2kfA+U99t+uW/75yG+53m+568QZF8r32dlWbD9QY6vncv2pr7XWBXk5/2t7zWahfD85/m/V7/tt/ie4y+grN/2E4ETgxx/Bm4anAzgwsL8DHn5ldffFcqfkH5OfseMQ/kDxSt/CvQeAh77qe+YxDyO6ew7ZjZQKuDzN963r3suj73St39+YX5mivNXXn+HKK9C+jn5HTOO2Mqrgp5rlATKBGwrBUzyHd82xPc8j9zzKqyZG/DYfPNKX/n+LnP9u0L5E9LPye+YcSh/IPf8KfD5EnB4kG1tfM8/NWD7scBpQY4vAYz2PWZEAf4mhgXZdxl+5z1+28/DrWW/Fzi+MH/H0fCV198PypmQfk5+x4wjtnKmoNdlR+Bu0qYCZ/ptL4db5sIC1wY8JvNcopnfNoNbD9UCfQOO7+rbPjagprt927/I5eeY4Ps57gTK5fHzPuic8autZ2F+BqLxK6+/N5RLIf2c/I4ZR2zlUi3f3+Jm4PwQai1QLuGu1371HX+O3/bKuM4324AjD/E9lPP/zPq2HY1bFzwNuChgX6FcQ+or62eX698Vyp+Qfk5+x4xD+ZNfrWFra/LtK9B5UUHfQx61WuCbwvzdFuQrpkbQW2v/NMZ8gJsib4kxJgX3B9YQFyi3+h9vjDkG17PiP9wHz/p2tcD1/hlljPnS+nrfWmv/M8YsBOoaY0rYENYS93kY94c10hjTEtdjZidQFXdCfRRQ5mDfdwFl9rSZVphP6vvZtMX17v3aGPMOLiTuxk1N0crmnL5iDm4qw5PI3qPmGVywjjbGXIcLq2twU4KMt9Z+GvA8Y4A7cWsEnmyM+QzX66YR7oRhQECtPxpjnsP1gPrWGPM+rkfU3biTmocP6ofgY4yph7tAA/c/v7ZBpkKcZ62d5/fv+caYH3BTEv2OmxrtIlwQbcd9Jv1NwQXhCqC6MaZH4AtYa/23PQA8YIyZi+uJlIGbUroObqrX+232XnT/A94zxszH9QLfhusJl4Q72epurQ2cPimmKX9CovwpmvlToPfg91rVgHq4n9G8YMf4jMBNU18f+N4Y8zGw3/fYc3EZk9ua1VovOgyUVyGJxrwq6LnG0cAq39/sr7j1327w1TGO0Neaz0tYMzdTAfJKwkz5E5KYz5+DPF9abIxZD/yAu2F8FXAJbtrVBwKOPQOYa4z5AvgRd3PyKN97qIrrGPBskNcoiH7Amb6cWo+70XgGbrSMAR6z+az/KAdHOROSaMyZgl6XbTPGtMaNOFtsjJmCm+XnRuBkXGPF7IDXeBg3o8YYY0xj3Giwy3G/v+9wf/f+BuPuoTTD5cHnvvfZGJd9rQnuNlxOjrN5z8R4UDlj3AViMw7cJJcwUy6FJKpyyRhTCTdI4QjcusmNfbnhb521dpxfrQXKJWvtfmNMK9zUzwuNW/c5FbgDt3Z0c2vtfwGvWdBsbQw857ufvBH3uW2MW0++lbV2ScDxkbiGlAJQ/oQk5vOH8Lc1QQHOiw7yPRRNXvUMKOgXhdAjyPfv8ripJNbjpt9YBTyO+2Vn9QjCnazO8m27JcjzNsB9sOYCcX7b7/M95oYgj2mWR52H4UYRLsetl7AT1yjxVuDrE94eQR8DfwIlwvR7TMI1Cu3C/WHNxq1vEuzYdb73Uj3IvhNwIyv/wfX6/QF4EojP5bnKAr1x4bQXd+PnRfIYPer7fX2NC43NwPv49VAM4b3OI8iIML/PQV5fPQIe0wk3xc8fvvp3+T67Qwk+kn1dfq8R5PP8vu/ns9P3Gr8CrwFnBHn+03AXaitx0w/tx/X2mg7UD8dnx8uvvP6uUP6E9HPyO2Zc4OfPb5/yJ/vvq0jkzyG8h2d9z9cthHorAgNxN8H3+L5WA88DFXN5zGG4i9HtQEI4PjPF8Suvv0OUVyH9nPyOGUcM5RUFP9cojxuF9ovvM7LN9zm6q4DvdR5B8upg3oPv+LDmlb7y/F3m+neF8iekn5PfMeNQ/uSaPwG/r5DOl3yfwe9w5w6puJtLnQgYxeU79hjceclXuMb5/bjRGYtwN79COu/w+10PC7LvNmAyLqt2+d73Otzol0vD8buNhq+8/n5QzoT0c/I7ZhwxlDO+4w/mHKEOLp+2+T4r3wCPEjBi1O/46rhle/7GTTf7KzCIILN4+P3O+/pq2ud7L5OA0/OoKcX3M7kqn5/zQeWM7z1bYE44fv/R9pXX3xvKpZB+Tn7HjCNGcsmXFTafr3m5vH5Bc+ly3/vZ7nt/C4GkPH4WBTmHqwkk40bD7sNl33sEjJwP+Jwf8jWkvrJ+nrn+XaH8Cenn5HfMOJQ/ueYPYW5rCvid53tedDDvIY/XtHg4gj5zCgopJMaYMrigWGKtvSVgXzNco2aizT46MaKMMeNwvVRMwPZqwM+4sHrOi9pE5OApf0SkuFBeiYhXlD8iEm7KGREpapRLIuIV5Y9I7uK8LiDaWGv3AN1x0yqc63U9BdQZN0JgqNeFiEjBKX9EpLhQXomIV5Q/IhJuyhkRKWqUSyLiFeWPSO5iag36CBqPmxbvWNw0ekWeMSYON1VFU2vtLo/LEZGDp/wRkeJCeSUiXlH+iEi4KWdEpKhRLomIV5Q/IkGogT4MrLUZQD+v6yiI4liziORUHP+Wi2PNInLoiuPffnGsWURyKo5/y8WxZpFYVhz/ZotjzSISuuL4N14caxaRnIrj33JxrFmKHzXQR9Y3QE9czxsvTS0CNYhIZH2D8kdEiodvUF6JiDe+QfkjIuH1DcoZESlavkG5JCLe+Ablj8QwY631uoY8Va5c2VavXt3rMkTkECxbtmyTtbaK13UUlPJHpPhT/oiIV5Q/IuIV5Y+IeEX5IyJeUf6IiFcONn+K/Aj66tWrs3TpUq/LEJFDYIxZ73UNB0P5I1L8KX9ExCvKHxHxivJHRLyi/BERryh/RMQrB5s/cYVdiIiIiIiIiIiIiIiIiIiIiOSkBnoREREREREREREREREREZEIUAO9iIiIiIiIiIiIiIiIiIhIBKiBXkREREREREREREREREREJALUQC8iBZeSAtWru+8iIpGk/BERryh/RMQryh8REREREZGoogZ6ESmYlBRISoL169133SQSkUhR/oiIV5Q/IuIV5Y+IiIiIiEjUUQO9iIQu8+ZQaqr7d2qqbhKJSGQof0TEK8ofEfGK8kdEPGbnprD/+OrKHRGJOGthzRqvqxCRWBSp/FEDvYiEJvDmUCbdJBKRcFP+iIhXlD8i4hXlj4h4LSWF9BuSKPnnetKvV+6ISGRNnQo1asD8+V5XIiKxJlL5owZ6EQlN8+Y5bw5lSk11+0VEwkH5IyJeUf6IiFeUPyLipZQUbFISJfa6HIrfq85BIhI5aWnQqZNrILviCq+rEZFYEsn8UQO9iIRm7FhISAi+LyHB7RcRCQflj4h4RfkjIl5R/oiIV3wzeBjN4CEiHhkzBlavhn79oEQJr6sRkVgSyfxRA72IhCYxkbS3J2MDtyckQHIyJCZ6UZWIxALlj4h4JTER3n4753blj4iEm/JHRLyiGTxExEO7dkGPHm7kasOGXlcjIrEkM3/anJ1Cwyeqh71TohroRSRky177BgOklyztNujmkIhEiPJHRDzz2Wfue5ky7rvyR0Qi5fPP3Xflj4hE0tix7CupGTxExBvDhsFff8Erd6ZgTqquWTtEJGKGDYMz/kph2E9JmPXrwz5zkBroRSQkO9dt4swZA/jsyEbEzZoJ1arp5pCIRITyR0Q8s24dDB8OzZrBRx8pf0Qkctavd/nTtKnyR0QiatO5iTSJf0czmIlIxG3aBAMGQJfLUzinY5I7H9LSGiISAZs2wRd9UpgZn0T8Xt9MQmFe3kcreIhISFbe3YeL7E4Of6kfpt6Z7oa1iEgEKH9ExDOdO0N8PPTuDSecoPwRkcjp0gWMgeeegxNPVP6ISMT06QPn71mEATeDx549apwXkYjo0wcu2plCr6+TYE9AA5kySETC6J3WKby7O4kyBCzzE8YM0gh6EcnXpiW/cuGiEaRUf4Cad53pdTkiEkOUPyLima++grfegqeeco3zIiKRsnQpvPkmPPmka5wXEYmQX3+FD176g/bxQ+CuuzSDh4hEzK+/wsoXU/goPom4Pbk0kGkkvYiEwa+/QtKU5hwW2DifKTUVmjcv9NdVA72I5OuX+7qTRglOGt/D61JEJMYof0TEE9a6hvmjjoJnnvG6GhGJJdZC+/ZQpQp06ADA7t3w8suwb5/HtYlI1OvWDbrbHpSKS3NDWRMT3QweapwXkTDr1g1eS29O6bTINpCJiHTrBq1KjiWjbELwAxISYOzYQn9dNdCLSJ5+m/ENtVa/yYIL2nJK7eO9LkdEYojyR0Q8M3UqfP459OoF5ct7XY2IxJLkZJg/H3r0gMMPB2DoUHjkEVi82NvSRCS6LV8OX7/5Pc0yxmAeeQROPtnrkkQkRixf7iYPmn33WNcQFkyYGshEJLZl5s+FTyUS92EylAhYGT6My/yogV5E8rS5VUe2UJHzJ2n0mIhElvJHRDyxb58bNX/WWdCiRdZma+H77z2sS0Si3/798PTTcMYZ8OCDAGzcCP36QaNGcNVVHtcnIlGtUycYXLIjplw56NrV63JEJIZ06gSVKsHtIxNdQ1gEG8hEJLZl5k+HDrhZFNPTD2RQmLNHDfQikqvVI+dQc+PHLKnfhWNqVPC6HBGJIcofEfHMqFHw008waFC2G0PvvQfnnAPz5nlXmohEuddeg9WrYcAAKFkScG1ke/e6SBIRCZc5cyD14wVcv38GplNHqFzZ65JEJEbMmQMffwxdukCFCkS8gUxEYleO/OnQwc1iNnkyVKsW9uxRA72IBGXTM6BjBzbEVePyNx/1uhwRiSHKHxHxzNat0LMnXH01XH991uY9e9yg1nPP1QhWEQmT7dvdtPa1a0PDhgB8+y2MGQNt2sBpp3lbnohEr4wM6PCMZVipZ7DHHQ9PPOF1SSISIzIyXHtY1apuOR/AzWYWwQYyEYlNOfInJQU+/NANqW/cGNatC3v2lMj/EBGJRSu6TabmjmXMvncC11Yp7XU5IhJDlD8i4pl+/WDzZnj+eTAma/OQIbB+PcydC/HxHtYnItFr4ED45x93E9oYrIUnn4SKFaFbN6+LE5FoNnkyVP96CheyGHq/nvv6zyIihWzyZFi2DMaPhzJlcBdcH33kzosaN3ZfIiJhkC1/SmW4URknngiPPx6xGtRALyI5ZOzZR6XBnfmh1HnUHX2P1+WISAxR/oiIZ9atg+HDoWlTOP/8rM1//QV9+8LNN2vghoiEye+/w+DBcPfdcNFFAMyY4e5Rv/CCa6QXEQmHffuge6f9zC7VCXva2Zj77/e6JBGJEfv2QefOcN550KQJbjhr+/Zu1Pxjj3ldnohEsRz58847B1rry5aNWB0hTXFvjDnRGPOeMWabMWa7MeZ9Y0zVUF/EGHOmMWayMWaTMWa3MWa1MUbzJYkUUcseGs2J+37h73YDKFXW22Fiyh+R2FKU8kdEYkyXLm7U/HPPZdvcubO7eNP6zyISNl27upvSffsCLnPat4caNaB168iWousvkdgyejRc8+toqu37CTNggKdTBSl/RGLL6NHwyy/Qv78vet58E5Yvd+dDZcpEtBblj0hsyZY/aXvdjZ+aNeHeeyNaR74j6I0xCcBcYC9wP2CB54AUY8x51tpd+Ty+lu/x84CWwDbgNKDcIVUuImGxd9MOTnqjF0vKJVK7z3We1qL8EYktRSl/RCTGLFkCkya5RvoTTsjavGwZjBvnZjo75RTvyhORKPbNNzBhgmuRr14dgJdfhrVr3Wz3JUtGrhRdf4nElh07YEiP7Swr2RN7RV3MDTd4VovyRyS27NgBvXpB3brQoAGwe7e7Fvvf/+CuuyJai/JHJLbkyJ+hI9yMirNnQ1xIY9oLTShT3D8InAycYa39CcAYswJYCzwEDMntgcaYOGA8MMdae7PfrpSDrlhEwmp5k+e5NONffuk/gLh4k/8Dwkv5IxJDilj+iEissNY1jB11FHTokG3zE0+4zV27elifiESvzPypWNGN2gA2b4aePeGaa8CDtjJdf4nEkOefh2b/PU9F/nXrPRtPr8GUPyIx5Pnn4V//6HnhBfjtN9dpMcINZCh/RGJKtvzZusXNonjttVC/fsRrCSXtGgKLMsMJwFr7K7AQaJTPY+sCZ5FHiIlI0bF9zUbOmT2YeUffwcWPXuR1OaD8EYkZRTB/RCRWTJ8OCxa4FrHy5bM2T54MCxe6a7XDD/ewPhGJXrNmwZw50L07VKgAuCjatg2GDPGkrUzXXyIxYuNGeGPQXzwTPxjuvBMu8vwaTPkjEiM2boTBg+H2233R8++/blr7m25yQ1ojT/kjEiNy5E/fvrB1q2ut90AoDfRnAyuDbF+FC5+8XOn7XsYYs8gYs98Y848x5gVjTNmCFCoi4ff93b0pzV6qvPJc/gdHhvJHJEZk5s9Ro4pM/ohILNi/H555xi303LJl1ubdu9209jVrwgMPeFifiESvtLQD62c8/DAAq1fDyJEujs4915OqdP0lEiN694YOe3pQOm4/9OnjdTmg/BGJGb17w549ftHTuzfs2gUDBnhVkvJHJEZky59169zsHU2bups/Hgilgb4SsCXI9s1AxXwee5zv+zvAbKA+MBC3FsekEGsUkQj4+/O1/O/r0cw7rRVnNz7N63IyKX9EYoB//pzVqMjkj4jEgtGjYc0aGDQIShxY/WvIENiwAYYNg/h478oTkSg2bhysWuVuRpcqBbj2+rJl3ZqIHtH1l0gMWLsWFoz6gZa8hmnd2nUU8p7yRyQGrF3rLsFatYLTTsNdi738suudeOaZXpWl/BGJATnyp2tXt6RG796e1RTKGvQANsi2UCZby+wA8Ia1trvvv+cZY+KB/saYs6y13+d4YmNaAa0AqlatGmKJInIofmvahcMozelvdM//4MhS/ohEuSKcPyISzbZtgx49IDERbrwxa/Off0K/fnDLLV7NsCgiUW/nTujWDS6/3IUNbqb7GTNc/hx9tKfV6fpLJMp16QJ96QSHHeayqOhQ/ohEuS5doHRpt7oPAJ06QZky7rrMW8ofkSiXLX++/hrefBM6doQTT/SsplBG0G/B9SIKVJHgPYv8/ef7/knA9tm+7+cHe5C1drS1tpa1tlaVKlVCKFFEDsW6d7+i1q+T+fyS9lS72Nu7QQGUPyJRrgjnj4hEu379YNMmeP75bAs9d+7sZr4fNMjD2kQkuj3/vFsA0Zc/6enw5JNQrRq0betpZbr+EolyX30Ff07+nJvSpxHXsQMUnb875Y9IlPvqK5g8GZ56Co45Bli4EN5/3y05dswxXpam/BGJctny52jrpi478kjXQO+hUBroV+HW4Qh0FpCj90+Qx0LOHkiZd8AyQnh9EQkna9n5yDP8Y46i1ltPeV1NIOWPSDQr2vkjItFs/Xo3f/1998GFF2ZtXroUxo+Hdu3g5JO9K88Yc6Ix5j1jzDZjzHZjzPvGmJCHVhhjzjTGTDbGbDLG7DbGrDbGPBHOmkUkRH/95XoA3X47XHYZAGPHwooVbrb7MmU8rU7XXyJRzFro8IxlWImnyTj2OHfCU3Qof0SimLXQwdcnqH1734b27eHYY10vRW8pf0SiWI78mTUL5s51Q+mPOMLT2kJpoJ8OXGqMybpFZYypDlzh25eXmcBeoEHA9ut835eGVqaIhMv3Q2Zxzn/zWXZjdyqfVN7rcgIpf0SiWGb+fF0080dEolmXLm7UfJ8+WZusdSNXjz7ajaL3ijEmAZgL1ADuB+4DTgNSjDGHhfD4WsBioDRu7cMbgMFAfLhqFpEC6N7dTdPRrx8AO3a45Q8vvxzuuMPj2nT9JRLVZs2CivM/oFbaIuJ69YSEBK9L8qf8EYlis2bBvHnuNKh8eeC992DRInjuObfchreUPyJRLFv+JKS7WTtOOQVat/a6tJAa6F8F1gHTjDGNjDENgWnAb8CozIOMMdWMMWnGmKwFZK21/wH9gNbGmL7GmGuMMR2B7sB4a+1PhfheRKSAbFo6pbt34Nf4U6g94UGvywlG+SMSpfzz56qimT8awSoSrZYudWuNPflktrXG3n3XzbLYpw8cfriH9cGDwMlAY2vtVGvtNKAhUA14KK8HGmPigPHAHGttQ9/jU3xTKA4Je+UikreVK2HMGHj0UXdTCOjfH/7+G4YOzbbahld0/SUSpdLTocsz+xlcsiMZZ54FzZp5XVIg5Y9IlEpPd6NXTz4ZWrUC9u1z00qfey7cf7/X5YHyRyRq5cif8ePdNVm/flCqlNflUSK/A6y1u4wx9YChwETc9BxzgLbW2p1+hxrcqIzARv9ewA7gEaA98BcwCOh9yNWLyCFZ3v5NLkz9jk9bvs1JFb0PpEDKH5HoVdTzx28E617cCFYLPIcbwXqetXZXPo+v5Xv8PNwI1m24EbDlwli2iOQncyrFKlXcVZrP7t2uE/X55xeJ+9UNgUX+N3Ostb8aYxYCjYC8Gtrr4qZi9L4ruIjk9MwzrgdQ166AW21j8GBo0gQuvtjj2tD1l0g0mzQJLln5GiexFgZMhxL53hKOKOWPSPSaNAm++w7eesvXHjZsJPzyixvWGu/9JF/KH5HolS1/9u+Cbt3gkkvgttu8Lg0IoYEewFq7Abg1n2PWcWBtDf/tFncTSSM2RIqQtJ17OGZkN74rXYs6L93udTm5Uv6IRB///Kk7osjmT+YI1jMyG8mMMSuAtbgRrLnmSsAI1pv9dqWEr1wRCcmMGTB/PowcmW2Y/ODBsGEDTJhQJO4RnY0bsRFoFZBfaF7p+17GGLMI+B+wBXgb6GCt3V1oVYpIwXzyCcyc6dafP/JIwA0eMwb69vW4Nj+6/hKJPnv2QL/OO/isRA/s5bUxSUlelxSU8kck+uzZ4/ol/u9/vqV8tmyB3r2hfn247rp8Hx8pyh+R6JMjf/oNgz//hHfeKRJTl0FoU9yLSBRa9sAIjtu/ga2dBlCytKJARCLHP39KlCqy+RN0BCuQOYI1L3VxI1h1cSZSlOzf70av1qgBLVtmbf7jDze72a23Qp06HtZ3QCVco3qgzUDFfB57nO/7O8BsoD4wEDeTx6TCKlBECig93c3eUb06tGkDwJdfwttvu81VQ15AR0Sk4EaOhDt+H8yRaf9gBg4sMjelRST6jRzpOkIPGABxcbheiVu2uA6LIiJhlC1/Nv3j/qNxY7jyynwfGylFaz4jEYmI1D+3csZ7ffjyiAZc2b2e1+WISAwpRvmjEawi0ebVV2H1apg+HUqWzNrcuTOkpcHAgR7WlpMNsi2Uu+mZvZ7esNZmro04zxgTD/Q3xpxlrf0+xxMb0wpoBVBVLYUihW/iRFixws2tWKYM1kK7dnDMMdlW2xARKXRbt8KrvTfydfzzcMvtblpXEZEI2LoV+vSBa6+Fq68G1q2DF15w687XrOlxdSISzXLkT5tekJoK/ft7XVo2RXbYmoiEz7dNBnC43UqpIf3VcVpEIqoY5Y9GsIpEk23b4NlnoW5d8JvW9auv3LT2Tz4JJ5/sXXkBtuAyKFBFgueSv/983z8J2D7b9/38YA+y1o621tay1taqUqVKqHWKSChSU93cihdfDHfeCbiR84sXu5tG5cp5XJ+IRLUBA+DxrT0pY/YWrfU0RCTqDRgAmzf7tYd16eLWE+utpdlFJLyy5c+aNTBqFLRqBWec4XVp2WgEvUiM2fLd75w/bxjzj29C4gPqrSgikVMM80cjWEWixYABsGkTPP981rSu1kLbtnD00W4UfRGyCjeLR6CzgBzZEeSxkDO/MrMr4xDqEpGDMXSoW0vjrbfAGHbvdqPmzz/fDSATEQmXP/6AD4esZrl5FdP6YTj1VK9LEpEY8ccfMGwYNGkCF1wALF0Kkya5C68TTvC6PBGJYjny59ZOUKaMG7RRxGgEvUiMWXNPD+LI4LjX1VtRRCKrmOWPRrCKRIsNG1wD2b33wv/+l7X5nXfcGtB9+0L58h7Wl9N04FJjTNaYfmNMdeAK3768zAT2Ag0Ctl/n+760kGoUkVD8/bcbttG4MVx1FeDi6Lff3Pf4eG/LE5Ho1qMH9NrfCZNQFrp187ocEYkhPXpAerpvsLy10L49VKmitX1EJOyy5c/ChfD++/DMM250RhGjBnqRGPLnp99Ta+VY5p39KGdcV93rckQkhhTD/NEIVpFo0bWruynUp0/WptRUd312wQVFcgTrq8A6YJoxppExpiEwDfgNGJV5kDGmmjEmzRiTOVMH1tr/gH5Aa2NMX2PMNcaYjkB3YLy19qdIvhGRmNezJ+zZ42bxADZuhH79XHt93bqeViYiUe6HH+CH17+gsf2AuI4d4KijvC5JRGLEDz/AmDHwyCNw0klAcjLMn+9azQ4/3OvyRCSKZcuf6haefhqOPdata1gEqYFeJIZsbN6JnZTjnDeL1jyuIhL9imH+aASrSDT4+muYOBHatQO/pSMGD3YjWIcNK3ojWK21u4B6wBpgIvAm8CtQz1q70+9QA8ST85quF/AMcAfwEfAwMAh4MLyVi0g2P/wAo0fDQw/B6acDrr/Q3r0wcKDHtYlI1OvU0fK8eZr0o49150EiIhHSqRMcdphbcp60NNcz+vTT4UFdjohIeGXLn/ffd9Mm9urlNhZBWoNeJEb8NO5zLvx9OjOv6sv1NSt7XY6IxJCs/KldrPLnVaANbgRrV9xo+N4EGcEK/Az0stb2AjeC1RjTD+hmjNkOzAVqoRGsIpFlLTz1FFSuDB07Zm3+4w834/Rtt0Ht2h7Wlwdr7Qbg1nyOWceBmTn8t1tgiO9LRLzSoQMkJGStdfjtt240R9u2cNpp3pYmItFt4UJg+jQu5QvoPbrI3pQWkeizcCFMmwbPPedmtOeV1+DHH2HqVChZ0uvyRCSKZcufCvvdfaCzzoJmzbwuLVdqoBeJBdayr90z/GWO5dK3nvC6GhGJJf75M6n45I+1dpcxph4wFDeC1QBzgLYFGMG6A3gEaA/8hRvB2jvMpYtIpg8/hHnz4KWX4IgjsjZ36uTWI9MIVhEJm3nzYMYMN599lSpY62ZVrFhRy0CLSHhZC52fSeP1+I5knFKDuObNvS5JRGKEta5/4jHHuA6J7NjhOipedRU0bOh1eSISxXLkz+jR8NNPbomNEkW3GbzoViYihea756Zx7tYv+fjW0Vx3fILX5YhIDCnO+aMRrCLFWFqaW2vs9NOhVauszYsXuxnvO3XyrYcoIlLYMjKgfXs48UR4wnVOnDED5s6FF15wjfQiIuEyfTrU+OJ1TmU1DJpWpG9Ki0h0mT7djWB95RXfxB3dBsI//7gTIZPjtomISKHJlj/p26FnT6hbF264wevS8qSzNJEoZ/enUa5vJ9aWqEHtseo5LSKR458/dcYpf0Qkgl59NcdUita6ntTHHOMa6EVEwuKtt2DZMpgwAcqWZd8+115fowa0bu11cSISzdLSoHeHncyMfxZ76ZWYm27yuiQRiRFpae4a6/TToUUL3LpigwfDXXfBxRd7XZ6IRLEc+dNjIPz7LwwaVOQ7B6mBXiTKLWszllp7fmTuYx9wWnn9yYtI5GTLn3LKHxGJkO3b3VSKdepkm0rxrbdg0SK3BnT58h7WJyLRa88e6NwZLrgAmjQB4OWXYe1aN7uill4VkXAaPx5uWD2EKvwNz08t8jelRSR6jB8PP/wAU6b4Ju7o1s2tK9a3r9eliUiUy5Y/f/8BQ4bA3XdDrVpel5Yv3S0XiWL7t6Vy4uvPsrzs5dQZ0sjrckQkhmTlT4LyR0QibMAA11v6+eezbkynprr1yC68EO6/3+P6RCR6vfACbNgAY8dCXBybN7vZFa+5psjPrigixVxqKrzQ5W++jBuIvflWzKWXel2SiMSI1FTo3h0uuQRuvhlYsQLGjYN27bSumIiEVY78adnddQ7q08fr0kKiBnqRKLas6XAuTf+Ln559l/gS6jktIpGTmT8/K39EJJJ++831lm7SJFtv6UGD4PffYdIkiIvzsD4RiV6bNrkbQTfeCPXqAa5xfts2F0sayCoi4fTCC9Dq716Uid+L0YhVEYmgF16AP/90M5YZAzzzDFSoAF26eF2aiES5bPmz8jvXUboYdQ5SA71IlNq5bhNnzejP50c25IpnrvS6HBGJIdny52nlj4hEUNeubrF5v97Sv//uBtXffjtcdZWHtYlIdOvVC3buhIEDAVi9GkaOhJYt4dxzPa5NRKLaf//B5D5r+MqMIu6hh9wirCIiEfDff9C/PyQlQe3awOzZ8PHHbv35SpW8Lk9EoliO/LmhAxxxRLHqHKTxIyJR6ru7+3KY3Un5F/tptIaIRFRm/hz+kvJHRCLo669h4kRo2xaqVcva3KkTZGRktZmJiBS+NWvcYvMPPghnnQXA009D2bKu3V5EJJz69oVOOzu70One3etyRCSG9O0L27dDv364aaWfftqNXH30Ua9LE5Eoly1/5syBmTNd43wx6hykBnqRKPTvknVcuGgEKdWbU/Pus7wuR0RiiH/+nHeX8kdEIsRaaN/eXYh16pS1edEieOMNeOopqF7du/JEJMp16gSlS0OPHoC7PzRjBnTuDEcf7W1pIhLd1q+Hr15YxG1MIb7D0wodEYmY9evhpZfg/vvhnHOACRPc+vP9+rnzIhGRMMmWP2dluM5B1apBmzZel1YgaqAXiUK/3tuNDOI4aVwPr0sRkRij/BERT3z0EaSkuMaxI44AXJt927ZwzDHZ2uxFRArX55/D++9Dhw5wzDGkp8OTT7pOQW3bel2ciES77t0s/dOfJr3KMS58REQipHt3t+Z8r15Aaqpbbuzii+GOO7wuTUSiXLb8mTQJli93Sx2WKeN1aQWiNehFosyG6d9Qa82bzD7/GRrUOcHrckQkhmTmzyfnP8N1yh8RiYSUFGjWzP33aafBQw9l7Zo0CRYvhrFjoVw5b8oTkSiXOXvHccdlNYyNHesGj73zTrG7PyQixcyKFbB14gyu4HPo/YpOeEQkYlascKuLtW8PJ54I9BkKf/4Jb7+N1joUkXDKlj9V9rhp7S+8EO6+2+vSCkwN9CJRZvNDHSlHBc5/q6PXpYhIjMnMn5rKHxGJhJQUSEpyozXAdZ0uWRKAXbvcYNb//Q+aNvWwRhGJXikpboTYpk3w+utw2GHs2OEGj11+Odx+u9cFiki06/xMGoPjOpB+8hnEt2jhdTkiEkM6dnQTl3XsCPz9N/TvD40bw1VXeV2aiES5bPnz4ouwYYPrJR1X/CaML34Vi0hwKSnsr3Q052/8mMXXdOGYGhW8rkhEYoVf/nyl/BGRSAhsnAd3UyglBYBBg+CPP2DYsGJ5jSYiRV1mBm3a5EaJVa0KuCVX//4bhg7V4DERCa+UFDj247GckfEj8YP6QwmNwRKRyEhJgZkz3TJilSoBPXvC7t3uekxEJIyy5Y/9z01rf/31UK+e16UdFN2uEokGKSnYpCRKbvmHDAy1Hz7H64pEJFYE5M9Vyh8RCbdgjfPg/p2UxD/vpDBwoBvYeuWV3pQoIlEsMIOshUaN2PhWCkOGQJMmbvlVEZFwsXNTOLNBVQaYDqRfdgU0auR1SSISI6x1M5WdcAI89hjw448wejS0bg1nnOF1eSISxXLkT58+sGMHDBzodWkHTQ30IsWd7waR8d0gisNy2H23ZI0gExEJG+WPiHihefOcjfOZUlMxDzQnI6NYX6OJSFGVRwehivclUScjhb59vSlNRGJESgrp1ydxzL7fqGS3EH/3nZqyQ0Qi5r33YMkSt7pY2bK41rKEBHj2Wa9LE5Eoly1/Nv4KL70EzZrBOcV3sJga6EWKs3xGkKmRTETCRvkjIl4ZO9bdBAoivUwCd6SOpX17qFYtwnWJSPTLo4NQ6fRU3k5onjnbvYhI4UtJwd6YRIl9fjnUsaOuvUQkInbvdtNKn302NG0KzJ8P06e7HKpSxevyRCSK5cifzp3d8j69enld2iFRA71IcZbPCDKaN49sPSISO5Q/IuKVxES4994cm21CAo9VT2b1sYl07OhBXSIS/caOhVKlgu5KJYEyk8ZGuCARiRmZs5ftVgdpEfHGs8/Czz/D8OEQbzKgfXs313Tbtl6XJiJRLlv+fL0E3n4bnnwSjj/e69IOiRroRYqzsWPJKFUm+L6EBHcDSUQkHJQ/IuKV77+HcePgqqsOjKRPSODTJ5J5+cdE+vWDcuU8rVBEotXpp0PJkhCX/VbKLhKY/3QyZW9I9KgwEYl66iAtIh5asgQGD4YWLeDqq4F33oGlS+G553Kd3UxEpDBky596Fp5+2s3a8cwzXpd2yNRAL1KMpV9yORs5mgwC1htLSIDkZDfCTEQkDJQ/IuKJtDS3xlj58jB5ssubatXYPTmZ5hMSqVUL7rvP6yJFJCpZCw8+CBkZMH581s3oVJNA21OSubafzn1EJHz2jx7LbpNLI5g6SItIGO3b5xrGjjkGhjVKcWuJtWsHNWsGndlMRKSw5Mifo492y2s8+ywcfrjX5R0yNdCLFGNLbu7DcfvW883tfbKNIFPjmIiEm/JHRDzx/POu+/TIke7CLDER1q2j/+JE/vgDhg3LMbBVRKRwjBsHM2dC//7uZnRyMlsrVONGm0yT1xKJj/e6QBGJZn2/TOQde1vOHboGE5Ew69cPvvsO3n04hXJ3JcGGDfD33+58SCdAIhJGOfLn33/BGDezWRTQ7SuRYur3D7/lf7P7Mfe4e7ngnU5ZI8h0YSYi4ab8ERFPrFrleknfdhvccUfW5g0bYOBAuOsuuOIKD+sTkej1++9ufdWrroI2bQDYeGYiJ6ato0LjROrW9bQ6EYlyK1fCjOe+5V4zCerXVwdpEYmYlSuhTx/olZjCFf2Ssi+18eyzkJLiXXEiEtVyzR9roXHjqMgfNdCLFEN2fxq77m7BFlOJM2YOwxiyRpDpwkxEwkn5IyKeyJza/vDDYcSIbLs6dnTfBwyIfFkiEgMyp7bfvx/GjMmapqNrV9i713UQEhEJl7Q0eLDZfsbY5sRVPhLeflsdpEUkItLS4IEH4IayKXRdFNA4D+7fSUlR0UgmIkVLrORPCa8LEJGCW3LXYC7esYxPHnyX+ucd6XU5IhJDlD8i4omBA2HpUnj3XTjqqKzNX3wBb70F3bpB1aoe1ici0WvsWJg1C4YPh1NPBWDOHHj9dXjqKTjtNI/rE5GoNmwYJC4bxHksh1HvQ6VKBzpIi4iE0bBhbnWxnZWbY7anBj8oNRWaN1cmiUihipX80Qh6kWJm4/zVnPf+syyofDNXvxxk/TERkTBR/oiIJ1auhB493LT2t9+etTktDZ54Ao47Dp55xrvyRCSK/fYbtGsHtWtnTW2/bZsbzXH66dCrl8f1iUhUW7sW3uzyPT3jemLvuANuvtnrkkQkRqxd6zpBN2wICe+MPbC0RqCEBNeZUUSkkOTIn9Klgx8YBfmjEfQixYhNz+C/W1pSmrJUnT6CuHjjdUkiEiOUPyLiif373dT2FSrASy9l29W/vxtU//bbUK6cJ9WJSDSzFlq1cr2B/Ka2b9fOLUm/cGHu96pFRA5VRga0apHO6PQHiKtwOCbgPEhEJFwyMqBlS9cm9vLLYI5LhFtvhYkTsx+YkKClNkSkUOXIn7Lnw2GHwb597vosU5Tkj0bQixQjy1qM5OzNn7P4zqFUv+xYr8sRkRii/BERTwwcCMuWuSuzKlWyNi9bBj17wl13wZ13elifiESvzKnt+/eHU04BYMYMt7ljR7j0Uo/rE5GoNmoUXPjZMC5KX0z8iBeznQeJiITTqFGwYAEMHuxmK+Prr2HSJKhf/0DvxChpHBORoiVH/rRr56Ywe/nlqMwfNdCLFBOblq6jxviOfHnEddR/436vyxGRGKL8ERFPrFjhWuHvvNON2PDZvRvuu88tRT9ihIf1iUj0ypzavk4dePRRADZtggcfhPPOg+7dPa5PRKLahg0wuv0a+sZ1xTZqpN6IIhIxGza45cOuucYt6cO+fW5Gs6OOgnfecY1i1apFTeOYiBQdOfLnww9h/Hjo1Akeeigq80dT3IsUB9byR1IrTsZw5ORRxJfQ1NIiEiF++VP5PeWPiERI5tT2FSvmmNq+Sxf44Qf4+GOoVMmb8kQkilnrWuL9pra3Fh55BDZvhtmzc18GUUTkUFkLrVtl8NKeFpQoVwbz8stgdA0mIuFnrWsDy8iA0aN90dO7N3z3HUyf7q7NEhNh3TqvSxWRKJMjf7ZtdcuNnXMOdO3qDorC/FEDvUgx8PXj47jw70+YeeNLXF+/mtfliEgMycqfpJe4/hrlj4hESP/+sHw5vP8+VK6ctTklBYYOdQNar73Ww/pEJHqNGeN6AL34Ipx8MgBvvw2TJ0Pfvm4EvYhIuEycCKd8PIIr+BxeGAfHankxEYmMiRPd6j7Dh8NJJ+HWFevXz01fdtNNXpcnIlEsR/488CT8/TdMmxbVvaPVQC9SxG39/k9OGdGOZYddxTVTHva6HBGJIdny5z3lj4hEyLffupEad98NN9+ctXnbNrj/fjj9dLc0vYhIofvtN3jySahb1w2ZB/7803UKuvRSePppb8sTkei2cSMMeexXvozriL32ekzTpl6XJCIxYuNGaNsWLr8c2rQB9u49MLX98OEeVyci0SxH/sycCWPHuqnta9XyurywUgO9SFFmLb9c/whn2r2UnvAaJUvHeV2RiMQKv/wp88bryh8RiYzMqe0rVXKjV/08/rhrKFu4EBISvClPRKJY5tT26enw+utZU9u3bAl79rjlD0voDoqIhFGbRy1Dd7SkVEI8ZvQoTW0vIhHTpg2kpmadArkO0ytXwowZbmp7EZEwyZY/O7a5qe3POguefdbr0sJOl5ciRdi3Xd7lwg3TmFl3ANffcrrX5YhIDMnMn48SB3JD49O8LkdEYkXfvvDNNzB1Khx5ZNbm99+HCROgWze45BLPqhORaPb6625q+5deypra/rXX3ACOF15ws3eIiITLlClQ6f1XSWQuDB0NJ57odUkiEiOmTHFffftCjRq4qe3794emTSEpyevyRCSK5cifB9u7kRlTpkT11PaZ1EAvUkTtXLeJ4wc8xndlapE440mvyxGRGOKfP/Wmt/O6HBGJFd98A889B02aQKNGWZs3bnQdqP/3P9dALyJS6DZsODC1/cNuWZ9ff3Wb6tVzU9yLiITL5s3Qp/VvLIhrT0bdq4lr2dLrkkQkRmze7M5zLrgA2rfnwNT2Rx8Nw4Z5XJ2IRLMc+TN7tush3aEDXHyx1+VFhBroRYqoH657gpoZW/lt1BzKlNOfqohEjvJHRCJu3z53I6hyZTdU1Sdzeuldu2DiRChZ0rsSRSRKZQZNRgaMGQNxcWRkuEgyxi1/GKeVfkQkjNq1tfT9rxVly2QQ99qrmtpeRCKmXTv47z+YNct3rdXVN7V9crKmtheRsMqWP7u3u2uyGjWgRw+vS4sY3XUXKYJWDUjmojWTmHnxs1zf9FyvyxGRGKL8ERFP9O0L334L06a59ed9XnsNPvzQDd4480zvyhORKPbaa/DJJzBiBJx0EgDDh8OCBa69vmpVj+sTkag2cyYwcQINmAUDX8zKIRGRcJs50y0j1qULnH8+sHSpm9r+/vvhxhu9Lk9EoliO/HnoafjjD1i4EMqU8bq8iFEDvUgRs3vjNo7s2pofS57DVTM7e12OiMQQ5Y+IeGL5cujTB+67Dxo2zNr8yy+uR/XVV8Njj3lYn4hErw0b4KmnIDERWrcG4IcfoFMnuOkmN4peRCRctm+H7i3/5NO4tmRcdhVxjzzidUkiEiO2b4eHHnKdoLt1Q1Pbi0jE5MifTz+F0aPdPPeXXup1eRGlBnqRImbFdU9TK+0v1r/4ATUqlfK6HBGJIZn5s+GlDyin/BGRSMic2r5KFTdk1Sc9HZo2hRIlNL20iISJ/9T2r78OcXHs3++yp1w5d49Is0yLSDh17GDp+ufDlC+1h7ixr+uER0QipmNH+P13N1i1dGmgSy9YtcpNX1ahgtfliUgUy5Y/+3a4a7LTT4devbwuLeLUQC9ShKx+eS6XrHiVWee2p0Gbi7wuR0RiSLb8eVT5IyIR8txzsGIFzJiRbY3D5593F2sTJ8KJJ3pYn4hEr8yp7UeOzJpSun9/N7vr5MlwzDEe1yciUW3+fNjyyts0Yjr0fR5OO83rkkQkRsyfDy+/DG3bwmWX4U5+BgxwHadvuMHj6kQkmuXIn0c6uFnNPv8cypb1uryIC6lrpjHmRGPMe8aYbcaY7caY940xBV6JzRjTyRhjjTGfF7xUkei2b8suDnuiJb/Gn8qls3p6XU6RofwRCT/lj4h44uuv3drzTZtCUlLW5m+/ddOc3XorNGniYX0iEr38p7Z/6CHARVKvXnDPPXDbbR7X5yFdf4mEX2oqPNPsH0bEPUb6RZe4u9Si/BGJgNRUN1j15JNdX+lsU9sPHep1eZ5R/oiEX478mTvXtda3aweXX+51eZ7IdwS9MSYBmAvsBe4HLPAckGKMOc9auyuUFzLGnAx0Af45+HJFotfXN3Tl0v2/8nnf+Zx0XILX5RQJyh+RyFD+iEjE7d0L99+fY43DvXvdUvSVKsErr2h6aREJgyBT2+/Z4/oKVakCL77odYHe0fWXSGQ8+yw8ta4NFUruIG7cGIiP97okzyl/RCLj2Wfhp59gzhw47DCgc8+Yn9pe+SMSGdnyx+6EFi3cDEK9e3tdmmdCmeL+QeBk4Axr7U8AxpgVwFrgIWBIiK/1MvAmcEaIrysSM35+40suXjScT059mPqdantdTlGi/BEJM+WPiHiid29YudLdCPKb2r5bN/juO0hOhsqVPaxPRKLXq6/mmNq+e3d3b/qjj1wHoRim6y+RMFuyBNYNnsIgJkPPvnDWWV6XVFQof0TCbMkSGDIEHnwQ6tXzbdDU9qD8EQm7HPnTpiOsXw8LFkBC7A4WC2WK+4bAosxwArDW/gosBBqF8iLGmHuAC4FOB1OkSDRL37WHuAdb8GfcCVzwcX+vyylqlD8iYaT8ERFPLF3qFnoOuBG0YIFbe75VK7jxRu/KE5Eotn69m9q+Xr2sqe0XLjyQPddf73F93tP1l0gY7dsH7Zr+x0jzCOk1L4T27b0uqShR/oiE0b598MADcOyxMGgQbuqy5s3dhhie2t5H+SMSRjnyZ948GDECHn8crrzS6/I8FUoD/dnAyiDbVwH5dvM0xlQEhgLPWGs3F6w8kei3pFFvTtrzAz89PZrKJx/udTlFjfJHJIyUPyIScZlrHB5zTLYbQdu3uxnvTz4ZBg/2rjwRiWKZU9tD1tT2O3e67Kle3TXSi66/RMKpb1946Me2HGk2Ez9hLJQs6XVJRYnyRySM+vZ1E5i98goccQTQ0ze1/auvxuzU9n6UPyJhlC1/SuxyU9ufcgr06eN1aZ4LpYG+ErAlyPbNQMUg2wMNAtYA40IvSyQ2bJi2nFpzBjD3hKbU6dfA63KKIuWPSJhk5s+cE+9X/ohI5ORyI+jJJ2HDBpgwAcqV8668osIYc6Ix5j1jzDZjzHZjzPvGmKoH8TydjDHWGPN5OOoUKVZGj4ZPP3XDNqpXB+CZZ+CXX2DcOChf3tPqigpdf4mEyXffwfLeydzHG8R17QLnned1SUWN8kckTL77zrWD3XMPJCVxYGr75s01fZCj/BEJkxz507mzuwAbMwYOO8zr8jwX6loYNsg2k9+DjDFXAU2BC621wZ4jt8e1AloBVK1a4PtQIsVCxt797G3yAP+ZytSYORST719UzFL+iBQy//w5a+YQ5Y+IREbmjaAHHsh2I2j6dDeYtVMnuPxyD+srIowxCcBcYC9wP+5c6DkgxRhznrV2V4jPczLQBfgnXLWKFBvr1rmppK++Omtq+9mz4eWXXQeh2rW9La+I0fWXSCFLS4PHm25lEg+Rdta5lOjc2euSiirlj0ghS0tzl18VK8Lw4cCePW5Gs2OPdQtCSyblj0ghy5E/CxbACy/AY4/pAswnlBH0W3C9iAJVJHjPIn+jgNeB340xFYwxFXCdAuJ9/y4d7EHW2tHW2lrW2lpVqlQJoUSR4mfJHYM4bdc3rGw9guPOCfYnJih/RMIiM3++az2SY89W/uRGI1hFClHmjaDjjst2I+jff+HBB6FmTejRw7PqipoHgZOBxtbaqdbaabh1EasBDxXgeV4G3gR+KPwSRYqRwKntjWHrVnez6MwzNbNiAF1/iYTB0KHQ5Jv2HM3flJgwFkqV8rqkokj5IxIGQ4fC0qXw4otQuTJuRrPvv9fU9tkpf0TCIFv+JKS6C7CTT4Z+/bwurcgIZQT9Ktw6HIHOAr7P57Fn+r5aB9m3BWgHDAuhBpGo8uecHzh/ek8WHHUr9Ubc6nU5RZnyR6SQHcif27h6xC1el1NkaQSrSCHLvBE0a5Zv0UPXZtaqFWzdCnPm6F61n4bAImvtT5kbrLW/GmMWAo2AfIe6GGPuAS4E7gbeD1ehIsXC6NEuZF55BapVA+Dxx2HjRpg6FcqU8ba8IkbXXyKFbM0amN9lNsm8jn26I/zvf16XVFQpf0QK2Zo10L07NGoEd9wBfPUVDByYY0YzUf6IFLYc+fNkF/j5Z0hJ0dT2fkJpoJ8OPG+MOdla+wuAMaY6cAXQMZ/HJgbZNgyIBx4DfgqyXySq2bR0tt7WgjIcRvUZL2lq6bwpf0QKUWb+lKYc1ZQ/+ckcwXpGZiOZMWYFsBY3gjXUueAyR7CeQehLC4lEl8WL3Y2gli3huuuyNo8f7xrHBg2Cc87xrrwi6GxgWpDtq4Db83uwMaYiMBR4xlq72SjsJZZlTm1/zTWuRxDwwQcwcaK7YVSrlrflFUG6/hIpRBkZ8FizHbyW9iD7T61ByR7Pel1SUab8ESlEGRnu8qt0aRg5Esze4DOaCaD8ESlUOfLni4VujvtHHoG6db0ur0gJ5Ubxq0AbYJoxpituBFlv4DfcFB4AGGOqAT8Dvay1vQCstfMCn8wYsxUoEWyfSCxY0uwlLt76JbObjOfai4/xupyiTvkjUoiy8ufeCVx78dFel1PUaQSrSGHInNr++ONh8OCszevWuRGstWtDu3aeVVdUVSL4VIqbcdMs5mcQsAYYV4g1iRQ/mVPbGwOvvQbG8M8/bgn6Cy+Erl29LrBI0vWXSCF65RVo9GUHTjC/YSYs1JQdeVP+iBSiV16Bzz5zq/scdxzQsQf88AN89FHWjGaSRfkjUoiy5U/F3VC3uZvJbMAAr0srcvJdg943hWs93E2eibhRYL8C9ay1O/0ONbieQaGsay8Sk/5d/Atnv9mZLys04Jrx93ldTpGn/BEpPAfy53quGXev1+UUB2cDK4NsX4Wb5ixPgSNYC7k2keLj2Wfhxx9d49jhhwOuN3WzZm73+PEQH+9deUWYDbIt36HwxpirgKbAw9baYM+R2+NaGWOWGmOW/vvvvwUoU6QIGzXKTW3//PNQrRrWQuvWsH07TJgAJUt6XWDRo+svkcKzfj3MeGoej/AytG0Hl13mdUlFmvJHpPCsXw8dOkD9+tC8OW5Gs0GDNLV9LpQ/IoUnR/506wZr17rW+nLlvC6vyAlpqlVr7QYgz4WyrbXrCOGmkbW2biivKRJ1rOWvm1pxEnFUmTKKuHhNNxoK5Y9IIfDlT3XiqfK+8idEER/BaoxpBbQCqFq1aqgPEym6Fi1yDWOtWsG112ZtHjoU5s+HMWOgenXvyivCtuAyKFBFgueSv1HA68DvxpgKvm0lgHjfv3dba/cGPshaOxoYDVCrVq2QG/ZFiqx16+Dpp92doQcfBOCNN9z09oMGwdnBVhkVQNdfIoXBWni8xS5G7G3B/uqnUvK53l6XVCwof0QOnbVutiBrYfRo39T2zZtravt8KH9EDl2O/PnyC5c7rVtDvXpel1ckaS1UkQhZ+sjr1Pp3DrMajqRBPTW8iEjkZOVPo5dpkHii1+UUJ4c6gvXCgoxgVQOZRJXdu92NoBNOcK1hPitXQufO0KjRgVH0ksMq3Cwegc4Cvs/nsWf6vloH2bcFaIdbE1EkemVkQIsW2aa2/+03eOwxuPJKLashIuE3YQLUndOVk/kFxs+HhASvSxKRGDFhAnz8Mbzwgq8zdObU9rNmaWp7EQmrbPlz9G5o8ACceCIMHOh1aUWWGuhFImDLyj84fdRTLC1Xh6vffcjrckQkhmTLn3daeV1OcRLxEawiUSElxTXMX3KJm9r+k0+yprbftw/uu8/dFxo92rWdSVDTgeeNMSdba38BMMZUB64AOubz2MQg24bhpmJ8DPip8MoUKWIy86dxY5g71wVN1apY69rr09Jg3DgtqyEi4bVxI7z92EI+ZDj2kUcxtWt7XZKIxIiNG11HxCuugEcf5cDU9i1awHXXeV2eiESxHPnT8VlYvRpmz4by5b0ur8hSA71IuFnLr9c/TA27n4Q3X6NkaS1TIyIR4pc/h01S/hSQRrCKFFRKCiQlQWqqW3gsKQmuuSZrd8+e8M03MHUqHHWUZ1UWB68CbYBpxpiuuNk8egO/4ToAAWCMqQb8DPSy1vYCsNbOC3wyY8xWoESwfSJRwz9/hg+HWrWgZUsAXnnF9RV6+WU45RSP6xSRqNeu9W6G73yA9OOqUnJAf6/LEZEY8uij7lTo9dchbt8eN2XZccfB4MFelyYiUS5b/ixZ7HLnwQfdkmOSK92pFwmXlBSoXp21d3fjwt9nMP+a3pzV8FSvqxKRWBAkf868SflTQNOBS40xJ2du8BvBOj2fxyYG+foWWOn77/fCUK+It/wbxzLNmeO2A198Af37u8GtjRp5VGMxYa3dBdQD1gATgTeBX4F61tqdfoca3Mh4XdNJbAuWP6tWwbx5/PQTtG/vBo09pInMRCTM3nsPzp/Wg9PtGkqOfw3KlfO6JBGJEe+9B++/Dz16wBlnAM8+62Y0e+01TW0vImGVLX+q7XE3fo4/Hp5/3uvSijyNoBcJB7+bRKeu78PPJWtQb1pbr6sSkVig/CksGsEqEqpgjWPg1qFPSmL35GSaPp5I1aowbJgnFRY71toNwK35HLMO10if33PVLZyqRIqgPPLHJiUx/KRkSpVK5PXXtayGiIRRSgrpTZvz1dYO9ON5Mh5oSZzfLEIiIuH0339u9OqFF7qOiSxa5BrGWrbU1PYiElY58qdbT/jhB5g1K2u5Q8mdRluIFLaAm0QGOMmso/TiBd7WJSLRT/lTaDSCVaQAmjfP2TiWKTWV1Dub88svMH68rs9EpJDlkT8mNZWnVjXnxRfdAA4RkbDwXYPF/76e/jsfJaNCJeKGaMSYiEROu3aweTOMGQMl0vxGr2pqexEJs2z5s3wJDBwILVqoc1CIdDNZpDDlMoIjbt8et903zauISKFT/hQ6a+0Ga+2t1trDrbXlrbWNfSNW/Y9ZZ6011toe+TxXXWvtleGsV8QzY8dC6dJBd6WVTuC2nWN56imoXTvCdYlI9Bs7FsqUCbprFwmMvWosTZpEuCYRiR0B12BxWEru3gFff+1xYSISK5KTYeJE6NgRatYEunc/MLW9ekeLSBhly58ae6FZMzjuOHUOKgA10IsUpnxGkNG8eWTrEZHYofwREa+ccAKULJlj/mhbNoE7E5LZdE4ivXt7VJuIRLcLLoAqVXJs3m0SuK9CMm2mJGpqexEJj9yW2Ni7Vx2kRSQifvoJ7rvPNcx37Yqb2n7wYDe1/bXXel2eiESxHPnTqxd8/z2MHg1HHOF1ecWGGuhFCtPYsdiyZYPvS0hwIzxERMJB+SMiXti2DRo2dCPo33jD5Q1gExLoeVEyM3YmMnFirgNcRUQOXno63H03/PUXDB2alT/7SiZwg02m6djEYG33IiKFQx2kRcRDO3ZAo0YQHw8ffAClM3a70aua2l5Ewiwzf+pkpLBkU3VKjxsFAwa4DLr+eq/LK1bUQC9SiOxVtfk54Txs4I6EBDfnR2KiF2WJSAxQ/ohIxKWnw113ua7TU6bAPfe4vKlWjTltk+m5IJGePeH8870uVESi0jPPwKxZMHIktG0LycnsPaYaN6QnU7VpIo0be12giESzjNfHsic+IfhOdZAWkTDKyHAjV1evhtmdUjgpsbrrFLR6taa2F5GwysyfY39MYcreJEr+sR4efhgqVIAhQ7wur9hRA71IIfqqQTdO/W8xiy99ImsEhxrHRCQSlD8iEnEdOrjGsREjoE4dty0xkd8+W8dtIxK5/HLXfiYiUujGjHE3gB5/HB58EIDdlyZyfoV1rD4ukeHDPa5PRKJe788TSU5vkHOHrsFEJMx694Zp0+Cd1ilc2D0J1q+Hd96BG2/U1PYiEla9e8O2aSnMjE8ifq9vJiFrYedO+OYbT2srjtRAL1JIVnR9l0vm9OOT6g9y8edDs0aQ6cJMRMJN+SMiETdunJs6sU0baNUqa3NGhhu8kZYGEya4KRdFRArVwoXQujXUr581hau18MQT8OOPbtBqhQreligi0W3qVFjXYyy38T72llvVQVpEImbqVOjRA/pdm8ItY5OyL7Uxdy6kpHhVmohEualTYV6PFGbFJ1Fyf8AyP3v3QlKSMqiA1EAvUgh+S/6WU/o0Z3nC5Vy27CXi4o27IFu3ThdmIhJWyh8RibiFC+Ghh+Caa9y6z34GD4Y5c9zA1lNO8ag+EYle69fDzTdD9epupFiJEoCLoldfhc6dXTSJiITLqlXw4j1fMsq0Jr3eNZh33lYHaRGJiFWr3NTSrc9IocPnSZjUgAay3bvVQCYiYZGZP5NKNad0emrwg1JT3YgNCZka6EUO0c51m4i7pRHbTEUqzplCuUqlvC5JRGKE8kdEIm7DBrjlFqhaNVvjGLje1B06wG23Zc04LSJSeHbuhEaNYN8+mD4dKlYEYMYMaN/eZU/v3h7XKCJRbcsWaJ30O2/tvZm4qicSP9l3LqQO0iISZlu2QOPGcNhh8OLO5jkb5zOpgUxECpl//pSYOPbAzEGBEhLcdGYSMjXQixyCjL37+fXiOzhy/0Z+f/EDql96jNcliUiMUP6ISMTt3AkNG7qpy2bMgEqVsnYtWwZNmsBFF8H48WCMh3WKSPTJyID774fvvnOdg2rUANwyh3ffDbVqueyJ0x0OEQmT9HRoevtuhs0yzXEAAF2uSURBVK6/mSNL76LEh9OynQuJiIRLejrcdZebSOj9930NZKVLBz9YDWQiUogC86fK7XWhXr2cB2qZn4Oiy1eRQ7CkbnvO/TeFlLtHc/GjF3ldjojEEOWPiESUf+PY229nNY4B/PYb3HQTVK4M06bl3plaROSg9ejh7ggNHgzXXQfAX3+57KlYUdkjIuHXuZPlzjkPUssuJf7tN+Hss70uSURiROfOMHs2jBgBl18OnHAClCyZs1e0GshEpJDlyJ+RI13O3H33gQswZc9BUwO9yEFa/sQ4Lln0ArNqtKXBm029LkdEYojyR0QirmdP1zj2/PPQoEHW5h073DKHu3bBhx/CMZrMQ0QK2zvvuLnrH3gAnngCcLO3NmzoplucMQOOPdbjGkUkqr31FmQMep57edPlUcOGXpckIjHirbdg4EBo3dq3jNjWra6HYunSMHGiGshEJGxy5M/cue56LCnJ5U9yMlSrpuw5BCXyP0REAv36zlec+UJrlpSvR52vBmkaVxGJGOWPiETcu+9Cr15uLcO2bbM2p6XBnXfCqlXw0UdwzjnelSgiUWrZMmjWDK64wo3WMCZrQo9ly9zI+fPP97pIEYlmy5fD281m8QEdSL/1duK7dPG6JBGJEcuXQ4sWcOWVMHw47gLsrrvg55/h00+hTh047jh3nTZ2rBrIRKTQ5Mifn3+G2293sym++SbEx7vMWbfO61KLNTXQixTQth//IqHJzfwTdyzHffYOZcvrz0hEIkP5IyIR59849vLLWdMoWuva6mfOhFdegWuv9bRKEYlGf/0FjRrBUUe5GTx8a6127w7vvedmu7/pJo9rFJGo9s8/8OSNq5m6/y7Sz6lJyfFjc04pLSISBv/8A40bw5FHuvOeUqWAJ5+Bjz+G0aNd4zyogUxECl2O/Nmz/cDsQdOmweGHe1pfNNGdfZECSE/dyx+X3Uq19K38MfZLLqxZ2euSRCRGKH9EJOIyG8eqVMnWOAbwwgtuDbKnnoKHHvKwRhGJTnv2wM03u2lcFy50jfTAhAnQp4+bYrFdO29LFJHotn8/NLt5G69sbETCESUpmTwVDjvM67JEJAbs3+8Gqv7zD3z+ORx9NPD66zB0KDz+uG+uaRGRwpcjfyqnQ+MmsHq1W4z+lFO8LjGqqIFeJFTWsuyyNly89Us+efBd6jc7z+uKRCRWKH9EJNIyG8e2bIEvvshqHAO33nO7dq5H9YAB3pUoIlHKWnfjefFi1zmoZk0APvsMWraEevVcByENYhWRcHqqbTptvrib0+J/Jm7aHLfGqohIBDz5JCxY4JZ4/t//cCdBDz8M9eu7KYRERMIkR/507OLWmB8xwl2ISaFSA71IiJa2eJmLV7zGzAs6c/3o270uR0RiiPJHRCLKWmjVKkfjGLh1yO6+Gy68EN54wy07JiJSqAYNcgHTu7frKIRb8vDmm+Gkk9w0iyVLelyjiES1MWPguJFduIGZ8NLLULu21yWJSIwYMwZeesk1kt17L276+ltucSdB77wDJdScIyLhkSN/3nzTjcpo3RoeecTr8qKSEl0kBGteW0DNsU/wRcUbufqL3l6XIyIxRPkjIhE3aJDrLu3XOAbw+++QlASVKrlR9JrlVUQK3YwZ0LEj3HkndOkCuFnuk5Jc36EPP4SKFb0tUUSi26JFMK/VJCYwgIxWrYlr3drrkkQkRixadGCg/IABwI4dbt3ntDR3jqSTIBEJkxz589VX0KIF1Knj1jiUsFADvUg+/lu+gUoP3cb6Eqdw6uI3KVUmzuuSRCRGKH9EJOKSk3M0jgHs3Ak33eTuEX3+ORx7rIc1ikh0WrUK7rnHTdExZgwYw/79cMcdbgT9J5/Aqad6XaSIRLM//4QeSUuZmtGC/ZddRckXh3tdkojEiD//dAPlTzgB3n4bSsRluCGs338PM2fC6ad7XaKIRKkc+fPPn25Nw+OO0/RlYaYGepE87N+Wyn+1G3N0xl52vzONU087wuuSRCRGKH9EJOJWrTowf72vcQwgPd1t/u47135/3nke1yki0WfTJjdCrFw5mDYNEhKwFh5/3DXMjxnjBm+IiITLnj3QMmkjr22+mbhjjqLk1PegVCmvyxKRGLBnj2sc274dZs92M5bRuStMn+5Grtav73WJIhKlcuRP2d3QoLEbnTF7NlSu7HWJUU0N9CK5sZZvL36QC3d+w7x206l32xleVyQisUL5IyKRFqRxLNOTT7qG+ZEjoUEDD2sUkei0fz/cfjv88QfMnw/HHw+4+9GvvAIdOkDz5h7XKCJRzVp4ovVeuiy/lWNKb6bERwvhqKO8LktEYoC18OijsHgxTJkC55yDW/e5Xz9o1QratPG6RBGJUjny52wL97aEpUvhgw98gSThpAZ6kVwsuWswF62ZxEeXP8cNQ5K8LkdEYojyR0QiKpfGMYCXXnKNZO3aufXIREQKlbXw2GMwbx688QZccgng1pp/8km4+Wbo29fbEkUk+o14yXLR+Ee5gi9g4rtw/vlelyQiMWLECDdTUNeubhQrixcfWPf5xRezZjUTESlsOfJnwECYNAn69IFGjbwuLyaogV4kiB+GfcyF73ZgwVG3ce28zl6XIyIxRPkjIhGVS+MYuAayJ55wA+sHDfKuRBGJYiNHwqhRbph8kyYArFgBd93l2scmToS4OG9LFJHoNm8erH3iJYbzOrZzF8ztt3tdkojEiHnzoG1buOkm6NkT+P337Os+a5kNEQmTHPkzYwZ06uQuxDp18ri62KEGepEAfy/8iWOfvIu1Jc/m7K/GUqKkeiqKSGQof0Qk4oI0jgF8++2BBrJJkyA+3rsSRSRKzZnjegHddJMbpQFs3AhJSXDEEe4e0WGHeVyjiES19etheKO5TLbt2H9DQ0r27uV1SSISI9avd5OYnXaa6ycdtyfVjVjduRM+/VTrPotI2OTInx9WwT33wIUXwuuva+aOCFIDvYifvZt2sKt+I0rYOJg2jSOrlfO6JBGJEcofEYm4II1jAH/+6RrIKlRQA5mIhMlPP7m7QjVquHVW4+PZvdvdl/7vP/jsMzd4TEQkXFJT4dHrf2HCjttJP/UMSr+lKTtEJDJSU91A+f37Ydo0OLy8hTubwfLlMH06nH221yWKSJTKkT/7/3PTJpYrB1OnQkKC1yXGFDXQi/jY9AxW/a8p5+1ezRfdP6b29Sd5XZKIxAjlj4hE3Nq1ORrHAHbtcu31W7fC55+rgUxEwmDbNhc0cXHuJnT58mRkQLNmsGQJvP++G7whIhIu1sKjTXfQ74dGlCtnKTVzGhx+uNdliUgMsNYtMf/tt5CcDKefDvTqDZMnw8CBrqe0iEgY5Mifk/bDdbfDH3+4Oe9POMHrEmOOGuhFfL66qTeXbJjKR/WHckPPq70uR0RiiPJHRCJq2zbXQ9qvcQwgPd3NavbNN27kfM2a3pYpIlEoPR3uvtuNoP/0Uzj5ZAB69IB333X3pRs39rRCEYkBgwZkcNOU+znbfE/c+7Pg1FO9LklEYsSgQfD229C3L9xwA26t+WefhaZNoX17r8sTkSiWI3/atIOUFJgwAS691OvyYpIa6EWA756bxiUzezD3hKY0mPmE1+WISAxR/ohIRKWnu8XlAxrHAJ5+2rXXv/ii72JNRKSwdegAM2fCK69AnTqAm8Sjd2944AHdlxaR8Js1C3Z36sUtfIAdPBTq1/e6JBGJEbNmQceOcMcd7jvLl7uG+csug1GjtO6ziIRNjvwZNQpGjHA3gu67z+vyYpYa6CXm/fnp95zU/V6+K1OLWktfIS5eJ0MiEhnKHxGJuA4d3JXZqFFZjWMAL78MQ4fC449DmzYe1ici0Wv8eBg82IXMQw8BsHCha5ivW9flkO5Li0g4rV0Lk26dwgR6sv/eZpRsqw7SIhIZa9e6ftLnnQdjxoD5e6Ob1axyZbe+T5kyXpcoIlEqR/4smO+uyW64Afr187q8mBbndQEiXkr9YwtpNzZiF4dx2McfcPjRZb0uSURihPJHRCImJQWqV3eN85mNY61aZe2eOdNtSkqCIUO8K1NEolBm/rz4osudq692vYGAX35x09lXqwZTpkCpUp5WKiJRbvt2ePq6FYxMvZ+9519CyVfVK0hEImP7dmjUCEqUgKlT4bD4PXDzzbB5M0ybBscc43WJIhKlcuTPP7/CrbfCaafBpEkQH+91iTFNI+glZtm0dNbUuoez9q1n2aAULqt9gtcliUiMUP6ISMSkpLiW99RUt7jzhRdmNY4BrFjhpjg77zx46y1dm4lIIfLPn8cfh+OOcwvNlyjBtm1w001u1Y3kZKhUyetiRSSaZWTAo3duYuivjSh55BGU/ugDjVYVkYjIyHCz2K9ZA7NnQ/VqFu5vBYsWufXnL7jA6xJFJErlyJ8jd8DlDd2O6dPhiCO8LjHmaQS9xKzF13Tm/I2zmHPzS1zW/gqvyxGRGKL8EZGI8G8cy/TDD/DZZwD89ZfbffjhMGMGlCvnUZ0iEn2C5c/mzfDtt6SluY5Ba9a4kfOnn+5dmSISG557dj8PzLqdE0v85Rrnjz3W65JEJEb06uUGyQ8eDPXqAYMGwcSJbsett3pdnohEsWz5UzfDrTX/ww+u0/Spp3pdnqAGeok1vikWf7qrK5fOH8gnp7SmwZRW+T9ORORQKX9EJJKCNY4B7N4NSUns/iiFm25y7WXJyXCCJvIQkcKSW/7s2QNJSYy4LYXZs92a84mJ3pQoIrHjgw+g0nPtSGQe8a+/Chdf7HVJIhIjPvgAevaE++93kwkxYwZ07Ah33gldu3pdnohEsRz50727a60fOhSuucbr8sRHU9xL7PC7UXTK+j6sKXMOly8ZriXHRCT8lD8iEmnNm+dsHMuUmsqO25qzfO86pk7VrIoiUsjyyZ9G05rze/t1tGwZ2bJEJMakpLCvSXN+23QrjzOCtCeeokTT+7yuSkRixKpVbmrpiy+GV14Bs2ol3HOPW3JszBh0Q0hEwiVH/rz7DvTpAy1bQps2XpcnfjSCXmJDwCgOA5zKzxz2zUJv6xKR6Kf8EREvDByY602ffSUSuHP3WIYMcWtAi4gUqlGjID4+6K5dJPDa5WPp3z/CNYlIbElJwd6YRKm/1vPY/iHsO68WJQYP8LoqEYkRmzdDo0ZuCbH334cyO/51F17ly7sRrAkJXpcoIlEqR/6sWgbNmsFVV8GIEeocVMSogV6iXy5TLMbtcVO8kpLiUWEiEvWUPyLihV9+cVMnlikDpUtn27W/VALXpSVz9qOJbpozEZHCtHOn6yCUng6lSmXblUoCbU9JpuPHibm134uIHLqUFGxSEmb3gQ7SpdauggULvK1LRGLC/v1w992wYQNMmQLHV9kHt90Gf/0FU6fC8cd7XaKIRKkc+RP3l2utP/potyHg+ky8pwZ6iX75TLFI8+aRrUdEYofyR0Qi7YcfXM/obdtg/nyYOTNrhEZ66QSuT0um7PWJDBumjtMiUsi2bIH69V32TJgAs2Zl5U+qSaBppWSenZdIuXIe1yki0SuzcT7wGmy3OkiLSPjt3Qu33w6zZ8PIkXD5ZRYefdR1EBozxs03LSISBjny58I9cPPNsHWrm7mjShWvS5Qg1EAvUW/fsBFk5PZRT0iAsWMjW5CIxAzlj4hE1PLlULu2G7k6fz5cdBEkJkJyMvuOrUbDuGT+PSeRd96BEiW8LlZEoso//7i8+fprmDwZ7rsPEhPZ934yf5Wqxi0l3cj5E07wulARiWYZ9zfP2TifSR2kRSSMUlPdQNVp0+CDJ1Jo+Vx1ePxxeO016NzZrT8vIhIGQfOnUSNYvBgmToSaNb0uUXKhW3MS1XZv3MavzftwBpAeX4r49H0HdiYkQHKyu5EkIlLIlD8iElFffAE33ABHHAGffgqnnZa1a+OZiVxSch37K8DiZLf0oYhIofntNzdyfsMGmDEDrr0WgIwMaDY+kbf2rWPKFKhVy+M6RSSq7dwJAw8fTA9uJw6b8wB1kBaRMNm50y0xP38+fPh0CjeM8C11+NJLcPnl0Lu31yWKSJTKNX/Wr3drz998s9clSh40gl6i1q4N/7Hh9Ks5detS5j78HvGfHJhiUY1jIhJOyh8RiahPP3WNY0cdBZ99lq1xfts2aNgQNm1y7WYnnuhhnSISfX76yS2r8ddfbj5FX+P8/v1w773w1lvQrx/ccovHdYpIVNu2De6t+ztNVnXGliwFpUtnP0DXYCISJtu2wXXXucuw2Z38GscyLV/uWs5ERApZvvnz7rta3qeIUwO9RKUdP/3NX2cmUm3HSj5/air1R96cNcUr1arpwkxEwkb5IyIRNX063HgjnHKKW9uwatWsXX//DXXruntCkybB//7nXZkiEoVWrnSN8zt3uhs/V14JHJhi8a23oH9/6NDB4zpFJKpt3gz3X/ULQ5ddxcll/yJ+7qcwc6Y6SItI2G3eDNdcA199BXO7pXDNsIDGMYDduyEpSY1kIlKoQsqf1FTlTxEXUgO9MeZEY8x7xphtxpjtxpj3jTFVQ3hcLWPMaGPMj8aYVGPMBmPMm8aYkw69dJHgtqz8g03n1uW41J/4qlsy9Z6/4cDOxERYt04XZsWI8keKE+WPiETUW2+5Yak1a8K8eXDMMVm7fvkFrrgC1qxxI+cbNfKuTBGJQkuXQp06YIzrHHThhQBs2eIm9Pj4Yxg92jXOG+NxrVIguv6S4uSff6D5ZT8y4rurOL78dkoumOs6C6mDdLGk/JHi5J9/XLSsWAEffAC1xzbP2TiWKTUVmjePbIFSIMofKU6UP9Ej3wZ6Y0wCMBeoAdwP3AecBqQYYw7L5+F3AWcDLwDXAx2BC4GlxhhNsCmF7r+v17Pjf3WovOd3lvf7mNq9rvG6JDkEyh8pTpQ/IhJRr70GTZq4VvhPP4VKlbJ2ffONW+pwyxaYOxcaNPCuTBGJQgsWQL16cPjh8PnncNZZgJvlvk4d13b/7rvw4IMe1ykFpusvKU7+/BNaXbqCV9fUpnKFNEotnAe1ah04QB2kixXljxQnf/7pZipbu9b1AUpKAnr2zL1XYkICjB0byRKlAJQ/UpwEzZ+8LryUP0VaiRCOeRA4GTjDWvsTgDFmBbAWeAgYksdjB1hr//XfYIxZCPzqe97uB1O0SDD/fPETaXWupnzadr4f/ilXPH6J1yXJoVP+SLGg/BGRiBo2DNq1cy3vU6YcmMIVN5C+USM44gg3i9mZZ3pWpYhEo1mz3Mwd1aq5zkHHHw/Azz+7kfP//AMffuimW5RiSddfUixs2ADtrviKMb83IKHKYZT+fA6cfrrXZcmhUf5IsbBhA1x9NWzc6FbTqFMH+PpraN8eKlRwU9rv2XPgAVpmozhQ/kixEDR/3n4bevSAM85wB+zefeAByp8iL5Qp7hsCizLDCcBa+yuwEMhzsszAcPJtWw/8CxxfsFJFcvfn3B+xtWtTOm0Xv7w6l0vUOBYtlD9S5Cl/RCRirIXevV3j/K23wtSp2Rrn33/ftdkffzwsXKjG+eJMUyxKkTRlCjRsCDVquFH0vsb5b791k3ls3+5m7VDjfLGm6y8p8n75BdpfvICxv19DwnEVKfPVZ2qcjw7KHynyfvkFateGf/+F2bN9jWOffeYavxISYPFi+OijA9doahwrLpQ/UuQFzZ9XX4V77nFTKH71lesprfwpVkJpoD8bWBlk+yrgrIK+oDHmTOAo4IeCPlYkmN8/WkGp+rUhI4PfJs7jfy0v8LokKTzKHynSlD/RTQ1kUqRY6xZz7t4dmjZ1vaRLl87a/eqrcPvtcMEF7h7RiZpMr9jSFItSJI0fD3fcARdd5Frhq1QB3Az3depAyZIuey6+2OM65VDp+kuKtNWroctFsxn3dwNKVT+eMl8tgOrVvS5LCofyR4q01avhqqtgxw53KnTZZbiZha67Do491p0UnXaaawxLTnazDalxrLhQ/kiRFjR/hgyBVq3cKI2ZM93yY8qfYieUKe4rAVuCbN8MVCzIixljSgCv4HoQvV6Qx4oEs27KMo64/Vp2U5bN783l/FvUazrKKH+kyFL+RDe/BrK9uAYyCzyHayA7z1q7K4+H+zeQrcL1mu6GayA731r7W1iLl+iTkQGPPgqvvAKPPAIvvghxrp+ttdCnD3TrBtdfD5Mnw2H5NeFKUacpFqVoeekleOwxNzR+6tSskPnwQ7jtNnf/Z/ZsqJpvFzYpBnT9JUXWypUw6MppjNt2BxlnnEmZBbPhqKO8LksKj/JHiqyVK91pkLVuSbFzz8VdeDVpAuecAx9/nNV5EXCNYuvWeVStHATljxRZOfLnHAs9ekLPnm6UxhtvQKlSBx6g/ClWQhlBD+6mdCBzEK/3EnA5cK+1NljouSc2ppUxZqkxZum//+aYJUQEgJ/f+JJKt9djhzmc7ckLOEeNY9FK+SNFjvInJmQ2kDW21k611k7DTXtWDddAlpcB1torrLUjrbXzrbWTgAa4C7sHw1q1RJ+0NLj/ftc436GDayjzNc5nZMDjj7vG+fvug2nT1DgfJTTFohQd/fq5xvlGjWDGjKyQeeMNt+nss93IeTXORxVdf0mR8/XXMPyyt3l9261knHc+Zb+Yq8b56KT8kSLn66+hbl2Ij4f5832N82PGwF13uamD/GYWkmJN+SNFTo78OcdC+/aucb55c3jrreyN81LshNJAvwXXiyhQRYL3LArKGNMPaAU8YK2dndex1trR1tpa1tpaVfQ/OAlizeh5HH1fff6LO4p9ny6gxg0ne12ShIfyR4oc5U/MUAOZeG/vXjel9BtvuGHy/fuDcfcI9u1zAzZeegmeegrGjXNTTEtU0BSL4j1roVMn6NzZhc3kyVCmDAAvvOA6BdWurXvSUUjXX1LkLFoEY64cw6id97D/oiso+9knUCnYx1SKOeWPFDmLFkG9eq5/4oIFUKMGMHQotGgB9eu7KYQqVPC6TDl0yh8pcnLkz2npbkr7IUPcSI3XXnMt91KshdJAvwp3kyjQWcD3obyIMaYLbv3DJ6y1E0MvTySnH4bP5sSHrufPktUwny3g1EQtpxnFlD9SpCh/YooayMRbqanQsCF88AEMH+4ayXx27ICkJLcM/cCB8PzzWYPqJTpoikXxVkYGtGnjOgU99BBMmAAlS2ItdO8OTzwBjRvDRx+5pQ4lquj6S4qUBQtgcp2XeGl3C/bWrk/ZeTMVPNFL+SNFyoIFrg2+cmU3W9ApJ1vo0QOefNKt8TN9OiQkeF2mFA7ljxQpOfKn6n7Xafq116BrVxg2TDeBokQov8XpwKXGmKwhgsaY6sAVvn15MsY8jluztYu19sWDrFMEgJX9ZnBy25v4tdQZJCyeR/XLjvW6JAkv5Y8UGcqfmBPxBjJNcSZZtm2D666DTz6B1193vaN9/v3X9aKeO9fNrPj00x7WKeGkKRbFG2lpbrrEkSNdwLz8MsTFZbXZ9+4NDzyQbUC9RBddf0mR8emnMPvqAQze9xi7r2tE2dlqDItyyh8pMj79FBo0gBNOcA1lVU/IgHbt3LTSDzzgekprWuloovyRIiNH/lTZDbfcAu+8AwMGuAsyczC3BqQoCqWB/lVgHTDNGNPIGNMQmAb8BozKPMgYU80Yk2aM6e637S5gGDALmGuMudTvq8CjzyS2reg2mTM638LqMjWp+PVcTrhA07/EAOWPFAnKn5gV0QYyTXEmAPz3H1x9tZvP7K233A0gn/Xr4corYeVKN7C+eXMP65Rw0hSL4o29e+HOO92I+eeeczeAjMlaUiOzzf6116BECa+LlTDR9ZcUCR8mW5Y06MZzaR3Zc/PdlJ0xGUqX9rosCS/ljxQJH37oZis77TS35vNxR6W5Ke2HD4e2beHVVzWtdPRR/kiRkCN/yu+AG290O15+GZ55xusSpZDle1ltrd1ljKkHDAUm4m5MzwHaWmt3+h1qgHiyN/o38G1v4PvyNx+oe9CVS0xZ/tQbnDfkflYkXMYJKz6iyima0iwWKH+kKFD+xKzCbiC7P78GMhH++svNY/bTT64FPikpa9fKlW5QfWqqG1h/5ZUe1inhVphTLD6uKRYlJKmpbmTGxx+7KROfeAKAXbvg1lvd5gEDdE8o2un6S4qC96dYNtzxFJ0yhrLn3haUGTdKjWExQPkjRcH778Ndd8F557nl5SsdthfuagJTprjR8926aeRqFFL+SFGQI3/YDPVvgKVLYeJE12Naok5I/d6ttRuAW/M5Zh0Bo8qstc2AZgdXmoiz7OHXuOCVViwrX5dTVk6nUtVyXpckEaT8ES8pf2KaGsgkstavh2uucY30H33k5rH3WbjQtdUnJLgpzs4918M6JRKmA88bY0621v4C2aZY7JjfgzXFohTYtm0uZL74wi2r4Zu5Y/Nmt3nxYjdqvkULj+uUiND1l3hp0hsZ7Gj6CG3tKPa2eowyLw/TGqsxRPkjXpo0CZo2hYsvhpkz4YgSu6DhLa6lzK/zokQn5Y94KUf+7Pkbrr0WfvzRdRBq1MjrEiVMdJYrRdrSZi/xv1ceZHGF6zh9zYdqHBORiFH+xDytQSaRs2YNXHUVbNrkFhzza5xPTnbt9kcd5Rrq1TgfEzTFokTOpk1Bl9X480+oUweWLYP33lPjvIiE39hX00i7rxkP2VHsfbIjpV8ZrsZ5EYmIMWPg3nvdLGUffwxH2K1u+rJPP3U71TgvImGSI3+2bXD3h376yU1tr8b5qKYzXSmyvrpjELXGP8bnRzbi3J+mcsQxZb0uSURihPJHUAOZhFNKClSv7r6vWAG1a8OePe7fl16addi4cdC4MZxzDnz+uXuIRD9r7S6gHrAGN8Xim8CvQL0CTrH4ZcDXyLAXL0Wff/5ktsKvWgXTpsEddwDuXtAVV8C6dW4Ex803e1qxiMSAV17YR/lWd9GUiex79jlKD+6naaRFJCJGjnQdEevXdxOZld/9DyQmwldfwbvvQvPmXpcoIlEqR/5sXOsa5//5x61teM01XpcoYRbSFPciEWUti296jks+7M68Y+7k4h8nknBESa+rEpFYoPwRH61BJmGTkuLmjE5NhRtugBIl4Igj3OiMGjWyDhs0yK31fM01bi2y8uU9rFkiTlMsSlgE5k/FirBjh2uFr1sXgG++cQPGMjLc4bVqeVqxiMSAFwbs5pSOt3EjH5E2aCil2rf1uiQRiRFDhsBTT8FNN8HkyVD6n9/cBdhvv8GMGe6kSEQkDHLkz5rvXEt9erq7ELvgAq9LlAhQA70ULday+JouXDK3H3NPaMoVq8dQOiHe66pEJBYofySAGsik0Pk3joEbNW8MjBqV1TifkeEa5gcPhjvvhAkToFQpD2sWkegQLH/++gtGjMhqnF+wwN0gOuIIt9yqX58hEZGwGNh9J7V6N6Qu80gbMYoSj7TyuiQRiRF9+kDXrnDbbfDmm1Bq/VrXOL91qxu5esUVXpcoIlEqR/588xU0aAAJCe667cwzvS5RIkRT3EvRYS2Lr2jHJXP78cnJD3HVT2PVOCYikaH8EZFwC2wcy2QtPPggpKSwfz80a+Ya59u0gUmT1DgvIoUgt/wBePppSEnJGiR23HGwcKEa50UkvKyF59pv5Yre11HHLMCOm6DGeRGJCGtdw1jXrm7d57feglI/rnDTSu/eDfPmqXFeRMIiaP58MQ+uvtrNbvbZZ2qcjzFqoBdv+dZAtJ/O4av/PcwlXw7n4xpPkPjjy5QsrY+niISR8kdEIql58+CNYwCpqWTc35zGjWHiROjVC154AeIURSJSGPLJn523N+fmm+Hcc909oRNPjGx5IhIjMq+/5qbw7KObuH7w1VwStwTz7rvE33+v19WJSAywFtq3d6NXW7aE8eOhxJIvoU4dKFnSnQhpWmkRCYOg+TP7I7j+eqha1eXPSSd5XaZEmKa4F+/4jeTIuPY6LrbpzKzZkeuW9SUu3uT/eBGRg6X8EZFI69bNjZS3NscuWzaBx8qNZdYseOUVeOghD+oTkeg1cCDcfbdbQyPA/pIJ3PTfWOpeDR98AOXLe1CfiEQ/v+uv/dfeSPP0ozk+fiNx06YRd+P1XlcnIjEgIwMeewxGjnSzlQ0fDnFzP4XGjeHYY+HTT6FaNa/LFJEoFDR/3nsXmjSBmjVh1iyoXNnrMsUDGpcj3giYZjHeppMWV5IGg+urcUxEwkv5IyKRlJEBQ4fCI49AhQpQunT23WUTeOCoZF77OZHJk9U4LyKF7L33oHVrNyosYM2MfSUSuHZ/MpVuSeTDD9U4LyJhEnD9VSp9N9VZR8kBfdQ4LyIRkZ7u+kqPHOlW93nhBYibPhVuvBFOOcWNXFXjvIiEQdD8GTfGdaC+9FKYM0eN8zFMDfQSebmsgVgiYz+m4U1uv4hIOCh/RCSS/vwTGjSAJ59031evhpkzISEBgIwyCdxdLpkpmxOZNQtuucXjekUkemzfDs2awe23w6mnwooVbmSGL3/2lkjgurRkTm2ZyLvv5ug7JCJSOHK5/jKA6d5N118iEnZbtsBtt8GYMdC9OwwYAOaNiW7jhRe6NeePOcbrMkUkCgXNnxeGQ4sWUL8+fPwxHHGE12WKh9RAL5GXzxqING8e2XpEJHYof0QkUj74AM47Dz7/3M1bP3UqVKkCiYmQnMzeY6pxc8lk5sclMn++2ywiUig+/9xNlThxolteY+FCOP10SExk/wfJ/JtQjQZpyVzaMZHRoyE+3uuCRSRq6fpLRDw0b567JNsxPYVtFavTs24KZuQIaNoU6taFTz6BihW9LlNEolCO/KkzF9PnOWjbFm69FaZNy+o8LbFLDfQSUWk7dvNDmQtyPyAhAcaOjVxBIhIzlD8iEhE7d7r5y265xU2T+PXXbt56c2AJjeRdiVTavo6VVRJZuBAuyCOaRERCtn8/dO0KdepAXJybrrVXLze9PfDLL1CvdyJHpa7jxkGJ9OuXLZpERArV/v0wrtaLpJFLLyBdf4lImOzfD506Qb16kEgKH5dK4vAt6+G669wC0I0aQXIylCvndakiEmXyzJ9u3VwHobff1hRmAqiBXiLo95nfsf7oizlz9VS+OvFWbNmAHkIJCe7kSEPIRKSQKX9EJCKWLHHTJL7+OnTsCF9+CTVqZO3esQNatYKbbnKDWRcudEseiogcstWr4fLLoU8fN7X9N9+4fwPWwujRbgTHihUwaRK0b+9ptSIS5dauhUfO/Yy6Ux7DYLElSmY/QNdfIhIma9e6U6D+/WHg9SmM/y+J+D2+mTz273dTB7VpA2XKeFuoiESdPPMnLQ1KlHAN9CVKeFuoFBlqoJfws5Yl9w2n8g0XUW7Pv8zrMJOLN7yH+TD5wDQeujgTkXBQ/ohIJKSnu0axyy+HPXtg7lzo1w9Klco6ZO5cOPdceO01ePpp13avpQ5F5JBZ65bRuOACN0R+yhTXSah8eQD++ANuuMFN5HHppfDdd3D33R7XLCJRy1oYN3ofU8/uwiur61L5mBLEf7kQM/tjXX+JSFhZ69Z5vuAC+PlnmN8jhfbzkjC7A5bZSE93I+hTUrwpVESiTsj5k5YGDRsqfySLGuglrLav/Ztvj7+Bi95oy7KK9dm39Dvq9m/gdvrWYKVaNV2ciUihU/6ISESsX+8ypGtXt47Yt9+69Qx9du1yAzSuvtq113/+OQwcqAEbIlII/v7bTcnx8MNw1VWu9f2WWwB3k2jSJDjnHJg/H156CWbPhqpVPa5ZRKLW5s3Q9vrVnPPQ5Ty9vy977mpOubXfuN5Buv4SkTDavBnuuANatICLL3YzBtUe2xxSU4M/IDUVmjePbJEiEpWUP3IoNJeChM33gz7kqI7NOT1jBzOTRnDtBw8TXyJgkcPERFi3zpP6RCR6KX9EJCImTXINY9bChAlw773ZFnT+7DM30/Qvv8ATT0DfvgcGj4mIHJIZM9xdoO3b4YUX4NFH3brzwL//umiaMgUuuwzGj4fTTvO4XhGJavNSLLNuGU3frU8Sl1CG9PFTOOy2W7IfpOsvEQmDefPgvvtg40YYMACeegri9+9xLWXr1wd/UEICjB0b0TpFJPoEzZ+9qW4ovfJHQqAR9FLo0nbsZvHFbTjrmST+LXEsa95cyvUzHsnZOCYiUsiUPyISEVu3QpMm7uucc9yo+fvuy2qc370bnnwS6tRxbffz5sGwYWqcF5FCsGsXtG7tpkY8/nhYtgweeyyrcX7aNBdLM2a4tQ8/+0yN8yISPvv2wXNP/Mv2eo3ov7U16ZdcQdm13xEf2DgvIlLI9u2DTp2gXj13nbVoETzzDMR/9w1cdBFMnuxmGipbNvsDtcyGiByiXPNn+VK48EKYOhVuuy3nTSDljwRQA70Uqt8/WsH6oy/ikiUjmHVWO47//Stq3nO212WJSAxQ/ohIRHz2GdSsCe+8A716ubmjTzopa/eiRXD++TB0qBvBumKFa6gXETlkS5a40RijR7s7QIsWwdnuXGfbNjdjR+PGcNxxsHQpdOgA8fGeViwiUWzNGnj67I9o+cK5XB8/m70DhnL4F7NcCImIhNGaNXDFFa4zYsuW8PXX8L/z06FfPzdy/r//4KOPYPp0+PDDA41kahwTkUMUNH9qpkHv3m76sl274NNPXSeh5GTlj+RJDfRSKGx6BkvuHU7lGy/msD3/Ma/TxzRYNYTDq5T2ujQRiXLKHxGJiP37oUsXt758yZKwcCF06wYl3IpRe/ZAx47uQm3PHvjkExgxAsqV87ZsEYkCaX43fPbsgblz3RyKpd25zpw5cO658MYb0LUrLF7s/i0iEg7WwriXdzP37DYM/+lGylY9ipLLl1D6mbZZs3mIiISDtfD6666/4i+/uOV8Ro+Gwzb+DLVrQ+fOrrfid9/B9de7ByUmukaxatXUOCYiBy3X/PnrJ7jqKuje3S1Gv2IFXH21e5DyR/KhNejlkG1bvZF1dZtx0caPWVjpJqp9+jp1L6jidVkiEgOUPyISEWvWuPXllyzh/+3dd3hUxeLG8e8JoSR0hNBCR1DUgApesBJQ4AqCV/AqiiKKFTt6rVe9KhZU7A31F8WGV1HQXKXHgigWlCogHUUg9JJO5vfHbMKSbJJNNlvO5v08zz7o7pw9Z3bOvk/OzpkZLr/czldft27hyz/9BCNHwvLl9g7qp56CevXCd7giEkXWrLFLaHz3HVx0kb3zp0EDwA7OuOMO+1TnzjB/vh00JiISLDt3wqP//IVRcy6mC7+x/8pbqP/cI1CrVrgPTUSi3M6dcNVVtlOsTx+YNAlatjAw8TW7vlj16vDuuzB8eOHSY4WSk2H9+rAct4i4X6n5c8stUKMGvP8+XHhh8Y2VP1IK3doqAVn2eCq5XZLotOUrvjjnJXpunUaiOsdEJASUPyISdMbAa6/ZW6RXr4aPPrK3THs653Ny7CD6nj3tsvSff26Lq3NeRAJmDKSk2DUzli+H996zPzp7Oufnz7cvvfgi3Hwz/PKLOudFJLjS5uTzcrvxjJvzN1rV20P+9JnUmThBnfMiEnRpaZCUZGesHz/ezlbWMuYvGDQIrr7azjK0ZIm9mbFo57yISAB85k/sVhg8+PD88dU5L1IGddBLheTuzeT7HtdzzJ3nsC22BaveX8jfP72WarH6I0hEgkv5IyIhsX07nHeevU26Vy87TdnQoYUvL1pkO8MefhguvhiWLj00i6KISEB27IBhw+yMHd272/wZPhyA7Gy7nMZpp9mVN9LS4OmnIS4uzMcsIlErJwcevW4TnNmXe/bewYHkc6i7djEx/c8K96GJSJTLybF/9/TtC7Vr2wmFbr8dYj6ZYtfzmTsXnnsOZsyAxMRwH66IRJES8+ezaXDssban/plnYOZM5Y9UmDropdw2/W8xm5p1p+dPLzL9mFtp9ecCul54dLgPS0SqAOWPiARFWhq0bWv/BXuBlZRkh8Q/+eRhF1y5uXYp6O7dYcsWmDYN3noLGjYM3+GLiIsVzZ8ZM+wPzp99Bk88YReYb90agF9/tdnz+OO2737xYujdO1wHLiJVwapVcP9RH3DNy0n0iv2R7JfeoOGcj+CII8J9aCIS5VatgpNPtn/3jB4NCxfCiR12w6WX2hsZ27WzUwjdcAPEqItDRCqPz/zptM/+z7nnQqtW9smbblL+SEB09ojfzMF8frjoGRIG9SA+aydf3T2DAUufom7jmuE+NBGJcsofEQmatDQ7NeKGDfbfYcOgf387jfSCBTB2bOEF17JldjD9fffZYsuW2VnNREQqxDt/Bg60s3YMGGDv+PnhB7jtNoiJIS/PztbRo4ed3CM1VctpiEhwGQNvPbeHn7pcyqPrLsR0OopaKxZR89rLNX20iASVMfD663aVsXXr4OOPYeJEqL1grr2J+r334P777Xo/Rx0V7sMVkShSYv78+i107WqXILvrLvj+e+jSJdyHK1EgNtwHIO6wZ8VfrEsexUlbZjDviMG0nf0GZ3RrHO7DEpEqQPkjIkFT0DmWkWH/PyMDpkyxd0S/917hnNF5efDUU7Zjvl49+PBD20EvIlJhRfMnMxM++cR20r/zTmH+rFhhB4r9+KNd1vCFFzRwVUSCa+dOmHDePEZ/NYJWbGLvLffTaPy9EKufEEUkuHbutCuMTZkCffrApEnQslEm3HwXPPssdOpkO+ZPOinchyoiUcZn/jTJgbsfsEPp27SBr76CU08N96FKFNEIeinT0sdSyTsmiU5bvmb6kJfptWUqieocE5EQUP6ISNAU7RzzNnOmvSMaWLnSXn/deactvmyZOudFJECl5c/06fD99+Tn2yUNjz8e1qyBDz6A999X57yIBNeXs3J5u+29/OerM2jQqBrOvHnUm/CAOudFJOjS0uwA+U8/hfHj7fLOLbf8DCeeaDvnr7/eTmmvznkRqWQ+82fPcujZEx59FC67DBYtUue8VDp10MvhvNZAzN2Twffdx3DsXeewNTaRNR/8zICp11AtVtOZiUgQKH9EJJQuucR35xhARgbmslE8/TR062bXH3vvPfjoI0hICOlRikg0GjGi1PzJu2QUffrALbdA376wdCn885+hPUQRqQK8rr9ycuDJq1YR3+8Ubto3jl2DR9Jg/a/EnNIr3EcpIlEuJ8feDN23L9SpY++Tvv2WPGLGPWQ7x/butTdQP/88xMeH+3BFJIr4zJ+x+cQ8/yyccAJs2mRnOXvjDahbN9yHK1FIt8DKIV4jOfL/fjbb8xPombuRGceO5ZQvx1HnCK31LCJBovwRkVD54w87Pdm2bSUWya8Vz831Unj+VjjnHHj1VWjePITHKCLRadUqeOQR2LKlxCK5NeIZsiOFhXvt70CjRmm5ZxEJAu/rr7MH8d9613DttlegZk2yXv+QxiM0XZCIBN+qVXDRRfDzz3Zq6QkToPafq+DUS2HBAhg+HF58ERo2DPehikiU8Zk/u/6A/qNg9mwYONBekDVtGu5DlSimEfRiFZlmMSY7i6a5G1k0Yjz9lzypzjERCR7lj4iEwoYNcO210KEDvPIKjBxp13kuMgojt3o8A00qkzYl8+abMG2aOudFJEDLltlff44+Gv77X7jxRvtvkfzJiomnX04qWb2SWbIELr9cnfMiEgRFr7+yMhixbQI57TtTe80SaqlzXkSCzBh4/XW7lM+6dfDxx/DqK4bab710aAqzyZPtNGbqnBeRSuQzf16F2p9NhuOOg/nz7ROffabOeQk6ddALpKVhfKyBGAN0/fgBe/EmIhIMyh8RCbZ16+DKK6Fjx0PDUVevhtdeg4svhtTUwk6yrJh4+uWmYnons3Sp7cNX55iIVNivv8KwYXDssXZBw9tug/Xr4emn4fzzITUV48mfDOIZUi2VfzybzOzZ0KZNWI9cRKJVCddfAA23rLSdYiIiQZKfb2eLvqZzGmde2ZZrOqexZAn846Q/YcAAGDMGTj8dliyBCy4I9+GKSBQpMX9677K/DQ0fDp0727Xmr7pKPwZJSKiDvoo7mJFN9uBhOKWsgcioUaE9KBGpEpQ/IhJUq1fb4adHHgmTJsHVV8OaNXb0vFfP15ajk3n93FQ2Om0YWjOVi19L5osvIDExjMcuIu72ww8weLAdljFrFtx7r53F4/HHISEBgIMH4eNdyYxpncp62nDbUak8tySZG2+EGF2li0gQ5OXBgfNH6vpLREIuL88Ohk9KgufOS+OZ1YNoywaeXDmIFi//245a/eYbO539F19Ay5bhPmQRiRKl5s/7T9kXPvgAHnwQ5s2zgztEQkSX/lVU7p4MfhjxLOn1O1Bz/07ySzoV4uMhJSW0ByciUU35IyJBtWqVHfp+1FHw/vt2FMbatfDCC9CqVWGxFSvswPo2beCq95O59bz1vPRbMqNH60ZpEamgefOgf3/429/g22/tjzwbNsBDD8ERRwCQlQUTJ9rZ7ocOhZm5yUx/eT3PLUmmc+cwH7+IRKWcHHjn+V282PRB8nbsLrmgrr9EpJLl5MD//Z/9u+fii6HHgTRm1RhEnLE3CjkZGfDww3Ya6V9/heuu08WYiFQKv/Lnttts5nz3Hfz73xAbG+ajlqpGHfRVTHb6Xr4/73H2NGrLSe/ezKaaR/L1fbMxs2YVWwOR+Hg77WtycngOVkSiivJHRILqt9/sVdfRR8OHH8JNN9mO+WefLRyBYYztPxsyxBZ75x07yH7lSvjoI00pLSIVYAzMnWv/ZjntNPjlF3jsMTuV/b//DQ0aALB7Nzz6KLRtayf0qFfPLkO/ciVcc41+CxKRypeVBSmPbuGNxncw5MbW3LTzfjJ69Cb/uRd0/SUiQZWVBS+9ZCczu+IKqF8fvnkwjf/bNojYHB+zeGzcCH/+GfoDFZGoU+782b4d9u8P/YGKAPoZoIrI+GMni0c/x1Ezn6On2cV39Qew8q57OPlfpx66MTE1FQrWItPFmYhUEuWPiATV0qV21MV//2vz47bbYOzYwmmkwU4lPW0aPPEEfP+9Hch63312cL1XMRER/xkDM2bY0fHz50Pz5jBhgl2vsHbtwmJ//AHPPAOvvmp/9+nfH/71L/tnjgaIiUgwHDgA7z26gWpPP8HwjDeoQQ5be19AnWfupHnXJFvo2C66/hKRSnfggP2b54knYMsWOPlk+//9+4PTZqTNHF8KlthYvz6kxysi0aPU/Gl7Wcn5k5mp/JGwUQd9lNu3ZhtLr5jAcV+/SE+zn28an0vN/9xDz2u7F/9BKDnZXpSNGmWnNdPFmYgEQPkjIkG1aJHtGJsyBerUgTvvhFtvhcaNC4tkZsJbb8FTT9kl6du3tzPdjxpVfOCYiIhfjIHPPrM3Bv34o10648UX7XQctWoVFlu+3P449O67kJ8PF1wAt98O3bqF79BFJLrt2QPv37+C+q88xmXZ74LjkD5wJM0n/IsWnY48vLCuv0SkEu3ZY6+znn4aduyAvn3tamNnnAHOX5vhjmfsKNWSaIkNEamgUvMnMwNeSoHs7JLfQPkjYaQO+ii1a8kfrLzySZIWTORvZPF1swuo99jdnDbyuNI3TE7W3UIiEhDlj4hUirQ03z8aL1xo13WeNs3OEf3vf8PNN0OjRoVFtm+3U5q98AKkp0OPHnaA/XnnQbVqoa+KiLiMr/zJz4ePP7Yd84sWQbt2djH5kSOhRo3CTefNg/HjbR9+XJydvv7WW+3U9iIiwbB9O/z3zoW0eOtRrsqbQk5MLbb/cwzNnxxLi1atSt5Q118iEqDt2+2KYs8/bzvJBg6Ee+6BXr2w6/hc+QS8/Tbk5cGwYdCnj/3DyHskq2bxEJEKKDV/du2CR16yBdLT7ZPXX2/XHFP+SARRB32U2f7DWtZc9TjdFr1Jdw7yVetLSHjqTnoP6xzuQxORKKf8EZFKk5Z2aNrVQYPsBVPt2nbEfGqqXdP5P/+BG28sXN8ZYM0aO8N0SoodPT9woB2xevrpmkpaRPxUNH+mTYNt22DcODssvlMnePNNuOgiqF4dsH33n31mO+bnz7fLaDzwgF1Gw2tSDxGRSrVlC0y5ZR5HfjiO6w5OJyO2HtuuuJtmj95E8yZNwn14IhLFtmyxs5S9/LL9k2noULj7bjj+eGDBAjjvcZg61d7EePnldhmyDh3sxp06aYkNEamwUvNn82a4/Wl45RW7vtjZZ9vZFk891f4odMopyh+JKOqgjxJbvlzBxmsf5YQV79KNanzT8XISn7+DvgPahvvQRCTKKX9EpFJ5d46B/ffMM20PWKNGdvTq9ddD/fqFm/zwg51K+uOP7Qj5ESPsb0BduoSpDiLiTr7yp18/O639McfYuRLPP79wKo7sbDuF/RNPwIoVdpT888/b36G1jIaIBMvGDYbPbphJ19RxjDHfsLdmE7be8AhNH7iOeK+/j0REKtvGjfbvntdeg9xce7/iXXdBl6MNTJ8OvR+Hr76yN1HffTfccAM0bXr4m2iJDRGpgBLzpwuwapWdsWPSJDtjx4UXwr/+BV27Hv4myh+JMOqgd7k//reIv258hBPXfkg9ajHnmBs58uWxnHlay3AfmohEOeWPiFS6op1jBfLz7UjVSZPssHjPU198YUesfv217a+//XY7qL5FizAcu4i4W0n5YwzUrGmnR+zbF7BTKE6cCM88YwdpdOsG771n++5jdYUtIkGy5vd8Zl77CX+b8whjWMjO2omk3/IsTe4aTT3dFSQiQbRmDTz2GLz1lv3/kSPhjjugY5tc+OADuHA8LFkCLVvaoa1XXgl165b8hlpiQ0T8VGL+dAR++gnOfxymTLHXbKNHw9ix0L59yW+o/JEIEhPuAxA/pKXZ4RhpaYVPrfvgBxa2GkzioG50XvsFM4+/k+0/rqf/0gm0V+eYiFQW5Y+IhMqBA3DBBcU7xwrk5sKYMWRn2xudjzvO9qWtW2d/A9q0yV60qXNeRMptxQo477yS8yc7G664gr/+sj8GtW5tB2QcfTTMmAELF8Lw4eqcF5FK4OP6a/miXF45eRI5nY7h2jnDSKy/lx2Pv06jnWto8tCNmrJDRIJm+XI7O1mnTnYp+auvhtWr4bVnDtDx8+fgyCPhkkvsiNWUFFi71q4xX1rnvIiIH0rMn4mGjutn25kWe/SAWbPsUPr16+HFF0vvnBeJMPoJIdIVWQPxj+vGsWPS53TdNov6NGR6r//Q9fUbGNClYbiPVESijfJHRIJt61a7cPO0aTB7NmRllVjUxMUzuV8KY9vBX3/ZmcreeQf++c/CZaBFRPyTn2/Xxpg61T5WrrTPx8TY14oWrxXPU11SuLet/f152DDbQX/iiaE8aBGJekWuv1aP/5i019dw1q/juYYNbG6SxK4HJ5Nw5bDCpTZERILhl19g3Di7hFh8vO1zv/VWaF59O7zwgn3s2AEnnwzPPWezK0bjAEUkcCXmT8JB+OQTOO8x+PlnaNbMTql49dVQr164D1ukQtRBH8l8rIGY+OQt1KYB05Mfp/sb1zKgne5IFJEgUP6ISLCsWGE75KdNg++/t9NHt21rL6qGDLG9X+eee9hI1pzYeM41qXzxWjJnnmmnNjvzTHCcsNVCRNwmO9v+fTN1qs2fLVvskPfkZLs2xuDB8Pvvxaa5z6oWz9lZqXyXlswVV9gZEzt0CF81RCRK+bj+6nD9ADoCG1v2ZM/4F2gxfKD++BGRoPruO9sx9r//2f6ue+6Bm26Cxgc2wKNPwRtv2Jw65xw7rdApp4T7kEUkSpSYP3Wz7RD68ePt9dqRR9r1xi65BGrVCvdhiwREHfQRKn/GTBg8mJic7GKvNYjLZsC/e4A6x0QkCJQ/IlKpDh6EBQtsh9jUqbBqlX3+hBPggQdsp3xS0mE/OOd/mooZNIhqWRkcIJ4h+ak0G5rML7fZtZ5FRPyyZw988YXNns8/h337oHZt+Pvf7Y1AZ58NDb1mAkpMZP/kVGoNG0Rsjs2f4XGpnHJzMpNvgISEcFVERKJZ/py0wr97vDmAqVmT1pPGQZ8+4Tk4EYlq+fl2tOrMmbD53TTGLhtFbL0Uxo1LZswYqL9hMdw8HiZPttdrF18Mt98OxxwT7kMXEZcrM3+cvbYjfsIEO43iCSfAhx/CP/6hmYQkaqiDPlIYw9ZvVrF+4gxqpM2k6+bPicH4LOpkZsKoUXZdDRGRQCl/RKSyZWbaKeunTbNT2G/bVnykaqtWhcWNgZUrYO5cmDMHvvwymaSsVN5yRpE6NIX/eyqZ1q3DWB8RcY/Nm+HTT22n/Ny5kJtre9YvuMB2yvfte9hIi6wsmD/fZs/s2fDTT8mcnp/K29VGseCaFN57LJk6dcJWGxGJUpv/NCx48zf2fTyL8xfeRRyZPss52dlw+eW6/hKRSrN5s+0QmznTLt28fTv0Jo3PnUHEkcEnuYNw4h6GC2fC9On25sYbb4RbbjnsGk5EpLz8yp+j3obxP8NLL8Hu3fb6bdIk+69mEpIoow76MMrcvItVL88hc9pMWq+YQYvcjTQF1lbryC+Jg+m2ZTrV8oqPYCU+HlJSQn68IhI9lD8iUm5pafYGnZQU29Fe1PbtkJpqO+VnzrRTH9arZ0eoDhliR6zWr19YfONG2yE2d659bN5sn2/d2hbv0yeZugPXc13D4rsSkSqmrPxZudJ2yH/yiZ2xA+w89DfdZDvle/YsHGVx8CAs/NHmz5w5MG+e7aSvVg3+9jc7lWLfvsk0PXk9Q6uHrIYiEuUyM2HBZ9v4483Z1P1uJifuns0/+BOAnXEtqZm9lZj8vOIb6vpLRAKUmQnffAMzZtjLtKVL7fNNm9pLtEtbpdH36UE4mXYWDyczwy74XL8+PPQQXHcdNGoUxhqIiFtVKH+GDrWFhg61S2n06BGmoxcJPnXQh5DJzWPtBz+wbdIM6v8wk857fqAr+eyhHoub9GXpqXeReHk/jjq7Pe1jKL4GGdiLs9RU3z9MiYiUQPkjIgHxzoRBgw5lwerVh9aT//ZbO0dZYiJcdpntFDvjDKhRA7CD6NM+ODRKfs0a+9ZNmthZW/v0sTdEt2+vm6JFxIuv/DnjDPjxR9spP3UqrFhhy3bvDg8/bPOnSxdwHDtDx8pDHfJpaXYgBsBxx8E119jsOf10e0+RiEhlMAaW/ZTJite+wcycRaeNs+htFgGwt3ojNif1ZdO5/UgcdRaN2rbR9ZeIVBpjbCdYwSjVr7+2NyPWqGH/3rn0UujXz7PK2JSP7LT1OTnF3ygnx64xr855EfFTufInbS4MHGgLFFWrFowZo855iXrqoK+IskZweNnx83rWvDyDmNkzOXLjHDqYPbQlhqW1ejD7pHuod35/kkafxGkNfAzPSE62F2MFF2m6OBMR5Y+IhFrRH4wzMuwVVcuWsGGDfS4pyQ47HTLErgvmOOzdC1/NONQhv2SJLVqvnu1bu/562yl27LHqkBeREpSUP/Xqwc6ddth77972x5shQwqnXf3zT5jz9qFO+T/tIFXatLEDMfr2tTcFNW0anmqJSHRK35rPz/+3iD1TZtFiyUx65MzjWLLJcWqwoeUprDrzEVpfcRb1eh1PvaJrp+r6S0QCkJ5ul+opGKX611/2+S5d7M2I/fvbzrH4zB3w1Vfwmmcas99+K/lNtcShiPjB7/yJM/bG6i+/hEe+hI8+soM8fMnKUv5IleBXB73jOK2Ap4GzAAeYDdxsjNnox7a1gIeAEUAD4FfgDmPM1xU75DAraQSZR86Ofaya+CX7psykxdIZtMn+nSOAP5xW/NT2fOjfj87X9qVrUiO6+rO/gos0PzvkRKKN8seL8kckpKp8/hgDkyfbDMgusuRFXh5s2mQ7xcaOhXbtyMy06zjPvdd2iP30k51KulYtO/Bi3DjbKXbiiXY5ehEpWZXPn5wcu87gmDHFR3Tl5cGePXDXXXD77dCwIbt22d955jxu86dgQP0RR9jcKXhohg6RslX5/CmqlBukc3Lg56mb2PzWLOp8N4vjd81hAOkAbKx/LKvPuI5ml5xF4/NO58jatcvel66/pIpT/vgvJ8deexWMUl240F6+NWoEZ51l72fs1w8S6++z80vPngt3z4Vff7UFa9e2PWannw5vveV7BKuW2JAqRPnjP7/zp6VXh3zKl/bfbdvsm7Rsae+Y/vpr3zN4KH+kiijz51HHceKBuUA2MBIwwMNAmuM4ScaYA2W8xRvAQOB2YC0wBpjhOE4vY8yvARx76PkYwWEGDWLrvyaw7qcd1Jk/k84753MsuRwgnsUNe7Oi7xiaj+zPMed1JjG2gr8GJSfrbiGpkpQ/XpQ/IiFV5fJn3z47D9nixYc/9u4teZv8fLKmpPJU8xeYM8deoGVn2wGtJ51k+8769IFevWwnvYj4p8rlz7ZtsGiRzZxFi+zjt98gN7fkbQ4eJPON93jQPMKcOfDzz3bwRXy8/Z159GjbIZ+UBDExoauKiNtVufwpS5EbpM1nqaxu0J2Vr35pp63fMItext4RtKN6MzZ37c/+f/SjzRVn0jqxecX2qesvqaKUP6UzBn7/3XaGzZhh4+nAAXvjc69e8OCDdpTqCUdnUm3BfDs6/vy5dkmggwehZk04+WRbsE8fO210dc9sihdcoCU2pEpT/pTO7/w53lDtd0+H/Ngvi3fI9+tnZz/r3fvQndNa4keqOmNMqQ/gJuAg0NHruXZAHnBrGdt2xQbaKK/nYoGVwKdl7dsYw4knnmj8MneuMW3a2H+DYe5ckx8Xb4zNJJ+PZTW6menH32HmPTjH7NmWFZzjEHEh4Cfjx/e96EP5c+j9lT8iFaP8KSIvz5hVq4z56CNj7rvPmHPPNaZ9+8MzpV49Y0491ZjrrjPmlluMqVXLZ+4cIN70Zq4BY7p2NebWW41JTTVm717/DkUk2il/isjJMWbxYmPeftuY2283pl8/Y5o1OzxbWrQwZsAAY+64w5h77ikxf/Z78ic21phTTjHm/vuN+fprY7Kz/TsUkWin/AncwdnFr8HyiDG5xBgDJsOJM0tbDzBLRj1l9s1fbEx+ftCORcRNlD+BO3jQmB07jFmfMtfsb9zGPDlormnT5lAcdehgL9WmTjVmT3q2MfPmGfPgg8b07m1MjRq2ULVqxvTqZf+emjPHmIyMsusV78m8+Pig1k8kWJQ/gStX/uzON+a334x5+WVjLrjAmKZNDxVs2dKYESOMef11Y1avLv3vJOWPRIGK5o8/E4wOBr43xqwueMIYs85xnG+BIcCEMrbNBT7w2jbPcZzJwJ2O49Q0xmSXuLW/ypj2uUTGkJW+j10rtrLn920cWLuVnE1byf9rK6Rvo8bOrcTt20q9jK0k5qwhBlPiW+U1S6TLX7/QJeDKiIgX5Y/yRyRc3J8/O3fahd+9R8QvXVp4Z7KJiSG3XSf2t+9O+imX80ejJNbUTmJNbmvStzukb7RriXVoeA6v/TWIeA7d0ZzpxPPqoFSuuySZD5OhceOAayMih7g/f9LTD42GLxgZv3x54ah4U6MG2R2PYe8J/dnarCsbG3Tl97gkNhxoTHo6pP9i36Jjnb6kZA2idpH8eWtoKrddlsynp0PdugHXRkQOcX/+lCIr07B97V52rdzGvrXpZG5MJ/fPbeRvTSdmRzo1dm8jbn86zTLW0iZ/DUXnIKtGPgdjYtl+x3ga3389x9SsGXB1RKRQdOdPlv3bZutWO6C04OH9/wX/nZ4Op+alkYr9G+ja1EHsPiWVlncmc1afg3TY96sdIf/KXLj4GzuU1XGgWze44QY7Qv6008r3R5KW2JCqTfnjT/6caeiQt9KOjH//S7j6S7sh2BHyZ51VfIS8P5Q/UoX500F/DDDNx/PLgPP92HadMSajyPPLgBpAR89/V5yvaZ/PHshf975Ieu22ZK7fSu4fWzFbthKzYxs1d2+l9v6t1M/aSqO8bcSRRXOg6ORj2zmCndWbsq9WAusbn0h69ePotimVavk+plqMjyf2vUkBVUNEfFL+KH9EwsV9+TNgAPv7DSVvxx5qrVpM3I4/Covvq3kEa2onsbzOVSyslcR3B5JYmN2FrDVxsObwt65RA5o0OfQgOZmU7FSu+nQQ1XMzyI+LJ+5/qdyiiyaRYHFl/uw78x8c3LGbuFWLqLVrS2HxXXHNWR3flaUN+/Nzble+3ZfE0pzO5C2vDssPf+s6dQ5lT8uWUKdbMu9kpHL5xzZ/jCd/rlP+iASL+/Ln7IFsfuBVttXpQMb6beT8mc7BLek429OpvmsbtfanUycjnQa522hs0kkkl0Qfb73fqcPuGgkciGtCS2czJa2OUS0/j8bvPQ+PjA2oKiJSjPvyZ+AgNr2cyrq2yWV2epW0clhcHDRtCgkJ0Lo1dO8OPTPTGPmh/dsHIJ4MHvqhP3AS3LUMdu+2G3fpYju0+vSBM86wC0AHQktsSNWl/Cktf34cANVPhgd+q5wOeV+UP1JF+dNB3wjY5eP5nUDDALYteL3ifK1RAThZmbS493JaeD2XRzW2xySwu0YC++Kasr3xUaxo1BSaJFCtRVNqtm5K7fZNqX9kAo2PbkLjBtUpNhhMa2KIhJryp7T9KX9Egsl9+ZOTQ53U91lLO77jDBaTxGKS+L1WEgcTmtMkwSns+OrVBAY3ObwjvuBRt66v66pkSLN3NMfojmaRYHNl/tT9/ANW04Fv6c9iklhEV9bWTsJJaEJCwqGM6Z8AI7wyx/u1uDhfOz2UP47yRyTY3Jc/WZm0vPNSWhYpvt+pw67YBPbFNSGzcSJ7G5zA+iOaENO0CTUSE4hr3YS67ZvQ6KgE4ts0oU6tWtQpY1+AvQZLSQmoKiLik/vyJzODxMv6kkN76lOHIz3Px1aD2Op2febYWIitAdWbef7b+/lYqFZwN1A2sBFYvh/WrrWTRHvLzYX58+Hvf4cRI2yHWPOiwz1EpIKUP6XlT04OfPUV9O0L48ZVToe8iAD+ddADPudW9ucb6FRkW8dxrgKuAmjdunXJBUeN8n3B5JHdsCkb3phDg85NadSxEc1qxNDMj4MuUcF0GwWhqM4xkVBQ/oDyRyQ8XJc/DtA8IZ/Oqe9wqqfDq3ZtP47YH7qjWSSUXJk/iQl5HPf5m/QptcO9ApQ/IqHkuvwByG6QwMZXPqfBkQk07NSEOnW8OtzLq+i1VwFdg4kEm+vyJwZDu5qb2X9yP2rWtLORxQTSZzVzZvHOsQLGwLJlMHx4ADsQkRIof8rKn99/hyuuCGAHIlKUPx30u/B9p09DfN8d5G0n4CthGnq9XowxZiIwEaB79+4lL7ycklLqXc01p7xPp+RjyjjEctKaGCKhpPzxpvwRCSXX5k/85BR69CjjCEUkkrk2f+Imp3DiiWUcoYhEMtfmT82PJ3NkciUGkG6QFgk11+ZPtdRU6ldWNmgGD5FwUP6A8kckDEpaVsvbMuxaGkV1odiqgT63bec4TryPbXOA1X7sv2QFF0zxRd4+2BdOBSM4dGEmEmzKH1/7Vf6IhILyR0TCRfkjIuGi/PG1zzZtlHEiwaf8CfW+RKSA8ifU+xIRwL8O+k+Bno7jtC94wnGctsApntfK2rY6cL7XtrHABcBMY0x2eQ+4mKLBocAQiSbKHxEJF+WPiISL8kdEwkX542ufukFaJBSUP+HYl4iA8ic8+xIRvzroXwPWA9McxxniOM5gYBqwCXi1oJDjOG0cx8lzHOe+gueMMb8CHwDPOI4z2nGcvsBkoB1wf6XVQnc1i0Qr5Y+IhIvyR0TCRfkjIuGi/BGRcFH+hGtfIqL8Cde+RKq4MtegN8YccBynD/A08DbgAHOAm40x+72KOkA1inf6jwLGAQ8DDYBFwABjzMKAj95bwV3NIhI1lD8iEi7KHxEJF+WPiISL8kdEwkX5E+Z9iVRhyp8w70ukCiuzgx7AGLMRGFpGmfXYkCr6fCZwq+chIlIuyh8RCRflj4iEi/JHRMJF+SMi4aL8EZFwUf6ISDj4M8W9iIiIiIiIiIiIiIiIiIiIBEgd9CIiIiIiIiIiIiIiIiIiIiGgDnoREREREREREREREREREZEQcIwx4T6GUjmOkw5s8LN4Y2B7EA8nnFQ3d1LdrDbGmCbBPJhgUP4UUt3cSXWzlD/uprq5k+pmKX/cTXVzJ9XNUv64m+rmTqqbpfxxN9XNnVQ3S/njbqqbO6luVoXyJ+I76MvDcZyfjDHdw30cwaC6uZPqVnVE8+ehurmT6lZ1RPPnobq5k+pWdUTz56G6uZPqVnVE8+ehurmT6lZ1RPPnobq5k+pWdUTz56G6uZPqFhhNcS8iIiIiIiIiIiIiIiIiIhIC6qAXEREREREREREREREREREJgWjroJ8Y7gMIItXNnVS3qiOaPw/VzZ1Ut6ojmj8P1c2dVLeqI5o/D9XNnVS3qiOaPw/VzZ1Ut6ojmj8P1c2dVLeqI5o/D9XNnVS3AETVGvQiIiIiIiIiIiIiIiIiIiKRKtpG0IuIiIiIiIiIiIiIiIiIiESkiOqgdxynleM4HzmOs8dxnL2O43zsOE5rP7et5TjOE47j/OU4TqbjON85jnO6j3IxjuPc5TjOesdxshzHWeQ4ztDKr02x/Vaobo7jdHccZ6LjOCscx8lwHGej4zjvOo7TzkfZ9Y7jGB+Pc4NSqUP7DaTdfB2vcRynW5Fybmu3B0qpW1aRsuFqt0THcZ73fFcyPPts6+e2Ef19qwjlj8/tlD+4st2UPyh/fJRz23ms/MGV7ab8Qfnjo5zbzmPlD65sN+UPyh8f5dx2Hit/cGW7KX9Q/vgo57bzWPmDK9tN+YPyx0c5t53Hyh9c2W7KHyqh3YwxEfEA4oHfgaXAucAQYAmwBqjtx/bvAruBK4G+wMdAJtCtSLlxQDZwG5AMvArkA2dHYt2AJ4FvgeuAM4CLgN+AHUCrImXXA9OBnkUeDSOxbp7tDZDi45jjXd5uiT7q1BfIBf4b7nbz7Lc3sBX4HJjhaYu2fm4bsd+3MJ3HEft5BHgeK3/c2W7KnzC1W5jO44j9PAI8j5U/7mw35U+Y2i1M53HEfh4BnsfKH3e2m/InTO0WpvM4Yj+PAM9j5Y872035E6Z2C9N5HLGfR4DnsfLHne2m/AlTu4XpPI7YzyPA81j54852U/5UQrsFrfIV+LBuAg4CHb2eawfkAbeWsW1Xz4c7yuu5WGAl8KnXcwmeD+s/RbafAyyO0Lo18fFcG08jP1jk+fXAO25pN09ZAzxcRhnXtVsJ73eJp74Dw91unv3GeP33aH8DKtK/b6Fu60j/PJQ/pW6v/FH+hP2h/ClxW+WPC9uthPdT/oSg3ULd1pH+eSh/St1e+aP8CftD+VPitsofF7ZbCe+n/AlBu4W6rSP981D+lLq98kf5E/aH8qfEbZU/Lmy3Et5P+VPOdoukKe4HA98bY1YXPGGMWYe9e2aIH9vmAh94bZsHTAb6O45T0/N0f6AG8E6R7d8BjvM1bUYlqXDdjDHpPp7bAKQDLSv5OCsikHbzl+varQQjsXfszKicwwuMMSa/gptG+vetIpQ/Pih/ABe2WwmUP5by53ARex4rfwAXtlsJlD+W8udwEXseK38AF7ZbCZQ/lvLncBF7Hit/ABe2WwmUP5by53ARex4rfwAXtlsJlD+W8udwEXseK38AF7ZbCZQ/lt/tFkkd9Mdgp1IoahnQxY9t1xljMnxsWwPo6FUuG1jtoxx+7KeiAqlbMY7jHI29O+M3Hy+f41lPIdtxnO+DvY4DlVO3az3Hm+E4zlzHcU7zsQ9Xt5vjOInYKS7e9XyZiwp1uwUi0r9vFaH88ZPy57B9UI79lJfyx7dI/75VhPLHT8qfw/ZBOfZTXsof3yL9+1YRyh8/KX8O2wfl2E95KX98i/TvW0Uof/yk/DlsH5RjP+Wl/PEt0r9vFaH88ZPy57B9UI79lJfyx7dI/75VhPLHT8qfw/ZBOfZTXsof30L2fYukDvpGwC4fz+8EGgawbcHrBf/uNsbOM1BKucoWSN0O4zhOLPAK9g6iN4q8/BlwA/bOjYuBLOATx3FGlPeAyyHQur2DXV/kTOAq4AhgruM4vYvsw9Xthp3eIwZ4y8dr4Wi3QET6960ilD9+UP4U20fB68Gg/PEt0r9vFaH88YPyp9g+Cl4PBuWPb5H+fasI5Y8flD/F9lHwejAof3yL9O9bRSh//KD8KbaPgteDQfnjW6R/3ypC+eMH5U+xfRS8HgzKH98i/ftWEcofPyh/iu2j4PVgUP74FrLvW2yFDi94ilYEwPFjO8fPbf0tFwyVtd8XgJOx6zgcdpIYY2447M0d5xPge+BRik+zUJkqXDdjzCVe//uN4zjTsHftPAyc6vVebm+3S4FfjDGLi+0gfO1WUW74vlWE8qdsyp9y7iNAyp/i3PB9qwjlT9mUP+XcR4CUP8W54ftWEcqfsil/yrmPACl/inPD960ilD9lU/6Ucx8BUv4U54bvW0Uof8qm/CnnPgKk/CnODd+3ilD+lE35U859BEj5U1zIvm+RNIJ+F77vKGiI77sVvO0sZduC1wv+beg4TtEPqGi5yhZI3Qo5jvMo9i6by40xM8sqb4w5CHwIJDqO09zf/ZRTpdStgDFmH/A/oIfX025vt5OAo/B991AxIWq3QET6960ilD9lUP64tt2UP6WXiwTKnzIof1zbbsqf0stFAuVPGZQ/rm035U/p5SKB8qcMyh/Xtpvyp/RykUD5Uwblj2vbTflTerlIoPwpg/LHte2m/Cm9XIkiqYN+GXbO/qK6AMv92Lad4zjxPrbN4dAaAMuAmkAHH+XwYz8VFUjdAHAc5x7gTuAmY8zb5dh3wcnh606OyhBw3XwoeueJa9vNYySQB7xXjm2C3W6BiPTvW0Uof0qh/HFnu3kof4qXA+WPdzn82E9FKX/KR/mj/Ak15U8plD/ubDcP5U/xcqD88S6HH/upKOVP+Sh/lD+hpvwphfLHne3mofwpXg6UP97l8GM/FaX8KR/lj/LHMsZExAO4GduI7b2eawvkAmPL2LYbtiFHej0XC/wGfOb1XAKQDdxfZPvZwJJIrJun7I2e+t1dzv3GAj8BGyK1bj7erx6wEfjK7e3mKV8D2AFMi6R287HP0Z5zrK0fZSP6+xbqto70z0P5U673U/4of0L+UP6Uur3yx4Xt5imv/FH+uPo8Vv64s9085ZU/yh9Xn8fKH3e2m6e88kf54+rzWPnjznbzlFf+KH9cfR4rf9zZbp7yyp8A2i0klffzA6qNvfNgCTAEGAwsAtYCdbzKtfGcNPcV2X4ydtqF0UBf4CMgCzihSLnHPM/fCvQGXgbygXMisW7AhZ7j+wLoWeTRxavccM9ncCmQ7NnuG8+JdGGE1u024DXgIk9bjPS8Tw5wmpvbzeu18zxtcF4J+whLu3ntf5jn8bJnn9d6/v8Mt37fwtHWkfx5BPgdVf64sN28XlP+KH9cex6j/HFlu3m9pvxR/rj2PEb548p283pN+aP8ce15jPLHle3m9ZryR/nj2vMY5Y8r283rNeWP8se15zHKH1e2m9dryp8A2i2ola/Ah9UamALsBfYBUylyRwP2Dg4DPFDk+ThgArDF84EsAHr72Ec14F5gA/buhsXAsEitG/Cm5zlfjy+9yvUE5gJbsXe47MHeqdE/gut2DvAtsN1zzDuAT4GT3N5uXq9N89SrRgnvH7Z28+y/1HPLrd+3ULd1pH8eAXxH3yzrHAn3eRxA3ZQ/yp+IeQTS1pH+eQTwHX2zrHMk3OdxAHVT/ih/IuYRSFtH+ucRwHf0zbLOkXCfxwHUTfmj/ImYRyBtHemfRwDf0TfLOkfCfR4HUDflj/InYh6BtHWkfx4BfEffLOscCfd5HEDdlD/Kn4h5BNLWkf55BPAdfbOscyTc53EAdVP+KH9KfTieNxEREREREREREREREREREZEgign3AYiIiIiIiIiIiIiIiIiIiFQF6qAXEREREREREREREREREREJAXXQi4iIiIiIiIiIiIiIiIiIhIA66EVEREREREREREREREREREJAHfQiIiIiIiIiIiIiIiIiIiIhoA56ERERERERERERERERERGREFAHvYiIiIiIiIiIiIiIiIiISAiog15ERERERERERERERERERCQE1EEvIiIiIiIiIiIiIiIiIiISAv8P0BBW31FUOS0AAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# Attention, les deux listes suivantes ne donnent pas les mêmes valeurs que la troisième\n",
"\n",
"# yy_tmp1 = [sol_exacte(t) for t in tt]\n",
"# print(f'{yy_tmp1=}')\n",
"\n",
"# yy_tmp2 = list(map(sol_exacte,tt))\n",
"# print(f'{yy_tmp2=}')\n",
"\n",
"yy = sol_exacte(tt)\n",
"# print(f'{yy=}')\n",
"\n",
"\n",
"uu_EE = EE(phi,tt,y0)\n",
"uu_AB2 = AB2(phi,tt,y0)\n",
"uu_AB3 = AB3(phi,tt,y0)\n",
"uu_AB4 = AB4(phi,tt,y0)\n",
"uu_AB5 = AB5(phi,tt,y0)\n",
"uu_N2 = N2(phi,tt,y0)\n",
"uu_N3 = N3(phi,tt,y0)\n",
"uu_N4 = N4(phi,tt,y0)\n",
"uu_EM = EM(phi,tt,y0)\n",
"uu_RK1_M = RK1_M(phi,tt,y0)\n",
"uu_RK4 = RK4(phi,tt,y0)\n",
"\n",
"uu_EI = EI(phi,tt,y0)\n",
"uu_CN = CN(phi,tt,y0)\n",
"uu_AM2 = AM2(phi,tt,y0)\n",
"uu_AM3 = AM3(phi,tt,y0)\n",
"uu_AM4 = AM4(phi,tt,y0)\n",
"uu_BDF2 = BDF2(phi,tt,y0)\n",
"uu_BDF3 = BDF3(phi,tt,y0)\n",
"\n",
"uu_heun = heun(phi,tt,y0)\n",
"uu_AM2AB1 = AM2AB1(phi,tt,y0)\n",
"uu_AM3AB2 = AM3AB2(phi,tt,y0)\n",
"\n",
"\n",
"fig = figure(figsize=(28,12))\n",
"\n",
"subplot(3,7,1)\n",
"plot(tt,yy,'b-',tt,uu_EE,'r-D')\n",
"err = norm(uu_EE-yy,inf)\n",
"title(f'AB1=EE\\nmax(|err|)={err:g}')\n",
"\n",
"subplot(3,7,2)\n",
"plot(tt,yy,'b-',tt,uu_AB2,'r-D')\n",
"err = norm(uu_AB2-yy,inf)\n",
"title(f'AB2\\nmax(|err|)={err:g}')\n",
"\n",
"subplot(3,7,3)\n",
"plot(tt,yy,'b-',tt,uu_AB3,'r-D')\n",
"err = norm(uu_AB3-yy,inf)\n",
"title(f'AB3\\nmax(|err|)={err:g}')\n",
"\n",
"subplot(3,7,4)\n",
"plot(tt,yy,'b-',tt,uu_AB4,'r-D')\n",
"err=norm(uu_AB4-yy,inf)\n",
"title(f'AB4\\nmax(|err|)={err:g}')\n",
"\n",
"subplot(3,7,5)\n",
"plot(tt,yy,'b-',tt,uu_AB5,'r-D')\n",
"err=norm(uu_AB5-yy,inf)\n",
"title(f'AB5\\nmax(|err|)={err:g}')\n",
"\n",
"subplot(3,7,6)\n",
"plot(tt,yy,'b-',tt,uu_N2,'r-D')\n",
"err=norm(uu_N2-yy,inf)\n",
"title(f'N2\\nmax(|err|)={err:g}')\n",
"\n",
"subplot(3,7,7)\n",
"plot(tt,yy,'b-',tt,uu_N3,'r-D')\n",
"err=norm(uu_N3-yy,inf)\n",
"title(f'N3\\nmax(|err|)={err:g}')\n",
"\n",
"subplot(3,7,8)\n",
"plot(tt,yy,'b-',tt,uu_N4,'r-D')\n",
"err=norm(uu_N4-yy,inf)\n",
"title(f'N4\\nmax(|err|)={err:g}')\n",
"\n",
"subplot(3,7,9)\n",
"plot(tt,yy,'b-',tt,uu_EM,'r-D')\n",
"err=norm(uu_EM-yy,inf)\n",
"title(f'EM\\nmax(|err|)={err:g}')\n",
"\n",
"subplot(3,7,10)\n",
"plot(tt,yy,'b-',tt,uu_RK1_M,'r-D')\n",
"err=norm(uu_RK1_M-yy,inf)\n",
"title(f'RK1_M\\nmax(|err|)={err:g}')\n",
"\n",
"subplot(3,7,11)\n",
"plot(tt,yy,'b-',tt,uu_RK4,'r-D')\n",
"err=norm(uu_RK4-yy,inf)\n",
"title(f'RK4\\nmax(|err|)={err:g}')\n",
"\n",
"subplot(3,7,12)\n",
"plot(tt,yy,'b-',tt,uu_EI,'r-D')\n",
"err=norm(uu_EI-yy,inf)\n",
"title(f'AM0=EI\\nmax(|err|)={err:g}')\n",
"\n",
"subplot(3,7,13)\n",
"plot(tt,yy,'b-',tt,uu_CN,'r-D')\n",
"err=norm(uu_CN-yy,inf)\n",
"title(f'AM1=CN\\nmax(|err|)={err:g}')\n",
"\n",
"subplot(3,7,14)\n",
"plot(tt,yy,'b-',tt,uu_AM2,'r-D')\n",
"err=norm(uu_AM2-yy,inf)\n",
"title(f'AM2\\nmax(|err|)={err:g}')\n",
"\n",
"subplot(3,7,15)\n",
"plot(tt,yy,'b-',tt,uu_AM3,'r-D')\n",
"err=norm(uu_AM3-yy,inf)\n",
"title(f'AM3\\nmax(|err|)={err:g}')\n",
"\n",
"subplot(3,7,16)\n",
"plot(tt,yy,'b-',tt,uu_AM4,'r-D')\n",
"err=norm(uu_AM4-yy,inf)\n",
"title(f'AM4\\nmax(|err|)={err:g}')\n",
"\n",
"subplot(3,7,17)\n",
"plot(tt,yy,'b-',tt,uu_BDF2,'r-D')\n",
"err=norm(uu_BDF2-yy,inf)\n",
"title(f'BDF2\\nmax(|err|)={err:g}')\n",
"\n",
"subplot(3,7,18)\n",
"plot(tt,yy,'b-',tt,uu_BDF3,'r-D')\n",
"err=norm(uu_BDF3-yy,inf)\n",
"title(f'BDF3\\nmax(|err|)={err:g}')\n",
"\n",
"subplot(3,7,19)\n",
"plot(tt,yy,'b-',tt,uu_heun,'r-D')\n",
"err=norm(uu_heun-yy,inf)\n",
"title(f'Heun\\nmax(|err|)={err:g}')\n",
"\n",
"subplot(3,7,20)\n",
"plot(tt,yy,'b-',tt,uu_AM2AB1,'r-D')\n",
"err=norm(uu_AM2AB1-yy,inf)\n",
"title(f'AM2AB1\\nmax(|err|)={err:g}')\n",
"\n",
"subplot(3,7,21)\n",
"plot(tt,yy,'b-',tt,uu_AM3AB2,'r-D')\n",
"err=norm(uu_AM3AB2-yy,inf)\n",
"title(f'AM3AB2\\nmax(|err|)={err:g}')\n",
"\n",
"\n",
"fig.tight_layout() ;"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Méthode 2**\n",
"\n",
"La deuxième méthode fait appelle à la notion de dictionnaire, elle est compacte mais peut-être plus difficile à comprendre. On crée \n",
"- une liste avec les noms des schémas,\n",
"- un dictionnaire avec comme clé les noms des schémas et comme valeur l'array solution approchée\n",
"- un dictionnaire avec comme clé les noms des schémas et comme valeur le maximum de la valeur absolue de l'erreur."
]
},
{
"cell_type": "code",
"execution_count": 73,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAB8kAAANLCAYAAADCbazIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3gU5RbH8e9LL4KgWFFBFAs2FAt2sZfYsGAHLBQBpQpIlSIWmmABpApWQEFFUJCAiIpgw94QsCAiCAihJu/940wuMaRsks1OdvP7PM88a2ZnZs/mknNn3nJe571HRERERERERERERERERESkOCgRdgAiIiIiIiIiIiIiIiIiIiKxok5yEREREREREREREREREREpNtRJLiIiIiIiIiIiIiIiIiIixYY6yUVEREREREREREREREREpNhQJ7mIiIiIiIiIiIiIiIiIiBQb6iQXEREREREREREREREREZFiQ53kIiIiIiIiIiIiIiIiIiJSbKiTXArMOVfTOedz2eZlOD63Y5eH921EpChyzs0I8sNXORyTVT5Z65z71DnXyTm3R6bj93DO3e6cm+Kc+8k5t9U5t845N9s5l1T430pEiqrCyDnBOfc552Y651Y451KCnPOJc66dc65C4X4rESnKCivvZHGNGzKce01Uv4SIxJVCvN+Zl0N7z5uF+61EJB5kakuenM0xTYL32wY/l3bOXeece845913wPLXBOfe+c+6OmH4BEYkr+ck5wb5bnXPTnHPLnHObgpyz1Dn3kHOuasy+gBSqUmEHIAnle+ClbN5bnunn1cCIbI5dH6V4RCQBOOcOAC4BPHCMc+4U7/3ibA7PmFscUA24FHgMaOicO8t7nxq8fxbwHLAGeBeYDFQHrgMudM496L0fUBjfSUSKrkLMOQB3AWnA3ODcisC5wGDg1uD4rdH+TiJStBVy3sn4OdWAp4DNWP4RkWIqRnnnoSz2/VCwyEUkAV3nnDvZe78kl+MOA6YAG7E2nGnA3kBDYIJz7kzvffNCjVREEkGkOQegEXA4sBBYBZQBTgV6Anc450713q8pvFAlFtRJLtH0nfe+d4TH/pmHY0WkeGsMlAQGAR2AO4HsGnB2yy3OuTLAh0B9rDNqbvDWKuAWYLL3fmeG4/sCHwN9nHPPee9/j95XEZE4UFg5B+C0rDrBnXMTgDuAW4ExBYxfROJPYeadjJ4GtmCDBDsUOGoRiWeFnnfU5iMiEfgFqAkMAC7K5dh/gZbABO/9lvSdzrkHsTacZs65Md77jwspVhGJf3nJOQA3ZtOG8xDWUX4f0COaAUrsqdy6iIgUdU2ADUB3bObBTc65cpGe7L3fDswLfqyWYf8X3vsXM3aQB/t/BF7BBpKdXqDIRSQeNaEQck7wXnazxKcGr4fnJVARSRhNKKS8k845dx1wA9Ac2FSAWEUkMTShkPOOiEgElmLPQhc65y7I6UDv/e/e+xEZO8iD/WuAUcGP5xROmCKSICLOOaA2nOJCneQiIlJkOefOBI4EpgQ3JpOAKlg5rUivURqb3eCBzyM8bUfwujPHo0QkoYSYc64IXrNdE1REElMs8o5zbm9sFvlE7/2sgkctIvEsVvc7zrmbnHNdnXP3OefqFzRuEUlY3YFUbGZnfqkNR0QiFY2cozacBKJy6xJNRznnemfz3izv/UcZft4/h2M/UuONiASaBq8Tg9dJ2Np2TYEXsjg+Y25x2PpUFwMHA52997mugeec2wNrINoKLMh35CISj2KSc5xz9wL7Yg3SZwCnAG8BLxX4G4hIvIlF3nkqeG0XjYBFJO7F6hnrxYw/OOcWATd575fnO3IRSTje+++dc+OAu51z13nvp+Z6UgbOuZLYslUAc6IeoIgklPzkHOfcLcARQCXgJOA8YAkwrDBjldhQJ7lE05FAr2zeWw9k7CTfL4djnwDUSS5SzDnnKgI3AiuB9wC897845z4AznfOHeK9X5nptOxyyxvAjAg/+kngAOAh7/3afAUvInEnxjnnXuCYDD8/DzT33qfmN34RiT+xyDvOuWuBRkAj3deISIzud6YBj2AzzDcCtYH2wB3A2865E3IoXyoixVNv4Dagn3NuWh6fi3oCdbG1yjWrU0Qi0Zu85Zxb2DV7HOAd4Hbv/b+FFJ/EkMqtSzRN9967bLahmY79Iodj24YQu4gUPddjI/Se9977DPsnYv//1SSLc/6TW7CZmo2A04CFzrkjcvpA51x3oDEwG+hX8K8gInEkZjnHe39scPz+wE3Y2nmLnHMHRu3biEg8KNS8E5RZfwZ7TnulkL6DiMSXQr/f8d4P9d7P8t7/6b1P8d5/4b1vjM1SP4JdMz5FRABbbxybsHAU1iYTEefc7UAPbJ3hNoUTnYgkmrzmHO99UnAPVA3rLK8OfOKcOybnMyUeqJNcRESKqvQygJMy7X8F2A40cc65nC7gvV8TNAp3wcoad8nuWOdcW6AvVmL9Gu+91rISKV5imnOC41d7718GrsVmlj+aj7hFJH4Vdt4ZBJTDqleIiEAI9zsZjAlez4zweBEpXgYAG4DezrmyuR3snLseGAd8B1ykGZ0ikkd5yjkA3vu13vu3gEuxDvMRhRifxIg6yUVEpMhxzh2GzawE+No559M3YB1QBjgUWwMmEouD15Oy+bzWwBDgQ+By731KfmMXkfgT65yTmff+E+CfDDGISIKLUd6pC+wJ/J7p+ullk18L9jXJ/zcRkXgR9v0O8HfwWiHC40WkGPHerwMGAgcDrXI6NlhO5kVgGXCB9/6vwo9QRBJJXnJOFuf+BnwL1HfOlS6E8CSGtCa5iIgURU0AByRjDz2ZVQOuxmZCJEdwvarB626Dw5xz9wLDsUaeS733m/IRr4jEtybEKOdkJVgfdE+so1xEiocmFH7eeRVYksWxJwEnAnOAFcAPEUUsIvGuCSHe7wCnBq/LIzxeRIqfIUBroCtW6W83zrmrgJeBlUAD7/2q2IUnIgkm15yTgwMBD+S2nrkUceokFxGRIsU5VwJbDyYVuDWrBx7nXBngD+A651xr7/3GXK7XOvhxQab3mmFr0HwKXJzTdUQkMcUq5zjnDgD28N7/mOn4UtiDWQlgVgG/jojEgVjlHe99n2yO7411kj/lvZ+Wz68hInEkhvc7BwN473/NdPyRQD+sMfmVgn0bEUlU3vvNzrl+2ESG+zK/75y7ApiM5aoGwbrCIiL5klPOcc5VAg733n+Wab8DugP7AW9579NiFa8UDnWSSzQdFTS4ZGW9935ohp/3z+FYvPfZviciCe9CrNTNjOxGBHvvtzvnnsduYBoBzwZvZc4t1YBzgWOB34H+6W84585n19oxC4G2WSy/N897P68gX0ZEiryY5BzgSGCuc+4DbN28NcC+wecfAnzDrhLIIpLYYpV3RETSxSrv1AOmOOfmAz9ia33WBpKA0kBP7/2n0fpSIpKQRgLtgcMy7nTOHQVMxZaGmA/cmUUbzucaACgieZRlzgH2Bj51zn0KfAmsCvadBRyNDda5P4ZxSiFRJ7lE05Fk37i7Ahia4ef9cjgWoHd0QhKRONQ0eB2fy3HjsAacO9nVgJM5t2zD8s8TwMOZ1qk6BCs3CNAmh8+Zl2vEIhLPYpVzvsPWuzoPK2VaBdgc7H8KeNJ7n5LP7yAi8SVWeUdEJF2s8s7XwETgFGxphz2w9c5nAcO997Pz/xVEpDjw3u9wzvXEcklG+wNlg/++I5vTJwDTCik0EUlAOeScNVgJ9gbApVgH+VZsEGA/YEiwrrnEOee9DzsGERERERERERERERERERGRmCgRdgAiIiIiIiIiIiIiIiIiIiKxok5yEREREREREREREREREREpNtRJLiIiIiIiIiIiIiIiIiIixYY6yUVEREREREREREREREREpNhQJ7mIiIiIiIiIiIiIiIiIiBQb6iQXEREREREREREREREREZFiQ53kIiIiIiIiIiIiIiIiIiJSbKiTXArEOXeoc26bc65Vpv1NnHPeOXdeOJH9P47xzjmfaV8J59w3zrmpYcUlIvmjnCMisaa8IyKxpJwjIrGmvCMisaScIyKxprwjOVEnuRTUAOAvYHTYgUTKe58G9AUaOudODzseEckT5RwRiTXlHRGJJeUcEYk15R0RiSXlHBGJNeUdyZY6ySXfnHPHADcCw73328KOJ49eBn4DeoUdiIhERjlHRGJNeUdEYkk5R0RiTXlHRGJJOUdEYk15R3KjTnIpiOaAB14IO5C8CkbivAhc7JyrGXI4IhIZ5RwRiTXlHRGJJeUcEYk15R0RiSXlHBGJNeUdyZE6yYsg59x5wVoIvZ1zZznn3nPObXLOrXLOPeqcKxkcd4dzbqlzbotz7mfn3J2ZrnOEc+5x59znzrl/nHNbnXNfO+e6O+dKZzr2juAzX84inm7BewMz7CsJ3AYs8t7/lsfvV9k51885910Q01rn3DTn3AlZHLs82PZyzo1wzv3hnEsNfkcZf0/nOOfmOuc2Oud+iTCUqYADbs9L/CKJRjnnP8cq54jEgPLOf45V3hEpZMo5/zlWOUckBpR3/nOs8o5IIVPO+c+xyjkiMaC8859jlXfimDrJi7bTgHew9RJGAeuBB4CHnXPtgaHAJ8AYYE9gjHPu3AznNwSaAj8ExzwLpGJrGUzO+EHe++ew8g03OueapO93zp0C9Aa+ALplOOUEoCrwUV6+kHOuWnBON+AP4CngDeAC4AOX9foKZYG5wDlYUhgJbMzw/pnAHCAFeAaYGWE4nwHbgPPz8h1EEphyjlHOEYkd5R2jvCMSG8o5RjlHJHaUd4zyjkhsKOcY5RyR2FHeMco7capU2AFIji4Fkrz3MwCccz2An4A2wDrgRO/9iuC9ccASoAMwPzh/IjDYe789/YLOOYclq7udc2d579/P8HktgDOAYc6594DVwPPATuDWTGs2pCeCT/P4nYYDRwO3eO9fzBBXPyxZjgKOy3TO/sF3uy7Tdzkv+M8Lg/jyVDLDe7/dOfcVcJpzrkRQvgLnXBWgbR4utd57PzQvny1SRCnnGOUckdhR3jHKOyKxoZxjlHNEYkd5xyjviMSGco5RzhGJHeUdo7wTr7z32orYBpyHrZPwbhbvjQ7e65HFez8BKyK4/knBNXpn89mpwAfA2OC41lkcNyB476JsPqNJ8P55GfZVC679ZjbnDAzOOTbDvuXBvmNy+D0tzuG7jrd/5tm+/1ZwjX0y7KsZ7It0Wx72vxlt2gqyKeco52jTFutNeUd5R5u2WG7KOco52rTFelPeUd7Rpi2Wm3KOco42bbHelHeUdxJl00zyou2LLPb9mct7p6X/4JwrAdyF/bEfA1TG1i9Id0DmC3jv5znnHgc6YyNtZnnvn8zis/YOXv/J+Sv8xylYif89nHO9s3j/6OD1KOCrDPu3eO+/zuG6S/IQQ2bp8VcD1gB475fz39+TSHGhnGOUc0RiR3nHKO+IxIZyjlHOEYkd5R2jvCMSG8o5RjlHJHaUd4zyTpxSJ3nRtjGLfTtzeS/j/6bDgXuBFcCrWALaDlQB7sfWScjKNCzBgK23kJUtwWv5bN7Pyl7B67nBlp2KmX5ek8t1/8pDDJmlx59SgGuIJArlHKOcIxI7yjtGeUckNpRzjHKOSOwo7xjlHZHYUM4xyjkisaO8Y5R34pQ6yROUc24/oCU2Wud07/2WDO+dhiWYrM6rgJV32AqkAU845+Z77//NdGj6H/1eRC49Kfb33nfPw3m+gO/npGrw+v8kpvUcRPJOOSdiyjkiUaK8EzHlHZEoUM6JmHKOSJQo70RMeUckCpRzIqacIxIlyjsRU94pROokT1yHYuUW5mRMLoEzczhvCHAkloC2AiOx0TxNMh33ZfBaOw8xLcaSQf08nFPYjgCWee8zjsKpAvTKwzVWAEOjGJNIPFLOiYxyjkj0KO9ERnlHJDqUcyKjnCMSPco7kVHeEYkO5ZzIKOeIRI/yTmSUdwpRibADkEKzMng93Tn3/7UJnHNHAF2zOsE5dxXQDHgHGO69HwW8DjR2zt2Q6fD3sWRxaqQBee//BKYAFzjnWmbx+SWcczmVsIgq59yBwIHA/Iz7vffLvfcuD1vNWMUsUoQp5+RCOUck6pR3cqG8IxJVyjm5UM4RiTrlnVwo74hElXJOLpRzRKJOeScXyjuFTzPJE5T3/g/n3GvAtcBi51wy9sd0FfA2cF3G451z+wNjgLVAE+99evmHu7ARNyOdcx96738Lrr/WObcQOM85V8p7v5PItASOAp52zt0NfAxsAg4BTgf2Bcrl93vn0YXB6/QYfZ5IwlLOiYhyjkgUKe9ERHlHJEqUcyKinCMSRco7EVHeEYkS5ZyIKOeIRJHyTkSUdwqZZpIntsbAE8A+QBugLtAN6JTxoGCUznigGtDMe78q/T3v/d9AU6x8w3POuYz/ZkYF17440oC892uxRNIN+/d3B5Z0TgIWArdE/vUK7FZgFTAjhp8pksiUc3KmnCMSfco7OVPeEYku5ZycKeeIRJ/yTs6Ud0SiSzknZ8o5ItGnvJMz5Z1C5nYNthDJG+dcOeBHYLH3vmGm95oA44AG3vt5sY/u/3GMBxp7712m/TWAn4He3vt+YcQmInmjnCMisaa8IyKxpJwjIrGmvCMisaScIyKxprwjudFMcsk37/1WoCdwjXPuuLDjyaMHgTXAkLADEZHIKOeISKwp74hILCnniEisKe+ISCwp54hIrCnvSG60JrkU1ARgf+AAbN2HIi8ot7EcuMN7vznkcEQkb5RzRCTWlHdEJJaUc0Qk1pR3RCSWlHNEJNaUdyRb6iSXAvHepwEDwo4jL+IxZhEx8fj3G48xi8gu8fg3HI8xi4iJx7/feIxZRHaJx7/heIxZREw8/v3GY8wisks8/g3HY8zxSp3kUlg+Bx7CRruEaVoRiEFECt/nKOeISGx9jvKOiMTO5yjniEhsfY7yjojEzuco54hIbH2O8k6x57z3YccgIiIiIiIiIiIiIiIiIiISEyXCDkBERERERERERERERERERCRW1EkuIiIiIiIiIiIiIiIiIiLFhjrJE4Bz7nTn3NvOuQ3OuU3OuQXOuSvycH5d59zDwTX+ds5559y0HI6v75yb6Jz72jn3j3Nui3PuB+fcWOfcEVkc3zu4Zk5bjyzOu8M595FzbrNz7l/n3ELnXMMc4qrinBvmnPvVObfNOfezc66Pc65cBL+DKs6533P77iLFSUFzS3CNiP8unXNnO+cGO+c+y5BbvnLO9XLOVcjm+uWdcw85574Lrr/WOTfNOXd8LnFd7JybEeS8rc65X5xzLznnDs50XF7zY5Nccl21LM5p45wb75z70jm3Mziubk7xiySqOMk7Ef/NOufOi+Ae6N1M5+Qp72Tz/fN0TxPkQ++cWx/p54gkgqKec5xztZ1zDwZxrXLObXfOLXfOjXLO1cgmniudc8Odcx8451KCv+222Rxb2jl3nXPuueBeKiX4XbzvnLsjD98/25yTn+8gksiKet4JzsnT84kzNzjn3nPO/Rl8r2+Dzz0gi+Pz+oyV19xZ0+V873V9dp8lkmhCyDn7Oue6OuemBv9/n+dnDJfLs0mG62a1PZnNOSc7514Nzt3inFvmnHvZOXdiFsfmNefs55x7yjn3sXPur+B3tDL4Hufn5buLJIJ4yTvOuSRnzz2bgljfds6dnsPxEfdVBfdR2eWpr7I4Ps/3a8F5JZ1zLYO4NgZxfe2ceyq37y+7aE3yOOecuxCYCaQALwavNwLVgabe+/ERXKM30AvYBvwEHANM995fk83xHYF2wEfAb8BW4CjgcmAncLH3fkGG488Dzsvm49sCewL1vfeLMpzzBHAf8DvwRrD7KuBAoL33fkimmCoBC4HjgFnAF8CpQANgDnCp9z41h9/BeOB6oGJO312kuIhSbsnT36Vz7k9gb2AB8BlQCrgEODL4+Wzv/eYMx5cD5gGnBe/PA/bB/pYBLvDef5BFXP2Ablj+mgH8g+WW84BbvffvZzi2N3nLj02AccB04PMsDnnMe5+S6Zz0/yP+AygJ7Aec6L3P6nyRhBUPeSc4J+K/WedcTaBJNuFeA5wAdPHeP5rhnN7kIe9k8ZnjycM9TZC3xgDbgW3e+yqRfI5IvIuHnOOcewloFFx3IbA5uP652P3LWd77bzLFNC94fwOwFqgFtPPeD80i/qOAb4GNwLvAD0F8DYG9gFHe++a5/A7Gk0POyc93EElU8ZB3gnPy9HzinBsK3I89X70efK9TgXOAP4GTvPerMhzfm7w9Y+U1d9YEfgl+N9OyuOQryjtSHISUc84DkoE04EegBnl4xojk2cQ5txyoAgzN4hIfe+/fynR8Q2AysAV4FctthwFXAw64wnv/Tobj85pzTsbuoz4ClmH3N9WD6+8JdPLeD4zk+4vEu3jJOxnab1cDL2N/5zcBlYHLvPdzMh2f176q8UBj4AlgfaaP/8t7/3Sm4/Nzv1Yea3++iF3t4qnY89+53vvdJmpJNrz32uJ0A0pjN/5bgOMy7K8G/Io1jOwVwXWOAU4MrlcT8MC0HI4vl83+BsG5CyKMv05w/NeZ9p8S7P8eqJJh/17YA9Q24NBM5/QLzumbaf8zwf67cojjsuCY+3L77tq0FYctirklT3+XwAPAfpn2lcIaNjzwQKb3OgX7XwRKZthfD9iBNfqWzHTO9cE5U4CyWcRcKtPPec2PTYJjmuTh930FsH/w3+OD8+uG/e9Am7ZYbvGSd4L3C/w3izU4/4ENLjwg03t5yjuZzs3TPQ32QPcPMBhYDqwP+9+CNm2x2OIl5wT3Fcdl8bnp90BvZfHeWcDhWKNv+n1J22zirw60AMpn2r9P8PvxwKk5fP9cc05+voM2bYm4xUveCd6P+F4H2B9rlP4B2CPTe48E5/bKtD+vz1h5zZ3p1xwf9v/u2rSFtYWYc/bDBshUCn5eToTPGET4bBK8tzwPv4tvsDaiYzLtvzT4DsmZ9uc155QmU9tTsP8AbKDQlsz5UZu2RNziJe9gndEbsA7yAzPsPxwbPLwMKJ1hf376qsYH59SM8HeXn/u1J4P3OmTxXqlIPldb8PsKOwBtBfgfb9f/mT+bxXv3B+81z+M1a1KAjmJgHbAqwmMHZvWHnCERtszinDaZkyTWAPRHkNwqZDq+Gjb68MNsYtgzSNIvFfS7a9OWKFs0cktB/i6zuNbpwWe+mWn/+8H+o7M4Z2rw3gWZ9n8XxFQ5H7+XXHME+egkz3R++k1U3bD/HWjTFsstXvJOFsfl628WSArOeyOX4yK+N8nPPQ02AvpnoALqJNdWjLZ4zTkZji+JzcjelMtx6fclbfPxO+oanNsxm/cL9BwV6XfQpi1RtnjNO7nd6wD1g/dHZ/He2cF7T+Zw/Tznj9y+A+ok16atyOScvDxjRPpsQt47ybcCP2WxvwTWef5VhNfJ0/1acM6rwTlHhv1vQpu2wt7iJe9gg4Q90C2L94YE712SYV+e+qqC/en3TzUL+DvN7l7nYGzSRXLY/7snwqY1yePbucHr7CzeezvTMYUuWLOhKrDbugpZHFsKuA27GZmY6e39gtflWZyavu+8DPuOwEbnLfSZyhh77/8GPgVOzWrNCizxlcdmP4iIiUZuKcjfZWY7gtedmfbnKVc4507AytTMBjY7565wznVxzt0blBuNprrOufbOuQeccw2DUkEikr14yTvRcmfwOjaK18zTPY2z9YaTgGaZf18ixUC85xwfHFtYOQpyj6mgz1Gx+A4iRUm8553s/BRc6+ws1sy8PHidW8DPyE5u3+HAYJ3Ors65xs65gwopDpGiqKjlnBzl49mkbPB3/WDwd358Dsd+A9Rwzh2daf9F2EzNSHNUnvKmc25vbHnAf4EVEX6GSDyLl7yT1zjz2leVUXrbczvn3PnOuZJ5iBOyzzsNsUHHU51zlZ1zt2e439k3j59R7JUKOwApkNrB609ZvPcz1vBweGF9uHPuDOBioGzwOVcCfwEdIzg9CUswr3nv/8r03t/Ba40szqsZvB6RYV9OvwewtShOw9Zj+P+6U865S4GmwO3e+7+CdatEJDq5JV9/l9loHLxmvnn5O4ijBjZDPKOawWvGXFEveF0HfICtZ5POO+eGYWt2+lziicT9mX5e75y713v/YhSuLZKI4iXvFJhzbh/sPugv4M0oXTNP9zTOuQOwNfzGeO/fjUYMInEm3nPOtdh6eVMiPD5PgsabW4Mf52TxfjSeowr1O4gUQfGed7Lkvf/bOdcTGAB865x7A1t/9GTgDKC/9/7VgnxGDnL7DhcFW7qdzrkhQBfvfVohxSRSVBS1nJOtfD6b7I/N1Mx4nbewe5N1mY7tiM1SX+ScexVYha1JfhW2nm/3CD8zx5zjnDsQaIZ1XB0YXL8KcKf3fmuEnyESz+Il7+T0GT8GrxnjzGtfVUZPZvr5e+dcI+/9F7kFGcgu76S3cVfFysDvn+G9zc655t775yP8jGJPM8njW+XgdWPmN7z3O7D1H/YsxM8/A+gFdMHW+f0NuDzCP/KcZlDNCl7bOuf+H79zrgq7ZipUyXB8tr+HTPszXqsyMAqY6b2fFEG8IsVJNHJLnv8us+KcuxBoif0f/phMb6fnih7OuRIZzjkRG7QD/80V6SPp7gw+9xygEpbLvsE6tu/NKZ4ILAuucThWIqwm0Aq7EZwUfB8R2V285J1ouB1bq2ti8N0KJJ/3NCOwsoORDGwUSURxm3OCBtjh2N9wz9yOz6eeQF1ggvf+P1XCovEcFaPvIFLUxG3eyY33/hGsEbca9uzTCWgAzANeKej1s5LLd0gBHsLyWGXsOfAqrOG7E9C7MGISKWKKTM6JQF6fTcZiszb3wWKsD8zEqle8lvlg7/1cbFboWixXdQFuwNZOHuu9z+77/V+EefNArJ28O9buVA5o6r3PXEFVJFHFS97J6TOyun5e+6oA5gPXYWXRywNHY4OBDgdmO+f2Ixe55J30Nu5ewBLgqCCGm7DZ5+Odc3Vz+wwx6iSPby54jcasxzzz3g/03jtgD+AU4GtgoXOuUU7nOef2By7DRu7NzOK684EXsLLIXznnnnLOPY2Vcd8SHJaa8ZLpp+Yh/MFY4mieh3NEioto5JYCX8M5dxzWqLIJuDGLkbdDsBnktwCLnXODnHPPAQvZNbM8Y64okeG1kfd+gfd+k/f+Q+wBKQ1on994Abz373nvn/He/+y93+K9X+G9fxq7SSmB3byIyO7iJe9EQ9PgNVql1vN0T+Ocuw1rKL7Xe78+SjGIxJu4zDlBB/Ub2EyBFt77b/P72Tl8xu1AD2AptsZeZgV6jorFdxApouIy70R4zV7AaKzz+SCs8fli4FCsjeikgn5Gps/L8Tt47//y3vf23n/hvf/Xe7/Ge/8GcD7WSdbJObdHNGMSKYKKRM7J9QPy8Wzive/jvZ/vvf87+BtfhFXqeh84xzl3QabPSMJKqr+HtTVXwAbR/AJMd87leE8Tad703i8J2snLYDNVnwKeCypYiBQHcZF3MnxGRPLRV4X3fpz3/lXv/W/e+63e+++89+2AR7EBPq1zDDD3vJPexr06eP977/0G7/3LQGesgnhWz3KSBXWSx7cNwetuI2ecc6WxUSobMr8Xbd77zd77JdjomG+BUc65qjmccgf2h/qc9z41h2M6YPHfhXVgzQo+A2BNhmOz/T0EKmc8zjl3XnDNLt77X3OIU6S4ikZuydPfZRafk752eGngMu/90szHBKN9z8RmIlXD/s//bKBfsEHWueLXzBUvggban4FawUjAqPLevwP8Cpyecda7iPxfXOSdgnLOnQocCyzy3ue7JGGG651HHu5pnHN7AU8Ak7330wr6+SJxLO5yjnOuIvAWcBJwv/d+Qi7x5Zlz7npgHDbY8CLv/b+Z3j+PAjxHxeI7iBRhcZd3IhHMcuoNDPfeP+69/z3otJqNVRzcA5vVHRUF+Q7e+z+xHFQOy0MiiSz0nJObaD6bBEsojAt+PDPDZ+wNTMJmYjbx3v8QTGj4Amtj/h0Y4JzLckna/OQc7/0O7/1P3vsuWEd528wd9yIJqsjnnUznVs7iveyun5e+qpykzwg/M7sDIsw76fHN8d5vyfRe+rJ+9ZCIqKE+vmW1RkK6w7BRMdmt3xB13vudQDKWTOrmcGiuM6i896ne+8He+2O99+W89/t47+8GDggO+STD4Tn9HsBG76VhZZDJENtTzjmfvmEjCAGuDvbNy+E7iCSyaOSWvP5d/p9z7ggsl1QCrghmemfJe7/Oe3+f976G976M9/5Q7/3DWJkZ+G+u+CF4ze5GKn1/+ew+r4D+xtamKltI1xeJZ3GTdwoofbmZaJVxrxu8RnpPcwiwF3BDxuODc2oAe2b4WSSRxVXOcc5VwDp2zgQ6eu+H5xJbnjnnrgVeDOK9wHv/VxaH1Q1e8/wcFYvvIFLExVXeyYPLgtd5md/w3n8JrANOjMYHRek7pK8rWiEaMYkUYaHmnAhF+9kkq7/vM7DOtve89/+5TtCxtAhb07dm5otFKeekryN8Tj7OFYk38ZB3cvuMLNcrz2NfVU5yvA/JQ97JqY27sNu3E06Wo6QkbszH1lG5iN3XebokeH0vphHZ+isAO7N60zl3BtZ59b73/oesjsnFLcHryxn2/YCVbj/TOVc+4+gZ51w1bITw4gxlKb4i68bpPYBGwApgDjbKUKQ4ikZuyevfZfp7h2NlsKoASd77POewYKZ2IywPTc3w1ofYOle1nHNlvffbMpxTGrthSyHy0X95iakSlvtWZzHCT0TiPO9EwjlXHlt6IYX/3scURF7vadZmczzB8WUArZknxUHc5Jygc/lNrHH1Qe/9oFziyjPn3FVYXloJNPDer8rm0Hw9R8XiO4jEgbjJO3mUPgC4WuY3nHNlsUkU6wv6IVH8DqcEr8sLGpNIERdazsmDaD+bnBq8Ls+wL9scFdgneN2WcWcUc06O7eQiCSYe8k56nDcFcX6czzjTZdVXlZOs8hSQ57yTDDyIrXWeWfq+FRHGJN57bXG6YSUXfsEaW4/NsL8a1sCxAdg7w/5DsE6aCjlcsya25sO0HI45CyiRxf4Lge3YTU65bM4dHVy/aS7frXIW+67BbiqWAKUyvdc/uG7fTPufDvbfHcHvM9fvrk1bcdiilVvy+ncJ1MJKkm8FLo4w1sqZfi4BPBZcf2gWx6fnoN6Z9ncN9r+Qw2dFkh/PyGJfOWxmVpYxZTp2fHBc3bD/HWjTFsstnvJOpvMj/psFbguOnZCH6+fr3iQ/52EPaevD/regTVsstnjJOcE9xJzgWj3z8T2bBOe2zeGYK7CG4eXAIfn8fWabcwr6HbRpS5QtXvJOFnHneK+DNQ574EugUqb3+gXvjc3h+rnes+Qjd9YDymax//7gsz4P+9+DNm2FvYWVc7KIYzn5eMbI7jzgCKBaFvvPCL5rCnBghv0HY23Jm4FjMp1zMcGM1Ez785NzKmax/2Csk8oDp4b9b0KbtsLe4iXvAHsHsazOlC8OBzZis9RLZzon4r6q4PpHZXH8gcDXwXe4JtN7ec07JbGByWnYIOeM/xu8GXxGs7D/TcTL5oJfnsQp59xFWNm6FKwTJgW4EaiOdUSPz3DsPOBc7A9nXob9R2GjfMBmAVyH/VHODfZ9571/JMPxy4P//AhLcOWB44Jr7wBu8N5PzyLWithIIAfs773fnMP3egcb7bcUu5E5GbgAu7lo4L3/JdPxlYAPsHU+ZwJfAKcBDYB3gUt89uufp1+jJpbIp3vvr8npWJFEF6Xckqe/yyC31MBG6yVnEdZ67/3QTHFuxHLVT9gNwkXAMcDb2A1H5lkU+2Azyg8LYvgcy18XY2tRnea9/z3D8XnNj+uxm6yPg+vtgw0gOgT4FDjfe/+fUjjOuS7sKg9/VhDbG1hpQoBHvPffZfH7EEkocZR38vU365ybG8Rxnvd+fg6/hzzlnWyuUZM83tMEv4sq3vsqkRwvEu/iIec458YDjbFnrnHZfJWh3vv1Gc65BmuwAWvoORNYDHwT7Jvmg3U/g3zzOfbc9Ry7yqZn9LnPZZ3QnHJOfr6DSKKKh7wTnBPxvU6wju88LNf8GRz3L3B6sK3BOoeWZ7h+ftqg8pI7pwXxzMNyT1mgPtaRtQ57Jvsii+uIJJQwck5wzvgMP16PzQh/IX2H975JBLEvJ4tnE+dcW+CR4LN/wTqU6gCXYp1Fd2f8XsE5jwCdg2Nfw/LNEcBVWEdSQ+/965k+O6/3a9dgOWcF1jZeC7gcyz+Pee875/adRRJBvOQd51xTbCng1dgs8JLAzVgFnMu893MyHR9xX5Vzri7wWfAdvsVKrNcAkrD7njHeSrVnvP5y8n6/dkbw+yiJVVJdFcR0PDZI+TJvyyNLbsLupddW8A0bLfcONtJlM7AQK8mQ+bh52P/5n5dp/3nB/uy2eZmOb4aNSFmJ3WBsxdZyGAXUySHOxsH1xkTwne7FRuFsCK7/PTAAu0HK7pyqwHDgN2w2xDKgL9nMas/i/JpoJrk2bf/fCppbgvci/rvMJQ95YHkW54wI8sNmYBO2nlRLoGQO36sa8FQQ03asM3skcEAWx+Y1P/YBFmANRNuxBqLFwAPZ5aIMv7/stt1+r9q0JeoWJ3knz3+zwT1GGjagx+XyO8hT3snmGjXRTHJt2nLdinrOiSDfeKBmpnN653J87wzH5pZvPDA+gt9jtjknP99Bm7ZE3op63sn02RHd62ATJ7phjdgp2HPQL9gz1kFZXD+33DOvIN8Bm90+A2u4TgG2YM+MTwDVw/43oE1bLLdY55zg+Bz/ZiOMezlZzyQ/Fev4+j74TtuDuF4ETsnhercE33EDNvNzNdZhfnpe488i51yIlYX/AWsDSm9neg24NOx/A9q0xXqLl7yDdVovDGLcGMS8W04Ijo24rwrYF2uv/gyruLwjeJ0N3Jif+DPnnQznHR/kmnXB7+k7oDtQJux/B/G0aSa5iIiIiIiIiIiIiIiIiIgUGyXCDkBERERERERERERERERERCRW1EkuIiIiIiIiIiIiIiIiIiLFhjrJRURERERERERERERERESk2FAnuYiIiIiIiIiIiIiIiIiIFBulwg4gN9WqVfM1a9YMOwwRyeSTTz7523u/T9hxRJtyjkjRpbwjIrGknCMisaa8IyKxloh5RzlHpOhKxJwDyjsiRVlueafId5LXrFmTJUuWhB2GiGTinFsRdgyFQTlHpOhS3hGRWFLOEZFYU94RkVhLxLyjnCNSdCVizgHlHZGiLLe8o3LrIiIiIiIiIiIiIiIiIiJSbKiTXEREREREREREREREREREig11kouIiIiIiIiIiIiIiIiISLGhTnIRERERERERERERERERESk21EkuIv+3c2fYEYhIcaO8IyKxpJwjIrGmvCMisaScIyKxprwjIrG0cyd4H73rqZNcRABLLJdfDg8+GHYkIlJcLFoERx4JX34ZdiQiUlzcfDO0ahV2FCJSXHz9NdSubfc8IiKx0KIF3H57dBuPRUSys3w53H5QMlv2rwnJyWGHIyLFwLO3JLOmYk1S50Qn56iTXEQAmDgRZs+Ggw8OOxIRKQ527IB77oFt26BGjbCjEZHi4PXXYcoUOOigsCMRkeIgLQ2aNYONG6FWrbCjEZHiYP58GDMGDjwQnAs7GhFJdN7DiEbJjFmdRPnVKyApSR3lIlKofhiZzB2Tk9h3ywpKXh2dnKNOchHh77+hfXs4/XRo3jzsaESkOBg82GaQP/kkVK4cdjQikuj+/ddmkDetmUyXETXVeCMihe7ZZ6HMB8mscDXZ5yvlHBEpXNu2WXvOzfsnM+DFmrrXEZFCN69XMj0+TqICKbYjJUUd5SJSaFLnJHPwvUlUjHLOUSe5iNCxI2zYAKNGQQllBREpZD//DA89BNdeC9dcE3Y0IlIc9OgBtX9L5tk/k3ArNctBRArXqlXwZodkZpZIYo+1yjkiUvgGDIADvk9m4j9JlPhVeUdECte/rydzWt8MnVXp1FEuIoUhOZm0y5Monxb9nKPuMJFi7t13YcIEeOABOPbYsKMRkUTnPbRsCaVKwcibkqFmTT08iUihWrwYlj6RzMxSSZTcqlkOIlL4Rt2czEubkyiXppwjIoXv229hYb9kZpVMouQ25R0RKXzbb226awZ5Zikp0LRpbAMSkYS28/amlN5RODlHneQixdiWLdCiBRx+OHTvHnY0IlIcvPACzJ4NE5oks0/TJFihWQ4iUnh27ICRNyfzJkmU3alZDiJS+D58OJmO8zWzSkRiIy3N1gSenppE2VTlHREpfAsWwPWbxrGjZLmsD6hQAcaNi21QIpKwvIceB41jC+WzPqCAOUed5CLFWL9+8NNPMGIElM8mx4iIRMvatdC2LbQ8KplrxiRZow2o8UZECs3QodD9Z81yEJHY2LQJDu7ZdPcO8nTKOSISZWPGQLsvda8jIrGxbRs0awbLDzmXEkcctvsBFSrAm29CgwaxD05EEtKUKfDIogasq3ni7m9GIeeok1ykmPrqK3jsMbjjDrjggrCjEZHioFMnOGFdMk8uT8KlaJaDiBSuX36BXr1g9Bnj8BUqZH2QZjmISBT17Am3p44jtaxyjogUvj//tKXzhh6vex0RiY1HH4XvvoM3rnqWkt9+bUkoPf+og1xEomz9erjvPuhQ6zWqL//ARulEOeeok1ykGEpLs3yy554waFDY0YhIcZCcbG0zk/doSomtmuUgIoXLe7j3XihZEpq/1ACXVW5RI46IRNEnn8ATT8BRLRpQ8vXXwLn/HqCcIyJR1q6dPUK1fKUBrm3b3Q9Q3hGRKPr+e+jfH5pf/SfHTuwM550HjzxieaZGDeUbEYm6rl1h6+oNPPxvazjhBHjyyajnHHWSixRDI0fChx/C4MFQrVrY0YhIotu6FZo3h1q1oMLL43aN+MtMsxxEJEpeeglmzbJGnINTl8P48XDaaZrlICKFYudOuOce2HdfGDAAWLzYRuuULWsHKOeISJTNnGn3O926wZF7rbGGnjp1dK8jIoXCe2vXqVABhtIWtmyx9TudszyzfLnyjYhE1cKFlmbeOL4bZf5eBaNGQenSUc856iQXKWb++AO6dLES67ffHnY0IlIcPPww/Pij3diUvbRB1h3hasQRkShZtw7atoVTToFW93po0cIab155RbMcRKRQDBsGn31mr1X+/A769IEbb7ReLOUcEYmyzZuhZUs46ijo3Blo3x42btS9jogUmnHjYP58eOH2mZSb/nIwQufIsMMSkQS1fbtVQr56v484c+nT0Lo1nHpqoXxWqUK5qogUWffdZ0kmfbCfiEhh+uYbq751221w0UXY8ONJk6BMGShRwqaZq4NcRKLogQdg7Vp4+20o+fIL9h/DhsEhh9i2fHnYIYpIAlm+HHr0gKQkuL5hGjRoBhUrWt7Zbz/lHBGJul69YMUKeO89KJs8y56vevaEY46xTXlHRKLor7+gY0e46IzNXPrGvRlG6IiIFI7HHoMfvtnBhzWb4Q48EPr1K7TPimgmuXPuYOfcFOfcBufcRufcq865QyL9EOfc0c65yc65v51zW5xz3zvn7s9/2CKSH6+/DlOnWiPO4YeHHU3OlHdE4l9amo36q1TJlncAbHbDG29YLdK33ioysxyUc0QSw/z5MGaMTaiqW30N3H8/1K9vC5QXMco7IvHPe0svzsFTT4Eb/SwsWACDBlkHeRGinCOSGD79FIYMsSUezj5xk1XMOeooePDBsEPbjfKOSGJo1w42bYIXju6DW77clndIX1KmCFHOEUkMP/xgfeLjjxtE5eVf2oNW5cqF9nm5ziR3zlUA5gLbgMaAB/oByc654733m3M5/+Tg/HnA3cAGoDawR4EiF5E8+fdfaNUKjj3WRv8VZco7Ionh2Wdt/Zhx42CffbCpnW3aWA3k+++HkiWLxCwH5RyRxLBtm62Td+ihNsOKFkHp0dGjLd8UIco7IonhlVesovqQIXBIyd+tlMX550OTJmGH9h/KOSKJYedOG4S8zz7w6KPYDIgVK+D994tch5XyjkhimDULXngBnm7+BdVGD4I774Rzzgk7rN0o54gkBh+smHdU6Z+55ceH4Npr4eqrC/UzIym3fg9QCzjSe/8TgHNuKfAj0BwYnN2JzrkSwATgXe/9tRneSs53xCKSLz16wO+/W0NOmTJhR5Mr5R2ROLdqlVXfatAAGjcOdrZrB//8A+++W9Q6rJRzRBLAgAHw/ffWkFPx/bf/W3q06FHeEYlz//xjY/7q1YM2rT1c38rWtRo1qiiua6WcI5IAnnwSPvkEXnoJqv6wCJ54wspZnHlm2KFlRXlHJM6lpFiKOfqIVJp/1hz22gsefzzssLKjnCOSACZMgORkz8qjW+J+Kw3Dhxf6Z0ZSbv0q4KP05ALgvf8FWAjk1oV/HlCHHJKQiBS+xYstn7RsCaefHnY0EVHeEYlzbdvacuMjRgTtxLNmwcSJ0LUrHHdc2OFlppwjEue+/dY6yW+5BS45c5NNKS+ipUcDyjsica5LF/j7b6ucU3L6qzB9OvTpA4cdFnZoWVHOEYlzK1dC9+5w+eVw47U7rN76gQfaDVDRpLwjEuceegh++QWmXzaCEh8vstI5e+0VdljZUc4RiXNr1kCHDtC79gsc/O1sePhhqF690D83kk7yY4Cvstj/NZY8cnJW8FrOOfeRc26Hc+4v59ww51z5vAQqIvmTXo5rv/0sr8QJ5R2RODZjhlWt6N4djjgCW++heXM4+mjo1i3s8LKinCMSx9LSLMVUrGjtNvTsaaVHR48ucqVHM1DeEYljCxbYhPG2beHEmv9A69Zw4olWNadoUs4RiWPe2/J53tuynG7g4/Dll/D004W6RmcBKe+IxLHPP4dBg6D9TX9Qe2xXuOgiG5FcdCnniMS59u2h9Ma1dPu7LZx2ms34jIFIOsn3Av7JYv86oGou5x4YvL4MvANcBDyGrevwQnYnOeeaOeeWOOeWrFmzJoIQRSQ7Q4fajc3w4bDnnmFHE7GY5h3lHJHo2bTJynHVqWPLcgLWMf7rrzBmTFHtsNK9jkgcGzvWOqwefxz2Xf6xlR5t2bKolh5Np3sdkTi1bZsNzKlRw2ZY0bmzTXsYPRpKRbKiXSh0ryMSx6ZOhTfftGIVNbd9b/9x441w1VVhh5YT3euIxKnUVJtwtffeMGDzfbBjBzzzTFFcTiYj3euIxLHZs23FvBnHdKLUv+ttRHKMluqM9AnOZ7EvkqyY3gk/yXvfM/jvec65ksAjzrk63vtvdvsw70cBowBOPvnkrD5bRCLwyy82meqqq6Bhw7CjybOY5R3lHJHo6dnTSgG+/z6UKQMsXGiL57VpU9TXe9C9jkgc+vNP6NQJzj0X7rx9B5x8NxxwQFEuPZqR7nVE4tCjj9oSDzNmQMXF86zeeqdOcNJJYYeWG93riMSh9evtUerEE+H+NmlwUTMoX94GBRZ9utcRiUNPPWVLd87r8AZlBk2F/v2L6nIymeleRyQOpaRAixZwa/V51PtinA1CPv74mH1+JDPJ/8FG4mRWlaxH52S0NnidnWn/O8Fr3Qg+X0TywXubzVmypPVPFe3BfrtR3hGJQ598Ym01zZsHEzi3boW774ZDDrGHqqJLOUckTrVrZw9UI0dmKj1a9MvnKO+IxKHvv7dbmkaN4PIGW2yaVa1a0Lt32KHlRjlHJE517Qp//WXjcUqNHw3vvWc1kPffP+zQcqO8IxKHfv3VigFefcEmznmlFRxzDHTsGHZYkVDOEYlTffvC78u2Mso1h0MPtRlYMRTJTPKvsTUdMqsD7DaCJotzYfdRPOnddWkRfL6I5MPLL8OsWdZhdfDBYUeTZ8o7InFm505rJ953X3jkkWBn//7w3XeWjPbYI9T4cqGcIxKHZs6El16ycsdHEpQeveGGol56NJ3yjkic8d4GAlaoYEta0bcv/PgjzJljO4s25RyROLRwIYwYYYMC6x3wh1WtOP98aNo07NAiobwjEme8h9atrdz6hBo9ce/+mqFMYJGnnCMSh5YuhYEDYUrdAVT4/Ad4++2YP1tFMpP8daC+c65W+g7nXE3gzOC9nMwEtgGXZtp/SfC6JLIwRSQv1q2D+++HU06BVq3CjiZflHdE4sywYfDpp/ZapQp2l/PII9C4MVxySW6nh005RyTObN5sy44fdRR07pRmo3TKl7ckFB+Ud0TizLhxMH8+PPYY7L/6C/uPpk3hggvCDi0SyjkicWb7dru9OeQQGwdI69a2c+TIeCkVqLwjEmdeew1efx2euedT9hyfsUxgXFDOEYkzqal2r3PqHt9w1dcD4NZb4eKLYx5HJJ3kzwLLgenOuaudc1cB04FfgZHpBznnajjndjrn/j8X3nu/FhgAtHDOPeycu9A51wXoCUzw3v8Uxe8iIoHOnWHtWhg1ysqtxyHlHZE4snw59OgBV1wB11+PTSu/6y7Yay8YPDjs8CKhnCMSZ3r3hhUr7F6n7KQx8VR6NJ3yjkgc+esvqzR61llwV+OdtpzM3nvbtIf4oJwjEmcefxy++cbWBt7jnVet9+qhh+Dww8MOLVLKOyJxZMMGaNMGTjp+J7e/3wz22QcGDAg7rLxQzhGJMyNGwMeL0nht3+a4SpVCa0POtdy6936zc+58YAgwESsz8S7Q1nu/KcOhDijJ7h3vfYB/gXuBjsAq4HGgb4GjF5HdvPcejB5tVbjq1g07mvxR3hGJH95bxQrnrAHHOawG6ZIl8Mor1lFexCnniMSXzz6DIUPgnnvg7MP+gCs7QYMG8VJ6FFDeEYk37drBpk02MKfEk8PsPufll+PiPgeUc0TizQ8/2IoON9wASWethzqt4cQToX37sEOLmPKOSHx58EFYtQo+vOkpSgz+xNa1qlo17LAippwjEl9+/x26doVBR49h32/fhzFjbA3PEDjvMy+1ULScfPLJfskSVbQQicS2bXDCCfb61VdQsWLhfZZz7hPv/cmF9wnhUM4RyZtXXoFGjWywX7t2wE8/wfHHW3mc116LailA5R0RSU2F+vXh11/h22+h6t3XwVtv2RIPtWtH9bOUc0QEbFm8Sy+Fnj3hocbL4Nhj4cILYfr0qJc8Vt4REe9tFYdPP7V7nQN6N7eG448/hpNOivrnJWLeUc4RyZsPP7Sq6j2a/MpDk+vA2WfDjBmFsrRDIuYcUN4RyauGDeHTt/7k57JHU/KkujB3bqEtJ5Nb3sl1JrmIxI9HHoHvv4eZMwu3g1xEBOCff+C++6BePSvLhfe2mEyZMvD00/GyVp6IxJEnn7QJnC+9BFWTX4VXX7UboCh3kIuIAKSkQMuWcOSR0LWLh6tbQKlSus8RkULz3HOQnGwlSA/4Yb6VsOjYsVA6yEVEduywZpzq1aH7X21sVPL/ywSKiETftGk2r+qb49tS8rsUu+kJMeeok1wkQXz3HTz8MNx8s810EBEpbF26wJo1NomzVClg9Bhr0Rk1Cg48MOzwRCTBrFwJ3brBZZfBjRevh2Na29oycVR6VETiy0MPwS+/wLx5UG7yRJg920brHHRQ2KGJSAJas8Zua848E+65fSvUvQdq1bJkJCJSCAYOtGqki7q8RulHpsNjj8Ghh4YdlogkqI0boXVraFlzJkcvfdnucY48MtSY1EkukgDS0mzUX8WKtkaniEhhe/996wvv0CGY1PDHHzbDoUEDuPvusMMTkQTjPbRqZa9PPw2uS2dYvRreeANKlw47PBFJQF98AYMGwV13wblH/wUN28Hpp9vUchGRQtChA/z7L4wcCSX694Uff7TBORUqhB2aiCSgn36CPn3gtqs2curENrZ0Xtu2YYclIgmse3dY//tmhuzfEo46Cjp3DjskdZKLJIKxY2HBAhg9GvbbL+xoRCTRbdtmA3Nq1AgmNXgP995rb4wapbJcIhJ1U6fCm2/aTIeaKzKUHq1XL+zQRCQBpabCPffA3nvbhCratLOeq9GjoUSJsMMTkQQ0ezZMnGiNx8fs/MKST5MmcOGFYYcmIgnIe2jRwlbLe6Zad5v4MHWqBiCLSKFZtMiKcr1zYm/KfrYCXnkPypYNOyx1kovEu9WroVMnOOccuPPOsKMRkeLgscfg229hxgyrYMHkKTB9Ojz+OBx+eNjhiUiCWb8e7rsPTjwR7m++Feo1U+lRESlUTz8NixfD88/DXh+9BS+8AL17Q506YYcmIgkoJcU6q2rXhm5dUuG8u2GvvWx0oIhIIZg0Cd59FyZ3+pg9Bj5pEx9OOy3ssEQkQe3YYROuLqr2GRcsHWIjks8+O+ywANAQaJE417atPVCNHBmFyZvJyVCzpr2KiGTh+++hXz9o1AguvxxYt84Wk6lXT2W5RKRQdO1qgwJHjYJSj/SDH36AESNUelRECsWvv8KDD8Ill8DNSf9az1WdOtClS9ihiUiC6tsXli2zdp1yo4bBkiUwbJiVsxARibK//4Z27eCs+ju57p1mcMAB0L9/2GGJSAIbPBi+WprKS3s2w1WrBo8+GnZI/6eZ5CJxbNYseOklm9Rw1FEFvFhyMiQlWY97UpLVNG3QIBphikiCSC/HVaECDB0a7Gzf3jrK33kHSum2QkSi64MPrD+8bVs4ucxSe5Bq3Bguuijs0EQkQbVpY+XWn3kGXI/u8NtvsHBhkSgFKCKJ58svbcJ4kybQ4NDlkNQdrrgCbrwx7NBEJEF17AgbNsArZw7FDfoCpkyBPfcMOywRSVDLllkhwFHHPUnVL5fAiy9C1aphh/V/mkkuEqc2b4aWLa1zvMCTGjJ2kMOujnLNKBeRDMaPh3nzrNz6/vsDb78NEyZA585wwgkhRyciiWb7divHdcgh0Ld3Ktx9tz1IDRoUdmgikqBee81WkHnoITh09UcwfDi0agWnnx52aCKSgFJTrdpolSow8PFgRHKJErbmQ4FLBYqI7G7uXGvGebjZcg54phdceSU0bBh2WCKSoLy3PqyaJVbS9OducOmlVp60CNGUL5E41bs3LF8O771XwEkNmTvI02lGuYhk8Ndf0KEDnHUW3HUXsGkTNG9uI3W6dw87PBFJQI8/Dl9/DW+8AXuMG24LBL/4okqPikih2LDBVpA54QRoe+92OO1uqF4dHn447NBEJEGNGAGLFsHEibD3rOdtEPLw4TZCUEQkyrZssWacww/ztP+5lQ3GefJJDcoRkULzwgvwzjueZce2psQyXyQHAqqTXCQOffYZDBliE6rOPruAF2vadPcO8nQpKfb+8uUF/BARiXft21u/+KhRNrmBbt1g5UpYsADKlQs7PBFJMD/+aOtzXn89JB27HBp1s9KjRWzEsYgkjm7dYNUqm01eevCju0bpVKoUdmgikoB+/x26drUVZG69eA3UaWtVK1q2DDs0EUlQ/fvDTz/B0h5TKNn3LVskWINyRKSQrF0L7dpBl9qvcuhXb9hMiEMPDTus3ajcukicSU210qPVqlnJ4wIbNw7Kl8/6vQoV7H0RKdbefhuef94acY4+Gvjww13lR888M+zwRCTBeG8zHMqVg2FPqPSoiBS+Dz+0FNOmDZxa6Vvo188G5SQlhR2aiCSoNm1gxw545hlw7dvBxo3w7LNQsmTYoYlIAvrqK3j0UWhx03qOe/Y+OOkkS0QiIoWkUydIXbeBPuvbQN260LZt2CFlSTPJReLMk0/CkiVWbbRq1Shc8KyzoFYtmymRUYUKKrUuIqSk2GSGI46wTnK2bbN66wcfrPKjIlIonnvOVoN55hk4YK5Kj4pI4dqxwwYhV68O/fqkwRX3QMWK8MQTYYcmIglq+nSrWjFgABz2w0wbkdyrFxxzTNihiUgCSkuzQch77gmDy3W19fTefBNKqWtIRArHvHk29/KDEx+k9BerYcb0IptzimZUIpKllSutDOBll0Wx2mi3btZB3q2b1XBPSVEHuYj8X58+8MsvdnNTrhzQ62H49luYOVPlR0Uk6tasgQ4d4IwzoNm1a+CYtlC/vkqPikihGTTIZldNnw6VXhwFCxdai85++4UdmogkoI0brSDXccdBh+aboG4LK9fVtWvYoYlIgho1Cj74AGb0+JDyfUfYbM569cIOS0QS1NatNjDnugM/pP7nz8B998Epp4QdVrbUSS4SJ7yH1q3tNWrVRt8I1oJo2dJKCl5wga1BPm6cOshFhC++gIED4c474dxzgS+/tNnjt98Ol14adngikoA6dLDG41GjoETH9vbD6NEqPSoiheLnn+Ghh6BhQ7iq3u9w2wP2TNS4cdihiUiC6t4d/vgDpk6F0g91t9kQ778PZcuGHZqIJKA//oDOneHiBju47LVmcNBBNhtCRKSQPPwwLPthB0tqNsNVrw59+4YdUo7USS4SJ1591fq0Bw6EmjWjcMHly63x56STYPBg29egge0XkWIvNdVKj+61l42lITXVyqxXrWpVJ0REomzOHJg40RqPj/l1FkyaBD17qvSoiBQK76FFCyhTBoY94eHee2HnThg5MkojkkVE/uvjj20JvVat4DQWwbBhlnvOPDPs0EQkQd1/P2zfDs/XG4QbmF46R1UBRaRwfPMNPPIIPF93IJU+j4+co05ykTiwYQO0aQMnnmg3NwW2fTvceKN1er3ySlBDWURkl6eftkac55+3jnIGPwGLF8NLL8Hee4cdnogkmC1brLOqdm3odv8mOLkFHHUUPPhg2KGJSIKaNMkG5zz1FFT/aCq8/rqNDDzssLBDE5EEtGMH3HMPHHgg9O+1Hc4PfhgwIOzQRCRBvfEGTJkCT7X/mWpPppfOuSrssEQkQaWl2YSr4yv8xA3f9YmbnKNOcpE40LUrrF5t7TalovFX26mTdXZNnapGIBHZzW+/Wb/UxRfDzTcDy5bZ1M4rr7QBNiIiUda3r5U9fvddKNe/B6xYodKjIlJo/v4b2reH+vWhRaN/4JjWVmGrbduwQxORBDVkCCxdalUCK4983Jaymj4dKlcOOzQRSUCbNlnVimPqeFosvRdKl7bqFSIihWRGp2QmLWzKHofshVtfJm5yjjrJRYq4uXNhxAibQX7yyVG44JQplqDatrXRPCIiGaSl2QyH1FR45hlweNtRurRNL1f5URGJssWLbfJmkyZwfsVF8MQTKj0qIoXGe2jdGtavh1GjoETnTtZr/tZbURqRLCLyX998A717wzXXwLVHfwc39bHBx3Ewu0pE4tOom5N579emlGp8KyUmvAPDh0P16mGHJSIJatULyVwwOIkKpMDKFdaZFSc5p0TYAYhI9v74w2ZxHnWUzbAqsJ9+sjWFTzsNHn00ChcUkUTzyCMwaxYMHAi1agHjxtloncceg4MOCjs8EUkw69bBDTfA9XsnM3pODbvxUelRESlEzzwDq19OZs0eNTnunUEwZgx06GAzyUVEomzTJrj+eri0bDKTF9ewzvGKFeNmdpWIxJ853ZJp/mYSNVnBQRMetoblli3DDktEEtT2t5OpcnvQQZ7u2WchOTm8oPJAneQiRdTOndZOvGmTTf7eY48CXnDrVmuFLlkSXn4ZypSJSpwikjiSk6FHD7jppuD56Y8/rBbpuefabHIRkShKS4M77oDavyUzaUMSJX9bCb/8YouTq/SoiBSCJUtg2v3JzCyRRJX1K2wZqgMPhF69wg5NRBKQ99C8ORzwXTKTtyRR6veVVmb97rthv/3CDk9EEtCK8cmc8XASFTN2Vi1fDu+9F1pMIpLAkpPxSUmUT0v57/6UFEhKiouOcnWSixRR3bvb/cvIkVCnThQu2LYtfP45PPcc1KgRhQuKSCJZtcoG5tSuDWNuS8YdWhMaNYJt22z0XwndMohIdD32GGyekcxbJZIouTXDA9WAAXHxICUi8eWff2BQUjLTUpMol96I4z2sXQuLFoUbnIgkpJEj4Y8XkplZKomS2zLc6zz1lO51RCTqtryVzL53ZprNCTZxKk46q0Qkvmy+sSlld6Zk/WZKCjRtGtuA8kEt3iJF0JtvWjX0Zs3gttuicMEXXrCns86d7aZIRCSD9MoVGzfCzAeSqXBjEqxYAe+/H0zzrB12iCKSYObPh9kPJjOrZBKld8TviGMRiQ9paTDwimRGr06igs+Uc7ZtU84Rkaj75BN4tY1Vriijex0RKWTew6Ybm1I+831OujjprBKR+PHdd3DDpnFsc+WyPqBCBVvGs4hTJ7lIEbN8ufVJnXgiPPFEFC743XfW23722dCvXxQuKCKJplcv67B67f5kDm2TZA9P6SZNUuONiETV6tW2rMNzJZtSNlWNOCJS+AYNgns+bPrf0qMZKeeISBStX2+r3Y31TXdVrshMeUdEomj0aLhx8zi2l66Q9QFx0lklIvEhJQWuvx6+rVCPkgfss/sBFSrYTNAGDWIfXB6pk1ykCNm2DW680WY6TJ4M5bIZhBOx9GxVoQK8+CKUKhWVOEUkcbz1Fjz8MDx+eTKXDMvUQQ6a5SAiUZWaCrfcAhs2wLYR46Bs2awPVCOOiETJggXQtStMOHccvoIajkWkcHlvfd+//gobho7LvmFHeUdEouSzz6BNGyhzcQNKX3X57gfEUWeViBR93sO998I3X3s+qnMnpVb/AUOGWK6BuMs56iQXKUI6doTFi+056bDDonDBVq3gm29sJmj16lG4oIgkkpUr4fbboW5daP9V0907yNNploOIREnv3jB3Ljz9NNS6+HDrJHfuvwfF2QOViBRdf/1llStq1YJ2rzfA3Xnn7gcp54hIFA0eDNOmweOPwzE3Hw977ql7HREpNBs2WOWKatVgcsMXcVOnwLXXxm1nlYgUfWPHwoQJMPOiwez3/lR45BFo29ZyTY0acZdz1EkuUkS8/DI8+SS0b2/3MgU2bhyMHw89esDFF0fhgiKSSLZvt8oVO3ZY5YoS4zXLQUQK16xZtvLLnXdCk1u2W2tOWprlFzXiiEiUpVeuWLfO7nUqf/0hjBgBp5+unCMihWLhQujcGRo2hPvbpMFtt8E//8BTTynviEjUpVeuWLEC3nx4KZXb3WXLbb78ctx2VolI0fbFF9C6NbSvN5+L53aG666DDh3szQYNbC3hOMs56iQXKQK+/x7uvtvaax55JAoX/PJLm0V+/vnQs2cULigiiaZTJ1i0yPqmDj8cqFMHKlbULAcRKRS//mrtxMcdB8OHYw9R6UmocWM14ohI1PXpA+++awORTzjgLxuYc8ghMGOGco6IRN2aNdCoEdSsaTOsXP9+NkJw2DBo2VJ5R0SibuhQeO01GNLzH+o+dC1UqQKvvAKlS8dtZ5WIFF0bNtjKvkfv+QePrWyEO/zw4KbH5X5yEaYFikVClr5seNmyNtCvdOkCXvDff60BaM894YUXoGTJqMQpIolj8mRrq7n/fhvwx86d1qKTkgKjRtkbKSnqIBeRqEivXLF9O0yZAhWmvWC9Vh062E0Q7GrEERGJgnfegb59bQzOnY1T4ZKbYe1a+PBDqFpVOUdEoio1FW69Ff7+Gz76CPb86G1bY+aOO6BZMztIeUdEouiDD+CBB6Dh1am0+vBWG5U8fz7sv3/YoYlIAvIe7roLflu2ndV1bqDkL5tg3lyoXDns0ApMneQiIWvVCr7+GmbOhIMPLuDFvIfmzeHHH23Bz/32i0qMIpI4fvjBbmrq14fHHgt2du1qD1MTJ9pUz8MOs5pd48apg1xECqxzZ2swfuUVOGLH13DPPVYGcMCAsEMTkQT022/WWXXMMfD00+B69bRno7FjoW7dsMMTkQTUrx/Mnm3jjetWXQEX3ALHHgvPPBP3s6tEpOj5+2+b53DIIfD8EQ/hHp9p+eb008MOTUQS1LBhMHUqLDmzE5UXfgAvvWRVSROAOslFQjR27K5lwy+5JAoXHDUKXnwR+veHc8+NwgVFJJFs2WKFJkqXtsoVZcpg0zoHDrQRO7fdZgdqloOIRMnUqVYGsE0buOGSjXBKQ6hUKUrlc0RE/mvHDms03ro1qFzx7hvw8MO2tlXTpmGHJyIJaPZseOghuP12uPv2bXDODVapa+rUXeuQi4hESVqaNd2sWQNfD3idcu372j1O8+ZhhyYiCeqjj6BjR3j8pBept3AYtG1rD10JQp3kIiH54gvrk7rgAujVKwoX/PRTuO8+uPRS6NIlChcUkUTTujUsXQpvvWUjjvn2W3uYql8fBg8OOzwRSTA//QR33gmnngoDH/dw213w8882o/OAA8IOT0QSUJcuVn70pZfgyNLLrNfqpJNg+PCwQxORBPT771a5ok6dYNJ4+3aweLEtEly7dtjhiUgC6t8f3n4bXuz9PYf1vh1OPjkonaOqFSISfWvX2vJ5Dfb9mg7f3Q1nnZWhNGliUCe5SAg2brTZnFWrwvPPR2HZ8A0b7IL77mvlkkuUiEqcIpI4xo+36hXdusFllwH//gsNG9rshilTgmnlIiLRsWWLLTdesqSVWS/z9FDLNY8/DuecE3Z4IpKAXnvNxvy1agWNrtoCZ1xnz0VTpkC5cmGHJyIJJr1yRUoKTJ4MFV+daD3lDzwA11wTdngikoDefdcmWt114780eqWhteNMnar7HBEpFGlpNuY45c+NvH5AQ1ylStbAk2BVAdVJLhJj3tt6wMuWQXJyFJYN996maa1caWsKV6sWlThFJHF8+SXce69VUX/oISxvNG0KP/4Ic+ZA9ephhygiCea++6xqzptvQo2VC6BTJxuY06FD2KGJSAL6+Wdo0gROOQUGDfTQ8l74/HOYMQMOPTTs8EQkAT34ICxcCC+8AEfvWGqljs8916Z5iohE2R9/wC23wFFHekZsvxP33Xe23sMhh4QdmogkqAEDYOZMz891m1Luy8StCqhOcpEYGz7cJjM8+iicfXaULvjqq7am8BlnROGCIpJINm602Zx77mkNOCVLAgMH2WjjgQPhvPPCDlFEEsxzz8Ho0dC1K1xR7084qRHUqmXlLFQGUESibOtWK6qVXrmi7KQxVkKnRw+4/PKwwxORBDR9uj1KtWwJN1++AU6+DqpUsbUeSqmpVUSia+dOuOkm2LQJlt72OKUGBxW6zj8/7NBEJEElJ0PPnvB83YHU+vxVGDQoYasC6s5NJIYWLYKOHeHKK+01ahe8+mpo3z4KFxSRROI9NGtm6wLPnQv774/d5XTubD3nyhsiEmVffQUtWthEqj49d8KlN8H69bZw3p57hh2eiCSgtm3hs8/gjTeg5tpPoHVruOgiq0cqIhJly5ZB48ZQrx4MGezh5ibwyy8wb17wwCUiEl3du8OCBTCnyxz2e6yrLRCsCl0iUkhWrYKbb4bbqidz89Iu1obcrl3YYRUadZKLxMjatXYPU706TJgQhWXD163bdcFx4zQzS0R28/TT8PLLVh7n3HOB336zhfOOOEIzOkUk6jZtstmclSvDiy9CqV7dbCmYiRPhuOPCDk9EEtDzz8PIkTb+L+mMdVDveth33wzlc0REomfrVmuGcc7WIS87fCBMmwaDB8NZZ4UdnogkoDfftGqkD96ynAuevQmOPhrGjFF7jogUip07rYN8jw2/M6bCTbhi0IYcUTedc+5g59wU59wG59xG59yrzrk8L3jhnOvqnPPOuffzHqpI/EpLgzvugD//tAepqlWjcMHGjW1YzyuvROGCRY/yjkjBLF5sg/ySkuCBB4Bt26z3assWW6KhUqWwQyxSlHNECia9csUPP1il0QM+eg0ee8zqkN52W9jhFUnKOyIF8803lnfOOQf69UmD22+H33+3B65q1cIOr8hRzhEpuPbt4ZNPbOLDoSvmQZdgdlXbtmGHViQp74gUzPLl1p58et0t9P32OtixA157DfbYI+zQiiTlHJGC69kTPpi/nQ8OuoFS2zYXizbkXGeSO+cqAHOBbUBjwAP9gGTn3PHe+82RfJBzrhbQDfgr/+GKxKdHH4W33oKnnoKTT47CBQcNsqGEw4fDKadE4YJFi/KOSMGsW2f94QcemKFyRfv28NFH1nB89NFhh1ikKOeIFNyIETZ7vH9/OK/6j3B1E7tHGTIk7NCKJOUdkYLZtMn6pfbYI1gC+LGHdz1wnXZa2OEVOco5IgX3wgvwzDPQqRNcdfIfcNJNULt2ws+uyi/lHZGCSZ/nkJbqebtWS0q8+qmtLVO7dtihFUnKOSIFN2OGVSOdc0xH9v36QytPWgzakCMpt34PUAs40nv/E4BzbinwI9AcGBzhZz0DPA8cGeHniiSEefNs7ZibbrLJVAX2/vvQtavdKbVqFYULFknKOyL5lF5o4o8/LF3stRfw3HNWe71TJ2tRlsyUc0QKYMkSm0B12WXQpc1mOPM6KF0apkyBsmXDDq+oUt4RySfvoUUL+O47mDMHDvhqtk15uPXWKD1wJSTlHJEC+PZbq1xx1lnQv/cOuKSRjdaZOzfhZ1cVgPKOSAF06GDPWZ83e4ZKoyZAr15WKlCyo5wjUgArVlhhrq6HPM8FXw+38qQ33hh2WDERSbn1q4CP0pMLgPf+F2AhcHUkH+KcuwU4CeianyBF4tWff1rneO3aMGpUFAYXr1lj6wkfeiiMHp3Io5WVd0Ty6fHHrdDEoEFw6qnA559D8+Zw3nnw8MMhR1dkKeeI5NM//9i4vf32g4nPeUrc2wK++soWCj4kz5XtihPlHZF8GjXKUsxDD8H5h6+0RfOOOcYWJ0/c56OCUs4RyafNm22ccYUKVrmidI8uNhr52WehTp2wwyvKlHdE8unll604zrCbPuCEsffDFVfYgEDJiXKOSD5t32794Uds/4p+a4JRgY8+GnZYMRNJJ/kxwFdZ7P8ayPVu0DlXFRgCPOC9X5e38ETi186d1l6zcaNNpCrQ4OLkZKhRAy6/HNautXLJlStHLdYiSHlHJB/eew+6dbMOq9atsd6r666DvfcOapFqEGw2lHNE8sF7aNLElgB+5RXYe8pImDQJeveGSy4JO7yiTnlHJB8+/RTuu89STLeOQR3S7dth6lSoWDHs8Ioy5RyRfPDeClR8+62VW6/+4RQYPBjatLEGH8mJ8o5IPnz/Pdx9N1x58ipaz7vO2oMnTQrW0ZMcKOeI5FPHjvDdxxuYXbkhJfasbA08pUuHHVbMRNJavhfwTxb71wFVIzj/ceAHYHykQTnnmgHNAA7RDBSJU716Wan18ePh2GMLcKHkZCunk5ICK1fausJ160YnyKIrpnlHOUcSwerVVrmiVq2g0IRPg9tug19/hfnzbZqnZEf3OiL5MHAgvP46DB0K9Ut8DPffbzXXu3cPO7R4oHsdkTxav95mc+67b9BW3KkDfPyxdZAfcUTY4RV1utcRyYfRo2HiRBv/d+HB38O1TaF+fbsJktzoXkckj1JS7F6nUtntTHY34DZuhNmzoUqVsEOLB7rXEcmHyZNh+HDPF4c1odLyZdYXdcABYYcVU5EOQfJZ7Mu1jplz7mzgDqCl9z6ra2T9Yd6P8t6f7L0/eZ999on0NJEi4623rKrxXXfZ2sD5lrGDPN2IEbY/8cUs7yjnSLxLTYVbbrGJ41OmBIUm+vWzZDR0KJx+etghxgPd64jkwYIF0LWrFau475a/bTbnAQdYS7JmOURK9zoiEfIemja1sX+vvALV3n7e6pB27AgNG4YdXrzQvY5IHnz2mU0Yv+gi6N52k+WacuWsNblMmbDDixe61xGJkPdw773w9dfw0RntKbt4IYwdW8CZV8WO7nVE8uCHH6z/6smDH+P4n6fZGp5nnx12WDEXyUzyf7CROJlVJevRORmNBMYAvznnqmT4zJLBz1u899siC1UkPqxcCbffDiecAMOHF+BCWXWQg/2clGSLDjdoUKBYizDlHZE86N0b5s6156fjjwdmzrSdt99u9QElN8o5Innw119WueLQQ2HMqFTczbfCn3/CBx/Y8g4SCeUdkTwYPBimTbPX0yt9Bc2awTnnwIABYYcWL5RzRPJgwwYb/1etGjw/yVOyZTP47jt45x046KCww4sXyjsieTB2LEyYAFOvnsAh05+CDh2gUaOww4onyjkieZBeueICN5d7f3/QFiVv2zbssEIRSSf519iaDpnVAb7J5dyjg61FFu/9A7QDhkYQg0hc2L7d8smOHTa4uHz5AlysadPdO8jTpaTY+8uXF+ADijTlHZEIzZplk8abNrWNX36BW2+13vIRI8DlOmhWlHNEIpZeuWLdOitWseewvtZgPGoU1KsXdnjxRHlHJEILF0LnzjaJs+2dG+HU66xszksvQalImjQE5RyRiKVXrli+3Fat2mfy0/Dii9C/P1xwQdjhxRPlHZEIffEFtG4NLU79lGvfbmGToh55JOyw4o1yjkgetG4N/3z5Gy/teRPuyCODtTuLZxtyJE+UrwMDnXO1vPfLAJxzNYEzgS65nJvVNNehQEmgDfBTxJGKxIFOnWDRIit3XLt2AS/29NNw5ZWQlrb7exUqwLhxBfyAIk15RyQCv/5qy44fdxw8+SSwZYvVPvbe1uesUCHsEOOFco5IhPr0gXffteenE/6YaTuaNIG77w47tHijvCMSgTVrbBJVzZowdozH3dkUfv7ZSugUs7XyCkg5RyRCQ4fCa6/ZsuNnlvwI2rWzan5dcvtTkUyUd0QisGGDzeY8bM+/eXJVQ9w++8DLL2sgYN4p54hEaNw4mDRuOz9Vv4GyG7bAq69CpUphhxWaSLLts0BrYLpzrju2tkNf4FesFAUAzrkawM9AH+99HwDv/bzMF3POrQdKZfWeSDybMgWGDYP777c+qgLZts2ezADKlrWf01WokOil1kF5RyRX6ZUrtm+3/FOhvIc777XF8958Ew47LOwQ44lyjkgE3nkH+vaFxo3hzvOXw8m3WdWKp54qtiOOC0B5RyQXqak2GPDvv+Gjj2DPMYOtAWfgQCu1LnmhnCMSgQ8/hAcegGuugfa3r4F6N1h59eeegxIlwg4v3ijviOTCextrvGJZKqtPupmSX/4JCxaA1rfOD+UckQgsXQr33guvVG/PIb9/ZOWQjzoq7LBClesdnvd+M3A+8AMwEXge+AU433u/KcOhDhtdo7tGKXZ+/BHuvBPq14fHHivgxVJTbR3h2bNtQZqZM3fNBi0eHeTKOyIR6NLFGozHjIEjjsBKHY8fDz17whVXhB1eXFHOEcndb7/ZSg7HHANPD96Ku+F6u2eZMkVVK/JBeUckd/372+Cc4cOh7sb3dtVcb98+7NDijnKOSO7+/tsGIR9yCIwbnYq79RYrZzF1KlStGnZ4cUd5RyR3w4fb49SCc7pRdckcqyp6yilhhxWXlHNEcrdxI9xwA9xVdhLX/P4UdOhgpSyKuYjqdnjvVwI5zo313i/Hkkxu1zovks8UiRdbtlguKV3aquGUKVOAi3kPrVrZCJ6BA22qFljHeNOmVgsjwTvI0ynviGTv1VdhyBBo08Zubli0yH649FLrJJc8U84Ryd6OHVbueOvWoE/8wbbwyScwbRocfnjY4cUt5R2R7M2ZA71729jhu69YBfUaWZWcceNUuSKflHNEspeWZpUr1qyBDz6AKkN7WyIaMwZOPDHs8OKW8o5I9hYtgo4dYcDJUzlt3qPQvLnNwJJ8U84RyZ73cM89UOGnpTxRuplV5nrkkbDDKhK0uIVIAbVpY2Uq3nrLRhwXSM+eMHKkzZLo0GHX/gYNYPnyAl5cRBLBTz/ZmJlTT7WxNKxZYyN1qleH55+HkiXDDlFEEkzXrtZg/NJLcORHE+xepUsXuPrqsEMTkQT0++9wyy1Qpw48M2wH7qpGNu1h9myoXDns8EQkAT38MLz9NowYASetmgH9+sFdd6nDSkQKxdq1NuHh3H2+ofN3Taw06RNPhB2WiCSwp56Ct19Zz7K9r6NkmSo227OUuodBneQiBTJhgg0s7tYNLrusgBd74oldD2IDBkQlPhFJLFu22INUyZLwyitQpsROuOkmqw34wQew115hhygiCWbaNBg0yArdNDrqC6jfwgbv9e0bdmgikoB27LBbm5QUK65Vsf+DtjbnpElw7LFhhyciCWjuXOjVy5aVaXbRL1DvNps9Pnx42KGJSAJKS7NKOVv+3MAbB1yLq1DBynWVLRt2aCKSiJKT2XZLU17/awyz9htO1bXLITkZ9t8/7MiKDHWSi+TTl19Cy5bWTvzQQwW82KRJ0LYtXHutDV1WCUERycR7uP9++PxzW4GhRg2gaw9r1Rk3TmUARSTqfv4ZmjSBk0+GQT3Ww5nX2WCcF1/UiGMRKRTdusH771txnKO/fdXK5rRqZb1XIiJR9scfcPPNcOSRMGLIFtwlQZXeKVOgfPlwgxORhPRis2SentmEsrUOotzKZfDuu1YZUEQk2pKT8VckUXZLCjO4jNKrd8DQoXDWWWFHVqSodUskH5Yvt5njVarACy8UsLrxjBlWO7lBA7uYGp1FJAv9+8Ozz1rZ4yuuAF57zdaOad7cerFERKJo1SrodU4ySzc2pXTbsZRtPgxWrIB582C//cIOT0QS0PDhsPjxZP7eoyl77+wDTVrDaadZOQsRkShbtw66n5nM4jVNSXtkHHt0fR4++wzeeANq1Qo7PBFJQG93TeaaMUlUJAWWrYTWrW1dYBGRaAs6yN2WFABKs8M6sY47LuTAih71xonk0R9/wAUXWAnA+fMLWJli4UKrnXz88VbPtFy5aIUpIglk2DDo0QPuuMNWZeD776FxYzjlFK1bJSJRt3YtdDsjmVF/JFGBFGh6qdVAHjoUzjwz7PBEJAFNmACv3pfMzJJJlNuUYgMAK1WymusqPyoiUfbvv9ZBPnx50FnV4lLYvh26d4ekpLDDE5EE9N5DyZz1SJBz0o0dCw0b2sQpEZFoSU7GJ+3qIP+/1FS48korUaq8838lwg5AJJ6sXQsXXwx//QUzZxZw4M3SpfbwdfDBdrHKlaMWp4gkjnHjrMz6tdfC2NuTKVHzELjkEmsw1rpVIhJlGRuNK6Q34OzQiGMRKTxTp8JzTZOZWSKJcqlB3vEetm2Dn34KNzgRSThbtkDPs5N5/LsMnVXbt0OJEnDuueEGJyIJafFjydTrnamDHGwGVlKSrQ8sIhIlvklTXEpK1m+mpFhVY/k/dZKLRGjjRrj0UmuneeMNq/yXb8uWWSdXxYrwzjuw775Ri1NEEseUKXD33TY456XmyZS8Ogl+/dVKHnfpAoccEnaIIpJAtmyBHmclM/D7LBpw0kccqwFHRKLo7bdhRKNk3nRJlEvLlHe2bVPDsYhE1Y4d0KdBMv2+yOJeJy0Nrr5aOUdEour992Hfzk13zznp1GElIlGUmgr9Dx9HCuWzPqBCBZuRJf+nTnKRCKSkWLvw559bp9V55xXgYn/+aT1e27dbB3mNGlGKUkQSyaxZcMstcPrpMO3+ZMo0TLJklK5nTzXgiEjUbN8O118PbZeqAUdEYmPBAquUM6FEU8pn7iBPp7wjIlGSmgq33w7NF+leR0Ri49NP4YorYND+j+Gdy/ogdViJSJR4Dy1bQv+59dm03+G7H1ChgkqtZ0Gd5CK5SG80XrAAJk4s4PJU69fbdPRVq2DGDKhTJ1phikgCWbDAlqU69liY1TmZ8jdk6iAHleUSkahJbzR+6y34sv04KK8RxyJSuD791G5jDjkEyr80LvvlY5R3RCQKvIcWLeDll+GjZrrXEZHC9+23VkS0RqV1DKrcB1e2LJQr99+D1GElIlHiPTzwAIx7dgefHX4D+/71FXTvbnkGlG9yoE5ykRykpsJtt9mS4SNHwk03FeBiW7bAVVfBN9/Aq69C/fpRi1NEEseSJTbSuEYNK0G6R5umu3eQp9NMBxEpIO+heXN45RV4/HG48qFT4NBDdz9QD1QiEiXffGOFtapWhTlzoGq1kpaMMs+wUt4RkSjwHjp2hNGjoVs3uGn4mXD88bsfqJwjIlHyyy9w0UVQyW1iUbXLKb38RxuR/NZb6rASkULRvz8MGpjGh7Ubc9RPM+CZZ6BvX8szNWoo3+RAneQi2UhLg2bNYPJkGDQI7rmnABfbuRMaNbKFaCZOtKGEIiKZfPONFZvYe2+YPRv22Qeb8pAdzXQQkQLwHjp0gDFjoEcP6NgqGND3/ffQu7cacEQk6tIbjUuXtg7yg35fZKMDa9Wyda2Ud0Qkyvr2hcGDoU0b6Ntrp61ptWgRtG+vnCMiUffHH3DhhbBz8za+qH0d5b9cbGUsGjSwTR1WIhJlTzwBPXp4Zh/RmpN/fBEGDLDZEGB5Zvly5ZscqJNcJAve2/PS2LG27G/79gW4WFoa3H03vPEGPPWUdZaLiGSybJk9SJUpEzQaHwS8+651VNWuvXtJQDXkiEgB9ekDQ4bAfffBQw9ug+uug3nzYMIE6NVLDTgiElW//w4XXABbt9pgwMM3fW6jA/fbz+55GjZU3hGRqBo61G5pGjeGoYPTcHc2halT7Y1Bg5RzRCSq/v7bBgP+vTqVr+vdTqUP3rEyFtdcs+sgdViJSBSNGwdt28IrR/bggh+egU6doHPnsMOKK6XCDkCkKOrd20bg3H+//Xe+eW+JacIEeOghaNkyShGKSCJJbzTetg3eew8OOwz7jyuvhCOOsHXHly61xTtTUtRBLiIFNmSI3eM0aQJDHt+Ju+lmW19m9Gi49VY7KL0BR0SkgNIbjdesgblz4dgS3wR1SCtZB/mBB9qByjsiEiVjx0K7djYGcPSznhL3toBJk+Dhh62xB5RzRCRqNm60sX8//+RZdvG97P3mZBg4UEvkiUihmTzZ5maOPGIQN3zf33549NHdl7GSHGkmuUgmgwfbzKo777T/LlBOefTRXXW9evSIWowikjjWrLE24rVrYdYsOOYY4MMPdy1MPmeO1V9XWS4RiZIxY6xKzvXXw7MjUinRtDG89hoMGwZ33RV2eCKSYDZssEbjX36x4lqnVPnRRgeWLm095jVqhB2iiCSYyZNtybyLL4bnJ3lKdWoHzz5ri5J37Rp2eCKSYFJSbI7DF1/Al1d358A3R1mu6dAh7NBEJEHNmmXzG/rVGkOzHzrCDTfAiBHqIM8HzSQXyeDZZ+3+5YYbYNQoKFGQYSTPPms3RLfcYqW8lKBEJJOMjcZvvw2nnAIsWWI799/fZlbtu++uEzTTQUQK6OWXrdH40kvh+YlplGrVHF54AR55xAb1iYhEUcZG42nT4LxDV8DZF8DOnTB/Phx+eNghikiCeestazQ+4wx49VUo27e7lQps29YWKBcRiaLt223w8YIF8Mmtg6k96WFo1gz69w87NBFJUO+9ZytV3V99Cl2WNYNLLrFqOSVLhh1aXFInuUjgpZegeXO47LIo5JSpU6FFC7vYuHEF7G0XkUSUkmLV05cuhenT4ZxzsBbkiy+GvfaymVXppUdFRKJgxgy47TY46yyYOsVT5oG2Nq28Rw+tWSUiUbd9u5U5fv99ePFFuOLEP+CcC+Dff+0+p06dsEMUkQQzf77lneOOs+JbFYf2t/LqzZtHoVSgiMh/paba89XMmTCv8ThOnBDMvHr6aeUbESkUS5ZYe/LN1Wbz2O+34OrXt76oMmXCDi1uqZNcBHt4uv12OPtsmDKlgDll7lybPX7aaVbjSwlKRDLZtg2uvRY++MAG6Fx+OfDNN3DhhbDHHpZHDj447DBFJIHMm2czHE44Ad543VOhb1cYPtxK6Dz0UNjhiUiC2bnTHolmzbICW40a/AXnXgCrV9tSMieeGHaIIpJgFi+2yhU1a1ru2XPcUOje3Rp71GElIlGWlmYVuiZPhmlNpnHuc3fbWnoTJ2o2p4gUiq+/tqqAF1b8kGf/vgZ39NHBqMCKYYcW19RJLsVecrI1Gteta2vkVahQgIstWQJXXw21aytBiUiW0huN33nHJnDecAPwww+71uZ891049NCwwxSRBPLxx9ZoXKtW0Gg8vB88+ii0bAmPP65GYxGJqvRG46lTbeLm3Q3XwfkXw4oVloROOy3sEEUkwXz1lTUaV6tm43D2eXUktGtnjT1jx6q6n4hElffQvr0VDx17xzyufvEmWz/v1VehbNmwwxORBLRsmY3DOcEtZXLK5ZSofqA1LletGnZocU+d5FKsLVoEV10Fhx1m7TWVKxfgYt99Z+XVq1WzxYX32itqcYpIYkhLg7vvtuemIUPgzjuxu5zzz7c3582zQTYiIlGS3mi8zz4wezZUGz8QevaEJk3gySfVQS4iUeW99UuNHw+9ekG7uzbCRZfBt9/aiORzzgk7RBFJMD//bI3GZctaB3n1uRNtIOAVV8Dzz0MpNX2KSHT17g1PPAGP3/QJTV4LGpZnzLDKgCIiUfb77za36sCUn5hV+hJKVqpoDTz77Rd2aAlBd4pSbH35pfVp77uv5ZS99y7AxX791dYRLlHCRvBUrx61OEUkMXgPbdvChAlW2bhtW2xG1fnnw5Yt1kF+9NHhBikiCeWnn6zRuHx5azQ+cNrT0KkTNGoEo0drVpWIRF2vXjBsmN3n9Oq4GS5Pgk8/tRGCF18cdngikmB++81WrNqxw9Yjr/XpFBsIeP75UVhLT0Rkd4MGQZ8+0PXa7+gw51Lc3ntbW3CBGpZFRLK2Zo2165RZ8zsLK19E6e074J13bX0ZiQq1jEmx9OOPllwqVAgajQ/Mx0WSky0ZTZsGl1wCGzbYdHTNAhWRLPToYcv/tm9v//3/YYAbNthIneOOCztEEUkgv/66q9F49myo9d54aNXKloXROnkiUggGDoS+feGuu2Dww1tx114DCxfaTM4rrww7PBFJMOmNxmvXWlPMMctnwM03wxlnwPTpUK5c2CGKSIJ59lno2BFaXPEr/ZdcjNNkKREpRBs2BN1Oy9by6T4XU/bfv2HmTKhTJ+zQEopmkkuxk95onJpq/dz5Wvo3ORmSkiAlBa67zhqaZ8+GE0+MerwiEv8eewz697dS6wMHglv9p3WQ//WX5Y6TTgo7RBFJIH/9ZY3G//wDc+dCnS9ftl6riy+Gl1+G0qXDDlFEEsyoUVao4sYbYeTw7bgbb7DRyOPH204RkShav94ajZcvt9XuTl4/x9pm6ta1kscVK4YcoYgkmpdegubNodEFf/P0TxfjNmzQknkiUmg2b7aVY35Z+i+/HHY5FVf8bKMCTzkl7NASjjrJpVhZvdo6yNevt37ufFU2zthBDraOcOnS9ioiksmIEdC5s1U3HjEC3Nq/LRH99pvd3Jx2WtghikgCSW80XrnSJjXU+2063HYbnHUWvPaaLdgpIhJFL74ILVrYUlYTx+2kZOPb4M034ZlnoHHjsMMTkQST3mj81Vc2YfycEu9bpZwjjrAe88qVww5RRBLMm2/C7bfDRfX/5fl/LsOtWG4PW5osJSKFYNs2aNgQPv1gK78ccw1Vvv3Elq8677ywQ0tIKrcuxcY//1ij8a+/2sDifE3czNxBnm7bNtufnByVWEUkMbzwAtx7rzXiTJwIJTess+mdP/8Mb7xhnVYiIlGS3mj89dfWH37W5rdtBme9etayU6FC2CGKSIJ54w1rND7nHJg6OY0yLe+CyZNtwc4WLcIOT0QSzLZtcO218NFHtpLDZdUWw+WXw8EHW4WuvfYKO0QRSTDJyXD99XDq8VuZUfoaSn7xmd3rnH122KGJSALauRNuuQXefWcn39a9mf2+mmvVua66KuzQEpY6yaVY2LTJGo2//daWEM93v1TTprt3kKdLSbH3RUSwWQ133AHnnmvPT6VTNsCll8I331giatAg7BBFJIFs3QrXXGONxi++CJeUm2876tSxNasqVQo7RBFJMHPnwg032ODj16d7yne4F557zhYmb98+7PBEJMHs3GlLjs+eDaNHww1HLrWZENWqwbvvwn77hR2iiCSYRYusX+qIWjuZe8AtlHov6KxKSgo7NBFJQGlptlTna6+msfSUu6nx2TQYNsyqA0qhUSe5JLz0RuNFi6zR+OKLC3CxHj3Auazfq1ABxo0rwMVFJFG8++6uyZuvvw7ld/5rMxw++wymTLHGHBGRKElvNJ4zB8aOheuqf2QNN7VqWRnAqlXDDlFEEsxHH1mj8eGHw8y3PJUf6gAjR0LXrtCtW9jhiUiCSUuDO++0SjlDh0LT07+zCl0VK9rDV/XqYYcoIglm6VJbSmbffTwfntCcsjNegyeeUGeViBQK7+H++2HCBM8Hp7WnzuIJ8NBD0KZN2KElPHWSS0LbsQNuusmemcaOtbUc8m32bGjXzsp3lSv33/cqVLAyppoZKlLsffjhriXxZs6ESiVT4MorbaTOSy/Zf4uIRElamhWymTbNBhg3Pv4zq1qx//7Wa77PPmGHKCIJJr3ReP/97RFp7yd6wpAh1qrTv3/2g4pFRPLBe7jvPlu+qk8fuP/KZXDhhZZr3n0XDj007BBFJMH8+KNNsipfzvPJhQ9Q8aWx0LOnJSMRkULQowc8+STMPL0v9Rc9AW3b2k4pdOokl4SV3mg8fToMHw6NGxfgYmPH2izQQw+Fzz+Ht97ata6nOshFJPDFF5YqDjjAJm/uVSEoZbFggbXqXHdd2CGKSALxHlq3hkmToF8/aHP+19aas+ee1mh8wAFhhygiCeaHH3ZN3pwzBw4Y97AloHvusY5ydZCLSJR16wZPPQUdOkD3xr/CBRfAli2WhI44IuzwRCTBrFxp43BSU+Gzmx+jyrMD7aGrd++wQxORBPXYYzbW+IX6w7j0w17QpAkMGqRnqxhRJ7kkJO+hVSt4/nlLMK1bF+BC3bvDXXdZJ/iCBXDQQfbfb74JNWqog1xEAGs0vvhi2GOPoNF47+3WKT57tg20ufnmsEMUkQTz4IPwzDPQqRM8eMOP1ppTurQtFHzIIWGHJyIJJr3ROC3N7nVqThtqvVe33WbJSI04IhJljz4KAwbYOJzHO67GXXQhrFtnI5KPPTbs8EQkwaxebYMB16+HJc2fZd/BXawt54kndJ8jIoVixAjo3BmePG0iN390v022evZZKKGu21gpFXYAItHmPXTpYgnmgQdsWbx82bbNOseff95en3nGGp7TNWgAy5dHI2QRiXMrVlijsffWaFzjwB1wYyOrOjFyZAFLWYiI7G7AAHjkEWjeHB69dwXunAtsusP8+XDYYWGHJyIJZvVqu9fZuBGSk+Go90bZUlTXXQfjxkHJkmGHKCIJ5umnrW3nppvgmX5rcRdcCL//bh3k9eqFHZ6IJJh//oFLLoFff4VPuk6hRu8Wtr7MhAnqrBKR6EtOZtMNTXll7Tj61NvIvUuawvnnw4svQil128aSftuSULy3an+PPQYtWljjcb4G+v3zD1x7rTU09+9vPe0aMSgiWfj9912NxvPmwZGH7YRbb9u1QHCzZmGHKCIJZvhwm0V+yy3w1IO/4xqcD//+a0no6KPDDk9EEszff1u1nPS+qRO/nmQPW1dcAS+8oEYcEYm6CROsOmBSEjw3fAMlL73EFgl+6y0444ywwxORBLNhA3Q/M5np3zZl612tOLJvNzj9dJgy5b8TpkREoiE5mZ2XJbHHthRmucsovTQNV6+etSWXKxd2dMWOnmYlYWzfDvfeC2PGWMW/p57KZ7/2L7/YosLLltks8ltuiXqsIpIYFi+2KjgbNlijcd3jUqHpnfDKK/D449CmTdghikgC2bnTSqt/PjSZ1eWbstfVgyl5STdYs8bKWJxwQtghikiC+eorePiiZF7/syl/PTqOU1attQo5559vDcdlyoQdoogkkLQ0W/Z3Qd9kVpVrStU7n6b01f1h6VJrOD7//LBDFJEE89NP0O+CZJ5amURFUmDMA1Crli2vWaFC2OGJSILxc5PZeWkSpXekAFDGb4OdziZpVqoUcnTFkzrJJSGsWWOV/hYssGXx+vTJZyWcjz+GK6+EHTtsHeFzzol6rCKSGF58Ee68E67ZM5kJlZtSZssYaPESTJxoJS06dgw7RBFJIOvXW7nRbW8n83apJMpsSYGbrreZDXPmwKmnhh2iiCSYN96AZ25MZsrWJCqQQo2el9lz0hlnwPTpmuUgIlG1eTPccQesezWZWSWTKLs1Ba6/0t6cPNkmM4iIRNHcuTD06mRe2mT3Ov+3ahV89pkttSkiEiXb307GX5FE2dSU/77hPdx6qw3OUd6JOS2oIXFv6VI45RSb0fnCC9Y3la8O8tdeg/POg4oV4cMP1UEuIllKS4Pu3a3IRLPaybywMYkyq1bApZfC6NH2ZrduYYcpIgnkxx+hfn3YOTuZd8okUWZn8EDlvZXN2bkz3ABFJKF4D48+CkOuSmbq9gyNxtu22WvnzvbMJCISJStXwllnwfrXknmndIbG47Q0W9KhatVwAxSRhPP001Yt5+XNmTrIAbZssfUekpPDCU5EEs6ff8Laq5ru3kGeLiUFmjaNbVACqJNc4tz06TaRYft2eO89uPnmfF5o6FCbin788fDRR3DkkdEMU0QSxKZNlir694fHLktm6M9JuC3Bzc3OndaAoxF/IhJFs2fbJPGjViXzdukkSm/P9EC1bZsacEQkarZutZmcs7okM7NkEuXTMuWctDRo1Eg5R0Si5oMPbOJD9R+SebvMrvKj/7d9u+51RCRqduyw5TpbtYLnyzalvFeHlYgUrs8+s3adO/0Y0kqWzvqgChVg3LjYBiZAhJ3kzrmDnXNTnHMbnHMbnXOvOucOieC8k51zo5xz3znnUpxzK51zzzvnDi146FKceQ8PP2xrAdepA0uW2ENVnqWmwv33Q7t2drG5c2HffaMcreSH8o4UNStWwJlnwuuvw5RWyXScn4RLyfQwtXOnLdmgBpy4o5wjRY338OSTcNllcNBBMLlSU0puUwNOIlHekaJm1SorrDVpErxWRbMcEo1yjhRF48fbGONKleDVKk0ppXudhKK8I0XN2rVwySXwzDPQpd029rmobvYHq8Mq7ijnSFE0dapVy6mYupEXz3ySEqk7oGTJ/x5UoYJKrYco105y51wFYC5wFNAYuB2oDSQ753KrsXYTcAwwDLgM6AKcBCxxzh1cgLilGNuyBW67zaoZ33wzzJ8PBx6Yjwtt3gwNG8KwYdZJPnmyJSQJnfKOFDXvv28DcVasgLfeguvebLp7B3k6NeDEHeUcKWq2b4cWLaBNG1t+84MPoPQdt2R/ghpw4o7yjhQ1n3xi9zpffmkNOVWef3r3xpt0yjlxRzlHiprUVOjY0R6bzjoLPv4Yytx/b/YnKO/EHeUdKWq++QZOOw0WLoQpg1cyYOE5lHh9ulXIydwerA6ruKOcI0WN99CnD1x/PVxZ+1u+LH8qVRa8YRWN33lnV95Rvgmf9z7HDbgfSAUOz7DvUGAn0D6Xc/fJYl8NIA3ok9tne++pV6+eF0n3++/en3KK9+B9//7ep6Xl80KrVnl/8snelyjh/bBhUY2xuACW+Aj+hvOzhZl3lHMkszFjvC9d2vvatb3/7rtg5xNPWCLKaqtQwfu5c0ONOVEVVt7RvY4UJWvWeH/uuZZOunTxfufWHd536GA7TjjB+/LllXNiRPc6Uly88oqlloMP9v6zz7z3v/xi+QbsJkg5J2Z0ryPFwfr13l9+uaWUVq28374tzftBg6x95tBDvS9XTnknhhIx7yjnSGYzZnhfqZL3++3n/ddD3vZ+771tx9SpdsDcuZZrlHMKXSLmHK+8I5ls3uz9jTdaSnni3Kk+bY89vN93X+/nzdt10Ny53teooXwTA7nlnUjKrV8FfOS9/yl9h/f+F2AhcHVOJ3rv12SxbwWwBqgewWeL/F96SfVvvoHXXoMHHwTn8nGhb7+F00/fdaE2baIeqxSY8o6EbudOaN8e7roLzj0XFi2CI4/wVperQwcrYVGu3H9P0ui/eKWcI0XC11/bOlUffQQTJ8KATusoeeXlMGiQ3a8sXgwzZmjEcWJQ3pHQpaVBr15w441w4omWYuqun2cPXcuXw8yZ8PbbyjmJQTlHioSffrLmmHfesceqJx/fQum77rDnq2uvhaVLrXSX8k4iUN6R0HkPAwdCUhIcXiuN727tS532l8IBB1hDc8OGdmCDBpZratRQzolfyjlSJPz2G5x9Nkx9JZUPG3TlvvnX4Y45xkp3nXvurgMbNLBnLuWb0EXSSX4M8FUW+78G6uT1A51zRwP7At/m9Vwpvl56yZJL6dJWcvSaa/J5oeRkOOMMq9k+fz5cdVU0w5ToUd6RUG3YYEuLDxkC991nbcRVK2yDe+6Be++Fiy+23iw14CQK5RwJ3ZtvQv36u25Rbjsx6DGfPx/GjLHlYUqXVgNO4lDekVBt3myd4336QJMmMPddz36Tn4QLL4R99rEe80svVc5JHMo5ErrkZCt1vHq1dZK3SPoNzjkHJk2Cvn1tCbw99lDeSRzKOxKqbdtsSYdOneCOpHV8vF8SVQb3hFtvtVHJRxzx3xPUYRXvlHMkdIsW2Xjjv79fy6q6l1E/+RFo3tzadQ46KOzwJBuRdJLvBfyTxf51QNW8fJhzrhQwAhuFMyaH45o555Y455asWbPbQB4pRtLSoEcPW3v85JNtnarjj8/nxSZOhEsusdGCH31kF5SiKqZ5RzlHMvrxR+uomjMHRo6EJ56AUqt/t9F+Y8ZAt27w+utQpYoacBKH7nUkNN7DY4/ZuL0jjrB+qdNWTbNEtHkzzJsHd97535PUgJMIdK8joVm50tYAfu01m1019pltlG11t1WsuPxye1aqXXvXCco5iUD3OhKqZ56xccb77WftOg3KLLQ2me+/h+nToXv3/5YKVN5JBLrXkdCsXg3nnw8TJsCIez5h3NKTKDXvXUtGzz0HFXNbolrikO51JFSTJlnT8cklPuXHPeuxzzfzYfRoGDECypYNOzzJQSSd5AA+i335KXT9JHAGcJv3PqukZR/m/Sjv/cne+5P32WeffHyMJIJNm+D666FfP2sbfvdd2HfffFzIe5sicccd1hr0wQdQs2a0w5Xoi1neUc6RdHPm2OyGNWvsv5s1A95/H+rVg6++gqlTLSmVLLnrJDXgJArd60jMbd0KjRtD585www2wYH4aB43tY+VGjz7aSgCefnrYYUrh0b2OxNwHH9jshmXL4I03oMMtq3ANzoOxY2108rRpULlyuEFKYdG9jsTcjh3QqtWuYlwffQSHzX3Wnp0qVbIdqvCXyHSvIzH32Wd2r/PZp57FzZ6l+YQzcN7DggXQokU+1+6UOKF7HYm51FTo0gVuvx161nyO19edSZkSqdaefNddYYcnEYikk/wfbCROZlXJenROlpxzA4BmwJ3e+3ciPU+KpxUr4MwzbUDxkCE26KZMmXxcaPt262Hv1cs6yWfNstmfUtQp70hMeQ9PPWVVRQ880GY3nHuOt9F+6Q04ixbtWq9KEo1yjsTcn3/CeedZoZs+feClZ/+lwh3X2z1L48bw3ntQXcufJTDlHYm5CRN23dZ8+CFcvvcim8n55ZcwZYoloxKRjqOXOKOcIzG3bp09Xz39NHTsCK9P3UHlrq1sJPL559tDV508V8CV+KG8IzE3darNjyqbmsKvF93JyaOa2UPXJ5/YUlaSyJRzJOb+/dfmOAx+dDvJx7Tmwe8b404/3XLOKaeEHZ5EKJIn4K+xNR0yqwN8E8mHOOe6AV2A+733EyMPT4qjhQsth6xYYcv9tm2bx0F+yck2U/yNN6xc4Pjx1uA8fnw+e9olBMo7EjM7dkDLltC6taWMDz6AWtW3WeNNy5Zw0UXWgHNMVv8kJUEo50hMffqp3euk90v1uOVn3Bmn21IOQ4bAuHFQrlzYYUrhUt6RmElNtfU4mzSxhuNFi6DOx+NtLeCyZa3H/Lrrwg5TCpdyjsTUt99af9T771tTzOOd/qLkJRdaj3mnTjBjBlTNU/VbiT/KOxIz3kPfvlaR9LLaP/FNlTPY+80J1h781ltQrVrYIUrhU86RmFq2zAr/fTpjFctrnc95Xz9lowLfeSef5ZAlLJF0kr8O1HfO1Urf4ZyrCZwZvJcj59x9QD+gm/d+eD7jlGJi3Dib3bDnnlZ165JL8niB5GRISrIe9quvtp/Hj4fevVVOJ74o70hMrF1rZf9GjrTSOK+9BpX/DdYfHz0aHnzQBtyoASfRKedIzEyebJ1UztnAwOv2nGM95n/8YRVv8jw6UOKU8o7ExMaNVsl44EArdzzrjR3s3ed+aNoUzj4bFi+G444LO0wpfMo5EjMzZ0L9+ja7at48aHx8UPv444/h+efhscf+u3yVJCrlHYmJlBS46Sbo2ROGnDedyctPpvSfv9pgnN69lW+KD+UciZn5820w4EErFvJzlZM48M/P4KWX4PHHoVSpsMOTPIqkk/xZYDkw3Tl3tXPuKmA68CswMv0g51wN59xO51zPDPtuAoYCs4C5zrn6GTbVVJL/S02FDh2sMvq559rshqOOyuNF0jvIU1LsZ++hdGk45JCoxyuFTnlHCt3XX9sNzYcfWrnjAQOg5EcLrezoV1/Z9M7+/fVAVTwo50ihS0uzNpobb4S6dWHxx566yUNsRGD16tZRdeGFYYcpsaO8I4Xu559tdsPbb9vkzace+pvSSZfAsGHQrp0NzNl777DDlNhQzpFC5z0MGmTNMrVq2a3N6StftrX00tJsWvktt4QdpsSO8o4Uut9+s8I4r76ykw/P60rbedfgDj/cSh1fdlnY4UlsKedITIwaBRde4GlT8mlmbj2PsnvtYZ1ZjRqFHZrkU67DGrz3m51z5wNDgImAA94F2nrvN2U41AEl+W/H+6XB/kuDLaP5wHn5jlwSxoYNNuJv1ixo0wYGD87HgJvMHeTptm2z/W++aVPUJS4o70hhe/NNa5+pWNFG/512qocRI+G++6BGDZgzR+XVixHlHClsmzfbMuNTp1q54xFDt1L2vubw3HPQsKEtFLzHHmGHKTGkvCOFLTnZSo4CzJ4NDfZeCqdcDatWWc65445wA5SYUs6RwrZtG7RoYYX8rrsOJoxNpeKA7vDII1ZCZ8oU2G+/sMOUGFLekcK2aBFccw2U37iaVcfdTLV5ydC8OQwdqqWriiHlHClsO3dC+/bw7PAtzDjwXi7+YzxccQVMmgRVqoQdnhRARF2R3vuVQI6LlHnvl2PJJOO+JkCT/IUmxcGPP1r5v59+snLHzZrl80K33bZ7B3m6lBQrJ7h8eX7DlBAo70hh8N7KjXbuDCeeCNOnw0H7bINmra28+mWXWQlAlVcvdpRzpLD8+qvd63zxheWf9o1+x110rU2v6tMHunWDEpEUd5JEo7wjhWXECBt8XLu2rRpz2KeTIamJNd68956V0vkfe/cdHVXRh3H8+6MTEOkqSrGDFRVUFBXsJXaxF1BAsfcuoqJYXiuCAiIgYu+CKCqxYAFBioKiIqCIoPQSWpJ5/5gbWZZNsptstuX5nHNPzN27d2c37OPcmTszUuEoc6S8LFzo7/n7+mu//G/Pq5dR6exz/bzrl10GTz4J1aolu5iSBModKS8vvghdu8KJ9b/ipdpnUvW3pboJUJQ5Um6WLvWzAv7yyVx+aXwaTed/H1R6eqo9JwNognxJmk8/hU6dfI58/DF06FCKk+Tl+bUe/vmn6GOysvxi5yJSoa1d62/EGT7cV2yGDIGspX/BYaf7W5Bvv913WGl6dRGJk2++gVNPhTVr/AwWx9f9GtqeDqtWwTvvwMknJ7uIIpJBNmyAa6/1U6sffzy89GIBWz7a0y8f066dn85im22SXUwRySBTpvibARctgtdeg057/gztTobff4dnnvGd5CIicVJQ4O8xfvBBR98dn+SKuTdhLVrAx6Nhr72SXTwRyUAzZ8KJJ8IOv3/CzNpnU2Ndnr8TOTs72UWTONFtDpIU/fr5JTibNIEJE0rZQf7jj76x5/bb/fw6b77pO8RDZWVpqnURYcECHwPDh/t+8FdegazJWn9cRMrPCy/4+k3t2r6z/Pi/B/sdtWrBt9+qg1xE4mrJEjj2WN9BfuON8N7w5Wx54cm+ftO1q59/XR3kIhJHb7216XLjnWqOhAMO8MOtxo5VB7mIxNXKlb759+kHV/LdDmdx5azrsOxsmDhRHeQiUi4++sgv0Xn+/IcZ7Y6hRvOt/ayA6iDPKOokl4TasAF69IArr/SzGn/9NeywQylOcv/9sN9+MHeuv1359df9/F4jR27sKFcHuYgAkydD27YwbZrvC7/rTocNeNZnQ2Fn1enFzsYkIhK1/Hy4+Wa/BvnBB8P4cRvY7ZmrfCdVx47+7sDdd092MUUkg/z0k++XGjfOrwf8SNeZVD7oAPjwQ3938sCBUL16sospIhnCObjvPn8Jteee8N0Ex74fPuCHlO+0k++wOuSQZBdTRDJBTg60aMHfL+Vw0EEwe9QM/mjclv3mvAkPP+zv1tlyy2SXUkQySU4OrkUL3rwyhzOPW8nrdKLn6luwM87wbcg775zsEkqcabp1SZjFi+GMM+Czz/x6wKUatPnDD9C5M3z/vZ8v+emnoVGjjY937Og7xrt08XMpq4NcpEJ74w2/JFXDhvDVV9C6Vcj648ceCy+9pPXHRSRuVqyAc8+FUaPg8svhiTv+peo5Z/rKz403Qp8+UEXVbxGJn9Gj4eyzoUYN34580LIPYP9z/Pq/n3wChx2W7CKKSAbJzYWLL4ZXX4ULLoCBj6+mxuUX+8EL554LgwZtPsOfiEhp5OT40Zq5uWx5XjYXVr+O66o9QRWr7dfwLNW0pCIixcjJwWVnY7m5HN/veH6t0ZhGq+bB//4H118PZiWfQ9KORpJLQowbB/vv70eOv/ACPPhgjB3kGzb4W5X32w/mzfM9X6++umkHeaGOHWHOHHWQi1Rgubn+ZpxOnaB1az8TTuvG8/1F1HPPwW23+Rtq1EEuInEycSJcs1cO/Ua14O1rcujXbQpVD2rr51ofPhweeUQd5CISN+vWwQtdcmh1fAvObJTDdxMcB33xoG9M3mEHH0rqIBeROPrxR7iudQ4PvtqCl7vnMOyeOdQ44mA/s9/DD8OLL6qDXETiI+ioIjcXgCxyuWnd/VTZaXs/cEod5CISbzk5FBzvO8gBarKWRmv/wB5+GG64QR3kGUwtdVKu/v3Xd1QNGQLNmsHnn8OBB8Z4kqlT/cjwyZP9MIm+ff2wUBGRCEaN8ks6tJiTw6LaXdji7iFUm1Xdzwe4cqVvxDnjjGQXU0QyxLJlcMcd8FP/HEaSTRa5NH/mWHgGaNzY3ynYpk2yiykiGWTsWBjWOYf+f2ZTi1wGzj8B63yAn7Xi7LNh8GB1VIlI3KxaBffcA5Mfy+G9Al/XaTHsOHilum8w/uADP0uXiEg85OSQf3w2ldfmbv7Y77/DzJnQpEniyyUiGWvdhznYSdlU27Bp7hhAz56w774akJnBNJJcykVBgZ9la9dd/eCpW2+FGTNi7CBfv95fibVpA/Pn+3VmXn5ZHeQiEtEff8Cpp/oBVIcV5PBJ9WwarJpLtZOOhUMP3bj+uDrIRSQOnPMDpnbdFX5+JocPq/hGY8DXYfLy4Ikn1EEuInGzYAGcdx7cd0QOz8zzHeQAtmaN7yDv3t0vJaMOchGJA+d8M0yrVjDxfzmMqhRS11m3zt+A3LevOshFJG4WL4ZFJ3WJ3EEOfmR5ly6JLZSIZLQPP4RFJ3bZrIP8P8qdjKdOcom7KVPg4IN9G81ee/mB4H36+P6pmE6y//7QqxecdRZMn+57v0REwmzY4GcxbtUKxoyBl7rlMGRRNpXXhXRWOQePPQZ77JHcwopIRvjpJzjiCL8W5+n1cxhTPZtqeWEXVAUFcOGFfi09EZEyyM+Hp5/2N+X8+1oOH1XNJstFaMR58UXfWS4iUka//+5vPj79dDimWg6f1Mimenhdxzm47DLVdUSkzAoK4PnnfV3nhtX3UmBFdFlkZfnpSkVEymjePL9M5+nHreaHGm1xRR2o3Ml46iSXuFmxAq691i8bPmuWX3s8Jwd22y2Gk6xfD3ffDW3bwsKF8M47vrGnQYNyKrWIpLMvv4R99oGbb4ajjoJZz+VwzoiN68f8p6AAzjlHDTgiUia5uXD77bD33n4VmGefhX65nTXSQUTKzXffwQEHwFVX+XuIRzXWKAcRKT/r1kHv3rD77vDFF/4+40F5GtUpIuXnhx/85H+XXrKB3rUfZEjV7lTKqgnVqm16YFYWjBypKY9FpEzy8nz9plUrWPvuR/xVdw+OXfUGdtJJULPmpgcrdyoEdZJLmTkHr73mg+Wpp+DSS/3yMBdc4Jenitr33/vO8Xvv9Z1Z06fDySeXW7lFJH39+y907uwvpFatgvfe8/fUbH3TBb6hJhI14IhIGYwc6RuM+/SBc8/1dZ1LW32BVSqmOq07jkWklJYuhcsv9x3k8+fDK6/AmPfXUfW4I4t+kjJHRMrg00/9bIB33QUnngg//wzXHfkDVnfLop+k3BGRUlq5Em680Q98qPbj9yxodgCXzb2NSidmw2+/+TmQC5eQUUeViMTBV1/5AZ4P3LCId7e8gPc3HEvdrWv4UVjvvgujRil3KiB1kkuZ/PqrX37qrLNg6639cr/9+0O9ejGcZN06fxW2//6+5+u99/ww9Pr1y63cIpKeCgpgwAA/BddLL8Ftt8GMGXDi0et8z9XixUU/WQ04IlIKc+fCKaf4xuKsLPj8cxj6wHwaX3ceHHaYv1vwvvs2XwNYF1QiUgrOwfDh0LKlr/NcfbXvqDqrzmhszz1g8GA45BCNchCRuPn7b38D4JFH+uUdRo+G1wYuY9tHrvW9V3/9Bddfr7qOiMSFc/Dmm36wVb9H1/D+Hrfy6ar9abD+b//AG2/4RuaOHX3GNG+urBGRMlm0CC65BNq3d3SY9yJ/bdGSjv+8Cj17+mV/27f3Byp3KiR1kkuprF3rZ0XfYw/fMd63L0yY4Pu5YzJxIrRp4+fzOv98P3r8xBPLpcwikt4mT4Z27fyyd3vvDVOnwgMPQNbYYHjn7bfDccfBiBFqwBGRMlu/Hh56yC8b8/HH/r+nfLeBQ7971N+p8+ab/ia/GTPgzjt9xuiOYxEpgxkzfGxceCFsv72/VHrimtnUufAUOP54qFwZPvrIz4GsUQ4iUkb5+b4tp2VLX625+274cVoBxy4c5us6Tz0F3bv76XMefVR1HREps1mzfJXmjDPg6BpfsKTp3hw39SGsc2dfETrttE2f0LEjzJmjrBGRUiko8PcY77orfD5sDj+3OI4nl1xA9d13xr7/Hu65B6pX3/RJyp0KR53kErMPP/Sd4/fe6ys1M2fClVf6Npsi5eRAixYb1wNetw7uuAMOPBCWLPEXV0OHxjgEXUQqghUr4Jpr/P00c+b40VVjx0KrKr/CCSf4G2uqVoUxY+Ctt/wwCDXgiEgZfP65Hzh1661w9NG+vebm/T+jatvWfk7AQw+FH3/0laHCrNEdxyJSSqtX+9lx9t4bpk3zI8i//nQN+7x3j79T55NP4MEH/YNHH+2fpMwRkTKYMMGvdnf11b5Z5scfodfJk6lx1CF+XasddvB36vTvDw0a+Ccpd0SklNat85Nv7bEHTPtyOVPbXcbzsw6jZtV8X8957jm1CYtIXE2b5ifg6t41n151H+eXaruz66Kv/B2C48b5QBJBneQSg7/+gk6d/EDNKlV8HWbECD8DTrFyciA7289Xmp0NzzwTLP7wgB8mMX267+gSEQnhnF9/s2VLX3+57DJ/U875p6zCbrvVjx7/8ks/qmHaNDjqqI1PVgOOiJTCP//ARRdBhw6Qmwvvvw9vP/0XzW89x+dIbq5fp2rkSNhpp81PoDuORSRG773nqzQPPugn1pr5s6P71u9Rac/doVcvOPlkP9/6LbdAtWqbPlmZIyIxWrrUX1cdeCAsWACvvgofvrSEnZ+4wt+V/Ouv8PzzftHOfffd/ATKHRGJ0SefwJ57+lmNe7V5nz+22J29xg/yyzhMmwZHHJHsIopIBlm50sfLvvtC1RlTWbh9O676/XoqHd7Rj4AocbSnVDTqJJcS5eXBY4/5jqqRI/3M6FOnRlmHKewgz831v+fmwuWXw8KF8MEH/uKrbt3yLL6IpKFffvEDpc45B5o0gfHjod/TjrqjRvg5ch56CM47zx94/fV+JHk4NeCISJTy8+HZZ328vPyyX71h+uT1ZP/0iK8Avf22n4N0xgw46SQwS3aRRSTNzZnj+79PPhlq1/YzqA+54zcadcn2O2vWhE8/9XcMbrddsosrImnOOXjhBV/XGTTIz9T184wCzlzxHNZyV18RuuIKf33VpQtUUnOhiJTN/Plw9tl+PEO9Df8w/7CzuWXcSVRuVN+v3fnoo1CrVrKLKSIZwjl44w1o1QqeeXwN7+95Ozmr2tBw1Rx/TfX++9C0abKLKSlItV4p1tdf+0HfN9zgZxadPt3Pkh6+VENE4R3koVavhho14l5eEUlva9b4u4v33BO++w6eftp3kLetMtnPkXP++b7X/JtvYMiQKKayEBEp3vffw0EHQY8efor1qVPh/sM/Javd3nDzzf5Gmxkz/IjOmjWTXVwRSXPr1/tR44WzqD/8MEz+KpdDPrpz01lypkyBww9PdnFFJANMn+5nybnoIthxR5g0CR4/byJ1jmkH3br5GwInT/ZrkGsQg4iUUV4ePPmkj5Z33na8depwvl3Rim2+edsvVzVxol/vQUQkTn77zc9+3KkTHFvzc5Y03ZvjpvTBzj8ffvoJzjpLgx2kSOokl4gWL4auXeHgg/2S4W+95UeR77BDDCfp3DlyBzn4nrAuXeJRVBHJEKNH++Vg7rvPV2p+/hmuOHsxla/s4af+++UXv07V+PF+fkARkTJYvtyvw9m2rR/R+eKL8OmwebTqdRYceaTvyRo50s+FHFMFSEQkss8+g9at/frjxx4LP81w3LTjW1TdqxXcfz+ceaZfW6aoWXJERGKwejXceqvPnR9+gIED4at3F9G6f3fYf3/44w8YPtxPZbHXXskurohkgPHjfbxcey2css9cFh9wHKe+fSG2667+Zpy77tp8+RgRkVJauxbuuce3J8/4aik/HNiN537rQM2q+fDxx36AVYMGyS6mpDh1kssmCgpg8GA/BdewYXDTTf5mm1NPjeFmmzVroF8/WLeu6GOysnxIiUiF9+efcMYZcPzx/lpp7Fh4cVg+W7/VH3be2c8HeNVVvpP8kks09Z+IlIlzfkr1li39bBU9esDMH9Zz3ryHsFYtfaf4Pff4YVcnnJDs4opIBli4EC64wE9MsWaNn+nvrT4zadbtGDj9dD9y84svfGfVNtsku7gikuacg3fe8TNWPPSQz5+ZM/LplvcMlVru4pe9u+46f1PO+edrZJWIlNmSJXDppdCuHfyzoIDvu/Rl2KTdqfX9OD9LxZdf+lASEYmTMWP8TKS9ejke2O9NZmftxh7fDfEdWj/84Ac/iERBPQ3yn2nT/GzGXbv6esvkyX76v9q1ozzB8uV+7sAWLeDKK/08Xg884DvEQ2Vl+ZFZWidYpELbsMHPJtqqFYwa5QdQTZ0KHSt/4dd5uOIKP+xhyhR44glN/SciZTZzpl8T79xzYdttYcIEePrkj6l76F5+qNWRR/qp1Xv21LIwIlJm+fnQv7+/AfnVV/2yVdPHryJ73K2+RWfCBN9wPGmSvxATESmjOXPgpJP8QIc6dXy/1PPdvqHRCfvD5Zf766upU/2FWJ06yS6uiKQ552DoUF/XGTwY+lwwg7lN27PPkKux9u39jcdXXQWVKye7qCKSIf76y8+efswxsHX+XyxsdyrXf30Glbfdxl9fPfzw5v1RIsVQJ7mwcqVfc3zfff1AzSFD4PPP/TQVUfnnH9/i07y5nztwn338CcaN87+PHLkxmNRBLiLAV1/5fvAbb9y43O/tF86jWudz4bDDYOlSeP11+PTTGMJIRCSyNWv8zH577eWXwOvXD8a/8SdtHuoERx/te7I++MAPu9p++2QXV0QywKRJfjTVFVf4Os+0qY7ee75K1r4t/dDO887zd+5cdRVUqZLs4opImlu/3o9R2G03yMmBRx6B7z/8h/bPXwwHHeSntHjlFX99tfvuyS6uiKS7nBzWN2nBtXvn0KULtNpxPX9eeh+3vLIPlX+bCS+84NfUa9482SUVkUyQk4Nr3oI3rsihVSt4750CRmY/yxeLd6Px5I98x/iECb6DSyRG6iSvwHJz/fK+rVrBY4/5WYxnzvRLiUc129Yff/jFPFu0gD59/NCsiRPhww/h0EM3nqRjR98x3ry5OshFKrgff4QHj8lh2/YtaLUgh7ffhvdeX8f2r/Txcx+/9ZYfwfnTT34Odk39JyJlsHYtjLkth8VbtGBc7xzOPBN+nrqOy5f3ofLuLf00Fr17+6m4jjsu2cUVkQzwyy/w2Ik5NGjTgqa/5TBiBHzy5HRaXnEEnH02bLUVfP21vzN5q62SXVwRSXPr10NOzxz+rdWCj+/I4bjj4Kcf8rixel+q7r4LvPgi3HIL/PyzH3al6ysRKaO/X8ph/dHZVPt7Ln1+yObLc5/h89w2bNO/p5/G4qef/DoPyhsRiYP8T3LIOy4b+2Mux/XPpmfzYSzZ6zBOGNkDa9vWNzbfdJNuPJZS07+cCuiXX+CZZ3y7zPLlfmTDG2/AgQdGeYKZM/3oh+HD/e/nn+8vulq2LPo5HTv6eb9EpMJZvx7efttPN1rpixxGkk0tcnllVTY24w648XmYNctfTD36qEZxikiZzZ4Nzz4LM5/NYcQKnzmfVM+m8p53w1HPwa+/wmmn+bsENbpBRMooL8/fC9y/P2z4eGNd5421J2BvnwAXvQNbbOEvwrp105SjIlJm8+bBwIEw/ekcXljqM+fj6tlUOfQBOOV5v57eUUdB375+HmQRkTIoKPBjor68N4c7x2dTjVwAssil/UuXQ4MG8O67fr0HEZE4WLgQPr49h9OGZJPlfObUIpcbfuyM1a7tO7cuukg35EiZqZO8gsjLg/ff9w03n3wCVav6QZqXXw4HHxxllnz/vR8x/uabUL069Ojh50pu1qzcyy8i6efPP33DzaBBvmJzztY5DKuaTdUNvmJja3L9Ug1Nm8KYMb4RR0SklPLz4aOPfF3ngw/gcMthpGVTI2jAqbwu19/Ut+22voXnmGOSXGIRSXcLFviZuQYM8B1WnRrm8GLVbKr9V9dZ4+9GPuEEv2Bnw4bJLbCIpDXnYOxYv2zMe+/Bofk5fFB5Y12nyrpcuPZaaNzYt9uceqoajkWkTBYt8v1QzzwDzWfnMIpssoLM2URurr8hUESkDJzzK/j27w+LXs/hnfzNM8fANwA1b656jsSFplvPcAsWwH33+RnRTzvNDwLv3dvPlP7SS9C+fQlZ4hx88QUce6wfcj5mjF9nfO5ceOopdZCLyCYKCvyNOKed5nPn/vuhbVv4to8fzVnYQb6JxYs1JY6IlNqiRX75qZ139v1QkybB4PNzGFM9mxr5ETJn6VKoVi3xBRWRjFB4eXT22f4+v7vu8stXfXlvDq+u3thBvomcHL+sg4hIKSxbBk8+6bPmyCN9BvXvlMMnNYqo66xcCfXqqeFYRErFORg/3g/Q3G47uPlmaLqd44O650XuIAdYswa6dElsQUUkY6xc6WcD3Htvv4rvhx8U8Gb1c6ilzJEEUK9EBnIOvvzS33Hz5pt+FPnRR/u7jU84Icq+KOf8MKwHHvBr5jVq5EeR9+gBW25Z7u9BRNLL0qUwbJi/u/iXX/xAqZtvhu7dYfvtNsC2Z/k7iyPJzfUVGy3JICJRKmy46d8fXnsN1q2Dww6DBx+EU45bR7UdzoQ1yhwRiZ+VK/3Svv37+2Xv6taFq66Cyy6DXSrPgn1PUe6ISFxNnuwzZ8QI3xbcrp1f9e6MkzdQY8ezYG0JDcfKHBGJQW4uvPyyz53vv4fateGWM2Zxeb2X2eqTEbDs76KfnJXlh5yLiMRg+nTflvzCC/566/SW0xl+7HD2/GEElf5aWPQTlTkSRxpJnkFWrPAVmT339A3FH33kG25++cX/98knR+ggz8nxwz1zcvzv+fnwyivQujVkZ/t5A/v29RdXt96qDnIR2cT330PXrn724uuu88tQDR/up1rvc/GvbD/gVj/M6t9/ix7JoIqNiEQpNxcGD/aT27RrB++84zPoxx/hs8GzOHPSLVTbYTs/vFyZIyJx8OOPcMUV0KSJX6qqWjWfQ3/N2cBj7d9ilyuPhp12glWril5rXLkjIlFau9bfkNOuHey7r+8gP+88P1PO16/8wfkz76LGrs11fSUicfPLL3D99b5dp2tXqL16IV92eoplLQ/knhE7sdXTd/llHJ59Ft5+22dMqKwsGDkSOnZMzhsQkbSyfr0f7NChA+yxB7w/aAHP7vo4q3bZlzd+3oO9P/4flVrv7fuoRo9W5ki500jyDPDjj75zfPhw3zaz776+4ebsszfPkE3k5PiO8Nxc//Oyy+Ddd2HWLGjZ0q+bd+65fgFzEZHA2rXw+us+d7791ufM+ef7iSb2abUW3noLjhsEn33mG4uzs/2VVo0a/m6d0BHlqtiISBR++cXfXTx0qJ9ydI89fAadf9YGtsh5D6591q/1ULmyz5lLL/X/fdJJyhwRidn69f4mnH79/LTG1avDWWf5TvL9t5qLPTcIWg72a1s1bQr33guXXOLXtiq8viqk3BGRKMyeDQMG+LacRYtgl13giSfgovPzqfv1B9BzgG8odg6OP97XdWrW1PWViJRKXp6Piv794eOPoV7lFdy/39uc416i7qRPsJkFft7jhx/euMZMoZEjN9Z3lDkiEqV582DgQBg0CJYvyKVrw3cZvOtwdvhtDDYx34+GeOIJOOccf2NOIWWOlDN1kqep9ev9zXv9+29suDn7bN9w07ZtFEtPhXaQg//52GP+SuzNN+GUU6CSJhoQkY1mz/Y3Dg8e7JcR/6/h5iKo+9d0X8sZPhyWLIHtt/cLknfu7IdeFVLFRkSiVNhw06+f7/+uWhVOP93Xddo3DTqpdg/ppLrvPrj4YmWOiJRaaMPNggW+OvPww9DlwnwaTvgA7n3Wd1KZbeykOu64jSPImzRR7ohI1AoK4MMPfbvOBx/4aDn5ZD97xeG7/oU9Pxj2ec5P07XNNnD77f7m4+bNN55EmSMiMVi4EJ57zt+Us/DPdVzQYDTTd3+JVrPexyas9ZWf227znVS77x75JB07+qzp0sXPWqHMEZEiOAdjx/q6znvvFHBowWe8sN1wOtR8k6qLVkLNpn69zgsugFatIp9EmSPlTJ3kaebPPzc23CxcuLHh5uKL/TTHURkxwofKhg2bPzZvHtSrpw5yEQH8CgwffeQ7qUaP9tFw8sm+k+rwA1Zjr73qR41/+63vwTrtNN9wc/jhkXNEFRsRKcGCBRsbbubNg+22g9694ZKL8tj6+w/gwQEbO6lOOMF3Uh17bORpjpU5IlIC5+DTT4OGm/d8p9Xxx/tOqmP2+ItKQwZDm0E+kLbZBu6809d1mjWLfELljoiUYNEiHw/PPONvRN5qKx8t3bsWsN1PH8PTz8L77/uLsaOPhief9B3hkWb5U+aISAmcg3HjfF3n7TfyaZf3Bc9u+xJH1nqDaouXQaVGvm5z7rlw4IFRjLzCZ82cOeVddBFJU8uWwbBhvq5TeeZ0utcYzuBaI6i7ch4s3wLO6eQ7xg89NLp+KGWOlCN1kqeBggJ/x02/fr7hxjnfJnz55XDMMVHkSH6+78B6/32/zZhR9LG5uf7iSqEjUqEtWgTPP+9Hjs+eDVtvDXfdBd26OrZbOMnfqXPqy7BypV+e4dFH4cILoWHDkk+uio2IhHEOvvzSN9y8+aYfRX7UUdC3L2S3nkeVYYOh3XO+k6pJEx9Il1xSdCdVKGWOiESwbJlfwuGZZ/ySDg0awI03wqXdCtj+1zG+EjRypL+WOuYYeOqpojupwil3RCSMczBhgq/rvPoqrFvn24UffBBOabeQai8+Dx0G+YuvRo18IHXrBjvuWPLJlTkiAn7W0JAbZlauhBdfhP79HFWnT+biaiN4pvor1M2bD8trw2mn+o7xI4+EKuoiEJFSCMudKVOC2QBHLOTkNS/zTq3htOR73IbK2BHHwgX/88vi1ayZ7JKL/Ef/B0xhS5duvOPml19839PNN0P37n4EebFWroQxY3yn+KhRvserShV/Fdahg+/9Wrt28+dlZflQE5EKxzkYP9433Lz2mm+4OeywoOGm43KqvT4CThoEU6b4ykynTr7h5uCDo7vTWEQkzMqVfpWG/v1h+nSoWxeuugou65bPLnPG+OHk77/vA+roo4Ne82w14ohIqU2e7DNnxAhYswbatfM5dEb7BdR46Xk4cpDvbGrUCG66ydd1dtgh2cUWkTSVmwsvv+xz5/vvoXZtf59fj0sL2OPfHF/XOe9tf4dgx47Qpw+ceipUq5bsootIOglZVrPg+Gz6HjOSIZ805aTVL/Fe9ZfYnpk4VxU74jg47zx/bFZWskstIuksJHfyjs3mph3eYMHPy+hcaTjPujFUJh9a7gcXPIGFrzMukkLUwphCnPOd4ePG+Yx5662whpszoEaNYk4wd+7G0eKffeYXLq9Xz6+Td+KJfirSunX9sWecsema5KD1q0QqoFWrfMf4vOE5HPVSF27bMIRJW3Ska1focZlj92Vf+XmPO7/mA6l1a39L4LnnbswTEZEoOQe//+7rOgtfyeHsj7rwuhtC9X07MngwnN1hAVmvPA/HDfT1msaN/R2C6qQSkVJas8aP3vzzhRyOeLEL168fwviaHTnvPN9Jte/yHD9qvMs7GzupHnoITjlFnVQiUipz5/q6zoJXcug0qgsvuiGs270j/fvDBcctovYbQ+GMgfDrr1C/Plx9tR8NseuuyS66iKSh9R/lUPnkbCqv8228ldbmcuW7R3INBTgzaHcYnHsDdvrpPnNERMro39dyqHdBNlXW+9ypsj6Xx34+HgMKtmlKpQtLWGdcJIWokzyJNmzwAzK//NJfQI0bB//+6x87uU4Of1TuwtIBQ9i5exGd1gUF8N13fg7299+HH37w+3fZxQ/DOvFEP8Iz0mirwnWrCjvK1UEuUiH888/GvBk3zo9mOCQ/h5FkU4tcxlTLJm/ACGr+/Tuc+Rz89BNssYWfSr1rV9hvP40aF5Go5efDtGmb1nX+/hs6kMMosskil09qZFPp7Huw0ePh0nd8J9Xhh8Mjj8DJJ6uTSkRisngxfPXVxsyZOBEO3hBS16mazbqBI6i94Dc4ZwD89ptvML7mGt9JtcsuyX4LIpJGCgr8bDihdZ0//wyr61TPplLXB7BxE+DaN/yAhvbtoWfPKEZDiIhsatky+Pprnze5739Knx+zqcams4VWpgCqVsWGD4ezzkpOQUUkIzjnm4cL6znVPnyXfv+eSRXWb3KcAVSvTqVhQ+CII5JSVpHSUCd5Aq1a5ZcGHzfOX0B9++3Ggdzbb+8HfLdvD0dXzaHZFdlYbi4Nr8uGnUM6r1evho8/3jiN+sKFULmy7wx/5BHfMR7t3ceFHeUh60aISOZwDmbN2liJ+fJLP1sFQPXqcMAB8OxZOXR+M5sqwR3HVdfnUvXcU/1BBx4IgwfDmWf6eQFFREqQm+tHbBZmzjff+CnVAZo29VWNMxvlcOKAbCqt9blTeW0u3HwT1KmjTioRiYlzG0dsFnZQzZjhH6taFdq2hb6n5XDJOyF1nQ25VL0gqOu0bw+9esHpp6uTSkSisnatv/mmMHe+/tp3WAFssw0ccgg8cXIOpzwXUtdZlwvXXQu1asGll/q6zh57JO09iEh6mTdv07rOX9MWczQfcYKN5mz3ku8Qj2TDBrjlFnWSi0hM1q/3g6oKM+frcQU0WzKZ4xjNlVVH03bD1xQ5fGrdOr+uzJw5CSyxSNmok7wcLVzoRzEUBsrkyX5ElRnsvTdcfLG/gDr4YNh22+BJIWs5AP7nCSf4i6hffoGxY33YbLmlnz79xBN973ppp8vp2FGhJZIh8vI2H7G5YIF/rF49nzWXXALtD3bs13Au1Uc879e8y8vb/GQ1asADD+jmGREpVuGIzcLcmTTJt8WAb/s9/3zfB9W+zVqaLZ4ML74ITw/wFaJweXm+zqMOchEpQn7+5iM2583zj9Wp4+s6553nc6ftNvOo+dJg6N276LrOvfeqriMixVq2bNPZKSZM8I3H4GcQ7dQpqOu0Xcf2K6ZiLw6HZ56JXNcpKPDrjauDXESKUFCw6YjNL7+EP+YWsB+TOKXaB7xSczQtbQLmHK5+Q6x1R3/Q+vWbnywryw+KEhEpxooVfoBDYeaMHw811y7haMbQeYvRvJD3EVuyEAC3dxus1QXw+uv+zsFwyh1JQ1F1kptZU+Bx4Cj8zAmfANc65/6I4rk1gPuA84G6wBTgFufcF6Urcmpyzs/UF1qJ+fVX/1iNGn7E5q23+oundu18H/dmwjvIC61ZA08+6W9L7tHDd4wfcogfHiGSoZQ7JcvN9RWXwtz5+ms/YwVA8+Z+Zpv27eGw1svZdcV3VPpuPIwbD49N8HfxFGftWj/LhG6ikQpCmVMy53wkhNZ1fvrJP1atmh+xef31cMjBBbTf6le2/Hm8D6nHxsPUqZE7qULl5ip3pEJR7pRs7Vq/ulToiM3ly/1jTZr4S6JDDoFD91nJbrkTqTwxyJ1+E2D+/JJPrsyRCkSZE50//9x0xOaPP/o6UJUqfuWpq6/2Nx2332YWDX4LMqf/BD8qIlInVag1a5Q7UqEod0q2fr2/0bgwc776CpYsgQYsolOdMQyrO5q2tT8ia9W/uA2GtW4Lx/WE447D2rTxs4tGak/WsppSASlzovP335vedDx1KriCAvazyVy8zWiG1BtNi4XfYgUFULU+ZB/jB2kecwzWuLE/SZcuyh3JGCV2kptZFjAWWAdcBDigN5BjZns551aXcIrBwAnATcDvwBXAR2bWzjk3pQxl3ygnJzFThoe8Tt4hHZk6ddNAKexzql/fd0x16+Z/7ruvn9r4P87Bv4t8L/pvv238+dZbxV9UVasGjz9efu9PJEUodyK/zqI9O242YjMvz89OseeeftnwQw7cQIcGP7D13KDB5snx8PPPG8/XsiUcc4y/c6dyZd+jFX5jDujOP6lQlDmRXyv/uSH82KjjJnWdv/7yh2y5pR+xecEF0HGPf9l3w3iqTQ5yZ8B3G+cdrV3b957feKPPnbw8uOgi5Y5UeMqdyK+ztHXHTUZsfvfdxsuj3Xbzs4Ue0i6Pjo2n0+TP8dh3E+DZ8X54uXP+wJ128uUtrOvcdJMyRyo8ZU7k1yoYPIQZW3XcdMRm0IxeuzYcdJAfKd5xr8W0cd9RY2pQ1xkywU+nAz5L2rTxS8YU1nUuvli5IxWecify6yzft+MmIzYnTPD37RkFnNZ0Is83H81BdUfTcPYEbIWDag3hZN9BZUcfDY0abX7+wuU0Czus1FElFZAyJ/JrueeHMLPJpnWd33/3h2xbcwmX7TCG5/ccTau5H1J92T8wH1+v6Xan7xhv29ZfU4VT7kgmcc4VuwHXAPnATiH7tgfygOtLeO7e+EDqErKvCjATeK+k13bOsd9++7lijR3rXFaWc+B/jh1b/PFRWrfOufnznfvhB+c++8y5z3uNdeur+ddZUynLHVdjrPMtMc61aOHc+ec7N2CAc9OnO5ef75wrKHDun3+c++or54YNc+7OO5076yzn9tvPuS23dP89GZyrVMm5HXZwrk0b56pU2fSxwi2O700kHoCJLorvcGm2ZOZOiZnjXLnkTkGBc8uXO/f7785NmODc6NHOfXz7WLe+qn+dXMtyHfC5U62ac+3bO3fbrQVu7POz3crnXnHuuuucO+gg52rU2JgbjRo5l53t3H33OTdmjHNLlxb/XpQ3kuLKK3cqal1n/XrnFizwdZcvvnDurbecG3nDWLcuyJ3VbMyd7bZz7pxznHv28Vz367CvXP7/HnPu7LOd2377Tesze+/tXPfuzg0e7NyPPzqXl1f8+1HuSApTXSf+dZ0VK5ybPdu5iROd++gj5z65I3Jdp2pV59q1c+6mGwvcR8/94ZY//4ZzN93k3KGHbpof9es7d9xxzvXq5dwHHzi3aFHx70WZIylOdZ34fj83bHBu4ULnZsxw7ssvnXvnHedG3RS5rrP11s516uTc04+udT8NG+/yHn/KufPOc26nnTZmh5lze+zh3MUX+wagKVP8ixT3fpQ7kuIyMXeSWddZudK5OXOcmzTJN8N8euemdZ3DzWdO5crOHdn6Xzf8uBFu7qHnu/wGDTfmzP77O3f33c6NHx/5eqq499S8ubJGUlomZo5LYl0nL893Qf30k3Pjxjn37rvOfXDTxtwJres0bpjvbugw0Y079l63cs92rqBSJfffNdU55zj3wgu+4hQL5Y6kgZJyx/wxRTOzT4EazrmDw/Z/DuCcO6yY594F3AXUdc7lhuy/B7gVqOOcW1fc67dp08ZNnDgx8oNRTCfjnJ9+ePFiWLTI/4xmW7ly4yk7kMNIsqnFxtdZVyWLr255n5ad9qTJ6l83HxX+669+QYdClSpBixaw885+dEPozxYt/CjxKN+TSCows0nOuTbldO6k5U6xmQNRfUfz8vz0WIV5Em32hM5EHCl3NlStybxu97Bd4/VUnRSMYvjnH/9gjRp+2ooDDti4NW/uh5mXJPQ9KW8khZVX7mRCXWf16s0zpaTsCa2mQOTcyatag9Vdr6UOK7AJYdOmN226MW/239/PQVqrVnFvNfL7Uu5IilJdp/i6ztKlsefOhg0bT1lUXWdut94022r9xtkp/v7bP1itGuyzj8+bwuzZcUfVdSSjqK4TiFDXyc0tPl8i5U/h8gyFiqrrrOh6PfUqr/R1nSlTNk5hsc02m15ftWkDW2xR3FuN/L6UO5LCMjF34lHXyc+PXNcpKXtCJwiNWNepUoN/Dz+LrZb8TOVJE3zANWzoZ/w77jgoarS4SIbIxMyBstd1oOS6TqTcKZzEr1Ck3MmvUo01+3eg1m9TsMJ25DZt4Pjjix8tLpIhSsqdaNYk3x14N8L+6UCnKJ47OzRcQp5bDdgp+O/YFbV+d24uG444hlF1zuXX/O1Zkwv5BUWfpkkN2Kmmz6WaWZBVB7K2hprBvoYrZ9P8q5eolL9hk+dVz8vl8PuPgPtDdoZ2hB94YNEd4cXRVBUikI65c/gxvFv7XH7dsD1ri6k21aoMjWoGeZMFWTUhazuouXOQQzWhwcrZbPfFS1TK2zR3qm5Yw/b9b/a/tGzpKzKFDcV77QVVq5bqbf2XO4ma8kck9aRf5hxxDKO2PJff8rYnd41vxCnKNtVhh8K8yYKsLaBm442Zk5UF9VbMZpuxm+dOlQ1r2fKZB/2NOO3abZw2/YADfMNxaSl3RNIyd96rdS6/5G3P2rVFnyKrEjQIMqdmYfY0gaydNmZOg5Wz2e7zza+xqm5Yw079b/C/7LQTHH74xszZe++wNaxioMwRScvMGbXlufwWtOvkFVPXaVwdWoRmTi3IarQxc2rWhPorZrNNTuS6Tv1nHvD5csABG6dNP+AA2Hbb6G7EiUS5I5KWufNeYbvOWj+sNJLqlXxb8p6h9Z2tIWuHjZnTsLBdJ7yuk7eWJmOG+Tadu+/27Tr77acOKpGyS7vMyTviGEbV9XWd3NxNB0+Fa1QNmoVfY+2ysa6TlVV0Xady3npqfz3GX1t17uxvyilcW1xEouokrw8sjbB/CVCvDM8tfHwzZtYd6A7QrFmzyGfu0iXyGk9AVbeBU5YPK6FogbXBFqmU0ahXD1580TfiRNsRXhJdTIkkNHeiyhwoPnfYwBmrosidfGBVsJVW06bw009lOEEEHTvCnDnxPadI+kjPus6yKOs664KttHUd8BdQY8eW4QQRKHekYku/uo7bwOnR1HUKKHtdZ7vt/Mxc8aTMkYqtYtR1lkV3eERbbQWff16GE0Sg3JGKLT3rOiujrOusDrbSWrPGd5KLSLykXV2nitvAyUujrOusD7Zl0R0e0axZcMEFZTiBSGaqFOVxkW6ei+Z2WivNc51zA51zbZxzbRoVNcXMkCH+FplIsrLg00+hoKDs26efFv86b77pp6bYZZf4dJAXKryYUge5VFwJy52oMgdSJ3eGRVmBEpFYVNy6TjS5M3RocW9HREpHdZ2iXueFF4ouo4iUluo6quuIJJrqOkW9zpAhRZdRREpLdR3ljkjMoukkX0rku2XqUfKYpCXFPLfw8dIpHG0d/sUvnJ788MP9tFhl3Q4/vPjXUSe2SHlQ7ih3RBKpYmeOckckGSp27ihzRBKtYmeOckckGSp27ihzRBKtYmeOckek1KLpJJ+OX5ch3G7AjCieu72Zhd/Csht+gojfonj9ooWHTHl94RP1OiJSSLmj3BFJJGVOol9LRJQ7yhyRRFLmJPq1RES5o8wRSSRlTqJfSyRDRNNJ/h5woJntULjDzFoABwePlfTcqkCnkOdWAc4Cxjjn1sVa4M0UfvGbNy/fL3yiXkdEQLmT2NcREWVOMl5LpGJT7iTydUREmZOM1xKp2JQ7iXwdEVHmJOO1RDKAORdpuYWQA8xqAVOBNcCd+PUZ7gO2APZyzq0KjmsOzALudc7dG/L8V4BjgJuA2UAPIBs4yDn3fUkFbNOmjZs4cWLs70xEypWZTXLOtSmncyctd5Q5IqmrvHJHdR0RiUR1HRFJNNV1RCTRMjF3lDkiqSsTMweUOyKprKTcKXEkuXNuNXA48AswHBiBD4rDC8Ol8LWAyhHO2QUYAvQGRgFNgWOjCRcRqZiUOyKSSMocEUk05Y6IJJIyR0QSTbkjIomkzBGR0qoSzUHOuT+A00s4Zg4+ZML3rwGuDzYRkagod0QkkZQ5IpJoyh0RSSRljogkmnJHRBJJmSMipVHidOvJZmb/AnOjOLQhsKiciyNlo79Reoj279TcOdeovAuTaDFkDujfdDrQ3yj1xfI3qui5o3/P6UF/p9Snuo7qOplEf6PUp7qO6jqZRn+n1Fehc0d1nYyjv1F60DWW6jqZRH+n1Be3uk7Kd5JHy8wmlteagRIf+hulB/2doqfPKvXpb5T69DeKnj6r9KC/U+rT3yh6+qxSn/5GqU9/o+jps0oP+julPv2NoqfPKvXpb5Qe9HeKjj6n9KC/U+qL59+oxDXJRUREREREREREREREREREMoU6yUVEREREREREREREREREpMLIpE7ygckugJRIf6P0oL9T9PRZpT79jVKf/kbR02eVHvR3Sn36G0VPn1Xq098o9elvFD19VulBf6fUp79R9PRZpT79jdKD/k7R0eeUHvR3Sn1x+xtlzJrkIiIiIiIiIiIiIiIiIiIiJcmkkeQiIiIiIiIiIiIiIiIiIiLFUie5iIiIiIiIiIiIiIiIiIhUGCndSW5mTc3sDTNbbmYrzOwtM2sW5XNrmNkjZva3ma0xs2/M7NDyLnNFVMa/kytia13Oxa5QzGw7M+sbfA9yg8+4RZTPrVDfJeVO6lPmpD5lTvSUOelBuZP6lDvRU+6kPmVOelDuRE+5k/qUO6lPmRM9ZU7qU+akB+VO9JQ7qU+5k/qSlTkp20luZlnAWKAlcBFwAbAzkGNmtaI4xWCgG9ATyAb+Bj7SP9z4isPfCWAo0C5s+yXuha3YdgLOBJYCX8b43ArzXVLupD5lTtpQ5kRBmZMelDtpQ7kTBeVO6lPmpBXlThSUO6lPuZM2lDlRUOakPmVOWlHuREG5k/qUO2kjOZnjnEvJDbgGyAd2Ctm3PZAHXF/Cc/cGHNAlZF8VYCbwXrLfWyZtZfk7Bcc6oHey30emb0ClkP/uGnzuLaJ4XoX6Lil3Un9T5qTHpsyJ+nNS5qTBptxJj025E/XnpNxJ8U2Zkz6bcifqz0m5k+Kbcic9NmVO1J+TMifFN2VO+mzKnag/J+VOim/KnfTYkpU5KTuSHDgJ+NY591vhDufcbOAr4OQonrsBeDXkuXnAK8AxZlY9/sWtsMryd5IEcc4VlPKpFe27pNxJfcqcNKDMiZoyJz0od9KAcidqyp3Up8xJE8qdqCl3Up9yJw0oc6KmzEl9ypw0odyJmnIn9Sl30kCyMieVO8l3B36MsH86sFsUz53tnMuN8Nxq+GH7Eh9l+TsV6mFm64J1Bsaa2SHxK56UUUX7Lil3Up8yJ7NVtO+RMic9KHcyW0X7Lil3Up8yJ/NVtO+Scif1KXcyW0X7HilzUp8yJ/NVtO+Scif1KXcyW5m+R6ncSV4fP/d8uCVAvTI8t/BxiY+y/J0AXgQuB44EugMNgLFm1iFO5ZOyqWjfJeVO6lPmZLaK9j1S5qQH5U5mq2jfJeVO6lPmZL6K9l1S7qQ+5U5mq2jfI2VO6lPmZL6K9l1S7qQ+5U5mK9P3qErcixNfLsI+i+J5VobnSuxK/Vk75y4I+fVLM3sXf1dPb6B9HMomZVMRv0vKndSnzMlcFfF7pMxJD8qdzFURv0vKndSnzMlsFfG7pNxJfcqdzFURv0fKnNSnzMlsFfG7pNxJfcqdzFWm71EqjyRfSuQe/npEvisg1JJinlv4uMRHWf5Om3HOrQRGAW3LWC6Jj4r2XVLupD5lTmaraN8jZU56UO5ktor2XVLupD5lTuaraN8l5U7qU+5ktor2PVLmpD5lTuaraN8l5U7qU+5ktjJ9j1K5k3w6fi75cLsBM6J47vZmlhXhueuB38pePAmU5e9UlKLu/JDEq2jfJeVO6lPmZLaK9j1S5qQH5U5mq2jfJeVO6lPmZL6K9l1S7qQ+5U5mq2jfI2VO6lPmZL6K9l1S7qQ+5U5mK9P3KJU7yd8DDjSzHQp3mFkL4ODgsZKeWxXoFPLcKsBZwBjn3Lq4l7biKsvfaTNmVgc4ARgfrwJKmVS075JyJ/UpczJbRfseKXPSg3Ins1W075JyJ/UpczJfRfsuKXdSn3Ins1W075EyJ/UpczJfRfsuKXdSn3Ins5Xte+ScS8kNqIXv4f8BOBk4CZgK/A7UDjmuOZAH9Ax7/iv4qRK6AkcAbwBrgX2T/d4yaSvL3wm4ERgEnAt0AC4KzrMeOCTZ7y3TNuCMYHsGf5dTj+D3w4r6GwX7K8x3SbmT+psyJ302ZU5Un5EyJw025U76bMqdqD4j5U6Kb8qc9NqUO1F9RsqdFN+UO+mzKXOi+oyUOSm+KXPSa1PuRPUZKXdSfFPupM+WjMxJ+psu4QNpBrwJrABWAu8ALcKOaRF8WL3C9tcEHgMWBB/GeKBDst9TJm6l/TsBJwJfAYuADcBi/F0f+yf7PWXiFnz+kbbPivobBfsr1HdJuZP6mzInPTZlTtSfkzInDTblTnpsyp2oPyflTopvypz02ZQ7UX9Oyp0U35Q76bEpc6L+nJQ5Kb4pc9JnU+5E/Tkpd1J8U+6kx5aMzLHgBCIiIiIiIiIiIiIiIiIiIhkvldckFxERERERERERERERERERiSt1kouIiIiIiIiIiIiIiIiISIWhTnIREREREREREREREREREakw1EkuIiIiIiIiIiIiIiIiIiIVhjrJRURERERERERERERERESkwlAnuYiIiIiIiIiIiIiIiIiIVBjqJBcRERERERERERERERERkQpDneQiIiIiIiIiIiIiIiIiIlJhqJNcREREREREREREREREREQqDHWSi4iIiIiIiIiIiIiIiIhIhaFOchERERERERERERERERERqTDUSS4iIiIiIiIiIiIiIiIiIhWGOslFRERERERERERERERERKTCUCe5iIiIiIiIiIiIiIiIiIhUGOokFxERERERERERERERERGRCkOd5CIiIiIiIiIiIiIiIiIiUmGok1xERERERERERERERERERCoMdZKLiIiIiIiIiIiIiIiIiEiFoU5yERERERERERERERERERGpMNRJLiIiIiIZxcxamJkL29ab2R9mNtzMWkV4zhwzW1bE+ToFz19kZvsF+7LM7AYze8nMZppZQfA6dctY9s4hZR5SzHGPhhx3bVleU0REREREREREpKJRJ7mUSVgj9OtFHNO5pAZcMzvQzPLV0CsixSmi4yt8+yzk+MJ9K82sdhHn3CPkuCmJei8ikhAzgXuC7WlgPnA+MMHMdovmBGZ2MfAy8C9wqHNuUvBQY+B/wDlAVWB5fItOHtApUnaZWRXgvOAYEUlTibihJ8IxVc1siuo9IlKcUl53TUleiUUk3ZjZQWb2gpn9bmZrzGy1mf1kZv3NbN+Q4z4LMmaVmW1VxLmUQSLyHzMbFeTCj8UcU6Y2YzNrbWa9zWy8mf1rZmvN7JdgQEODOL8lKUdVkl0AySinm1kb59zEWJ5kZjWAIcAaoFa5lExEMs1M4JUiHpsT9nseUBs4Axga4fguwTH6f6JI5vnZOdcrdIeZ9QMuB24FLizuyWZ2DfA4PleOdM79HvLwIuAoYJJzbmnQUHxY3EoOHwLZQCd8PSnU8cBWwPvAiXF8TRFJjtB6TR3gIPwNPaeY2QHOuRklnSC4oWcgsBA4qpjn3AHsVPYii0gFEct1l4hIicysMtAX6AGsAz4F3gQc0BK4CLjMzE5xzr0X8tRawJ3AVYktsYikEzPbBjgGnym7m1lb59x3RRxeljbjZ4H9gfHAS8FxhwHX4/vJDnTOLSjDW5EEUYeAxMtsoAXQB99gHIt7gSbAg8B98S2WiGSozTq+ijEDqIuv2AwNfSAYjXk+MBp1NIlUFEPxneQRR1kWMrOe+BHoM/AdTvNDH3fOrQI+KacyAowF9gQ6s3kneRdgMTASZZdIJijPG3pCj9sLuB24EXiyzKUWkYoglusuEZFoPIjvIJ8AdHLO/RH6oJnVB+4G6oU973egu5k95pybnZCSikg6ugioDDwK3ABcDBTVSV6WNuMXgXNC88jMDHgKuBLoib+ekxSn6dYlXqbh7/o70syOiPZJZrY//u6aW4B55VQ2EanYHDAMOMTMdgh77AT8lMlDE10oEUm6DUU9YGaP4jvIJwGHhXeQJ0hodu0YUrZG+OwaAaxPQrlEJDGGBj+juaHnCeAnoH0xHeRVgnNOxC8/ISIiIpJQZrYLvh34X+CE8A5yAOfcEufcNWw+i0VPoBp+sJWISFE645fDuxP4BTg7mMk4klK3GTvnng6/Ycc554AHgl8PLU3hJfHUSS7xdCeQjx9NXiIzq44fGfUVMKAcyyUiMjT42Tlsfxf8lMkjE1kYEUmqS4KfX0d4zMxsIL7h5kvgcOfcooSVbHNDg58Xhew7H78G+tDwg0UkI8Xrhp7bgd2AS5xzBfEtooiIiEhULsL3Rwwo6TrLObcubNco/DXauWa2ZzmVT0TSmJkdDOwKvOGcW4sf7V0XOK2Ypw0NfnYO21/aNuPCwQx5MT5PkkTTrUvcOOdmmtkQoKuZne6ce7OEp9wD7ACc4pxzfjYKEZGotDSzXkU89qFz7tvQHc65383sC+BCM7s7yJzG+HV9n3HOrVcGiWSk0KzYAmiPXzPqd6B3hOPrAN3wU5lnO+dWJKKQRXHOzTazz4GLCrMLf6E21Tk32cz2Tmb5RKRcRXNDTzd8Y3GxeRU0JN8B3Oec+ynuJRWRTBbTdZeISAkOCn7mlPL5twHj8CM1teyUiITrEvwcHvx8Ed8H1QW/bvhmyqHNuHPw8+NYCy/JoU5yibde+BFOvc3sHedcfqSDzKwtfi28251zvyawfCKSGXbFr1EVyTIgUmPNEPzdgYcDn7JxNGb4Wr8ikjkiZcVs4GDn3IIIx6/GLyHTDnjOzM51ziX77t8h+Om/DjezZfh1yq9NZoFEJO7K7YaekGnWfwYeil+RRaSCKM11l4hIUbYOfv5Vmic7574ys5FAtpkd5JyLdDOhiFRAZlYLOBP4A/gC/ht48DW+PaVZpCUeAnFpMzazPfD9Y/8Cj8T+LiQZNN26xJVz7i/8Gnct2XRq0P+YWTV8wEwBHk1Y4UQkk7zrnLMitieKeM4bwCo23tHXBZjinJtS/sUVkST5LyvwDTL3AdsDrwUdR+HygGPxDb6dgBFmVjlhpY3sDWAlPrO64KdeHpHUEolIvBV2Qt2NX+5hfzbe0BNpCvXVwDdAA/wNPcXd/H4rsDd+mvUip24XESlCaa67RETK0+1AAfBgsgsiIinlDPwNxyOCWfgKDcf3g3Yu5rllbjM2s23xU7NXA85zzv0T7XMludRJLuWhD7Ac6BWsOx7udnxD0CVFjTQXEYk359xq4DXgNDM7HNgDrekrUmE45xY653oCg4BDgGuKOG4FcAy+o/xMktxR7pzLJcgu4FxgZJLXSReR+CuXG3rMbBfgLuAx59zEciu9iIiISHQKZ/PatrQncM79ALwMHGJmx8elVCKSCQqnWn8xbP9r+HXCO1sR86aXtc3YzLbCj0DfFjjbOaep1tOIOskl7pxzS4D/AU2BKyIc0ho/1f8UM3OFGxunr3g82NcrEeUVkQplCJAFvIBGY4pUVLfj7xC+w8zqRDogrKP8LODFJI8oHwLUBOqhm3tEMlqcb+jZDT+S4abQ667g2gtg7+D3OeXxXkRERETCFE6P3rGM57kL36bzQFGdXiJScZjZjsChwa/Tw657luCvibYHOhRzmlK1GQfrl48FdsKPIH+7VG9CkkZrkkt5eRy4ErgNPxIi1MdApBFQO+PD7FtgOvB9eRZQRCoe59w4M/sVnzdvazSmSMXjnFtkZv2AW/CdT+H1lMLjVpjZMcAY4GzAmdkFyZgFJ1h77ySgMvBBol9fRJLiduAc/A09gyKtOx6SUx/hb+hxZnZ+SE7NAQYXcf5L8A1GbxP52kxEREQk3obhl4LpbmZPOOcWF3WgmVV3zq2L9FiwzvBA/OCsc8qnqCKSRjoDBuQAv0d4vCFwMn60eU6kE5SmzdjMGuFHkLcELnTOvVaq0ktSqZNcyoVzbrWZ9Qb6AleHPdYv0nPMrDO+k/xVrW0lIuXoTKAFMC3J5RCR5HkUfzPfdWb2ZKTOJ/ivA+pofEf5OQChHeVm9j/8xRb4iyKA/ma2PvjvG+N1M45z7v14nEdE0kM8bugJ1tDrGul5ZnYJ8KdzLuLjIiIiIvHmnPvFzB4DbgTeN7MznXPzQo8xs7r4keJT8SM6i3IfvmPs3vIprYikAzOrBFwE5ONHcv8d4ZhqwHzgdDO7sqg2IGJoMzazBsAnwO7Axc45zVaaptRJLuVpAHA9sGOyCyIiGadlMUsyLCvuRpugwXhK/IskIunCOfevmT2Db5y5GuhdzLGhIzXPwXdAXRh0lJ8BNA97SuhIhl5ohKaIlF5cbugRESmDUl93iYgU4TagFtAD+M3MPgZ+Ch7bGTgyePzk4k7inFtoZk8Ad5RfUUUkDRyJX/Z3VKQOcgDn3HozG4Fv/zkLv7RVpOOmEH2b8ZvAXvgO9RaR6kvOuc32SepRJ7mUG+fcBjPrCQxPdllEJOPsCtxdxGNzgScSVxQRSTXOuTn4qbaKO+Ym4KaQ31sUc+xy4MAI+4t8Tmk554YS5brjsRwrIuknjjf0iIiUlq67RCSunHN5wOVBh9WlwCH4Ti7wufIS8KxzbnIUp3sE39levzzKKiJpoUvwc2gJxw3BX1NdTBGd5DFqEfzcK9gi6RWH15FyZs65ZJdBREREREREREREREREREQkISoluwAiIiIiIiIiIiIiIiIiIiKJounWRURERETKiZnVBa6N4lCt6ykiIiIiIiIiIpIgmm5dRERERKScmFkLYHYUh84tjzXORUREREREREREZHPqJBcRERERERERERERERERkQpDa5KLiIiIiIiIiIiIiIiIiEiFoU5yERERERERERERERERERGpMNRJLiIiIiIiIiIiIiIiIiIiFYY6yaVMzGx7M1tnZleE7e9sZs7MOiSnZP+VY6iZubB9lcxshpm9maxyiUjpKHNEJNGUOyKSSMocEUk05Y6IJJIyR0QSTbkjxVEnuZRVH+Af4LlkFyRazrkC4D7gNDNrl+zyiEhMlDkikmjKHRFJJGWOiCSackdEEkmZIyKJptyRIqmTXErNzHYHzgT6OufWJbs8MXoVmAfcneyCiEh0lDkikmjKHRFJJGWOiCSackdEEkmZIyKJptyRkqiTXMriUsABLyW7ILEK7sR5GTjazFokuTgiEh1ljogkmnJHRBJJmSMiiabcEZFEUuaISKIpd6RY6iRPQWbWIVgLoZeZtTezL8xslZn9bWYPmVnl4LgLzWyama0xs1lmdnHYeXYxs0fMbIqZLTWztWY23czuNLOqYcdeGLzmqxHKc0fw2P9C9lUGzgfGO+fmxfj+6phZbzP7OSjTYjN7x8z2jnDsnGCrb2bPmtl8M8sPPqPQz+lQMxtrZivMbHaURXkTMOCCWMovkmmUOZscq8wRSQDlzibHKndEypkyZ5NjlTkiCaDc2eRY5Y5IOVPmbHKsMkckAZQ7mxyr3Elj6iRPbQcAY/DrJQwElgE3Aw+Y2fXAE8AkYDCwJTDYzA4Lef5pQBfgl+CYQUA+fi2D10NfyDn3An76hjPNrHPhfjNrC/QCpgJ3hDxlb6Ae8G0sb8jMGgbPuQOYD/QD3geOAL62yOsrVAfGAofiQ2EAsCLk8YOBT4Bc4BlgdJTFmQysAw6P5T2IZDBljqfMEUkc5Y6n3BFJDGWOp8wRSRzljqfcEUkMZY6nzBFJHOWOp9xJU1WSXQAp1rFAtnNuFICZ3QX8BlwFLAH2cc7NDR4bAkwEbgA+D54/HHjMObe+8IRmZviw6mpm7Z1z40Je7zLgIOApM/sCWAiMAPKA88LWbCgMgu9jfE99gVbAuc65l0PK1RsflgOBPcOes3Xw3k4Pey8dgv88MihfTFNmOOfWm9mPwAFmVimYvgIzqwtcG8OpljnnnojltUVSlDLHU+aIJI5yx1PuiCSGMsdT5ogkjnLHU+6IJIYyx1PmiCSOcsdT7qQr55y2FNuADvh1Ej6N8NhzwWN3RXjsN2BuFOffNzhHryJeOx/4Gng+OO7KCMf1CR47qojX6Bw83iFkX8Pg3COLeM7/gufsEbJvTrBv92I+p++Kea9D/T/zIh//IDhHo5B9LYJ90W5zkv1vRpu2smzKHGWONm2J3pQ7yh1t2hK5KXOUOdq0JXpT7ih3tGlL5KbMUeZo05boTbmj3MmUTSPJU9vUCPsWlPDYAYW/mFkl4BL8l313oA5+/YJC24SfwDn3mZk9AtyCv9PmQ+fc0xFeq0Hwc2nxb2ETbfFT/Nc2s14RHm8V/GwJ/Biyf41zbnox550YQxnCFZa/IfAvgHNuDpt+TiIVhTLHU+aIJI5yx1PuiCSGMsdT5ogkjnLHU+6IJIYyx1PmiCSOcsdT7qQpdZKnthUR9uWV8Fjo37QvcDkwF3gLH0DrgbrANfh1EiJ5Bx8w4NdbiGRN8LNmEY9HUj/4eViwFaVW2O//lnDef2IoQ7jC8ueW4RwimUKZ4ylzRBJHueMpd0QSQ5njKXNEEke54yl3RBJDmeMpc0QSR7njKXfSlDrJM5SZbQX0wN+t0845tybksQPwARPpeVn46R3WAgXAk2b2uXNuZdihhV/6+kSvMBTvd87dGcPzXBkfL0694Od/Iab1HERip8yJmjJHJE6UO1FT7ojEgTInasockThR7kRNuSMSB8qcqClzROJEuRM15U45Uid55toeP93CJ6HhEji4mOc9DuyKD6C1wAD83Tydw477Ifi5cwxl+g4fBgfG8Jzytgvwu3Mu9C6cusDdMZxjLvBEHMskko6UOdFR5ojEj3InOsodkfhQ5kRHmSMSP8qd6Ch3ROJDmRMdZY5I/Ch3oqPcKUeVkl0AKTd/BD/bmdl/axOY2S7AbZGeYGYnAd2BMUBf59xA4D3gIjPrFHb4OHxY7B9tgZxzC4A3gCPMrEeE169kZsVNYRFXZtYEaAJ8HrrfOTfHOWcxbC0SVWaRFKbMKYEyRyTulDslUO6IxJUypwTKHJG4U+6UQLkjElfKnBIoc0TiTrlTAuVO+dNI8gzlnJtvZm8DpwLfmVkO/st0EvARcHro8Wa2NTAYWAx0ds4VTv9wCf6OmwFm9o1zbl5w/sVm9hXQwcyqOOfyiE4PoCXQ38y6AhOAVUAzoB3QGKhR2vcdoyODn+8m6PVEMpYyJyrKHJE4Uu5ERbkjEifKnKgoc0TiSLkTFeWOSJwoc6KizBGJI+VOVJQ75UwjyTPbRcCTQCPgKqA1cAdwU+hBwV06Q4GGQHfn3N+FjznnFgFd8NM3vGBmof9mBgbnPjraAjnnFuOD5A78v78L8aGzL/AVcG70b6/MzgP+BkYl8DVFMpkyp3jKHJH4U+4UT7kjEl/KnOIpc0TiT7lTPOWOSHwpc4qnzBGJP+VO8ZQ75cw23mwhEhszqwH8CnznnDst7LHOwBCgo3Pus8SX7r9yDAUucs5Z2P7mwCygl3OudzLKJiKxUeaISKIpd0QkkZQ5IpJoyh0RSSRljogkmnJHSqKR5FJqzrm1QE/gFDPbM9nlidHtwL/A48kuiIhER5kjIomm3BGRRFLmiEiiKXdEJJGUOSKSaModKYnWJJeyGgZsDWyDX/ch5QXTbcwBLnTOrU5ycUQkNsocEUk05Y6IJJIyR0QSTbkjIomkzBGRRFPuSJHUSS5l4pwrAPokuxyxSMcyi4iXjt/fdCyziGyUjt/hdCyziHjp+P1NxzKLyEbp+B1OxzKLiJeO3990LLOIbJSO3+F0LHO6Uie5lJcpwD34u12S6Z0UKIOIlL8pKHNEJLGmoNwRkcSZgjJHRBJrCsodEUmcKShzRCSxpqDcqfDMOZfsMoiIiIiIiIiIiIiIiIiIiCREpWQXQEREREREREREREREREREJFHUSS4iIiIiIiIiIiIiIiIiIhWGOsnTiJm1M7OPzGy5ma0ysy/N7IQYz1HXzJ4ysz/NbJ2ZzTKze82sRoRjG5vZbWb2ppnNMTNnZstKOP9VZjbUzH4ws7zgOa1LeM6FZvatma02s5Vm9pWZnVbCc3YJXqfwffxtZh+aWcew4w4xs8fMbLKZLTWzNWb2o5ndbWZZ8XoPIuks0dkSHF/ZzK4zs+lmttbMFgTfu20jHNsi+B4WtZ0RRfluDjm+dYTHzzOzd8zs9+AzWG5m08zsHjOrV8Q5m5nZc2Y2z8zWB++9v5k1LKYc2WY2LuQ1PjKzdiWU/WgzG2Vmi4LParaZvWJmTUt63yKpKg1yZysz62dmE8zsn+D8fwTfxcNLKFdU39nS5E6E9/9XkGvvRHh8ZzO7Pfhs/w5yao6ZDTSz5sWcN+Z6mUg6CP4fXVgXqBvF8VXN7HQze8HMfjaz3OB7Os7MLizmeTHVD6yU1x6lrR+Y2YFmlh+8zrUlvU5Zmdm2wftbEJRzepDFRbZFmFkTM3s6yMe1QQ5/Zmadyru8IslS1rqRmbU2sweCcywqqn4QcvxnVvw1ljOzQ0KOj7leYWYnmllfM/s6yNASc8fM2pjZW8G51wQ58KqZ7VPMc+qaWZ8gq9eY2eKgLtOj5E9OJDOUNUOCc5Tn9VVpMuQ+Mxsb1KkK6wNfm1kXM6sSdmzM9TYrRZtxhHOMsijay0OOL7ZtSiQVpXq+hDwn5jbXkOeWR7vxtuavaQozaX6QaacUcXyWmd0UZNIyM1tiZpPM7JpIn5Nt7K+LtD0d4fihxRz/YzSfU6bSmuRpwsyOBEYDucDLwc8zgW2BLs65oVGcYwvgK2BP4ENgKrA/0BH4BDjWOZcfcnwHIAcoAH4FmgPrnHN1i3mNwn9Q84HKwFbAPs65KUUc/yRwNfAX8H6w+ySgCXC9c+7xCM/JBt4ANgDvAXOBBkAb4C3n3P0hxy4IHvsSmAxUAY4Bdg1+P8Q5t7os70EknSUjW4LnDAUuAn4IXr8p0AlYCOzvnJsfcmwLYHZw3nciFOE159yMYsq3KzAFyAdqEeH7bGbvATsBk4C/gWrBe2gHzAnK9G/I8TsDXwMNg/JPB/YAjgVmAe1Cjw+e0xkYErzHV/F5dDZQBzjOOfdJhLL3Bu4A5gGjgKX4fOwAnOecG1fU+xZJVWmSO22AT4Fvgd/x371tgZOBLYGbnHP/i1CuqL+zseZOhNcaCpyBz7V3nXOnhD3+CnBW8Nl8BawOzn9YUK724dlZmnqZSDoIrmvG4vOmFlDPObeshOe0BH4CVuDz4Bf8dcVpQH1goHPu0rDnlKZ+EPO1R2nrB0HjymR8/tUCrnPOPVHc51AWQSPWBGBr4E18nh4J7AcMdc51ifCctsBHQflGAjOBusBewPTwz1wkE8SpbtQLuBtYB/wG7E6E+kHI8Z2BFhEeqgtcAywDtnHOrQ2OL0294rPg8eXAYmAHiskd8zflvQ6sAd7C5+KO+PqXASc458aEPWcHfL43xWfHNCALaAVscM4dH+m1RDJJmlxflSZDluDrAdOBf/HXYccC2+PrCCe5oGOjlPW2mNuMw57fGRgMrKeE9vLg+BLbpkRSTTrkS3B8Z2Jscw15bnm0G+8IjAfqsfG6sD5werDvXufc3SHHVw0+o7bAROALoCo+k3YBPgOOcM4VhDxnDr7e9kSEtzXBOfdB2HsYiv9Mn8TX80L945zrH+E8FYNzTluKb/gvxGz8hcKeIfsbAn/iLzjqR3Ge3oAD7gvb/0yw/5Kw/VsBhwJbBL/PAZaV8BonAFsH/z00OG/rIo5tGzw+E6gbsr8+/qJuHbB92HNaACuBn4FtI5yzStjvNwNbhR+D72hzwM1leQ/atKXzlsRsOTLYPxaoGrL/rGD/8LDjWwT7h5biPVbCN1Z/Bwwv6vsM1Cji+fcU8d5GBfsvD9t/dbB/UNj+BsHnuRBoErJ/J/xF3O+hn0Xw2BnBud4AqkcoW5VIZdamLZW3NMqdqkDlCK+7DbAgKH/tsMdi+s7GmjthxxwXHFOYOe9EOKZz6Gccsv+m4DkfhO2PuV6mTVs6bPiGjln4DpfPgn/ndaN43rbAZUDNsP2Nghxz+MaQ0Mdiqh8Ej8V07VGW+gHwcJCzdwbnuLacP/sXwzMZfyPAyGD/EWHHb4nv+F8A7B7Le9OmLV034lc32h3YJzhfi6LqB1Gc5/Lguf3C9sdUrwgea4+/3rHg+cXmDjADPxhi97D9xwbPzQnbXwXfkbUaODTC+ZQZ2jJ+i2OGlPf1VWkyZLPrpeB7/2l4PYLS1dtibjMOOa4JvnP/MaJrL4+qbUqbtlTa0ihfYm5zDTmmvNqN+wf7u4ftbwIsCT7TGiH7zwyOfyns+CrAuOCxw8IemwPMieHvOTQ4T4tk/9tKtS3pBdAWxR9p4wVBpEaVa4LHLi3hHIa/C3c5kBX2WEP8XW/flHCOEv+nH3Z84RevdRGPFwZkjwiPXVVEwAyMFAql+EzbBecZWZb3oE1bOm/JyhbgleDcB0c43/f4jpg6IftaUPpO8huDMuxZmu8zftSSA14O2VcD33jzN8GMLCGPVcLf4ZxLSAca/mLNAXdEeI3Hg8eOCdv/c/C51om2vNq0pfqWLrlTwuu/FZxr17D9cfnORsqdsMe3xF+QvkIpGsHxHVSrgVVh+2Oul2nTlg4b8DS+EXMbYugkL+GctwXnuTFkX8z1gwjnLbGuUtqswY90yAvqJJ0pprMKP+Kid/Baa/EjQN8B9o7h9eoE2fpLhMf2jpRzwO3B/ouS/e9Gm7ZEbfGoG0V4Xsz1g5DnTgyeu1+Ux0esV0Q4rtjcCY5ZC/wWYX+lIF9/DNt/bnDOu5P9d9SmLVlbPDKEJF5fRZshYc+5Opr3FXL8ZvW2Eo4vsc0YP+vWLPzMFXMouZO8TG1T2rQlY0uXfKEUba4hj8e93TjY/2Gwf7sIzym80adhyL5bg33nRzj+ruCxM8L2z0Gd5HHZtCZ5ejgs+PlxhMc+CjumKLvgG4a+cs7lhj7gnFuED5j9i1oHopxsFfycE+Gxwn0dCneYmeFHTixyzn1uZm3N7AYzu97MDo3xtTcEP/NifJ5IJklWthwGrMJPYxxuDH7KmgMjPNbEzHqY2W1mdpGZbVdcwcxsF+Be4EHn3A8lvI+iFK6xE7o2SwP8nXx/uKCWUcj5aW/+AGoCB4Q8FNNnbWZ746f4+hhYbWYnmNmtZnZ5MI2YSLpKt9zZhJk1wH+3V+KXeyncH8/vbKTcCfU4PmOujvG8hRy+/hNeB4qpXiaSDszsMPyoyBucc3/H8dSRriVKUz+ISWmzxsyq46cf/AoYUMJrNMRn5R34Bq1++IbgI4CvLcp1/fANzNXwUyhuwjk3FT/SIzzvO+Ez6m0zaxWsv3eTmR1rZpWjfF2RdBOPulFcmNme+OUQpjnnJkX5tKLqFaUxA2huZq3C9h+Fz9exYfs7BT/fNLNmQRbeYmanJLhtSySZ0vr6ihgzxMwq4TvuoOjrpXCxtgEXe7z5Nc6z8SNEcyMdE3Z8PNqmRJIhXfKlVOUsx3Zj8HUa2JhXha+5DdAa+CF4/yUdXxk4Gj/y/JsIr189aCO/PWgz3yuaMgfXkNeZ2eG6zvKVTEl9Owc/f4vw2Cx8hWKnMpwD/JrjB+DXiCpybd84KwyC5hEeaxH83CVk3/b4NRu+M7OBQLfQJwTrXZ3mnFsaxWtfFPyMFJ4iFUXCs8XMauPXpfzBha03E3I8weuOCXvsqGArlGdmjwO3upA1WeC/C6ch+GmBepfwHkKfdy4+d7YA9sV3CE0Engo5bCl+nZpmZmahDeHB6zYLft0Ff3cgFP85hb7nQvsFP5fgp/3ZP+QxZ2ZP4dfz26QRXiQNpFXumFkToDt+hEMT/PrcdYGLXbBGZ6DU39koc6fw2GOBLsAFzrl/zKxFxE+geKfiR3i+EbY/1nqZSEozsyz8OpGfOueej+N5KwPnBb+GdgCXpn4Qq9JmzT34TDzFOef8vcdF6otfy/dc59zLIe+hN34NvoH4kRYliSar25tZLefcajOrFpz3X/zIlHvwI08KTTOzE51zf0Tx2iLpJB51o3i5JPg5OIbnFFWvKI0b8TfljDezt/Azc+yIr3+9i18qIlRhJh6Gn/K4Wshjc83s5OCmHJFMllbXVxGUmCFmdjv++90APw1zS2CAc+6rEs5dXL2tOEW2GQcdXE8Ag51zJdbnSts2JZIi0iVfYm1zLe92Y4BHgJOBAWZ2Er6/rT5wGr5+c1bY8e8DHwDnmdnOwJf4vttj8MtGnOec+ytCkbbGjxAPLeMH+DajJUW8jafDfp9pZmdV5DqTRpKnhzrBzxXhDzjnNuDvJNmytOcI21/SeeLpw+DntWb23+uaWV02jo6qG3J84+DnvsDZwPnB47vgpz7tgG+0KZaZHQn0wK+5GcvFn0imSUa2lCaLcvENpa2D5zfGN5T8il+/qleE81yLv6vwEufc+qIKH8G5wN3A9fhMGQOc4JxbWXhAcOfjl/iKSPew51+Ony4INs2v4t53pPdcmHcXB/sPxVfADsJXrK4JXksk3aRL7hRqgs+EO/HfxxpAF+fc8LDjyvKdLTF3AMysDr6eM9o592IR5ypW0OnfFz+dac+wh2Otl4mkugfxoxbC/19dVj3xdZJhzrn/RgyUsn4Qq5izxsza4jue7nbO/UoxglHkZwKjQjvIAZxzvwGDgD3MbI8oyhpt9hYeVx9/Q1ID/JSC1+IbhJrj1/TbC3jDSujhF0lD8agblVlwo8p5+ClHR0T5nOLqFTFzzo3Fd3gvxndS3YofLT4beN45F/4ZFWbiE8DD+DWJtwnK0gx438xqlrVcIiku3a6v/hNDhtyOv166Ej+jzqPBf0cjYr2tmDKV1Gb8bFDeG6N8/WspXduUSCpIl3yJtc0VyrHdGCCYxawdfrmvE4Fb8AM+q+Cz5Zew4x2+U/1J/I3QN+Cv7XYFXsZfZ4Z7PihDI/xncCAwGjgeeDvC8Z8DpwNN8TOctcLXoXYCPjazrSI8p0JQJ3l6KGwIKMuIwXicI66cc58DL+G/7D+aWT8z64+fnmJNcFjoHUOF/14rA3c650Y455YHjT3n4KcCPd3MmlGEYPqw1/BTdpwZNgpMpKJJRrbE/JrOuX+cc72cc1Odcyudc/86594HDsc3oNwU3GnoX8Dfcdcb6OucizQ1T3Gvle2cM3xD9gn4hpZJZrZ72KHX49fNetbMRpnZI2Y2Cn/nYOGFV2h+xdqgWynk51nOuS+dc6ucc9/gG4oKgjKIpJu0yJ1CzrmJQSZUw9+d3A94IZjFIlSpv7Mx5M5j+M61S2N9H/BfJ/v7+A68y5xzP4WVI9Z6mUjKMrND8I2ndzjnZsfxvBfgO3CnAVdFOCTW+kGsYsqaoNNrCDAF36BckrbBuWubWa/wDd+QAn4EF2bWOcJxLQpfPvgZbfaGXus97Zx7yjm3yDn3h3PuCvz0gm2B9lGeTyRdpEpbzUn4usi7zrnFJR1cUr2iNMwsGz+l+hf4+kgWvnNrNvCumYXXgQpz433n3F3OufnOuQXOufvw65k2xS/ZJ5LJ0ur66r8TxJAhzrna+O/7dvi1hy8Gxoa2AxXxGiXV28KPL7bN2MzOx2fl5c65ZVGcr9RtUyIpIl3yJaY210S0G5vZTviO7dr4G5pr42foG4Rv2xkednwW8A5+hPkZ+NmUt8J3rF8EfBWeec65e51znwfXTCudc+PxS0GMAw41syPCjh/inHvLOTfPObfWOfezc+464CF8R3u0Nx9lHHWSp4flwc/N7swxs6r4Oz+Whz8W7TkCdcKOS5QL8XfGLMdP7dUJP5Lp9ODxf0OODS3b+6EnCe74+RgfivtGeiEzK1y/rypwnHNuWhzKL5LOkpEtccsi59wC/FQ0Ndj0ez8Iv87lHSWdo5hzL3bOfYBfC6Yh/m7h0Mcn46cDejP4eTV+1MIZQE5wWKT8qsPmIr3nwv/+M3y6m+DicRawQzDCUySdpGXuOOc2OOd+c87diu8ovzbsgqPM39nicsfMOuDrSbc65/4s6hxFMbNa+LzcF7jGOTesiENjqZeJpCQzq4K/q34CEZYtKMN5z8B3OP8MHBU+WgBKVT+IVaxZczu+o+mSIqYrDFc/+HkYfoRE+HZ88Hit4GfnCMe0CCtrSdlbOLqjyGu9wMjg534RHhNJZ/GoG8XDxcHPEpeniKFeETUzawC8iB+92dk594tzbk2QdacDfwF9gowvVPi5KDOkIku766vSZIjz/nLOFS6/eQh+ZGZE0dTbwo4vts3YzOrjR3i+7px7p6TyBsrcNiWSZOmSL7G2uZZ7uzF+CvSmwEnOuW+cc6udc3OdczfhZ0Q+x8zahBx/O77Tvbtz7k3n3LJg0NjgoJy7EMWACeeXIx0S/HpwlG+ncNaMaI/POOokTw8R104I7IjvGC5qXYdozgF+dFQB8HvMpSsD51y+c+4x59wezrkazrlGzrmu+MYk8OveFZrFxpEXkQK4cN9m02mZ2S74hqkt8FNgfBOfdyCS1hKeLc65VcACYPtgbahIxxPF6xYqXEM3K2Rfa3wD7Sozc4UbG9eVmhzs61DSyZ1z84CfgAODCmDoY9Odc2c45xo656o75/Z1zr0FFE5BGppfxX1Okd5z4bQ7RVU2i8w7kRSXCblTuDbdoSH74vadLSJ3Wgc/+4XlWuEI2ZODfZ+Fny+4I/kD/AXPjc65vsW8diz1MpFUVRufDwcA+WHfmcOCY5YG+1pEc0IzOxU/zd3vwBHOuX+KOjbG+kGsYs2a1vgp/aaEfQ6FDSePB/t6Bb8Xdljf75yzYrZhwXvtEOGxz4JzRJPVfzvnVgfnWg3ML+b9qe4jmSoedaMyCaY8PhqYRwnrB8dSr4jRQfgG8S+cc5uMHnPOrQHG40dVtQh5qLhMVGZIRZFW11dxypBI12OhrxF1vS04Ppo242b4mwk7hdapgnpVc2DLkN8LtSZObVMiSZIu+RJrm2tryrHdOJgp42DgJ+fcwghP+yykHIWOC3ss0vH7lFSeQKS28ngen3GqlHyIpIDP8WsxHYWf9iXUMcHPL0o4xy/A38DBZlYzuMgA/lt7bl/gu/CpZJLo3ODnq4U7nHNrzexbfMi0Ar4Ke07h9H9zQ3cG01uMxU9Rmu2cK+mzEqkokpUtn+OnjzmQzb/HR+PXwYt2upu2wc85IfteIPL/2A/FV47eBpYE5Y5GE/w0PyWOwDKzpvg7mn8Ku/P4c+Bs/Gc9IexpkT7rb/DrXO1gZtWdc+tCXqMqvjKai0Z1SvrJhNxpEvzMC9kX7+9seO78SOQ18Wrj39dc4BP86Kv/BI1QI/H5d7tzLprpliPZrF4mksLWEfn7Av7u/K3x09utB4odVQRgZifh/+3/AXR0fn25mBRTP4hVrFnzMRsbPULtjM+Fb4HpwPfB/u/w2XNgGcpY6Fv8Z3xk+ANmtjd++sDwTMnBr4ncKqRMhSJe64lkgHjUjcqqM36pg6HBCKSI4liviKR68LNhEY83Cn6uC9mXg+9cb7X54coMqTDS5voqjhkS6Xqs8DViqrfF0Ga8mKLrl2fhl+caHrY/3m1TIomWLvkSa5trebcbVwt+xlKnCa0HhV+jRjq+OPsHP+eU0/GZxzmnLcU3/FQvs/ENHnuE7G+I/5/+cqBByP5m+HXissLOcz/+C3tf2P7+wf6uJZRjDrAshnIPDc7buphj6kTYdwq+ojMRqBL22PnBOccA1UL2H4wPormhzwF2AP7ENyYdXYrPvsT3oE1bum7JyhZ8pcXhL0Sqhuw/K9j/Ytjx+wHVI5T/muD4KVG+34jfZ/zdwvtEON7w61c5YFTYYzUj5NMW+IYaB5wa9liD4PNcCDQJ2b8TftTW76GfRfDYc8G5eoXtvy3Y/1Ky/w1p0xbrlma5UytC+ZsGdQ0H7B/2WNTf2dLkThGfZ4vg2HciPFYD33HugJ5R/n1iqpdp05ZuG/4ufAfUDdtfVNacgG+MmAM0i+L8MdUPIjx/KCVfP5W5foDvEHPAtREeey14rEeExyoBh8XweY8IznVJyL7K+KmRHXBk2PHtg/3TQvMI31i1MtjqJ/vfkTZt8dyIU90o7JxF1g+KOP4X/CiuHYo5JuZ6Rdjzi8yd4PGmQX1jNbB72GNHB+X7PWz/DkFG/w1sE7K/cfDZ5QMtk/031qatPLd4ZQjlf30VU4bg20q2jbC/JjAqOM9NYY/FWm8rU5txyHnmEOf2cm3aUmFLo3yJuc21iPcb8btJ6dqNZwb7u4Tt3xY/Uj4f2D5k/8Dg+OeBSiH7q4dk54Uh+3cBGkYo00HB3ys37LNoQIQ6Eb6Df3pw/lOS/W8uWZsFH4akODM7Cj8dTS5+yphc4Ez8F6uLc25oyLGf4acS7Og2TneHmW0BfI2f6m80MBU/DWFH4FPgGBe2Vp2ZDQ359Qz8nTAvFe5wznUOO/5WfBiCb+TYEd8IsiTY96Bz7ueQ48fgv+zT8BdDbYAj8A3QHZ1zs8POb/i7eU7Gf4E/xt9NcwY+mE50zo0JOX4OftqbL9i4DmCoZc65J8ryHkTSWZKz5SLgh+A52wWv+w++4+mvkGPfwd8I8xm+ElYdfzfhfvjv5eEubF3OIt5r4Wvu45ybErK/Bb7S931Qnr/xlYf2+BEI8/ENwr+FPKc9fr3RMfhpCRsAJ+FHRd3rnLs7wut3wVd2FuLvbK4MnINfH+c459wnYcc3wo8Y2xH/OU4B9sQ3Ev0FHBD6OYmkizTJnaH4zuHP8HWSDfhGlOPxGfSwc26TNfBi+c6WJneK+CwLz/Ouc+6UIt7vH2ycWjncE865ZSHPialeJpJuQjKlXti//cL9/2WNmbXEf4+r40cbRPr3P8WFrEtZyvpBrNdPZa4fmFlnfC5cF+FaqAH+umlPfEZNAFbhG73aAY2dczWKO3/IubYNnr81/nP5HT+yfD9gWPi1ZPCcJ/Fruc/BjzbLwq9HXAff2V5UnomkrTjVjVriR3uBn2nmdHznz9hg38/OuQcjvPah+BFYnznnOhZTxqHEXq84BV+fAt9QfTB+xooZwb53wjL0Qfwaw2vx7T5/4huBT8I33p7mnHsvrFzXAY/h63Pv4DvTT8HnTi/n3D1FvSeRTJFG11dRZ0hQVxmEz6ffgKXB+zkW3w78RVCmtcHxpam3zSHGNuNIgvPUdc7VLenY4PihRGibEklF6ZAvwfExtbkW8V4LXzMe7cbZ+HpJZfy14VR8dp0WlOkR59zNIcc3x183Nca3x+Tgb1I4Ft8W9TXQwTm3ITj+WuDB4PObja877RYcX4C/8WBoyPlbA5OD8/yEn22sOZCNrzcOdn6pvYop2b302qLf8HeCjMHfAbMaP91EdoTjPsNfQHSI8Fg9oC++0WYdvqHiPqBGEa/pituKee2itg5hx1+OH5m0HP9lngn0IWx0R9hzqgI34y+s1uIrSu8BbWItPzCnrO9Bm7Z035KULZWB6/H/Y16Hr+QMA7aLcOy5+DuF5+IrY2uCrHiSCHcWF/M+hxL5jsBawL3Al/i7+TbgRyp9H7yHzUYs4RuKX8c33KzDT701mhLuPsZXPr4KPucVweferpjjGwL9gs91Pb7xewAhIyW0aUvHLQ1y50j8dHm/BHlQ+P17Gzi2mPcV1Xe2NLlTxOu1oOiR5IWfXXFbi7DnxFwv06YtnTaKHkm+WdYAHaL4Dg0NO0/M9YMovqsdIjynTPUDSh7RWQu4Hd+QshrfSf4rvmHstBg/8+2CrP0n+Ex+CrK4chHHG9AtyMPcIBs/BY5K9r8fbdrKc6OMdaMoMuuzIl53SPD4BSWUrzT1il4lHN8rwuucG7zWcvzI8oX4+ldx10ynBZ/XquCz+wY4O9l/U23aErmVNUOCx8rz+iqmDMHPIvMUvuN7SZAHi4PzXMbmM/eUlIGR6m0lHT8nys9+DhpJri2Dt1TPl5DnxNTmGuH5Eb+blLL9Bj/A683gOXn4us0XwPlFHL8d8Ezw2azHXwv9gB+tXjPs2P3xA1lnBu91ffDZvgy0jXDuxsCz+Ou7xcF7WIwfgHpmsv+NJXvTSHIREREREREREREREREREakwKiW7ACIiIiIiIiIiIiIiIiIiIomiTnIREREREREREREREREREakw1EkuIiIiIiIiIiIiIiIiIiIVhjrJRURERERERERERERERESkwqiS7AKUpGHDhq5FixbJLoaIhJk0adIi51yjZJcj3pQ5IqlLuSMiiaTMEZFEU+6ISKJlYu4oc0RSVyZmDih3RFJZSbmT8p3kLVq0YOLEickuhoiEMbO5yS5DeVDmiKQu5Y6IJJIyR0QSTbkjIomWibmjzBFJXZmYOaDcEUllJeWOplsXEREREREREREREREREZEKQ53kIiIiIiIiIiIiIiIiIiJSYaiTXEREREREKoacHGjRwv8UESlvyhwRSTTljogkmnJHRBIpzpmjTnIRERFJDl1IiUgi5eRAdjbMnet/KntEpDwpc0Qk0ZQ7IpJoyh0RSaRyyBx1kouIiEji6UJKRBKpMHNyc/3vubnKHhEpP8ocEUk05Y6IJJpyR0QSqZwyR53kIvKfIRfmsLpRC1VmRKR86UJKRBIpPHMKKXtEpDwoc0Qk0ZQ7IpJoyh0RSaRyzBx1kosIANOfzuHM4dnUWqRRnSJSjnQhJSKJ1qXL5plTKDfXPy4iEi/KHBFJNOWOiCSackdEEqkcM0ed5CJC3sc57HB1NrXQqE4RKWe6kBKRRBsyBLKyIj+WleUfFxGJF2WOiCSackdEEm3IEFyNGpEfU+6ISLyVY11HneQiFV1ODu6EbGo6jeoUkQQYMgRXUw04IpJAHTuSd3G3zfdnZcHIkdCxY+LLJCKZq2NH1r/yFgXYpvuVOSJSXjp2hG6q64hIAh1yCEuztqUgfL9yR0TKQ8eOzLngzs33xyFz1EkuUsFtOL8LVTdoVKeIJEjHjjx99Hvkh1dBdCElIuXlr7/IGzSESexDfvXgJh1ljoiUo68fHkclHPlVq/sdKZA5ZtbUzN4ws+VmtsLM3jKzZlE+t5mZDTOzP8ws18x+MbPeZlarvMstIlH44w8YPBj23XfjKKsUyB0RyVyL7nqS+ktm8XrLu5U7IlLu1i9dTdXnBzCvUrONg6/ilDnqJBepwJyDW7caQi41Ix+gUZ0iEmfjx8O0d2dTmQKoVs3v1IWUiJSjFV2uxq1bz4gTX6Py6JHQvLkyR0TKzW/vTuegcQ8xbvvzqfzR6JTIHDPLAsYCLYGLgAuAnYGckjq6g8c/AQ4F7gJOAJ4DbgCeL8dii0g0nIPu3f3PN9/0eZMCuSMimcvNnkOth3vyQZUTOeSTu5U7IlLuJp14N9tumMsffUZgo+KbOVXiUD4RSVPDh8NjkzvSY5/j2Wnym5s+qE4rEYmzDRvg1s4LeNtuIu/gw6hyT0+4+GJ/M46yRkTKQcHb71Ln47e4t2Yfbn1uJ2i8E8yZk+xiiUiGKsgrIPeC7qyyLWg56jFo1ShVMqcbsAOwq3PuNwAzmwb8ClwKPFbMcw/Gd6gf45wbE+zLMbP6wI1mluVc+NpdIpIwL7wAH30ETz0FLVr4LTVyR0QykXPMP7kHdQoqsfi+fjTZ1mDbjsodESk3c9/+nv2/epyPd+jOUTe39zvjmDkaSS5SQS1aBNdfDxfv+R07Tn0bTjpJ0+OISLl67DG49Odr2aLKGqo8NwAOP9xXapQ1IlIeVqwg9+IrmMaeNH/qBho3TnaBRCTTjbtoEHut/JoZFz9Kw1aNkl2cUCcB3xZ2kAM452YDXwEnl/DcYOofVoTtX4ZvUwpbfF1EEmbBArjuOjj4YLjiimSXRkQqgBWDXmXbHz5kcIvenHdr02QXR0QynNuQx9qLuvOvNWbPUQ+Vy2uok1ykgrrxRli9bANPr++Gbb21v/tY0+OISDmZNQvG9xzF2bxK5Z53wq67JrtIIpLhVl13J1nL5jNwv4FceEnVZBdHRDLcwil/s/dLtzC5bkcOHnhRsosTbnfgxwj7pwO7lfDcT/Ajzh8ys93MrLaZHQ5cAzzrnFsd36KKSNSuuAJyc/165JXUxCsi5WzJEtw11zDR2nDUu1cqdkSk3H13YV92XTmJHy55kq1b1i2X19B06yIV0KefwrBhMLrjY9TMmQpvvQVbbuk7xjU9jojEmXNwXbdV9NvQgw277k7Vm29OdpFEJNNNmEDW808zsPLlXPvKgZjGOYpIOfv9xGvYh7XUe20AVinlQqc+sDTC/iVAveKe6Jxba2btgTfxneqFngOuLOp5ZtYd6A7QrFmzWMsrIiV54w3fltOnj25AFpGEmHf+LWy9djHju37EFXtVTnZxRCTDLf5+Lru9chdf1TuBI57tVG6vo/t9RCqYNWvgssvg8Ga/ccw3veDUU/0mIlJOXnoJDs+5k+2YR9Uhg6BatZKfJCJSWhs2sPysbsynCavveICddkp2gUQk003oOZJ2817n2yPupMVROye7OEVxEfaV2JtvZjWAV4HGwAXAYcBNwFlAvyJfzLmBzrk2zrk2jRql1NTzIulv8WI/inzfff00gSIi5WztmC/YbvRzDKl3PZf0bZ3s4ohIpnOOP066AsPR+LV+VKpcfjchayS5SAXTuzf89ptj/D6XYcuqQd++yS6SiGSwxYth2BUT+JCncJf1wNq1S3aRRCTDre3zOFvOmcbdzd7ikTvrJLs4IpLhVi1YRZMHruC36rtx0DspO1vOUvxo8nD1iDzCPNQlQAdgJ+fcrGDfF2a2HBhoZs8656bGraQiUrLrroMlS2DMGKiipl0RKWfr1rHinO78TQt2HXE3NWoku0Aikumm9nyDff4axYdHPcqxRzYv19eKaiS5mTU1szfMbLmZrTCzt8ws6vmyzKyVmb1uZovMbI2ZzTSza0pfbBEpjR9/hIcfhgEHv0D9dN6F5wABAABJREFUyZ/Cgw/Cttsmu1gRKXdEMsOtN2zgf8u7kde4CZUe7JPs4ohIpvv9dyrd14u3OYVzXjuVqim8FLnqOiKZYeIJPdku/w9yHx9ItdopO1vOdPy65OF2A2aU8Nw9gaUhHeSFJgQ/W5WxbCISiw8+gOHD4bbbYO+9k10aEakAFlzTh8ZLZvLO0c9w6HG1kl0cEclwufOXsU2fq/mx+r50eOvqcn+9EjvJzSwLGAu0BC7CT6+1M5BjZiWmopm1AcYD1YGuwPHAo4AWrhBJoIIC6N4ddtziH7rOuB4OPhguvTTZxYpIuSOSGXJyoP6wx9iLaVQb8DTUSd0RneqsEskAzrHs3B6szavC5C59OeCAZBeoaKrriGSGn16cxCHfP8kXu13GXj0OTnZxivMecKCZ7VC4w8xaAAcHjxVnAVDPzMIXryhM2b/iVUgRKcGKFb4dZ7fd4I47kl2aEukaSyT95f/4E/UH9uHN6udy0cvHJrs4xVLmiGSGaSfcSoP8f1j71CBq1C7/GXOieYVuwA7Ars653wDMbBrwK3Ap8FhRTzSzSsAw4FPnXOiixzmlLrGIlMqAAfDNNzCr3fVUmrgSBg6ESlFNJpEMyh2RNLd2Ldzf5TdGWi/yTzqNyqeckuwiFSmks2odvrPKAb3xnVV7OedWl/D8NsHzP8N3Vi3Hd3bVLsdii0iYvBdeou74MdxZty+3PLldsotTEtV1RNJc3to86N6NRZUas/cHKT9bziDgSuBdM7sTX9e5D/gTGFB4kJk1B2YB9zrn7g12DwWuBz4ws/uBP4A2wF3AJOCrBL0HEbn5Zpg/H954A6pXT3ZpiqVrLJEMUFDAglMupaarhT3xOPUjLdySIpQ5Ipnht6HjOHDKAD7a/XqO6b5vQl4zmk7yk4BvCxtvAJxzs83sK+BkimnAwa9btRtwWVkKKSJlM38+3Hor3NL6I3b4ZgT07OnvPE5dyh2RNPfA/Y5b515G5axqVO7fN9nFKYk6q0TS3eLFrLviOiZyAPs/34Mttkh2gUqkuo5Imht31lN0WDOZb65/jXbN6ya7OMVyzq02s8OBx4HhgAGfAtc651aFHGr4GSkqhTx3jpkdCPTCNzY3xHeuDwTud84VJORNiFR0n33mRz9cfz0pPV3ORrrGEklzix95nm1nfcnjewzm2ksbJ7s4JVHmiKS5/DXrqXT5pfxZqRltP7gnYa8bzTDS3YEfI+yfjm+cKU774GcNM/vWzDaY2T9m9pSZ1YyloCJSeldfDVXWrea+RZdBy5Zw++3JLlJJlDsiaWzGDPirzwscyadUffQhaNIk2UUqScTOKvzIqJNLeG4HfC4V16ElIuVs+aU3UW31Ul4/ciAnnZoWM46rriOSxuaNm0Pb9+5iQuNsDnzkjGQXJyrOuT+cc6c75+o457Zwzp3inJsTdswc55w553qF7Z/hnDvTOdfUOVfTObeLc+5G59zSRL4HkQorNxe6doUdd4T77kt2aaKlayyRNOb+XkD1u27ii0qHccq7XTBLdolKpMwRSXPfdXqYHdbMYNYNz1C/WeImcYimk7w+EOnCZwlQr4TnFraKvwqMAY4CHsZPWfFSlGUUkTJ47z148034oO3dVJ03x0+znuLTcqHcEUlbBQVwc5d/eaTgejbsfzB0757sIkVDnVUiacyNzWHLN4fQt/qN3PjCXskuTrRU1xFJU67A8fdpl+Mwtn2nH1Yp9VuNRSTN3XUXzJoFzz0HWVnJLk20dI0lksbmnXEtVTfk8tuNA9h+h7So6yhzRNLYgi9+ofWo3ny+1Zkc9tDxCX3taFc9dxH2RZOOhZ3wLzrnegb//ZmZVQYeNLPdnHMzNjuxWXegO0CzZs2iLKKIhFu5Eq64As7ccRL7f/2476w65JBkFytaCcsdZY5I/AwaBGdPuI4tK6+k8pCBUCma+/GSLl6dVU8Dt+LX6bwXaAqcGulJyh2ROFm7lhXnXsoidqDOIz3ZZptkFygmquuIpKFvrnuNg/4dzeenPM5h7fR9EpFyNn48PPEEXHYZdOiQ7NLEIqHXWKrriMTPqtc+oOnXr/LM1vfQ7f5dk12caKldRyRdOce/p19KDWrQ4t0nEz5zRTQt10vxIROuHpGDJ9Ti4OfHYfvHBD9bR3qSc26gc66Nc65No0aNoiiiiERy112wYF4egyt3w7baCh56KNlFilZCc0eZIxIff/8NH13/Eeczgkq33wa7lXSzbkqJS2eVc+4z59z/gHuAU8ws4oeg3BGJj9W338+WC3/l6d2f5eIr0uomf9V1RNLQstlL2enpa5iRtR/tX70q2cURkUy3bh1cfDFsu206teeEStg1luo6InGyejXrLrmcGbTigLduoUq0QyxTg9p1RNLQpKuGsueizxh/2sM0P2DrhL9+NJ3k0/HTVYTbDdhsFHiE58LmAVUYTgVRvL6IlMJ338FTT8Gr7Z6g9i+ToW9fqFs32cWKlnJHJA3dfMVqHsu9jPXb74rdcXuyixOLhN8QKCJxMH061Z98iBftArq/flSaTFzxH9V1RNLQtONvoX7BIio9N4jK1Sonuzgikunuvx9mzIABA6BOnWSXJla6xhJJQ/O63k2DVXMZe9ZA9m2X8st1hlLmiKShlb//yw79b+T7Wu05/KWuSSlDNE1J7wEHmtkOhTvMrAVwcPBYcUYD64Bjw/YfE/ycGF0xRSQWeXl+ZvX9G/7OqVN6wkknwWmnJbtYsVDuiKSZUaNgr7d70YI5VBs2CKqn1cWUOqtE0k1BAUvP7M6ygjrMv+FRWrVKdoFiprqOSJqZ+vSXHPrzIMbtdy0tz9kn2cURkUw3dSr06QMXXADHHZfs0pSGrrFE0sz6b79nm1ce56Xa3en8XPuSn5BalDkiaein466nlltJlcEDqVo9OSMfonnVQcAc4F0zO9nMTgLeBf4EBhQeZGbNzSzPzArXxcM5txjoA1xmZg+Y2ZFmdivQExjmnPstju9FRAJPPAFTpjjebdIDq1IF+vUj4Ys5lI1yRySNrFoF/bt+z/U8Rv4l3eGQQ5JdpFips0okzax7ehD1ZnzN/7Z5lGt6p+XUdqrriKSRdSvWUfuGS5lXuTltP7gn2cURkUyXl+enWa9fHx5/PNmlKS1dY4mkk7w8Fp3enX9oTMPBD1G7drILFDNljkia+empj9n/lxcZu/9t7HVW8kY+lNhJ7pxbDRwO/AIMB0YAs4HDnXOrQg41oHKEc94L3AycCXwA9AAeAbqVtfAisrnZs6FnT3h0nxFsNXWMv/N4u+2SXayYKHdE0kuvO/O4d0E38hs0pvL/0nKtPHVWiaST+fMpuOlmPuVwTnjlwjSbuMJTXUckvXxzykPsuP4nFvTsT63GtZJdHBHJdP/7H3z/vR/w0KBBsktTWrrGEkkjC+/sS5P5k3jtoCc5+sy6yS5OaShzRNLIhuW51L7xMmZV2YWDR96W1LJUieYg59wfwOklHDOHjVNQhO53wGPBJiLlyDm4/HJoXGkR18y9Dg48EC67LNnFKhXljkh6mDQJeOpJ9uN7ePZ1qFs32UWKmXNutZkdDjyO76wy4FPg2hg6q1YClwM3An/jO6vuK+eii1RISy+8hprr1/HZWc9y36FpNVPOJlTXEUkPv4+eSbuc+/m62Vkc1PP4ZBdHRDLdzJnQqxecfjqccUayS1NqusYSSR8Fs+dS55E7+ajKCZz9ZqdkF6dUlDki6WXiyffSbsPvfHX/Z+zYqEZSyxJVJ7mIpIdXXoEPP4QZbW+g8pTlMGgQVK6c7GKJSIbKy4O7L5zNa/Rkw7EnUvX0Yvt6Upo6q0TSQ/4771Pv0zd4sHZvbnh252QXR0QynCtwrDjnUupbFjuPfCLZxRGRTFdQAJdcAllZ8PTTyS5NmekaSyQNOMe8U66gQQEs69OPrbbWTcjlUjgR+c+fo6bR9vP/8WmLizni9sOSXZyo1iQXkTSwZAlcey1cscvHtPruBbjlFthjj2QXS0Qy2FNPOq6c0YOq1StRdWA/sPS9mBKRNLBqFau7XMGP7M7OA29Kx4krRCTNjLtkCK2Xf8608x+m0Z5bJ7s4IpLp+vWDr76CJ56ArZU5IlL+lg16nWbTRjFkx96ceVPzZBdHRDKcy8tn1bndWGr12W3kI8kuDqBOcpGMcfPNkLsol0dzL4NddoE77kh2kUQkg82ZAz/c/jLH8hFVHnoAmjZNdpFEJMMtv/ou6iz7kxcOHshpZ1dLdnFEJMP9O/0f9hh2I1PrtKf985ckuzgikunmzIHbboNjj4ULLkh2aUSkIli6FK65mu9tX4569yqNexCRcvfdxc/QasUEpnZ+gm12r5/s4gDqJBfJCF98AYMHw3tt7qH6vN9h4ECokdy1HEQkczkHt3ZbzMPrr2XdPgdgV1ye7CKJSIZz302k9pCnGFSlB1e9fJAacESk3P1ywnXUcquoPWIglaqo6UREypFz0K2bn5lrwADN0CUiCfHHubeyxdp/mXTpIHbdXavyikj5WjJtHru9eBvfbnkMhw86J9nF+Y+u9ETS3Lp10L07nNBkMh0mPQpdu8JhyV/LQUQy1+uvwzGf3Ej9SkupPmwQVK6c7CKJSCbLy2NZp24sZCsK7u+jiStEpNxNvP8jDp77El8fehs7ZrdKdnFEJNM9/zx88gk8/DA0a5bs0ohIBZA7ZhzNPhzIC/Wv46In9012cUSkApidfRWVXD71XnmGSpVT54ZAdZKLpLk+feC3mXmMqNUNa9jQX1SJiJSTpUvh1cvG0oWh2M03w557JrtIIpLhVt//BPXmTuGpnfrS9YYtk10cEclwuYtyadyrB79X25V2792W7OKISKabPx9uuAEOPRQuvTTZpRGRimDdOlac0505NKflq/dQTStZiUg5m3bv2+z35zt80bEXux67fbKLswl1kouksZ9+8p3kQ/bty5a/ToKnnoJ69ZJdLBHJYHfduIaHlnZnbdOdqNTzzmQXR0Qy3ezZVOl9N+/ZSZz7xmmauEJEyt2EE+6hWd5sVjw8gOpbagkrESlHzkGPHrB+vV9Dr5KaaUWk/P117cNsveQnRh7Xn3ZH1kp2cUQkw61ZuILG917FT9X25rB3rkt2cTaj2pdImioo8DcZt6wxh/N/uhOys6FTp2QXS0Qy2JdfQpPn72MnZlFj2ECoWTPZRRKRTOYci8+6nPV5lZjR42n22jt1puMSkcw089UptJ/wKF/ucgmtr9ESViJSzl59Fd57D+67D3baKdmlEZEKIG/6TBoN6M27Nc7i/JeOT3ZxRKQCmJJ9B43z57PqsYHUrFM12cXZjDrJRdLU88/Dl186RjbrgVWuBP37g6nxWETKx7p18OhF07iJR9hwQRfo2DHZRRKRDLf+hVdo8N2HPN7gfq75nxYiF5Hylb8+n7xLurPUGrDHB1rCSkTK2b//wlVXwf77w7XXxu20L7wAI0bE7XQikkmc4++TLmW1y6Jy3yeoWzfZBRKRTDdrxLccMLEfn7S6irZX7J/s4kSkTnKRNLRgAdx0E9zT6hWa/vgh3H8/NFXjsYiUn4f75HPb7G4UbFmPqk/8L9nFEZFMt2QJ6y+/lgm05eCXrtDEFSJS7sad04/dV3/Hr5c/Tr0d6ye7OCKS6a65BpYv9yMg4rSezMSJ0L07DBniZx8UEQn178NDaPr754zY+2FOuGTrZBdHRDJcwboNuO7d+bvStuz3Qe9kF6dI6iQXSUPXXQc1Vi/m9oXXwAEHwBVXJLtIIpLBZs6Epb37cQATqP7Mk1BfDcciUr6WdL2ZGrmLGXniQI44WguRi0j5mj/+T/Z96w4mNjiGdk+dk+ziiEime+89ePlluPNO2H33uJzyn3/gtNNg663hlVe0vLmIbMot/Icad93IV5UO4eR3L9FkpCJS7iac9Sg75f7AL1f3o0GLLZJdnCKpyiSSZkaP9hc8o3e/kSorlsLAgXG761hEJJxzcNdFf3Bv/u2s63gsnH12soskIhkuf+zn1H97MP1r3sA1Q1onuzgikuFcgePPU66kMvls9dYzWCW1GotIOVq2DC67DPbcE269NS6nzMuDs87yM7i/9RY0bBiX04pIBpl72nVU27Ca2bcOoGlzdQmJSPla+PUs9n73Hr5sdBodHjsp2cUpVpVkF0BEord6NfToARc1HUvrKUPhtttgr72SXSwRyWBDnndcMP4KqldzVH3+GXS7sYiUq3XrWHHOpSxlexo/fTcNGiS7QCKS6cbf+jYHLniPz45/mA6Hbp/s4ohIprvxRli40I8mr1YtLqe85Rb47DMYNgz23TcupxSRDLLy9Q9p8fVLDGpyNxff2yrZxRGRTOccC069jBpUY7u3nkr5pmTdNiSSRnr1goVz1/BMQXfYaSe4665kF0lEMtg//8CX17zBiYyk8gP3QYsWyS6SiGS45bf2od4/Mxm83zOc1SUr2cURkQy3/I/lNH/0KmbW2Jv2b1yb7OKISCbLyYGttoLBg+Gmm6BNm7ic9uWX4bHH4Mor4cIL43JKEckkq1ez9uIe/MyuHPjubZqMVETK3fc3jGDvfz7h25P6sH37bZNdnBJpJLlImpg8GR5/HN7f+15qTp0FY8dCzZrJLpaIZLA7rlhKn9VXsWb3/ah5zdXJLo6IZLKcHNz551Nr/kJeqXwuXV8/JuXvNhaRNJaTA126MMdas2fB3yx95m2q1Kya7FKJSKbKyYETToA1a/zMXB06xOW006bBJZdA+/a+o1xE5D9BXWfh9gey1ao5vHXu51zapnqySyUimSwnh4ILLmTH+SuYktWOw1+7LNklioo6yUXSQH4+dOsGh2w5jWN/fAS6dIGOHZNdLBHJVDk5rDm7Cyf9sweNbBGVh4+GKqoyiEg5ycmB7GwsN5fKQI3zTmd7zXgsIuUlyBxyc9mLuUzb8VT27rx/skslIpmqMHPWrPG/Owennw4jR5apXWfJEjj1VKhXD15/HarqPh8RKRRS12k8dy45NY/nwucOTXapRCSTBblTKTeXOkDta7tStXp6TGSeHqUUqeD69oXJk/J5o15XrEED+N//kl0kEclUOTm4E7Kp+c9cTmQUnH4G7LNPskslIpkqpAEHwICT37jA7xcRibcImbPX/A+VOSJSPsIy5z+5uX5/KbMnPx/OOw/+/BPeeAO23joOZRWRzBChrnNoQQ41v1VdR0TKSYTc2emJq9LmGkud5CIpbvZsGHNbDsuqNKLBrO/gySehfv1kF0tEMtH/2bvv8KiKt43j30kCgdB7kV6kCQrSO9KVotJUimBBsfdeUPSHFTsKqKCIohQBQQSR0IuAgNKlBJBOCDWk7rx/nPAaQwKbZJMtuT/Xda6Q3XPOPpt1H+fMc2bmwmjO8/924gTPmeU3jRoR8TNpdBybTHYci4ikKq2cc/58jsg5xpjyxpipxphTxpjTxpjpxpgK6Ti+ljFmijHmuDHmvDFmuzHm4ayMWcTvDRlycYH8guho5/kMePll+OUXZ0BFs2aZiE9EAksabZ3g2JzR1hERL8iiGwKzk4rkIj4sJgbe6BLOtJgbKJAQBUFBULKkt8MSkUCUVqMmh3Qci4gXZFHHsYhIqnJwzjHGhAELgZrA7cBAoDoQbozJ58bxDYHVQChwF3A98C4QnFUxiwSETz911iBPTVgYjB+f7lPOmAGvv+6sRT50aObCE5EAk4PbOiLiJQGQd1QkF/Fhn/ULZ9SObuQlae0qlwu6d1exSkQ8LwAaNSLiZ8aPx4aEpP5cBjuORUTSNH48Nk/e1J8L/JxzN1AFuNFaO8NaOxPoAVQE7rnUgcaYIOAr4DdrbY+k48OttWOttaOyPHIRf2UtfPed8zM09L/PhYVlaE3ybdtg0CBo1Ag+/jjt+ruI5FDjx0PeHNvWERFvGD+exJDcqT/nJ3lHRXIRH7Xg+XDuntWNfPjvVBUi4j/ixownxuhiSkSyT/zxk5iEBOJJUSjPYMexiMilJLZozc7gGtiUT+SMnNMDWGWt3XnhAWvtHmA50PMyx7YFagMqiIukx+jRMHEivPIKzJ3r5BrIcM45fRpuvBHy5IFp05yfIiL/0aYNR0vXzaltHRHxgogTBUlMcJGYstTsR3lHRXIRH7R1K1w5csjFBfILNKpTRDzsyRkt2GUr6WJKRLLHrl0kDBjM7zRi5fOzM91xLCJyOUuve5nq5zawqetTOTHn1AE2pfL4ZpwC+KW0TPqZxxizyhgTb4w5aoz50Ji07rAUyeFWrIBHHnEGOLzwgpNjZs+GihUzlHNcLrj9dti5E6ZMgfLlsyZsEfFvhx4aSck9vzO1/CPYnNfWEZFsFn0gipBb+3A0qAxRn0/z22ssFclFfMy5c9C7NzxX4EOsh9euEhFJzfffQ+XPnqIOWzEvv+y3jRoR8RPnzxPVoTfn44L55Y4ptH6tc6Y6jkVELmfNq3Npu/x1lla/g7o/v5kTc05RICqVx08ARS5zbNmkn98D84GOwFs4a5N/m9ZBxpihxpi1xpi1x44dS3/EIv7q8GGnU6diRWckeVBS12u7dhARkaGcM3Kksxb5O+9AmzYejVZEAsTZWQsp+clLTM97G23WjMLkvLaOiGQna9nWbAgl4//hwKgfKH7njX57jZXGIoAi4g3WwrBhsG2Li0VNx2HWBEGuXBAT8+9OKlqJiAdt3w5zbv+Br/mAxIceIXj4cKfnZcgQ52Yc5RoR8bCTtz9MkYgNPFFzNv/7tKLz4IWOYxERDzuwch9Vhw9ge556NFz1sfNgzsw5F00YBLizovGFwRXfWGtfSvr3ImNMMPCGMaa2tXbLRS9m7VhgLEDDhg1Te22RwBMfD337wsmT8MsvULhwpk85dy68+CLcdhs8/HCmTyciAcgeOEhC31vZTg1KzxhDyVIGSuXIto6IZJPf+71L4/0zmdv5fbo+3NR50E+vsTSSXMSHfP65c6Px/PZvUmLVbHjvPfj5Z43qFJEsER0NT3Tfzui4O4m9thnBb7/pPJGJUQ4iIpcS+/lECk8Zxwd5n+Hh+TeQO7e3IxKRQBZ3No6ojn0JsfGEzpxC3qI5dnbwKJzR5CkVIfUR5slFJv38NcXj85N+XpPxsEQCzFNPwdKlTudOvXqZPt2uXU5xvF49GDcO0ppsUERysIQEDrS5lVyxZ1n9xFSad8rv7YhEJMDtnLCMBlOeYUnJXnSa/ZC3w8k0FclFfMT69fDgg/DEteFcF/4C3HILPPBApteuEhFJjbXwyN3nGPl3L3IXzEPojB9QtUpEspLdtBmG3csi2lB72gitpykiWW5lq6e46txqNj/2BZU6XentcLxpM8665CnVBi4aBZ7KsXDxSPQL5TpXJuISCRzffQfvvw8PPeRUtjPp3Dm46SanMD59+r9jJ0REkjsw5AXK7VrC2AZjGPxWbW+HIyIB7vTOo+S/qx/7gytTa/kXBIf4/x18KpKL+IBTp6BPH7iqyAHe3HsL5sor/3ubsEZ1ioiHjf/S0vLbYdRmC7mnfAvlynk7JBEJZGfPcqpjb6ISCrDu8e/o2FWrPolI1lr55DTabPiAxVc/SLN3+3g7HG+bBTQ1xlS58IAxphLQIum5S5kLxAJdUjzeOennWg/FKOK//voL7roLWrZ0Fg7PJGvhzjth0yan9l6lyuWPEZGc59S3s7nimzf5tsBQhvw2QLNNiEiWsgmJ7GnRn0KJJzj5+VRKVCvk7ZA8QkVyES+zFu64A/7ZE8/CEv0IOn8Opk2D/JoeR0SyxsaNsO7ecQxiIrw8HDp29HZIIhLIrOVEn6EUOLyDUQ2/45E3y3g7IhEJcHt/20ntd+5gc77GNFuW+YJVABgHRAAzjTE9jTE9gJnAfmDMhZ2MMRWNMQnGmAtrj2OtjQRGAvcaY/5njOlgjHkGeAn4ylq7MzvfiIjPOXkSbr4ZChaEH36AXLkyfcpRo+D77+H116Fz58vvLyI5T+KuCIJuH8R6U59a8z6gcGFvRyQigW51txFcfXQBi/t8TP3BV3s7HI/REA4RL/vgA2fqrDWtn6HgkuXw7bdQW9PjiEjWOH0ahndfx+SEB4lt15nQl17wdkgiEuCiR31G0V++462Cr/Hkz+0IDvZ2RCISyM6fOE9Mt964TDCF5/9A7vxaTsZae84Ycx3wHjARZ6r034BHrLVnk+1qgGAuHlDxKnAGuA94AjgEvA2MyOLQRXybywWDBjkz/y1aBGUyfyPgwoXO0uY33wzPPJPp04lIIIqN5XDrPuRLcLHttSnc2iyPtyMSkQC39YP5NJ73KgvL307nyXd4OxyPUpFcxItWroQnn4Q3Gk2j4ZJRzhrkt97q7bBEJEBZCw8NjOLd/X2wJUuR54dvIEiTyohI1rFr1pLrqUeYa7rS6udnKVHC2xGJSKBb0/whWsdsZO3w2TRsXtHb4fgMa+0+oNdl9ong37XGkz9ugVFJm4hc8Prr8NNP8OGH0KJFpk+3bx/06wc1asCECWjqZBFJ1f6+j1P+4Fo+aDOdh56r6u1wRCTARf31DyUf68/fuerQYNVoTFBgNVDUMy7iJcePQ9++0Lr0Dp7aNgSaNIF33/V2WCISwD76wMXNs26nYvA/5Jn5AxQv7u2QRCSQRUVxunMfDrlKse+1iTRroUsPEclay4Z+Tevtn7Oo+bM0fPkGb4cjIoFs7lx4+WUYMMAZ8JBJ5887o8fj4uDHH6FAAQ/EKCIBJ3L095Sf9QkTij3GXXNu0s00IpKlXLHxHGrdj9yuGOK/m0rhsmHeDsnj1FMl4gUul3MddfZoNLPz9Mbkzu2sXZVbUwGKSNZYvRoOP/42PfiJoFHvQtOm3g5JRAKZtUR2H0zeqAN81u4Hhj5bzNsRiUiA+/vHTTQYdy8bCrWh5W+vejscEQlku3dD//5Qrx6MGZPpId/Wwn33wbp1MHGiM5JcRCSl+E3byfvgXawKak7T8DfIl8/bEYlIoPu9/bPUPrmCVXd+zlW9ArOBounWRbzgf/+DefMs25oOI+/qTfDLL1ChgrfDEpEAFRkJ73ZfxHeu54i7sS+5H8z8SAcRkUs58/I7FFs+i9eKv88zM5pqhIOIZKkzB88QfEtvzgYVpOzi7wjJo64OEcki0dHQq5dT2Z42DcIyP6Lq00+d6dVffBF69Mh8iCISgKKjOd6uNyGuPBz5+Hua1s3l7YhEJMD9NWIGTZe/y/zq99NxXD9vh5NlNJJcJJstXOjMyDWu8ThqrPra+aVTJ2+HJSIByuWCh/oc4sNjtxBXsTq5v/5ci9uJSJZKXLSUsNee5cegXvT87SEKFvR2RCISyKzL8lezoVSM+5uD706m5NVlvB2SiAQqa2HYMNi4ESZNgqqZXwt4+XJ4+GG4/noYPjzzIYpIALKWvd3uo9TxzXzffRI97y/n7YhEJMAdXbWbCi8P5s88jWi+8t2A7kpWkVwkGx08CLfeCjdVWMedGx6Ezp2dW4VFRLLIm68nMDT8ForlPkPeOdO0uJ2IZK2jRznX/RZ228qc//gL6tYL4CspEfEJS277lOb7JrO04wiueaStt8MRkUD26afwddJgh+uvz/TpDh6E3r2hYkX45hsIUi+tiKTi6BtfUjH8K74o+yJ3T9FAKxHJWglnYzjZsTeJNoi8s34gf7FQb4eUpdT8EskmCQlOgTzXmRN8G98bU6qUroJEJEstWgRBL71AG5YQMu4zqFPH2yGJSCBLTOR4p9vIdfYE3940lduGFfJ2RCIS4LZ8vZam3z/KmhLX0/rnZ7wdjogEspUr4ZFH4IYbPDLYIS4O+vSB06dhxgwoUiTTpxSRABSzeiMFn3+ARSEd6LT0JUIDu1YlIj5gXatHuPLsejY+9jXVO1bydjhZzq3qnDGmvDFmqjHmlDHmtDFmujEm3QsoG2OeNcZYY8yy9Icq4t9efBGWLnGxqsYgch89AFOnQvHi3g7LZynviGTO4cPw5Y2zeJo3ibvjHsyggd4Oyacp54hk3snHXqX4xt94s/wnPDXpam+H4/OUd0Qy5+SeKArc2YdjwaWpuvxrgkJ087GIZJHDh50h3+XLw8SJHhns8MgjsGIFjB8PV12V+RB9kdo6Ipl06hSnOvUm0hYlfsIkKlYJ9nZEPk05RyTz1j8xiSYbxvDL1U/T7t1u3g4nW1y2VWeMCQMWAjWB24GBQHUg3BiTz90XMsZUAZ4HjmYsVBH/NXs2vPEGTG/0BuU2zIH33oPGjb0dls9S3hHJnIQEeOzG3Xx4ahDnazUg9yfvezskn6acI5J5cbPnU/DDEUzKNZiB4XeQN6+3I/JtyjsimWNdlu3NB1Mq4QAnx/xA0erFvB2SiASq+Hjo1w+iouDHHz0y5Hv8eGfm9ieegL59PRCjD1JbRySTrCWiw50UO72HOQO/p2P/kt6OyKcp54hk3oFft3Dlu0NZl781bZe95u1wsk2IG/vcDVQBalhrdwIYY/4E/gbuAUa5+VqfApOAGm6+rkhAiIiAQYPgnmq/0XPdi86c6/fd5+2wfJ3yjkgmjHg+hidW9yZvmCF0zlTIk8fbIfk65RyRzPjnH2L79GcbV1Fw4idUrertgPyC8o5IJizu/g5tD89i8c0f0ObOJt4OR0QC2dNPw5IlznJ59epl+nRr18KwYdC+PYwc6YH4fJfaOiKZcPCZD6m0dhqfVnmbu79s6e1w/IFyjkgmxEaeJbZHb86Z/BSbP5k8+XPOf/7uzA/UA1h1IbkAWGv3AMuBnu68iDHmNqAB8GxGghTxV7Gxzl3BpRIO8MmJWzE1asDYsWCMt0Pzdco7Ihn0889Q9q2HacB6Qid/DZUrezskf6CcI5JR8fEca98PYmL45Y4pdO8X5u2I/IXyjkgGbfx4KS1/fpaV5frQesqD3g5HRALZd985MwE++CD075/p0x09CjffDKVKweTJEBLY/c9q64hk0LnfVlHirSf4JbQnNy17PNBzhaco54hklLX82fxeKsZsZ/vw76jUrIy3I8pW7hTJ6wCbUnl8M1D7cgcbY4oA7wFPWWtPpC88Ef/2xBOwfk08y8r2JTg2GqZNg/z5vR2WP1DeEcmAfftgdt+vuYexxD/xDHTv7u2Q/IVyjkgGRd79DCV2rODtGl/w6Gc1vB2OP1HeEcmAY5uPUvLhW9ifqwp1Vn6OCdLNxyKSRf76C+66C1q0gHfeyfTpEhKcWduPHoXp06F4cQ/E6NvU1hHJAHs8kvM9+rKf8hSYNoHSZdTWcZNyjkgGrR06lkY7JjG/+Su0euk6b4eT7dwpkhcFolJ5/ATgzkI8bwM7gAnuBmWMGWqMWWuMWXvs2DF3DxPxKd9/Dx9/DAsaPEWx7Svgiy+gVi1vh+UvsjXvKOdIIIiLg2e7/cU75+4luklbco0c4e2Q/InaOiIZcP7bHyn21Si+yPsA9y7sS65c3o7Ir6itI5JOiXGJ7G91G4VdJ4j/dioFyxX0dkgiEqhOnnSGfBcsCFOmQO7cmT7l00/DokUwZgxce22mT+cP1NYRSS+Xi71tBlIg+ghLHphCixsKezsif6J+HZEMiJj+B3U/f4iVhbvQYeFz3g7HK9wpkgPYVB677G1MxphWwCBgmLU2tXOk/mLWjrXWNrTWNixRooS7h4n4jO3bnRuOn79yCm3+eN+ZmqtfP2+H5W+yLe8o50ggeOGh07z8Vy+CChcibMZ3AT93XxZQW0ckHezOXdjBg/mdRlSe9g5ly3o7Ir+kto5IOizt+CoNon5j7eBPuLJ35tcFFhFJlcsFgwZBRARMnQplMj/l6Pvvw6hRcP/9cPvtmT6dP1FbRyQd9t83kkpb5vJF3Q8Y9EHOuJvGw9SvI5IO0QdPEnJLb44HlaTi4onkCnW3XBxY3OlBj8K5EyelIqR+d05yY4AvgH+MMYWTvWZw0u/nrbWx7oUq4h+io6F3b6gTsp1XD9wBTZt6ZGquHEZ5RyQdpvxgaTjmLqqa3QTPXAilS3s7JH+jnCOSHufPE9muN0Hxwax+fAoPdg31dkT+SHlHJB3WjZxP6yUjWFptMK3G3+HtcEQkkP3vf/DTT/Dhh85U65k0bhw8+qgzMP399zMfnh9RW0ckHU79uJCyY15iRr7buHXRPQTlzFpVZijniKSDdVm2Nh1Cvfj9/PHeEprUC/x1YNLiTrrdjLOmQ0q1gS2XObYWcC9OIrqwtQCaJv17mNuRiviJ+++HPZvOsaBQL4Ly5oEffvDI1Fw5jPKOiJt27IC1gz6kL1Owr/0PWrf2dkj+SDlHJB2O3fYwxf/ZwAfXTuT+typ6Oxx/pbwj4qZDa/6h4vP92RVah2tXfuLtcEQkkP3yC7z0EvTvDw88kOnTffMN3HMPdO0K3+W8yb7U1hFxk+ufg7huuZUd1KDCz2MoUlTrkGeAco5IOvx+yyiu3T+DBZ3epskjzbwdjle50zybBbxjjKlird0NYIyphJMonrnMse1Seex9IBh4ENjpdqQifmD8eJgwwbKh7r3k37QF5s2D8uW9HZY/Ut4RccP58zDi+pV8GfsE5zv2IO+zT3o7JH+lnCPiprOfTqTEjHF8UvAZHpp3g0Y4ZJzyjogb4qPjOda+H5VtDME/TiWseJi3QxKRQLVnD9x2G9StC2PHgslckWr6dBg8GNq2hWnTcuTYCbV1RNyRkMD+VrdSPO4sf74UTr/W+b0dkb9SzhFx098TlnPtlKdZUrIXneY87O1wvM6dIvk44AFgpjHmBZy1HUYA+3GmogDAGFMR2AW8aq19FcBauyjlyYwxJ4GQ1J4T8Wd//gn33Qfv1RjD1X99A6+8Ah07ejssf6W8I+KGZ+86xv929SW+dHnCfvgq0x05OZhyjogbXH9tJuTBe1ls2tBo7giKFfN2RH5NeUfEDctbP0vbMytY8dBkmnet4e1wRCTQhIfDkCHw2Wfw7LNgrVPdDsvcDTk//wy33AKNG8OsWZA3r4fi9S9q64i4Ye/AF6gYsYTRzSYybHhtb4fjz5RzRNxwetcxCtzVj/3Blam1/AuCQ9SXfNmxH9bac8B1wA5gIjAJ2ANcZ609m2xXg3N3jcaTSI5z+rSzDnmbfGt5eM/D0KULvPCCt8PyW8o7Ipf39fhEun47gNLBxwibMxUKF/Z2SH5LOUfEDWfPcqJ9b04mFmD3a9/RuHnOmi/U05R3RC5v9bMzaLvuXRbXvZ/mH/TzdjgiEmjCw6FbN9i71/m5YYMzP3rVqpk67cKFzvrjdevC3LmQP4cOClVbR+TyIr+aTcXJb/JD4aEMmj9A4x4yQTlH5PJsQiJ7mvencOJxTo6bQolqhbwdkk9wq3fLWrsP6HWZfSJwkszlztXWndcU8RfWwl13wcldkcwo2RtTurRzYaX5RzNFeUckbX/9BfuHjmAQ83F9MhYaNPB2SH5POUckFRdGV335JUde/5zix3bwv3YLeOHZMt6OLCAo74ikbd+i3dR8YzCb8zWi6bJ3vR2OiASaCwXy6Gjn98REyJUr0yPIV6yAHj2gWjVn9b1CObzvWW0dkVQkXWMljBhJrrvuZ4OpT92FH+TYG2o8STlH5NJWd3+Npkd/5Zde4+gy5Bpvh+MzVMUTyaSPP4apU1ysrD6QPJEHYcoUNP+oiGSJ8HBcFSrxy3Vv8WzCq5zvM4igoXd5OyoRCUTJRlfZLl0ptfA7Pir+Ko/MbKcRDiKSdcLDsRUqYjt3xmWCKPTLD4QWDPV2VCISSFIWyC+Ij3ceDw/P0GnXrYOuXaFsWViwAIoX90CsIhJYkl1jBQ0aQFBCHPvenUKt+nm8HZmIBKrwcKhUib0Pvk3jX15hYblBdP7hTm9H5VM0T6JIJqxeDY8/Dl/X+B9Vt8+FTz5xFp0SEfG08HBst24ERUfzBE8TU6YyeSd8qnXIRcTzUnQem/g4Egmi5xtNKVDAy7GJSOBKyj0mOpqKwNaBr1OrZSVvRyUigWbIkIsL5BdERzvPR0Sk65SbNkGnTlCkCPz2G5QunfkwRSTApLjGCsJFaFACPa7ZB2RumQcRkVQlyzsVPn6K/cGVqL9yNCZIfcnJaSS5SAadmhHOFS0q8XL+d+i/4yW47TYYNszbYYlIIErWaQzOvFB5ow45d+qIiHhSGqOrgnFR+aEeGR5dJSJySanknlrTXlfOERHPGz8e8qQxajMszHk+HXbsgA4dnFP+9huUL++BGEUksKRxjZXLFZupGSxERNKUcvADUC74MEX+/t27cfkgFclFMiBmbjihvbpRLnEvz0U9ialQAcaO1YhOEfG8tKYDjInRxZSIeJ47o6tERDwprbZOdLTaOiLieSVLQu7cF/ffhIXB7NnQrp3bp4qIgPbtweVyplivqsGgIpIaXWOJSHZK4/oqKE59yalRkVwkneLnO0kmj+vfu3A4cgR+1104IpIFdDElItlp/Hinkzg1GRhdJSJyWWrriEh2+ftvZ9h3vnzw1Vf/tnkyUCA/cMApkJ89C7/+CrVqZVHMIuL/xo/HhnpuBgsRkUvS9VW6qEgukg6JC8JxXf9vgfz/aUSniGSR7c+MJ47cqT+piykR8bTWrTl5ZaOLH89A57GIiDsO3PUyNq0n1dYREU/Zsweuuw4SE51h3wMHOm2bihXT3cY5etSptR87BvPmwdVXZ2HcIuL34oqW5lxCblxkfgYLEZHLGj+exKCQ1J/T9dVFVCQXcZPLBVE3DiE0UXfhiEj22LIF3n/yACHEYYOC//ukLqZExNNcLo7fPJTCGxbzbcF7sXkzPrpKRMQd+5fsIejlF4gyRXClHGGl3CMinrJ/v1MgP3fOGfZdu7bzeLt2zpzp6cgzJ05Ap06wdy/MmQONG2dNyCISGBL+3sOZph04kxjG0ru+ztQMFiIi7vh99FqCXQkkmhSFcuWdVKlILuIGa+Gxx6DPufEkBuVKfSfdhSMiHrR7N7zT8kc+OjuY2KbtMHNm62JKRLKOtUQOfpzis77kg0Iv0WrTp07eycDoKhERdxxaewDbvj2hNobIaUsImvuz2jpZyBhT3hgz1Rhzyhhz2hgz3RhTIQPnedYYY40xy7IiThGPO3TImRf9xAmYPz9Tw75Pn4YuXWDrVpg5E1q18mCcIhJwXP8cJLJBB4iJ4benf6XNuAEZnsFCRMQda+8eQ+OpT7GodD8S58zV9ZUb0hhzLyLJDR8OH3wAP7ZeT/CSeAgOdqboukBJRkQ86MABGN58PuOibiGuXkPC5s+EAgWcPDNkiHNDjvKNiHjQiYdfodjE9xkX9jA3rBlO+fJA+aTRVSIiHha5/TjRLTpSMuEY+ycspPZNVzlPqK2TJYwxYcBCIBa4HbDAa0C4Maaetfacm+epAjwPHM2qWEU86tgxZ170gwedAnnDhhk+1blzzip769fDtGnQsaMH4xSRgGOPHedwvY4UOHuUKfcu5I43kto67XSNJSJZY8NT39Lg82GsKHoDjbdNJHehXLq+coOK5CKXMWoUvPoqTGgxjhuXPA69e8M990DPns4U6yqQi4gHHTsGz7RYypgjN5JYvRZhi+Y6BXLQxZSIZImTL42i6Eev8E3oHTRfNYpq1c3lDxIRyaBT+05xpEEXKsftYft7c7nm9kb/Pqm2Tla5G6gC1LDW7gQwxvwJ/A3cA4xy8zyfApOAGqg/SXxdVJQzL/ru3TB3LjRvnuFTxcTATTfB8uXw7bfQo4cH4xSRgGNPnuJA3S4Ui9rNxFvncvfoRpc/SEQkEzb9bxZXvT2IP/K3oc7mKYQVSpoNWddXl6Xp1kUuYdw4ePxxeK/JZAatuMeZV2vSJOdOZE2PIyIeduoUPNpqLZ/svQEqVCBs2XwoUsTbYYlIADv97jgKj3icH0P6UGvJWOrU1eWBiGSd6OPRRNTtTvXojWwaPo1rHmnr7ZByih7AqgsFcgBr7R5gOdDTnRMYY24DGgDPZkmEIp50+jR07gxbtsCMGdC2bYZPFR8Pffs6S5l/8QX06+exKEUkEEVHs79+d0od2ciX10/j7kltMboHWUSy0LZPfqPa833ZkudaKv81i0Kl83o7JL+iO39F0jB5sjNg/OUGP/HwuoGYVq2cObVy53Z20F04IuJB0dHwYLtNfLC9MyGlihG2fAGULOntsEQkgJ39fDL5n7iHeUFdKTn/G65tHOztkEQkgMWdjWNzrV5ce3oZqx76juYvX+/tkHKSOsDMVB7fDPS53MHGmCLAe8BT1toTRr394svOnoXrr3fmRZ8+3SmWZ1BiIgwcCD/9BJ98AoMHey5MEQlAcXHsbdiLchHL+bTVd9z30/UqkItIltr1zUrKPdCTvbmqU2LtXIpVKuDtkPyOhoqIpGL2bOdC6OGrfuPlzX0w9es7V0VhYd4OTUQCUGws3N/pb95a34GwInkIW/EblCvn7bBEJIBF/zCbPEMHssy0IvjHqbRol9vbIYlIAEuISWBdzdtodPwXlt8+juYfaChmNisKRKXy+AnAnWmL3gZ2ABPcfUFjzFBjzFpjzNpjx465e5hI5pw/78yFvnKlMy969+4ZPpXLBXfdBd9/D2+/Dffd58E4RSTwJCQQ0fw2Km79hc/qj+XehX0JUuVFRLLQvp82UmzQ9RwLLkOeJfMpU6eot0PyS0rVIimEhzvLjg+stpJRu3tiqld31q8qWNDboYlIAEpIgIdu3Mcry9tTKH8ieZcvgCpVvB2WiASw2F/CCbm1N+vtNZz+5ic69NBNgCKSdVwJLlbWvZtmB6axqOcoWk2409sh5VQ2lccuO77NGNMKGAQMs9amdo7UX8zasdbahtbahiVKlEhHmCIZFBsLN98MixbBV19Bn8tOkpAma+HBB2HCBBg+HJ54wlNBikhAcrnY0/FuKq2bxmc13uOulXcSovl7RSQLHVq8g7w3duKcyU/CLwuo2LSMt0PyW0rXIsmsXu3cdHzDFRv4/ND1mDJlYP58KFbM26GJSAByueDx/od54pf2lMpzmtAl4VCrlrfDEpEAFr9sNa5u3dnlqsae0b/Q9zbdBCgiWce6LEsbPkqbnRNY1HY4bWc86u2QcqoonNHkKRUh9RHmyY0BvgD+McYUTnosBAhO+v28tTbWQ3GKZEx8vLNY+C+/wLhxMGBAhk9lLTz9NIweDU8+CS+95ME4RSTwWEvEjY9QedEEvqgwnIHrHiE01NtBiUggO75uL7ZDB7CWqCkLuKpDRW+H5Nc0klwkyV9/Qdeu0KTwdn441YmgAvlhwQIoo7twRMTzrIXn7onkrh86UjH3IUJ/+xnq1/d2WCISwBLX/0ls+64cSCzN+jd/pe8w3QQoIllrcduXabPxQxY1eJQ2v6nS5EWbcdYlT6k2sOUyx9YC7sUppl/YWgBNk/49zHNhimTAhYXDZ86Ejz5y5kjPhFdfdaZXv/9+ePNNtJ6wiFzS3ttfotJPH/FNycfovfEl8uXzdkQiEshObjtMdPMOhCWc5p8v5nNVrxreDsnvaSS5CPD339CxI1yZO4JfEjsQHGzgt9+gou7CEZGs8dpTp+n1eRdqBv9NyJw50Ly5t0MSkQDm2v43Z1t04kxcGAufXcDQp3QToIhkrUXd3qHt0hEsvfJO2qx5FxOkSpMXzQLeMcZUsdbuBjDGVMIpdj9zmWPbpfLY+0Aw8CCw03NhiqSTywV33PHvwuEPPJCp0739tjO9+uDB8OGHKpCLyKXte/BtKk58jamF76LLpncoVFhJQ0Syztl9Jzh+bSfKxB1k06hfaTLkGm+HFBBUJJccb/9+6NABiscfYkn+DoScPguLF8OVV3o7NBEJUKNei6bNO91oYDYQNH06pkN7b4ckIgHM7t3HyUYdSDjv4sf7FvDg/yp5OyQRCXBLBoyl7ZwnWVG+L83/GqMCufeNAx4AZhpjXsBZn3wEsB9nOnUAjDEVgV3Aq9baVwGstYtSnswYcxIISe05kWxjLQwbBl9/7Qz/zuTC4Z98Ak895cza/vnnEKS5N0XkEg68NIYKHz/F7Hz9aP7nZxQvobaOiGSdmGNn2F+3K1Wit/P7S3No9agGW3mKmnySox054hTIg04cZ03hDuSOPOysYVWvnrdDE5EANfajWGq/eDMtWYb5ZiKmR3dvhyQigezIESIbdCDozCkm9p/HAx/X9HZEIhLgVjz4HS0n3cuaEtfTcMtEgnMHezukHM9aew64DtgBTAQmAXuA66y1Z5PtanBGiKuvSHybtfDIIzB2LDz7LLzwQqZON368Mwi9Rw+YOBGClbZE5BIOj/qWMiOGsSD0Bur8MZGy5ZU0RCTrxJ8+z47aPal+eh3LH/qBVq908HZIAUUjySXHioqCzp3h1P7T7KzQhbwRu2DuXGjSxNuhiUiA+m5iAsUfupUuzCNhzOeE3HaLt0MSkUAWFcXRazqR78QBPur+K09PrK9pQ0UkS/3+4k80/nggfxZqzVXbppI7f25vhyRJrLX7gF6X2ScCp1B+uXO19UxUIhlgrVMY//BDp1D++uuZmhf9+++dZcw7dXL+nSuX50IVkcBz7POZFH98ECtytaH8qilUvlJJQ0Syjis2nr9q96XB8XDmD5pIpw96ejukgKO7gyVHOnsWbrgBIrZEs7VqN/Lv2ghTp0K71JZbExHJvJk/uki8fQg38yNxb79PyNA7vR2SiASys2c5fO31FDq8jQ/azuDJH5urQC4iWWr9uwup91oftudrQJVNs8hbNK+3QxKRQPTqq/Dmm85U66NGZapAPnkyDBgALVvCjz9CnjwejFNEAk7U1N8oNLQvG4KvpcDCWdS4Rm0dEck6NiGRdVcNosGB2fzSYzSdvhrg7ZACkorkkuPExMCNN8KG1bFsr3MzRbYsh2++gW7dvB2aiASo3xZYjvS+nwH2G2JffI3cTzzs7ZBEJJDFxHCoSU+K71nDu42+58n5HTVtqIhkqU2fr6L6Ez3YH1qdMuvnUrBcQW+HJCKB6M03YfhwGDIEPv44wwVya+GVV+DWW6FZM/jpJwgL82yoIhJYTs9bSWi/nvzNlbhmz+XqlgW8HZKIBDDrsqy59l4a7ZzMz23eoPOMYd4OKWCpSC45Snw83HILLPotga0N+lNqwzwYNw769fN2aCISoFausPx1/VMMdX3G+YeeJvSV57wdkogEsvh4DrbqS5ktC3m79gQeW3Kjpg0VkSy1Y+qflBvalciQ0hRcNZ+i1Yt5OyQRCUQffADPPONUtseNg6CMdWnGxED//k6t/fbb4ddfoaDu6xGRSzi3YiPccD0HXWWInPwrjbsU9XZIIhLIrOX31k/Q+M/PmVv/ObqGP62ZAbOQiuSSY7hczs3Gs2a62NT4TiqunQbvvQd33OHt0EQkQG3cCOHtR/BI/DucG3I/ed8fmanpAEVELikxkYOdBlN27U+8U/kTHlw9QNOGikiW2jNvB0X6duS8yUdw+AJKXVPG2yGJSCAaO9ZZf/ymm+Crr8joFDlHjjir7H33HYwcCePHQ2ioZ0MVkcASs3E7sW07cSoxP3vGLaB139LeDklEAtyqG0bQZPko5l/5AJ3XvKau5CwW4u0ARLKDtXD//TBpkmVt04eoueprZx2rRx7xdmgiEqB27IBpLd/j1ZiXOdvrdvJ//qEK5CKSdazl0E33UXbRt3xQ9g3u+uM+8uf3dlAiEsgOrNxH7hs6AJbzPy2gSstK3g5JRAJFeLgzymH8eNi/H+69F264wVlEPINT5Pz1l7PK3rFjMG0a3Hyzh2MWkYAT9/dezjTtgI23bHh7Ad3vqujtkEQkwP3e/wOazn2ZheUH0e7PDwgKVl9yVlORXAKetc6MXJ99BgubPs+1qz6BJ56AF17wdmgiEqD27oUvmo7jzbOPcaZTLwpM/jzD0wGKiFyWtRwa9BRlfhrLmGLPctuGpylc2NtBiUggO7bpCHFtOlA08TSHvg2n5vU1vR2SiASK8HCnmh0dDV26OOvmtW8PU6dC7twZOuWcOc7SewULwtKlcO21Ho5ZRAJO4oHDRDboQJ6Ys/z2wiJ6P1HD2yGJSIBbe9+XNP72EZaWuInmW74gV6j6krOD/soS8EaOhLfeghlNRtJu1Ui45x7nAY3oFJEscPgwfNDkW0ZG3cPpFl0p8NO3EKJ70kQk6xx56HXKfPMOXxe4n24bXqdECW9HJCKB7OSeKE406kTJ+APsHT2HmrfW93ZIIhIokhfIAeLinL6bRx8lI2vIWOssZd6jB1x5Jfz+uwrkInJ5ruMnOFS3IwXOHmLuAz/Te8TV3g5JRALchuenUP/Tu1ldqBP1t35HnvzqS84uKpJLQPv4Y3j+eZjQ6BN6rn4O+veH0aNVIBeRLHHiBPyv6UzeOjKIM/VbU/DXaRke7SAikqbwcKhUCcLDOfrih5T6+EWm5B1Eq/UfckU5tXFExMOS5ZwzB8/wT92uVIrZxraRM6g3rIW3oxORQJGyQH6BywV9+jjPp0N8PNx3n7PKXs+esGQJXHGF58IVkQCT1N6xs+ew76qulIjawdQBM7nto2bejkxEAlGya6xNb/1M7f/158+wZtTYPJ38xUK9HV2OotsRJGB99RU8+CC8X/8rbl/zgHNVNH68pjwWEc9KWi8v+pPxvPx4Au/s7cu5mtdSaPFPkDevt6MTkUCTrAPZdu5Cyfg4Zue+iatWf0HlqmrjiIiHJc85N3TjUHANap77k7VPTaHpMx29HZ2IBJIhQy4ukF8QHe08HxHh1qlOnnTq6gsWOMvvvf66uoJE5BKSt3d69KC8hQk9pnPH1+29HZmIBKJkOcfVpSvV41z8HXoV5TbOofAV+bwdXY6jIrkEpOnT4Y47YHjdaTy08Q7o0AEmT4ZcubwdmogEkmSNmpDuXXnLQkylmhRaPhcKFPB2dCISaFKMsDLxcSQSRM337qFaXTXrRcTDUuac89FcyXr+6vYMTd+8ycvBiUjAGTsWbrgBEhIufi4szBn04IadO6F7d9i1yzlk8GDPhikiASZFeyfIuogPys0dDxfURKQi4nkpc05cLLkwlPzoRUpUK+Tl4HIm3UcpAWfNW+Fc26sSH17xJi9tuxXTtCnMmJGh9atERNKUolGT28aShzgKvfMSFC3q5eBEJOCkMQVpMC6qPXlzuqcgFRG5pLSmPQbqLvxQOUdEPOvoURgxwimQh6S48S8sDGbPhnbtLnuaxYuhSRPndAsWqEAuIpeRRnsnlysO072b2jsi4llp5JwgLCUeGaCc4yUqkktAmfdMOLWf7kZF9nLf/mcwFSvCnDmQT9NUiIgHpdGoMVgYNEiNGhHxPHemIBUR8RTlHBHJLuvXQ8OGsG6dMwPg/PlOYRzSVSAfPx46doSSJeH336F16yyOW0T8n9o7IpKdlHN8korkEhASE+GzfuG0fLMb+UiaDhDgwAHngktExJPUqBGR7Pb557iC05hSPR1TkIqIuGX8eFyhaczEpZwjIp7yww/QooXz72XLoF8/pyA+ezZUrOhWgdzlctYdv+MOaNMGVq6EqlWzIXYR8XtxL43ARRpzqqu9IyKe9uWXJAansRywco7XqEgufu/0aXihRTgDf/i3QP7/zp93RntqVKeIeNDqe74gHhWrRCSbREVx8JG3CEpMuDj3pGOElYiIuzb8GcSZ2NzYlE8o54iIJ7hc8MILTlG8QQNYs8b5eUG7dhARcdlcc+4c9OoFb74J994LP/8MhQtnaeQiEiAiJ/9KzNCHOE0BEoJD//uk2jsi4mGu2HhWP/4DwYnxJBL83yeVc7xKRXLxa7t2QbNmcO/qIRcXyC/QqE4R8RBr4cPXz3D4uY/IRQI2WI0aEclaiVu2c6xqE4pvXsRbNb8g+seMTUEqIuKuJQPGUueRDkTmLsORt75WzhERzzpzBm6+GV5/He68E377DUqVSvdpDhyAVq1g1iz44AMYPRpypTE4S0Tk/1nLvqc+ptCtXdnvKsfKTzYQ8utctXdEJMucjTjO5is60mTDGOZe/Qyuub8o5/gQt4rkxpjyxpipxphTxpjTxpjpxpgKbhzX0Bgz1hizzRgTbYzZZ4yZZIypnPnQJacLD4fGjeHMobMUrHeJ/xw1qtMvKe+Ir4mNhaf67KHdC83pxk/Evvk+JoPr5YnvUc4RX3Tux/mcv7oJNuokH9+0kEf/vINCN6ZvClLxXco74msSYhJYfPVDtJ50DxuKd6DYjlWUfnKgco6IeM7u3c5Ih9mz4cMPYdw4CA29/HEprF0LjRrBzp3w00/w0ENg0pgxWbxHbR3xOXFx7Op4LxXefpCFeW8gcekKut5XOd3LPIhvUs4RX/TPvM2cvLIx1SNXMX/gRLqsH0muLh2Uc3xIGnPF/ssYEwYsBGKB2wELvAaEG2PqWWvPXeLwW4A6wIfAZuAK4EVgrTHmGmvt/kzGLznUZ5/Bgw/CdRV3MSv4RkI3bXHm1vr66/+uE6yilV9S3hFfc+QIjGi/iOGbe5MvTyLmx7mEdunkPDl7tjNbxfjxyjV+SjlHfI61HHvxQ4q+/hibuYq/Xp/FY89V/Pf5C1OQit9S3hFfc3JPFLsa9qPNiV9ZdO1jtFrxFsG5k2bMUc4REU9YuBD69HGm55o3D9q3z9Bppk2DgQOhZElYvhzq1vVwnOIRauuIr3EdPc7eRr2pum8xX5d7li5rXqNk6WTjB9Xe8WvKOeKLNr0xm0rP3cpZ8rPxg8V0eqjJv08q5/iMyxbJgbuBKkANa+1OAGPMn8DfwD3AqEsc+6a19ljyB4wxy4E9Sed9KSNBS84VHw+PPOJMo/V8o/mM+PsW527hX36Bjh2hb19nDfLoaBXI/ZvyjviMDRvgh+s+5b2ohzh/RTXyhs+C6tX/3UGNmkCgnCO+Iy6Of268n3JzP2dOrhspOHMi/bvm93ZU4nnKO+Izds/djunZnbrxESwd8iVtv9RSVSLiQdbCJ584nTk1ajjzo1etmqHTvPEGPPccNG0KM2ZkaJZ2yT5q64jPiP59E6fb9aBM9EHGtvmG2+f1z8gkFuLblHPEd1jL6t5v02j6M2wJrU/Y/Jk0aV3O21FJGtyZbr0HsOpCcgGw1u4BlgM9L3VgyuSS9Nhe4BjOHTkibjtxArp0gdGjLT+1fpsR67piypdz5tnq2NHZSdPjBArlHfEJP/4Qz5pGw/hf1H1Et+hEwc2r/lsgl0ChnCM+wR49xoHaHSg393PGlHiB2lun0UoF8kClvCM+Ye3r8yh2fRPyJ5xk2ycLaaUCuYh4UlwcDB3qTAV4/fWwcmWGCuSxsTB4sFMgv/VWZ/k9Fch9nto64hOOfP4TtlkzbPR5ZjyymLvDVSAPUMo54hMSzsbwe+3baTL9aZaW7kO53UupogK5T3OnSF4H2JTK45uB2ul9QWNMLaAksDW9x0rOtXUrNGkC65ZGs7vJbXRb8hSmVy/nAqtKlf/ufGFUpwrk/kx5R7zKWnjnmeMU6deRuxM+4+x9T1Fo8SwoVMjboUnWUM4Rr4tb+yeRVRtRdNca3m34LbftGkHlqu401cVPKe+IV1mXZfHNH1D/hes5nKcisUvXUO++lt4OS0QCydGjzpTqn38Ozz/vDP0uWDDdpzl+HDp0cFbXe+UVmDQJ8uTxfLjicWrriHdZy55736TE3T3ZYWqw45s13PJeE2dGUglEyjnidSe3Hebvcm1pvG0iPzd7lRb7JlO4bJi3w5LLcGe69aJAVCqPnwCKpOfFjDEhwGc4d+F8cYn9hgJDASpUqJCel5AANHcu3HILVM8VwfpKN5H/940wciQ8/TRq2QSsbM07yjmSXHQ0DL/5T4bN68kVQYeI+3wi+YcM8HZYkrXU1hGvOvnVTHLf0Z9YVyGm3rGER8c1Ikj18UCnto54TdzZOFZfex9tdnzBqjI3ctUfE8lfWrNWiIgHrV8PPXs6Fe7Jk6FfvwydZssWZ0W9Q4cydRrxDrV1xHtiYvi73d1UX/UNcwr048qlX1L/ahWqApz6dcSrIqb/QWi/nlRIOMFvw6Zy/ehe3g5J3ORu95tN5bGMVCc/BpoDA6y1qSUt58WsHWutbWitbViiRIkMvIwEAmth1CjngqhfiYWsdjUk/9E9MGcOPPOMCuSBL9vyjnKOXHDgALxYbwYvzWtOiQKx5FqxhNwqkOcUautI9rOWgw+OpODgm9hia7N29Bru/UIF8hxEbR3Jdse3HmPrFR1oteMLFrV8gcb7pqlALiKe9cMP0KKF06mzbFmGK9vz50OzZs5NzIsWqUDup9TWkWyXsP8QEZXaUn3VN3xVbQQt9n5HdRXIcwr164hXbHxhCiV7tSTRZdjx5XLaq0DuV9zpgovCuRMnpSKkfndOqowxI3HurLnDWjvf3eMkZ4qNhTvugMcft3x+1fuMiehEcOmSsGYNdO3q7fAk6ynvSLZbvcryTc3XeHfXTSRUr03+bWsxTRp7OyzJHso5kv3On2df6wGU/fg5ZuW9haCli+k5rKy3o5Lso7wj2W7H1D+JqduIK0+vYcWD39F26QiCQnRXjoh4iMsFL7zgVLPr14e1a6FBgwyd5v33nSXMK1WC3393lt8Tv6O2jmS70+HriKreiBJH/mJC92n03/oChYtokFUOoZwj2c4muljVZThXv96XHWHX4Fq1hvpDrvF2WJJO7lwRb8ZZ0yGl2sAWd17EGPM88AzwsLV2ovvhSU505Ahcdx1MnnCe9fVuZ8ifj2K6d4fVq6F6dW+HJ9lDeUey1eQvzrG/RT+ePvsiJ7sNoPDGxVBWxaocRDlHspXrn4McqNaGCsu+5dMK/6Pprkk0aJHX22FJ9lLekWy1+rmZlO3TnGAbz54JS2j+4S3eDklEAsmZM3DzzfD663DnnbBwIZQqle7T7NwJ7drBo4/CDTc4A9E1g63fUltHstWB96eQq30rzscGsWD4cgbPupkQdxaalUChnCPZKi7qHOuq9aXpvFdYWP52qu0Lp0Kj9Ld9xPvcKZLPApoaY6pceMAYUwlokfTcJRljHgJeA5631n6UwTglh9i4ERo3hqPr9nOgSiuu+XMivPoqTJsGBQp4OzzJPso7ki1cLnjjvn1ceVcrbnZN5dzLb1F41teQV8WqHEY5R7LN+aVriareiEIHt/BBuxncseNZSpfR6IYcSHlHsoV1WRZ1+h9NRt7I3ny1MWvWUPv2Rt4OS0QCye7dzrzos2fDhx/CuHEQGpquUyQmOsvt1avn9At9+SXMmKFuID+nto5kD5eLv/u/zBWP9uWvkPocnrWGni9f4+2oJPsp50i2Of7HPiLKt6RBxHTmtn+HtnvGk79Y+to+4jvcKZKPAyKAmcaYnsaYHsBMYD8w5sJOxpiKxpgEY8xLyR67BXgf+AVYaIxpmmyr7cH3IQHgxx+heXNoGL2ELWHXUvTYDpg5E158ES3OmeMo70iWO3MGnm29nCGfNqJWrl0kzphNvuFPglGxKgdSzpFscfzjyZg2rTgTk4vpj6/god96prcPWQKH8o5kufMnzrOiygDa/vo8yyveRpV9iyndQDPl5FTGmPLGmKnGmFPGmNPGmOnGmMuO0TXGNDTGjDXGbDPGRBtj9hljJhljKmdH3OLjFi6ERo3g4EGYNw8efDDd11Nbt0LLlvD449ChA2zZAkOG6LIsAKitI1nOnj3Hjvp9qf7tq8wsOpjSmxfSuLtGcuZQyjmSLXZ+vQLbqBGlzu1myZOz6brgcYKC1WjxZ5etPFprzwHXATuAicAkYA9wnbX2bLJdDRCc4pxdkh7vAqxMsY32QPwSAKyF116Dm2+2DC/xCVNPtidXiSLOwlM9eng7PPEC5R3Janv2wFu1vmTE8naElihIng2ryNXzem+HJV6inCNZzuVi3+0vUPzBW/kjqBG7vlvDoHfqqfM3B1Pekax2+I+D7K7QhhZ7v2VRp//RfPc35C2qmXJyKmNMGLAQqAncDgwEqgPhxph8lzn8FpzpSz8EuuJMQ9oAWGuMKZ9lQYtvCg93FgpfuBA+/hg6dYLSpWHNGmjfPl2nSkiAkSPhmmtgxw6YNMkZJ6FVrwKD2jqS1WL/3se+ii2p+uePfFX3HTrs/ZIK1XUHck6lnCPZ4Y+Hv6L87e04awqwb/JK2r6lvuRA4NbKHNbafUCvy+wTgZNMkj82GBicsdAkJ4iOdparmj45lkVV76PNri+dhacmTYJChbwdnniR8o5klSULE9h6wxOMiPmAyAYdKbbgeyhSxNthiZcp50iWOXuWiNYDqbR+BlMK3km9ZaOpUTe3t6MSH6C8I1lly9drKTKkJxVdp1j97Aza/q+nt0MS77sbqALUsNbuBDDG/An8DdwDjLrEsW9aa48lf8AYsxyn4/lu4KVUj5LAEx4O3bo5HTmdOztV7u7d4ZtvoGDBdJ3qzz+d0eJ//AF9+sBHH2VoCXPxcWrrSFaJ/GkFptdNFI6PYXL/2Qz8uqsmIRXlHMkyNiGR1e2eoemyd1hboB1XrJhC5auKeTss8RD970O85sABaN0alk4+wJ7ybZwC+QsvwKxZKpCLSJb4+v0TxHXoyj0xHxB1+yMUW/2zCuQikmUSdu3lQOUWlF8/i9E13qfDnnEqkItIllrx0GQq396KRJOLg1NW0EQFcnH0AFZdKJADWGv3AMuBS/5HkrJAnvTYXuAYcIWH4xRflbxADk6BPCQEHn44XQXyuDgYPhyuvRb++QemToUfflCBXETct/fVr8jfox1RCQVY9d4q+n+jArmIZJ3zR06zoWIPmi57h/nV76POP/MoowJ5QNH/QsQrfv/dWbaq8JYV7CzSkLInNsG0aTBihNYfFxGPS0iA/w3cSrNHm9CGxUR/9AVFJrzndOyIiHjKhSlIw8M5PXcZZ2s1It/xvXx+088M3fQwRYpqfnUR8aBkOceV4GJRqxdp/tGt7CjYiDx/reHK3vW8HaH4jjrAplQe3wyke61NY0wtoCSwNZNxiT9IWSC/ICHBWSIvPNyt06xbBw0bwiuvQL9+ztrjvS453k9EcrxkbR0SE9ne/QkqvjyYtaEtiV64ms6P1PJ2hCISaJLlncPLd3GoUlPqHpzHvB6f0HH7J+QtmMvbEYqHqTog2e7bb+GOO+DR/ON4Pf5+gspWgBm/wlVXeTs0EQkk4eEwZAhnPhzPmy9H89SGWyEsDDN3EWGtm3s7OhEJNMk6kF2du5A3PpEIqrDx9Z+457ka3o5ORAJNspxjb7iBbXmvpe2JZSy98k6arBtN7vyatUL+oygQlcrjJ4B0TatkjAkBPsMZSf7FJfYbCgwFqFChQnpeQnzNwIEXF8gviI525k2PiEjz8JgYpzD+9tvOiPFZs5xZ2kVELilFW+efIvWocXA100rfT8s171GqnApVIuJhyft1unQlLC43uQlh9avz6fzidd6OTrKIhuxK9ggPx1asxLjbwhncP44fit7LyMihBHVoD2vWqEAuIp51oVGzdy95enbm1Q3diKtYnYLb1hCiArmIeFqKEVZB8XEEYYkf+Q69VSAXEU9LkXPM+fPUOrGMjS3vp+XWcSqQS1psKo9lZIqTj4HmwABrbWqFd+fFrB1rrW1orW1YokSJDLyMeF1iorNY+IkTae8TFgbjx6f59MqVUL8+vPEGDB4MmzerQC4ibkilrVPu4Grm1X6YbhEfq0AuIp6Xsl8nLpb8nOXs6x/SQgXygKYiuWS98HDsDd0w+/bS/7sb2FOkAT0OjYFnnoHZs7UesIh4VopGTS7iMUHBFP/0NShf3svBiUjASWMK0mBc1B5xq9tTkIqIuCWNnGOAq/8Yj1m8yCthic+LwhlNnlIRUh9hnipjzEic0eF3WGvneyg28UXr1kGTJvDQQ9C6NUyc6BTEkwsLc/p02rW76PDoaHjsMWjRwvn3vHnw+edQuHD2hC8ifuwSbZ1OEeMIXaHrKxHxsDTyThCWCq/fo36dAKciuWQp12/hxHfphjnvJJgwzlM2ajO8+CKMHAnBwV6OUEQCSng4rhtSuZhyJULv3mrUiIjnDR58+SlIRUQ8ZcgQ5RzJiM0465KnVBvY4s4JjDHPA88AD1trJ3owNvElp0/Dww9D48Zw4ABMngxz58KAAU5B/EKh/BIF8sWLoV49eO89GDYMNm2CTp2y+X2IiP+6RFvHqK0jIllB11g5morkkmV2fxFObKdu5Iq7+M4/3n1XxSoR8aiEBDhz0yCCzqtRIyLZI3rxGo6dCU17h8tMQSoikh6uBBcbq96U6pzZgHKOXMosoKkxpsqFB4wxlYAWSc9dkjHmIeA14Hlr7UdZFaR4kbUwdSrUquVMsT5sGGzbBv36gUmalb9dO6cwXrFiqgXyM2fg/vuhbVvndOHh8MknUKBA9r8dEfFT8fEcqNdVbR0RyTbH10aw49wVae+gvBPwVCQXjzt7Fp58EoLvGkJel4pVIpL1VixN5M2Ko+FUlC6mRCTL2RNR7Op8H3naNiE+6iw/1X8Rm9f9KUhFRNJr66Q/2FK4GVcvfJ+d+a7GFZrnvzso58iljQMigJnGmJ7GmB7ATGA/MObCTsaYisaYBGPMS8keuwV4H/gFWGiMaZpsq52db0KyyJ49zhSjffpAyZKwahV8/DEUKnTxvu3aQUTERblm/ny46ir49FN49FH480+nWC4i4q7IWcvZV/JarvjpM9bnbkJibrV1RCTrJJ6PY9WNbxDWqDZXHN/A6vpD1a+TQ6lILh5jLUyf7tx4PPadU5yocLWKVSKSpSIj4fWev5O7dROeP3g/5+s2hfET0rVenoiI26zl8NsTOVmmJpXmj+G74g9xYME2uv/xKmaOe1OQioikx6l9p1h89UNcOaARpaIjWD7sG6qdXk/Q3J+Vc8Rt1tpzwHXADmAiMAnYA1xnrT2bbFcDBPPfvqIuSY93AVam2EZnefCSdeLj4Y03oE4dWLLEmR99zRpnqnU3nTwJd90FnTs7qWj5chg1CvLly7qwRSSwJB45zpZmd1KsZ0s4eZLv+v5IraiVBP+ito6IZI3tYxaxt+g1NJ35LOuKd+HQb1tp8scY9evkUCqSi0fs3u3ceNyrl6Vv8DSOFa9F/X9mY26+GfLm/e/OSjAikkkuF3zz4QlmX3EPz85qypX5DhIzYTIlN/6KGXy72+vliYi4K+aPLeyp3I7STw1iZ2JlfnhyLf0OvU+j9gWdHS4zBamISHpYl2XFg98RU7kmrf78mGVX3UvuPdtpMbo/Jsgo50i6WWv3WWt7WWsLWmsLWGtvtNZGpNgnwlprrLXDkz02OOmx1La22fw2xFOWLYP69eHZZ6FrV9i6FR55BEJC3D7F7NnO6PHx4+GZZ2D9emjWLOtCFpEA43Kx5/nPOXNFDaqv+pofKj5J3Pot3Pr9jeQNU1tHRDzv1I4j/F5zIDXubUdI3HkWPf4TLY9Op9p1FZwdlHdyJPdbvyKpiI2Ft96C//0PKgbtZ2ed+6m6+Se45hqYOwsaNnQWourWzZliXcUqEcmkPze4mN17AnfvepoiRHFi4CMU/3g4FCz4704XGjVDhji9Nso5IpJR586xa/AIKkx9l0IU4PPGY7hh+l00uiKVe00vTEEqIpIJu+du52T/+2ke9Rtbwq4l8tOfaDOo4cU7KueISHpFRsLTT8MXX0CFCvDTT05/TTpP8cgj8M03ULcuzJjhdP2IiLjr1JKNHO87jKpHVrIqdytOvTmaPo9dhTEpdlRbR0Q8wCYksvbuMVz51XNcY6P5peHzNJ35HG3Lhl28s/JOjqOR5JJhCxZAvXow/KVERtf8gC3Uouqe3+Dtt50pui5cJekOHBHxgDNn4N2BGzhXvyXP7boTV/UaBK3/g+Jfj/pvgfyCNNbLExFx17EvZnG0ZB2qTn2TnwoNYPPUbdy1eihlUiuQi4hk0vkT51nU6kWuuL4eVaPWsrjfJ9SIWk3t1ArkIiLpYS18/TXUrAkTJsBTT8GWLekqkFsLU6c6s7NPngwvvwxr16pALiLus6fPsLnzY+Rrcy0Fj/zNd53GU/voYjo/nkqBXETEA/ZMW8f2os1oNOF+duS/lh1T/6TLmtconFqBXHIkjSSXdDt0CB57zLko6l5uPb9XH0qhDWudKbpGj4ZKlS4+SHfgiEgGWQszvz5F5P0v8ci5jzmXpxhn3x5PqfsGQZAKVSLieXE7Ith748NU3zqLzaYO84cuoe9Hrcid29uRiUigWvPKz5R67QHaJuxhWeUBXDnjbdrUK+3tsEQkEGzbBsOGwaJFznzoY8Y4Q8DdZC3MmgWvveYUxevXh3nz4Oqrsy5kEQkw1rJ31DTyPvcIdeIOMKPUUKr9MJJbWxf1dmQiEqCiD57kzx4v0HjdaI6ZkiwYMol2Y28lOER35Mh/qbogbktIgI8+cm48njf9HMubP8nMQ40odGqfUzGfMyf1ArmISAbt2ml565pvaTK4JkPOfcSxm++h4MHt5H9gsArkIuJ5cXHsHvoGiTVrU3brAr6q8xb5d6xnwBgVyEUkaxxcvZ9VV/Si0fAbiA8KZf27C2m5eyIlVSAXkcw6fx5eesmZAnDDBhg71lmL3M0CeWIi/PCDs5rejTfCiRPOKVavVoFcRNx3buNOtlfpSsUn+nAksTg/PbeSHgfHcJUK5CKSFaxl/ROTOFe+Jo3WfcpvNe7HbNtGhy9vU4FcUqUKg7jl99+hcWN46CF4oOpcjpS8iuYr3sHccYdzV3K/fmheHBHxlNhYGP3AFvZf2Z6n/+yPqVAe18rfKT1tNBQp4u3wRCQAnZi+iAMlrqHKuGdZnLcLK7/Yyu2bnqRitVzeDk1EAlB8dDyLur1Dwaa1qHdwLos6/Y/ykRup/5iWiRGRdAoPdwYshIf/+9ivvzrF8BEjnP6a7dvh7rvdutE4IQEmToSrrnIOjY11Zmq/cIpcahqJiBvs+Rg23/IqwddcRZmIFUxu9j5lD6yl++tNNeZBRLLEwYXb+Ktke+q/O4DDucuzYczvdNz2ESWvLOzt0MSHabp1uaSoKHj2Wedu4bolj7C3+SNUWDEZatWCJUugVStvhygiAWbhrLPsHDyCu6NGEZu7ACdf/YzST9wFwcHeDk1EAlDiwSP8feOT1FwzkQgqMbHfT/T6shthWp5KRLLIn6OXkfexYbSN3cTvJbtRZsqHtG1d2dthiYg/Cg931hWPjnZ+fv01TJsG330H1avDggXQvr1bp4qLcw4fORJ273Zq7N9/D7166VJMRNLnwIRfsfffT53ov5lXuB/Fvx7FLd3LejssEQlQ8aeiWXvT61wb/jZhhDHvxtG0+3YoufOqASOXp/u2JFXWwldfQY0a8MU4F9+1/5wNMTWpsHY6vPIKrF+vArmIeNTBA5Z3W06nWs/aDI16i6OdBpL/n+0Ufvoe9cqIiOclJrLnqU85V6EmVdZM5ttKzxG/YTMDJ6tALiJZ4/jWYyy98g7q3d+KvAmnWf3sDBof+YnyKpCLSEYkL5CD87N3b5gyBYYPhz//dKtAHhMDn3wC1ao5I8WLFoUZM5wZ2vv21aWYiLgvZvdBNl3VjyuGdCL2vGXGsHm0PzaZa1UgF5EssumN2RwpUYdm4f9jeblbOLNmO51/HKYCubhNRXK5yObN0LYtDB4M7ctuJeqatvRbcDfmmqudi6yXXoLQUG+HKSIBIiEBJrywk80Vr+fx5b3IXaoIsb8t44p5X0KJEt4OT0T8XSpTkJ4K/4M9ZZpR+e37+Cu4Pr+N+pNbd79O9atVHRcRD0iRd1wJLpYMGkdQnZo0/Xsii5o8TZGDW2jyv57ejVNE/FfKAnlyISHQujXkyXPJU5w7B6NGQeXK8MADUL48zJ3rLLfXs6dbM7OLSE6V8horIYGt935AQrWaVNs8kyl1XyFs11/cOLoTIZrHVkQyK5V+neN/7GNdhZu46tnunCcvK14Pp93+rynfsJT34hS/pP9Nyf87dw5efdW5SCpRIIZ13UZSf95ITP788MUXMGSI1h0XkcwLD3fyyfjxrDZN2XDLG9x+5E0Sg3Nz7Pn3KT38fnQVJSIekWIKUtd3k9n24Xxq/Daa85RgUtdv6DH5NgoUVPtGRDwkRd7Z9/j7nHrvS1qfXcWGQq3J/9Vo2vas4+0oRcTfDR6ceoEcnKHhQ4ZARESqT58+7YwcHzUKjh+H666Db791Bkuoy0dELitFWyfq2bc4+e7n1Dq5gaVhnQn+9GP6DKrm7ShFJFCkyDmJ02ewZsx66v74CrWw/NLuDVpPf5TqhXN7O1LxU6pC5HRJxarld43ntnHt2LcP3ui6mMf/voeQ2duhf3/nyqlkSW9HKiKBIFnDJr5DV8q5itKEQ+xreSvlJ79Dvis0BZeIeEgqU5Canj2oCfxY+n5qTHmN/i0LezNCEQk0qeSd8iOGUpBCLLv7K1p8NhATpAqUiGTC0aPw2Wdw5kza+4SFwfjxFz0cFQUffOBsJ09C167wwgvQvHnWhSsiASaVtk7hFx8gkWJMv3UKN3zZi9A8auuIiIek1q/TpTNNsSwv3oOS331Ilw4VvRuj+D0VyXOy8HBc13cjKCaaa17sRo8K3/LCDbMoNedLZ76tX36Bzp29HaWIBIrwcGy3bpikhk0uVyxlOUzM6+9Q4bnHvRyciASUNKYgNUBirjzc9E0vglQgFxFPukTeKZQnjpa3lgcVyEUko/76C95/HyZNgthYuP56Z+j38OH/zTthYTB7NrRr9/8PHTvmjH345BOntn7jjfD889CwYTa/BxHxb5do6xTNE83NdxcDFchFxFPSyDlBWBJDQmn+/SOY61Qgl8zTCkM5UEICLH01nJgOToEcIB/RfLjvRkrNnQBPPw2bNqlALiIec3TyQuI7Xv//BfILDJY8r7/0nzVlREQy7RJTkIbExxB055DsjUdEAl5i/0Fp5h0Tc96Z+lhEJD1cLqfg3aED1KsH330Hd9wBW7fCnDnw5JPO82Fhzv4pCuSHDsFjjzlLeL75plNX37gRfvxRBXIRST9X/wFptnWC1NYREQ+zl+jXCU6IxdyhnCOeoSJ5DnLoEIwYAbeVCafBy93I47r4zj9y53aK4xcuskREMsjlgoUzz/DZNZ9R+NYu5EqMSX3H6GhdTImIR8Rs2c2m65/i7D8n094pjSlIRUTSy7osGz9awooKt2APHUx7R+UdEUmPs2edYd81a0L37rBtG7zxBvzzD4we7Tx+Qbt2TmG8YsX/L5Dv2wf33+9MEPjhh9C7N2zZApMnO7V2ERG3JSay/7M5bK50Axw6iE1rP7V1RMRDzu6NZFXvdzh2MD7tnZRzxIM03XqAsxaWLHGuo6ZPd0aRHw0dRD5SvwuHmBinWBURka1xikjgiIqC2SP/Injsp3Q/NZHrOMvxwlUpdm4/Jj7u4gPUsBGRzEhM5OCXv3Bq5Ghq7JlLTYL4rcCN5L2uGa3mv4Q5f+kpSEVE0uv0P6dZ/8Q3lJ0xmqtjN3PSFGZZg4epeUt9Sg+/97JTH4uIpGrfPvj4Yxg3zlk0vHFjZ/R4r16QK1fax7VrBxER7NoFI++Cr74CY5yJdZ5+GqpWza43ICKBIv7QcbY++SXFp31G+Zg9HKI0M+q+RJ0+dbjyjSH/nSVQbR0R8YA93//O0eGjuXrbZJoSy7p8rfin053UDx+lfh3JUiqSB6jTp+Gbb5zi+ObNcEXhc0zo8CM3np1IvuUH0j5QxSoRyaD1q2JZ+8xU6iz9lIGu5cSaUA607Efo68Mo3qoJLFp08VoyatiISAYlHD7O9qe/pOiUzyh7fg+G0kyr/SJlXx5Kpz5XYAwQ3uDfvKN8IyKZ9PePmzj04mjqb55IG86yNW8Dlg7+gmvfvoW2xZNm4mpYTnlHRNJn5UpnvfFp05zfe/WCRx6BZs0ue6jLBatWwaefwrffOrX0e+91ZmKvUCFLoxaRQGMtR2f/zsEXPqHmnz9Qj1hWhbbh99vepMXbN3Jz2aSbdVqWUFtHRDwi/lQ0G577ngITR1PzzFqKk59l1e+g+IvDaDCgblK/znXKOZKlVCQPMJs2OYXxiRMh+mwi91ZfyIxmE6n653TML+ecxaiefx6qVYP77lOxSkQyJSYGfv54N+dGjaHLoS+pz3GOFKzGgTvf4YrnB1OlWLF/d74wFaAaNiKSUdYSOfd3Djz3CVdu/IE6xLIydxuW9X2TFm/dSJ+KKUZZXcg7Q4Y4NwEq34hIOsWdjWPt8z8S9tVorjm1hPKEsrbqLRR5/j5q394IE2T+e4Dyjoi4Iz7eKYq//z6sXg2FCjkLiD/wwGWr24mJsGIFTJ3qnOLAAefS6tFH4fHHoUyZ7HkLIhIYXGej2fbyd4R+OZqqJ/8gL/n5teJdFHxqGC3vqUNwcIoD1NYRkUw6vPRvdj/1GbVWj6eRjWJHrtrM6/EJDUYNoEPVgv/dWTlHspiK5AEgLs6ZSn30aFi6FBrk+ovva0ykw5FJ5P77IBwtBLfdBgMHQosWEJS0FH2FCipWiUiG7P47kSVPz6Hc7E+5MX4eLoKIqNeDvMOHUapn+3/zTEpq2IhIBthz0ex45TtyfT6aKlF/kIsCzCt/F/keH0bb++vQ7FIt2qQpSEVE0uPg6v3seGIstVeMo7nrCHtDqrDohrep994QWlYvdumDlXdEBCA8/OLrnhMnnOnUP/7YWWO8enXn37ffDvnzp3mqxESnv+dCYfzwYQgNha5d4a23nK6dggXTPFxE5CKn1uxg15OfUXXpeGq7TrI1uA4/dhpN/XcG0L1ugUsfrLaOiKSTTUjkr5GzcX08mmuOzqcYIawsfTMhD91Hkydbc2WISftg5RzJQiqS+7H9+2HsWOf6yhw5xINFv2VqmYmUPLQRtoU4V0sD34fu3SFPnotPoGKViKRDYiKEf3eYgyM+p+2OsQxmP5F5yrL31peo9PrdVCt3hXsnUsNGRNx0Zp3TcVN58XhquE6yNagOU68bzdVvD6Bng8t03IiIpJMrwcWGUQuJe380jQ7NpDSWtSVvYO/993Htc52pGJLGTYAiIimFh/87KKFbN2dUw+rVzoLh0dHQvr0zR/r116d5g3FCAixe7BTGp0+Ho0chb17nkD59nJ8F1BwSkfRISGDnB3OIHfUJdQ7+Sl1CWFysF65776P1862olfcSRSoRkQw4/fcRNj/2BRV/GUO9hH0cNFcwr8Wr1Hj7Llo30/Q34n0qkvsZlwt++825vlow8xw32h/5ucRE6gctwJxwQePG8NxH0K8flChx+ROqWCUikPoohyTHjloWvLCIgpM+pVP0j+QigV1VOhD5zPsUG9ydYrlypXFSEZFLSCvvJCSw+6M5xLz7CbUP/EodQggv2ouEoffT9oWW1MqnjhsRyYBLtHVO7oli42NfUWHOpzSI38FxU5ylTZ+i2tv30LhlJe/EKyL+K3mBHJyfgwc7C4YPHOisN163bqqHxsc7h0+dCj/+CMePOxP/desGvXs7hfF8+bLtnYiIP7lEW+d8xBG2Pv45ZWePoVrcfv4x5ZjZcARVR95Fhw6lvRSwiPi9tPKOtez8ajknXhvNNbum0ox41hRsz/bb36fp693pXEBlSfEd+q/RV6VIMFFRMGECjBmdSPmdC7k7dCKTQ6YTGn8OwirCPc/BgAFQo4a3IxcRf5NylMPs2di27Vi74CTbn/uKhms/41a2cTqkCHu6PUTlN++lau3q3o5aRPxZKnknpkpttj3xOaVnjaFK3H7+oRzT64+g8ut30amrOm5EJBNSyTm0a8fWSX9w/NXRXLvjW9pwnj8LNGf5XS/R8I3etC0Y6u2oRcQfzZ7tVLNjYy9+LiTE6bdJUSCPi4OFC2HKFJgxw5mRPX9+Z1LA3r2hSxenUC4ikqbU2jpt2/LP98s5+sporto2lQbEszKsPesGfkDLN7vTs5jKAiKSCankndh6jdj45DcU/X401aL/4iSFWFz7Psq8ei+NetX0dsQiqdL/DX1RsgSTeH03RrWbzZSFxegTO5Glub+lBAexeQph+tzq3IXcsmXa6/+KiFxKKqMcEjpdz6q87WhwZhGNOM+eUk048NAErni0LwXz5vVquCISAFLJO4ntOxJs4RoSWZG3Pb8Pdjpubi6ppqqIZFJqOadTF/aGVKVWzFbOEcbamgMoNfw+6vW7xquhiogfcrngjz9g3jxnW7o07X3Pn3cGQ0REEBsLCxY4I8ZnzICTJ52p03v0cKZS79TJmVpdROSyUmnruDp14XBIOcrF7CY/hfi1+n2UeOFemg6sidHEXCKSWan263Qi0eaiMefZEnoNv/YdR8N3b6VjOU2BI75NPY8+xi4Mx97QjaAYJ8EEx0Tz+Nz2PInFhoRgOjvrjJu01hkXEXFXygZNkpCEGFqcmcu+q26gxGcjqNyivpcCFJGAk0beCbaJWBPCpicm0PSN23Xvn4h4Rlo5JyGOSgnb2NjqASpNHEHrioW9E5+I+KeDB2H+fKco/uuvEBnpPN6gAdx2G0yblupIchsWxoq7xjNmEMyaBadOQaFC0LOnUxjv2BFCNYmFiKRHGm2doIQ4SifsYUWzx6j89avcUE1FKhHxkDT7dRIINZat939Mzffvo3aw7sgR/6AiuZclJMCGDbBsGURNX8gzS28gLzH/2ScIC7lyYb7/Hm66yTuBikjAOHbUsnHKDpo90Zt8MdGp7mOAimc2gQrkIpJJNvo8/0z/naPTl1F31mvkToxJdb8Qm8BVP7wMb92ezRGKSKCJ2nWCv79aQb03+5MnLvW2ThCWq/f9BBU/yuboRMTvnD/vjBC/UBjftMl5vHRpuOEG6NwZOnSAkiWdx++666LO49jgMG62s/n5xXYUKQI33+xMpd6hA+TO7YX3JCJ+LfrvA+z+ehnV37qb0Eu0dZofnAbV3s3m6EQk0Nj4BPbO2sihKctoMPU5QhNTzzvBNpFaP70NH92fzRGKZJyK5Nns3DlYvdq5vlq2DDauOEeT6IV0ZS4vMpYQElM/MD4eHn1URXIRSRdrYc+2WLZNWse5X5dTdMsy6p1dQQeOO8/jFMQvEhYG48dnZ6giEiDij5xgz6QVnJq9lAIbl1LlxFrKE095ICKoEuXMP4TYhIsPVN4RkQz6Z/le9k5aRuLiZZTZtZTqsZtpDMQTjIsggnBdfJByjkjOFR7uTHs+fjy0a3fx89bCli3/TqG+ZAnExDjV7FatYNAgZz70evVIPm+xtRARARtOtuNkr9nc+m038iRGc44w+uebTdm+7filN1x3HeTKlX1vV0T8nLVELt+W1NZZStndy7gidg9XAefJQyJBBKutIyIeFH/yHDu/Xc2JmcvIt34Z1Y6vpJI9SyXgsClFCRNLsE2ljqW8I35IRfIsdvQoLF/uFMSXLoU/1lmqu7ZxPXMZkX8u18YsIRdxuMLyEXRNE1i7FuLiLj6REoyIuCExETYvPcHe71Y4HcW7l3N1/Bqq4Ez3dzCsGoev7capDi2ocGsLch8/6Cx8l3yKnLAwmD079Q4jEQl8l+s4TuHMlv3s+XopMQuWUnzbMqqc28SVQBy52BTakF+vepSQtq2o3L851ZsUxSxKZWou5R0RcZMrwcXOmZs5NGUpIauWUemfZZRL3E854BQF2VG8OYta3Urhbi2pMbAxuTauUs4RkX8lnyK0W7d/c0FkpLNI+Lx5zojxAwec/WvVgnvucUaLt24N+Zwpi2NjYcsGZ2bAC9vGjc4U6gBBQe1YXG42754YQsTL45nycDsVxkVyqnReX9m4ePbPWs/hC22dA8solnicYsBRSrC1eCs2tH6IIt1aUqf/NeT9c6naOiLyX+nMO2f3HGPnV8s5N28ZRTcvpdqZP6hFAi4M23LXY9WVtxPcpiUVbmtJldbl1K8jAcWtIrkxpjzwHtARZ9DhAuARa+0+N47NA4wABgCFgQ3A09baJRkL2XdZC7t2OQXxC0XxHTsgjHN0DlnIcyXm0rrAXIqeinAOKF8Luj4AXbsS1KqVs/hUams6KMFIDqS8k+QyjZroc5a/ZuziyPTlhKxeTpVDy6jn2ko9IJ4Q9ha7lu3X3E/h7i0p37c5ZcuUoux/zlDLyS8X8o7yjeRQyjlJ0uo4vsDl4ujirez/dimupcsot3spZeL3UQ84TQE2FWzO1ma3kK+zU5xqUCXvxa/Rrp3yjgjKO//vMm2dmJMx7Ph2LSdmLSPfH0upfnwFV9qTXAkcCirLnitasbNJS0r3bkm1m+rSKHfwf0+gnCMCKOcAF/e3REc7I8KrVnU6b6yFwoWdOdA7d3aeq1CBEyecAviGsf8WxLdscZbPA6duXq+esxz5Ndc421VXQVhYOyCCYt54ryI+QHmHy19fAQknz7Jr0iqnrbN+KdWOraIC0VQAdgdVZf0V3Yhv0pJSvVtRu2d12uRJMR+g2joigHLO/7tc3rGWY7/vIWLiUhIWLaP0zmVUjt3GNUAMoWzJ35jwhk+Rt2NLqg9qRu2ahamd8jWUdySQWGsvuQFhwN/AJuBGoCfwF7ALyOfG8ZOAk8DdQHtgOnAeuOZyx1prufbaa+1lLVxobcWKzs+slOJ14uOtXbfO2vfft7Z3b2tLl7bWuapy2SYFt9jPa79r91TrYBNz5XaeyJfP2h49rP30U2v37Ln064SFOceEhWX9+xLJAGCtdeM7nJHNm3nHrZxjbfbknVRywfFDcXbx26vtrLbv2oVFb7aHKHUh8dhTQYXsXxW62vV9X7eHv19k7blz6Xut7MijIpmQVXlHbZ1kr3Eh5yRtrrAwe/C5j+zKm9+y68p1tyeCiv7/c4cobReV7GN/7vKBXfXpH/Z0VEL6X095R3yY2jreaeucjIiyv78824Y3fcZuKNjSxpD7//POzty17OKad9ul93xt9y3ebV2JrvS9lnKO+Di1dSp6/jt6/ry1W7daO3Kktbn/zSf/2YKCrB082LpWrLS7/06w06db+9JLTvdNhQr/3bVsWWuvv97aZ5+19vvvrd2+3dqEdDaBRHxJIOYdn2nrpHJ9ZcPCbPSkaXbDy9PtiqaP2m0FGtp4gq0Fm0CQ/St3fTuv5oP216E/2B2LD9rExHS+nto64uMCMedYb7d1Ur5GKv06h14ZY1fc+qFdXamPPRxc5v+fi6SIXVGsm5133Rt21ajl9tTRmPS/nvKO+LjL5R13EszDQCJQLdljlYEE4LHLHHs1zpK3Q5I9FgJsB2Zd7rWtOwkmGwrKCQnWRk1faBPzOK8TmyvMPnHtQps//7/5pmb5s/bdtrPsptb32tiyFf99olYtax97zNpff7U2Jh1JRglGfFwWdxx7Le+43ajJwrzjclkbPec3m5gn738aNQkE2fPJOooPhFa2f9QZYP+871N7ctlfNn1XTyL+JwsvpnJ8WydxzlzrSpFzUm5/B19pf610p51363j75487bVxsOopTIn5IbZ2szTsxM+Ze1NZJxNjEpH/HEWL/zN/Uhjd8wq56doY9vu2Yx2MQ8TVq62Qg5yQkWLt3r7WLFln75ZfWvviitQMGWNuihVPRvkTbJvl2KLSiLVTo34eCgqytXdva226z9q23rJ0/39ojR9wPS8RfBGLe8Ym2zm+/WVfeS19fRZPHrsnfxv7S8Hm76Nlf7IGtpzwbg4gPCsScY7O6reOmxLm/XLZfZ19QBRterr+df/OnduOkv2zsefUlS+C7XN5xZ7r1HsAqa+3OCw9Ya/cYY5bj3JEz6jLHxgPfJzs2wRgzGXjGGBNqrY11I4bUpTZVVhpT11wQHe0sNeXOdvy48/Oak+HMphtBOK+TOz6aV//oRt22n1D3ihPUiphLnt+XwP44Z56t9u2h6zPQtStUrJix99auHUREZOxYEf8XMHnH5YKTB6M5ufsEZ/aeIHp/JDEHT5Bw9ASuY5GYqBMEnzpB6NlI8pw/Qf7YE5RIOEhRTpBiAi2CcUGQi72DXqLUi/dQtkrZFFOni0gGBUzOwVpiT5zj5K5ITu85TvS+SGIPHCf+cCSuY5EEnThO8KlI8pw5Tt7zkRSIPU6hhEjyEX3xuZKJL12Oqge3Uy1lYhKRjAqYvONKcHF6/ylO7Y7kTEQk5/cfJ/ZgJAlHI+F4JEFRkeQ6HUnouUjynY+kQHwkRROPkoe4i84VhCUxKBc7732Tsq/cQ93iYRl+GyLyH/6bc6x1Omb27IHdu52fSZvdvRv27cPEx///6awxRBcrz6kilYks04kjVStzILQyJiqKfuufIdR1/qIQognj9Wrj6d/m3+nS69RxZg4VkQzz37yTgk1I5My+KE7tjuRsxHGi/4kk7uBxEo9EYo9HEhx1nFynI8lz7jj5YiIpEBdJcdfRi/p0kostUpr47RE0LBGa4bchIv8RMDkHIO5kNFE7Izmz5zjnkvfrHD0OJyLJdfI4uc9GEhad1K+TGEl+e/aSYcSXuoJyh/ZSXv06Iv/hTpG8DjAzlcc3A33cOHaPtTZlz+tmIDdQLenf6Zfa2t0A0dHEd+zKzMavszl3fU6fgtOnne3UKYiLT/10AHnzQMGCUL4Q1CkIBStA7VLr6bH6eUIS/5sH89poBoUPcX6pXRsefNApirds6awtLiKZ4Xd5J7FDJzaV6cS5xFDyRJ8gX0wkBeNPUNieoCgxFE3jlDGEciqkGGdzFyU6bzHOFatO5UMRmDRyVbArgYrhX8H4VzL0FkQkVX6ZczZX6Ep0Qiih5yLJf/44BeIjKZJ4nFDiKAWUSuWUJyjCqZBinM5dnKi8ZTlUvB4JhYpR2Jyi/qaJBCdeXLQiLIxc337NJXt5RCS9/DPvlG7P+cTc5I2OJH9sJAXjIyliT1AYF4VTOV0iQUSZopzOVYyzocU4WagCRwvUp+i+6RCXSr4Bgl3xVJvzAXzyaIbegoikyu9yjqt9R04WqkDYuWPkif9vp29kUHEiTGV2ua5ll+3DHir//7bPViD+eG447uwbHAyFCjlLjS+rUpcPd3cjj+vf13PlCSPP7Nl81F5raIp4mN/lncQOndhSpj0xCbnIk1R4KhgfSWEbRUEsBVM5XRy5iDTFk9o6xTlVuDZxBYpRMOgs9f+eQrArlc6dsDBCp31LqArkIp7khzmnM5sqXk90YiihZyPJd/44BeIiKZwYSRjn0+zXiaIwp4KLcTq0OCfzluJI8TrEFypGYXP60v06301Uv45IKtwpkhcFolJ5/ARQJBPHXnj+IsaYocBQgAoVKqR+5iFDLk4uSXIlxtJ75RP0vkxwF4lJ2o6m45grroDNGcuRIpKmbM07buUcuGTeCXYlcNWBX9idpzbReYpyqkQ1jhcohqtIUUzRogSXLEZomaLkvaIo+SsWo2ClohSoWJQ8+cPIQ4pGT1oNKHCGM4wfn3aMIpIRftfWCXYlUCdiDhG5ruRsnmIcL1SFgwUakVi4OLZYMYJKFid36WLkuaIY+SoWp2DlYhSpUoSiBULSvGmH8P4X556wsEve3SwiGeaXbZ3aBxewK89VnMtbjCOF6vFPwWK4ihSD4sUIKVmM0LLFyFuuGAUqF6dQlWIULF+I4iFBFE95svBBauuIZC+/a+sE2UTynDzMV6F3c6RIZSILVeF0scpEl6xE7mIFKFzYKX4XKgQNC0H7Qv8Wwy88XqiQk1LM/3cIt4Pw2f/mn7AwgtTOEckqftnWqXVgAX/nqUt0nmIcKNmAiILFSCxSHFO8GCGlipG7bHHylitG/krFKVy1GIXL5adMiKFMaicMv0vXVyLZx+/aOsGueK7a8xN7c1XjbGhxThaowJECDUgoXAxbtDjBJYuRq3Qx8pQrTlj5YhSsUpwiVYtSpGBI2m9I/Toi6eZOkRycNRlScue+E5ORY621Y4GxAA0bNkzteKfjJI2OFRsainnjDWjQwI0QL+OPP+CZZyA2lRk1wsJg4sTMv4aIpCbb8o5bOQcumXcICyN49myqe6LB0a6d03hRo0YkO/lXWycp51T1ZD5ImXuUc0Symt+1dUJmz6aG2joi/sq/2jp5w8g7ezb3XOfhfHAh/wwZ4ry+8o1IVvKrto5NauvU8lRe0PWVSHbzr7ZOUr9OFfXriHiVO0XyKFK/W6YIqd9hk9wJILXbaIokez5jLtGxYjz5xW/dGq6+Wh04ItnL7/KOx/OBGjUi2cnvco5H2zqpvaY6jkWymt/lHbV1RPya3+WcLGvrXHjdiIisObeIXKC8k/z1dH0lktWUc1K+pvKOiFuC3NhnM866DCnVBra4cWxlY0xYKsfGATvdeP20XfjChyWdPqs6VrLrdUTkAuWd5K9VsaJyjkjWUs5J+ZoREco5IllLeSf5a6mtI5LVlHNEJLsp7yR/PV1fiWQ15ZyUr6m8I+IWd4rks4CmxpgqFx4wxlQCWiQ9d7ljcwF9kh0bAvQD5ltrU5nDPJ2yq2NFHTgi2Ul5J/lrqVEjktWUc0QkuynvJH8ttXVEsppyjohkN+UdEclOyjkikiHuTLc+DngAmGmMeQFnfYYRwH5gzIWdjDEVgV3Aq9baVwGstRuMMd8D7xtjcgF7gGFAZaC/x95Fdk2VpSm5RLKL8o6IZCflHBHJbso7IpKdlHNEJLsp74hIdlLOEZEMuexIcmvtOeA6YAcwEZiEkyius9aeTbarAYJTOecQYDzwGjAHKA90sdb+kenoRSQgKe+ISHZSzhGR7Ka8IyLZSTlHRLKb8o6IZCflHBHJKHdGkmOt3Qf0usw+EThJJuXj54HHkjYREbco74hIdlLOEZHsprwjItlJOUdEspvyjohkJ+UcEckId9YkFxERERERERERERERERERCQjGWuvtGC7JGHMM2OvGrsWB41kcjmSOPiP/4O7nVNFaWyKrg8lu6cg5oP+m/YE+I9+Xns8op+cd/ffsH/Q5+T61ddTWCST6jHyf2jpq6wQafU6+L0fnHbV1Ao4+I/+gayy1dQKJPiff57G2js8Xyd1ljFlrrW3o7TgkbfqM/IM+J/fpb+X79Bn5Pn1G7tPfyj/oc/J9+ozcp7+V79Nn5Pv0GblPfyv/oM/J9+kzcp/+Vr5Pn5F/0OfkHv2d/IM+J9/nyc9I062LiIiIiIiIiIiIiIiIiEiOoSK5iIiIiIiIiIiIiIiIiIjkGIFUJB/r7QDksvQZ+Qd9Tu7T38r36TPyffqM3Ke/lX/Q5+T79Bm5T38r36fPyPfpM3Kf/lb+QZ+T79Nn5D79rXyfPiP/oM/JPfo7+Qd9Tr7PY59RwKxJLiIiIiIiIiIiIiIiIiIicjmBNJJcRERERERERERERERERETkkny6SG6MKW+MmWqMOWWMOW2MmW6MqeDmsXmMMW8bYw4ZY84bY1YaY1pndcw5USY/J5vGdk0Wh52jGGPKGWM+SvoeRCf9jSu5eWyO+i4p7/g+5Rzfp5zjPuUc/6C84/uUd9ynvOP7lHP8g/KO+5R3fJ/yju9TznGfco7vU87xD8o77lPe8X3KO77PWznHZ4vkxpgwYCFQE7gdGAhUB8KNMfncOMUXwN3AS0A34BAwT//hepYHPieACUCzFNsOjwebs1UD+gJRwNJ0HptjvkvKO75POcdvKOe4QTnHPyjv+A3lHTco7/g+5Ry/orzjBuUd36e84zeUc9ygnOP7lHP8ivKOG5R3fJ/yjt/wTs6x1vrkBjwMJALVkj1WGUgAHrvMsVcDFhiS7LEQYDswy9vvLZC2zHxOSfta4DVvv49A34CgZP++K+nvXsmN43LUd0l5x/c35Rz/2JRz3P47Kef4waa84x+b8o7bfyflHR/flHP8Z1PecfvvpLzj45vyjn9syjlu/52Uc3x8U87xn015x+2/k/KOj2/KO/6xeSvn+OxIcqAHsMpau/PCA9baPcByoKcbx8YD3yc7NgGYDHQ2xoR6PtwcKzOfk2QTa60rg4fmtO+S8o7vU87xA8o5blPO8Q/KO35Aecdtyju+TznHTyjvuE15x/cp7/gB5Ry3Kef4PuUcP6G84zblHd+nvOMHvJVzfLlIXgfYlMrjm4Habhy7x1obncqxuXGG7YtnZOZzumCYMSY2aZ2BhcaYVp4LTzIpp32XlHd8n3JOYMtp3yPlHP+gvBPYctp3SXnH9ynnBL6c9l1S3vF9yjuBLad9j5RzfJ9yTuDLad8l5R3fp7wT2DL1PfLlInlRnLnnUzoBFMnEsReeF8/IzOcE8A1wH9ABGAoUAxYaY9p6KD7JnJz2XVLe8X3KOYEtp32PlHP8g/JOYMtp3yXlHd+nnBP4ctp3SXnH9ynvBLac9j1SzvF9yjmBL6d9l5R3fJ/yTmDL1PcoxOPheJZN5THjxnEmE8dK+mX4b22tHZjs16XGmJk4d/W8BrT0QGySOTnxu6S84/uUcwJXTvweKef4B+WdwJUTv0vKO75POSew5cTvkvKO71PeCVw58XuknOP7lHMCW078Linv+D7lncCVqe+RL48kjyL1Cn8RUr8rILkTlzj2wvPiGZn5nC5irT0DzAEaZTIu8Yyc9l1S3vF9yjmBLad9j5Rz/IPyTmDLad8l5R3fp5wT+HLad0l5x/cp7wS2nPY9Us7xfco5gS+nfZeUd3yf8k5gy9T3yJeL5Jtx5pJPqTawxY1jKxtjwlI5Ng7YmfnwJElmPqe0pHXnh2S/nPZdUt7xfco5gS2nfY+Uc/yD8k5gy2nfJeUd36ecE/hy2ndJecf3Ke8Etpz2PVLO8X3KOYEvp32XlHd8n/JOYMvU98iXi+SzgKbGmCoXHjDGVAJaJD13uWNzAX2SHRsC9APmW2tjPR5tzpWZz+kixpiCwA3Aak8FKJmS075Lyju+TzknsOW075Fyjn9Q3glsOe27pLzj+5RzAl9O+y4p7/g+5Z3AltO+R8o5vk85J/DltO+S8o7vU94JbJn7HllrfXID8uFU+P8CegI9gI3AbiB/sv0qAgnASymOn4wzVcJdQHtgKhADNPD2ewukLTOfE/AEMA64DWgL3J50njiglbffW6BtQO+k7VOcu5yGJf3eJq3PKOnxHPNdUt7x/U05x3825Ry3/kbKOX6wKe/4z6a849bfSHnHxzflHP/alHfc+hsp7/j4przjP5tyjlt/I+UcH9+Uc/xrU95x62+kvOPjm/KO/2zeyDlef9OX+YNUAKYBp4EzwAygUop9KiX9sYaneDwvMAo4nPTHWA209fZ7CsQto58T0B1YDhwH4oFInLs+Gnv7PQXilvT3T21blNZnlPR4jvouKe/4/qac4x+bco7bfyflHD/YlHf8Y1PecfvvpLzj45tyjv9syjtu/52Ud3x8U97xj005x+2/k3KOj2/KOf6zKe+4/XdS3vHxTXnHPzZv5ByTdAIREREREREREREREREREZGA58trkouIiIiIiIiIiIiIiIiIiHiUiuQiIiIiIiIiIiIiIiIiIpJjqEguIiIiIiIiIiIiIiIiIiI5horkIiIiIiIiIiIiIiIiIiKSY6hILiIiIiIiIiIiIiIiIiIiOYaK5CIiIiIiIiIiIiIiIiIikmOoSC4iIiIiIiIiIiIiIiIiIjmGiuQiIiIiIiIiIiIiIiIiIpJjqEguIiIiIiIiIiIiIiIiIiI5horkIiIiIiIiIiIiIiIiIiKSY6hILiIiIiIiIiIiIiIiIiIiOYaK5CIiIiIiIiIiIiIiIiIikmOoSC4iIiIiIiIiIiIiIiIiIjmGiuQiIiIiIiIiIiIiIiIiIpJjqEguIiIiIiIiIiIiIiIiIiI5horkIiIiIiIiIiIiIiIiIiKSY6hILiIiIiIiIiIiIiIiIiIiOYaK5CIiIiIiIiIiIiIiIiIikmOoSC4iIiIiIiIiIiIiIiIiIjmGiuQiIiIiIiIiIiIiIiIiIpJjqEguIiIiIiIiIiISIIwxbY0x1hgz3NuxiIiIiIj4KhXJJV2MMXOSLrQ2XWIfm7SdMcbkT2Ofq5LttyHFczWMMZ8bYzYYY44bY2KMMbuNMT8YY6718FsSER+WHTknlX1zJeWfy+4rIv7HGFMpWT64sLmMMUeMMauMMfcYY3KlOCbl/ueNMYeNMYuNMf8zxtRI47XapnJs8m1Dsn2rG2OeM8YsNcYcMsbEGWMijDFjjTEVs/jPIiJZxIdzTiljzCfGmN+NMUeNMbHGmH1Jba/rsvjPIiIiIj4sm/p/rzHGvGaMWW2MOZbU/7vDGPOuMaaYJ2JMEWfyLdIY84cx5snUYjfGtE6KY5Ex5nTSMe9fLiYRybhsyjuZqjtlVd4xxuQ3xgw0xkw1xuxMiuuEMeZXY0y3y8UlmRPi7QDEfxhjygCdAQvUMcY0stauSWP3BCA/0BuYkMrzQ5L2Se2/wbrAjcAKYBlwFqgMdAd6GWNus9Z+n/F3IiL+IBtzTkrPA9XSHbCI+JvtwOSkfwcBpXHaGp8BHYA+KfY/kvQcQG6gBNAIeBZ42hjzLvC0tdam8lqrgV9Sefxwsn+PAPoBG4HpwDmgMXA30NsY09JauyU9b1BEfIqv5ZzywABgFbAOiAKuAHoC1xtjnrTWvpOeNygiIiL+Lxv7Yj7Dud5ZDXybtF8b4DGc/t+m1trDqRyX3hjhv+0qAxQHugBvATcnXWslJtv/DuB2IBrYD6R6g6KIeIY/1J2yOO+0BL4GjgG/AVNwrs16AR2MMc9Za0de4rUkE1Qkl/S4HQgG3gUex2kwpJUItgCFcZLShORPGGNCcDpk5uIkoJR+Aqal7PAxxtTG6cB5B1CRXCTwZVfOSb5vPeA54AnggwxHLiL+YJu1dnjyB4wxhYG/cIrSVay1u5M9fTjl/knHNAO+AZ4E4nFutElpVWrHpvAL8Lq19q8U538S5yLqHeD6y5xDRHyXr+WcjUDRFB3CFzp/1gMjjDGfWWvPXuY8IiIiEliyqy/mG+BWa+2eZMcY4EPgAeAl4D4PxAiptKuMMbmBlUBTnOL8wmRPfwy8DWwDWgHhlzi3iGSeP9SdsjLvHAJuA6ZYaxOS7T8C+B141RjztbX2wCVeTzJI061LegwGTgEvADuAW4wxedLY1wJfAa2MMVVSPHcDUJLU7/TBWhub2oiIpNFTW4FyxpjQjLwBEfErg8mGnHNBUkNqArAW54JIRHIYa+1JnAsQcO7ydeeYlTh3E8cATxhjymfwtSekLJAnGYUzgqF1Rs4rIr7LyzknPmWBPOnxQzgjK/LgjF4QET9njGlkjFlgjDmbNHXnJGNMiVT2a2eM+TlpOtAYY8wWY8wzSddJyfcbnjRtaNtUznHRcybZ+ujuxiIiXjWY7On//Th5gTzpMQv8L+nXS13/pCfG1AO3Ng5YlPRr8RTPrbXWbk6trSQiWWIwvl93Sk+MqQeeRt6x1m601n6XvECe9PjfwA84g52bpee1xH0qkotbjDEtcKaWmWqtjcG5268wcPMlDpuQ9HNwiseHAMeB2emMoWpSDDuttbHpOVZE/IuXcs5zQG3gTmutK30Ri0ggMMYUwpnO+BzO1MhusdbuxLnbODdwk4fDsjhThSVcbkcR8S++mHOMswZoE+AMsNeT5xYRr2gELMa54e4znFxzGzAracQmAMaYB3Cm92wIzAQ+wckDI3E6Z7MtFhHxHl/o/wXikn6mev2TwRhTO08unJGcFtiQzhhFxEN8Ie9cru7k5bwTn/RTfUJZRNOti7uGJP2cmPTzG+CVpMe/Te0Aa+1uY8wSYJAx5mVrrTXGlMSZKvRTa23cpa6Dkqa56AvkAirgrI9ngWEeeD8i4tuyNecYY+riTFc6wlq71YPvQ0R8V01jzPCkfwfh3G3cHSgADLXWnkrn+RbjTL/VMJXnmiZ7reQ+S2udvWRuAgoCU9MZj4j4Fp/MOcaYssBQnKkDywI9cDp87kjqABIR/3Y90NtaOw3AGBME/ApchzPV50pjTB3gPZyZLTpfyEdJheuPgPuNMb2ttZlti1w2lkyeX0QyL9v7f1MxOOnnr56KESidrG1kgGJAJ6A88LS1dkd6AhQRj/KHupNX8o4xJj9OIT4GWHq5/SVjVCSXyzLG5MNJGvuAJQDW2j3GmBXAdcaYCtbafWkcPh7nzp7rcO5KHoCTfMa78dK1gZeT/X4UGGitXZCR9yEi/iG7c06yada3AW965l2IiB+owX/bGRd8TVLuSadDST9TmzK5SdKW0gwgzSJ5UvHqI5wLopcyEJOI+A5fzTllU8R1Fhhirf0mAzGJiO9ZfKEoDWCtdRljvsa5XmqIU5i+B6d/8IHkN+wkdTg/h7Mm8C1k/oY9d2IRES/xYv9v8hiuAoYDx3DWBPdUjKVIvR32EzAnPTGKiOf4Q93Jy3nnY6AM8Iq1NtLNYySdNN26uKM3zgiHSSnWbJiI89/Q4EscOxWno+XCPkOADdbaDZd7UWvtVGutwVkP7yqcaTLmGmMeTWf8IuJfsjvnPANcjTPNevwl9hORwDLTWmuS2hpBOIWioTg5aEXSlMPpcanhER9ceK0U24Y0T2ZMQZyLp9LAvZrlQsTv+WTOSVpz0+BM3V4dZ4rlr40x76UzHhHxTetTeexA0s/CST+b4Iye6pG0bvj/b8BjwHmgZjbFIiLe45X+3wuMMVfg9P3mBvpba496MMaNydtEODP69MPJf8uNMVe6G6eIeJQ/1J28kneMMS/gzBz2K/Da5d6TZJyK5OKOC9NJpBxN8APOOjGD01o/ylp7Lmm/m40x1+EknQnpeXFrbay1drO19k7gZ+BtNV5EAlq25ZykXPIiMMpauzaTcYuIn7KOQ9baccA7ONNf3Z/O05RJ+nkss/Ek3an8M9AAeNha+1VmzykivsPXck5STPHW2p3W2mdwCuWPGGPae+LcIuJVqS3lcGFNy+Ckn0Vxbrx5EWfEU8otDMiXTbGIiPd4rf/XGFMKZyToFcAt1trLTbWe7hhTxHvMWvsDzqCJwkk/RST7+UPdKdvzjjHmEWAEzhTrN1prtR55FlKRXC7JGFMVaJ3062ZjjL2wASdw7u6rDLS9xGnG41xUfQ3EA5MyEdKvOBdPLTJxDhHxUV7IObWTzvlk8tdKej2Aq5N+j8jwmxIRf7Mm6WeDdB7XJulnpm64McaE4VyctQCesNZ+lJnziYjP82rOScOFjunWl9xLRALFaSARyJPGLBTGWls52f6upJ+pFbYLZnm0IuJx3uz/TVpHeCFQDWcE+Y9ZGGNKGW2HiUgm+UPdyRt5xxjzAPAezjI011tro9PzJiT9tCa5XM5gnDuKw4HdqTxfHOiJc0dNeGonsNYuM8b8jTN934/W2uOZiKds0k/dPSMSmAaTvTknAvgijefuxGnw/AhkJm+JiH8pkvTT7ZtJjTHVcNaoisNZ8zdDkgrks3Euwp6z1r6b0XOJiN/wWs65BF1zieQsv+N01DYClrmx/8mkn1ek8lx9D8UkItlrMF7o/zXGlMAZQV4TGJQ0yjLLYkxFutthIuIxg/H9ulOmY0xFmnnHGHMf8BFOIb2Ltfasm+eUTFCRXNJkjAnCWfcgEedOvkOp7JMbOAj0MsY8YK09ncbp+gKVgD/deN1mwDprbVyKx+sB9+J0Bi1Mx1sRET/gjZyTtE7NXWnEcyew31qb6vMiEniScsy9Sb8udfOYpjh3K+cBXrfW7s/ga+cBZgHtgJettSMzch4R8R9ezjnXAtuSpilM/nh54NmkX+dl5Nwi4ndGA3cDnxhjuqS8DkuaBrmotXZr0kPrkn4OMMZ8Y611Je13I+kbSSUiPsCL/b/FgAVAHeAOa22aI0A9HGPycz6Q9Ktb7TAR8Qx/qDtld94xxgwFPgb+ADpd7lziOSqSy6V0wFkfb05qSQDAWhtnjJkEPAT0A8alsd8GYIObrzsSqGWMWQrsxbmrpgbQGefOnQettQfcfxsi4ie8lXNEJGeqaYwZnvRvA5TCaWtUAv4CPk2xf+lk++cCSuCMuLoGZ9rRt3HW8syoz4D2wD4gKNlrJff+/7F353E21X8cx1/fmbGNQiGtSIuiVda02LcUJdJPhcrWYklJkYpKJSlrtmyViixl34YkKtEmbTK2IlljbDPz/f3xvcO4ZsYd7twz9877+Xicx+Wcc8/93Ml8Ouf7+S7W2t2n8Rki4p3slnMeBxobYxbjnrmOAKWABkAe4HVr7dencX0RCRPW2h+NMY/jGmZ/M8bMws24dRZuZNZNuHyTUiT/EjfCqTbwhTHmS995tXFLxjQI6RcQkdPlVVvMJ8A1uMJWybSef6y1KftON8Zz/a5fBLd0zVXAFuDl1NcyxtzEsQEV5/pe6xhjxvr+/IW1dtRJv6GIpCcc6k4hyzu+NdXf8f11GdA5jWXOF1trFwf4PSUTVCSXjLT2vY49yXljcIngQdJJVpk0GJdUbgDq4/6d/g18CAyy1q4IwmeISPbjVc4RkZypNPB8qr8fANYBfXDFIf9prYqlOv8QbqrRX3EPWWOttb+dZjwlfa/F/eJKbSzHpjgVkfCS3XLOe7g19yrhOujkAbYDs4Hh1to5p3l9EQkj1tphxpjvgCdwy77ciVt6Kh6Xpz5Ida41xjQE3sK12VyLm7K9Gq5AriK5SHjxqi2mpO/1Gt+Wlhd8r6cbY+r7KnD3VhuAt4FXrLX/+F3nUtwI0tSu9G0pVCQXOXXhUHcKZd4pjivSg+vMnJ7FJ4lFToGx1nodg4iIiIiIiIiIiIiIiIiISEicsDi8iIiIiIiIiIiIiIiIiIhIpFKRXEREREREREREREREREREcgwVyUVEREREREREREREREREJMdQkVxERERERERERERERERERHIMFclFRERERERERERERERERCTHUJFcRERERERERERERERERERyDBXJ5bQYYy42xhwyxjzqt7+VMcYaY6p5E9nROMYaY6zfvihjzM/GmE+8iktETo1yjoiEmvKOiISSco6IhJryjoiEknKOiISa8o5kREVyOV19gX+AUV4HEihrbTLQB7jLGFPF63hEJFOUc0Qk1JR3RCSUlHNEJNSUd0QklJRzRCTUlHckXSqSyykzxpQFmgGDrLWHvI4nkz4CNgPPex2IiARGOUdEQk15R0RCSTlHREJNeUdEQkk5R0RCTXlHTkZFcjkd7QALfOB1IJnl64kzEahjjCnpcTgiEhjlHBEJNeUdEQkl5RwRCTXlHREJJeUcEQk15R3JkIrk2ZAxpppvLYQXjDE3GWM+N8bsM8b8bYx5zRgT7TvvAWPMD8aYA8aYdcaYB/2uc7kxpp8x5jtjzC5jzEFjzBpjTE9jTC6/cx/wfeZHacTTw3fsjVT7ooH7gK+stZsz+f0KGGNeMsb84otphzFmmjHm2jTOjfdtZxtj3jHG/GWMSfL9jFL/nG4xxiwyxuw1xqwPMJRPAAPcn5n4RSKNcs5x5yrniISA8s5x5yrviGQx5ZzjzlXOEQkB5Z3jzlXeEcliyjnHnaucIxICyjvHnau8E8ZUJM/eKgHzcOsljAB2A92AV4wxTwBvAd8Co4GCwGhjzK2p3n8X0Br4zXfOSCAJt5bBpNQfZK0dj5u+oZkxplXKfmNMBeAF4HugR6q3XAucBazIzBcyxhTxvacH8BcwBPgMqAl8adJeXyEPsAi4BZcUhgN7Ux2vCiwAEoBhwOwAw1kNHAJqZOY7iEQw5RxHOUckdJR3HOUdkdBQznGUc0RCR3nHUd4RCQ3lHEc5RyR0lHcc5Z0wFeN1AJKhekBDa+1MAGPMc8AfwOPATuB6a+0G37ExwEqgK7DE9/4JwJvW2sMpFzTGGFyyetgYc5O19otUn9ceuBEYaIz5HNgGvA8kAi381mxISQSrMvmdBgFXAv+z1k5MFddLuGQ5Arja7z3n+r5bE7/vUs33x1q++DI1ZYa19rAx5iegkjEmyjd9BcaYQkDnTFxqt7X2rcx8tkg2pZzjKOeIhI7yjqO8IxIayjmOco5I6CjvOMo7IqGhnOMo54iEjvKOo7wTrqy12rLZBlTDrZOwMI1jo3zHnkvj2B/AhgCuX853jRfS+ewk4EvgXd95j6VxXl/fsdrpfEYr3/FqqfYV8V17RjrvecP3nqtS7Yv37Subwc/pmwy+61j3zzzd47N81yiaal9J375At3iv/81o03Y6m3KOco42baHelHeUd7RpC+WmnKOco01bqDflHeUdbdpCuSnnKOdo0xbqTXlHeSdSNo0kz96+T2Pf1pMcq5TyF2NMFPAQ7pe9LFAAt35BivP8L2CtXWyM6Qc8jetpM8daOziNzyrse92V8Vc4TgXcFP9nGGNeSOP4lb7XK4CfUu0/YK1dk8F1V2YiBn8p8RcBtgNYa+M5/uckklMo5zjKOSKho7zjKO+IhIZyjqOcIxI6yjuO8o5IaCjnOMo5IqGjvOMo74QpFcmzt71p7Es8ybHU/00HAY8AG4ApuAR0GCgEdMKtk5CWabgEA269hbQc8L3mS+d4Ws72vd7q29KT3+/v209y3X8yEYO/lPgTTuMaIpFCOcdRzhEJHeUdR3lHJDSUcxzlHJHQUd5xlHdEQkM5x1HOEQkd5R1HeSdMqUgeoYwxxYAOuN46Vay1B1Idq4RLMGm9LxY3vcNBIBl42xizxFr7n9+pKb/0ZxO4lKT4srW2ZybeZ0/zeEbO8r0eTWJaz0Ek85RzAqacIxIkyjsBU94RCQLlnIAp54gEifJOwJR3RIJAOSdgyjkiQaK8EzDlnSykInnkuhg33cKC1MnFp2oG7xsAlMYloIPAcFxvnlZ+5/3oe70sEzF9g0sGlTPxnqx2OfCntTZ1L5xCwPOZuMYG4K0gxiQSjpRzAqOcIxI8yjuBUd4RCQ7lnMAo54gEj/JOYJR3RIJDOScwyjkiwaO8ExjlnSwU5XUAkmU2+l6rGGOOrk1gjLkceCatNxhj7gDaAvOAQdbaEcCnQEtjTFO/07/AJYuKgQZkrd0KTAZqGmM6pPH5UcaYjKawCCpjzPnA+cCS1PuttfHWWpOJrWSoYhbJxpRzTkI5RyTolHdOQnlHJKiUc05COUck6JR3TkJ5RySolHNOQjlHJOiUd05CeSfraSR5hLLW/mWMmQrcCXxjjInD/TLdAcwFmqQ+3xhzLjAa2AG0stamTP/wEK7HzXBjzHJr7Wbf9XcYY5YB1YwxMdbaRALTAbgCGGqMeRj4GtgHFAeqAOcAeU/1e2dSLd/r9BB9nkjEUs4JiHKOSBAp7wREeUckSJRzAqKcIxJEyjsBUd4RCRLlnIAo54gEkfJOQJR3sphGkke2lsDbQFHgceA6oAfwVOqTfL10xgJFgLbW2r9Tjllr/wVa46ZvGG+MSf1vZoTv2nUCDchauwOXSHrg/v09gEs65YBlwP8C/3qnrQXwNzAzhJ8pEsmUczKmnCMSfMo7GVPeEQku5ZyMKeeIBJ/yTsaUd0SCSzknY8o5IsGnvJMx5Z0sZo51thDJHGNMXuB34Btr7V1+x1oBY4Dq1trFoY/uaBxjgZbWWuO3vwSwDnjBWvuSF7GJSOYo54hIqCnviEgoKeeISKgp74hIKCnniEioKe/IyWgkuZwya+1BoBfQ2BhztdfxZNKzwHZggNeBiEhglHNEJNSUd0QklJRzRCTUlHdEJJSUc0Qk1JR35GS0JrmcrnHAucB5uHUfsj3fdBvxwAPW2v0ehyMimaOcIyKhprwjIqGknCMioaa8IyKhpJwjIqGmvCPpUpFcTou1Nhno63UcmRGOMYuIE46/v+EYs4gcE46/w+EYs4g44fj7G44xi8gx4fg7HI4xi4gTjr+/4RiziBwTjr/D4RhzuFKRXLLKd8CLuN4uXpqWDWIQkaz3Hco5IhJa36G8IyKh8x3KOSISWt+hvCMiofMdyjkiElrfobyT4xlrrdcxiIiIiIiIiIiIiIiIiIiIhESU1wGIiIiIiIiIiIiIiIiIiIiEiorkIiIiIiIiIiIiIiIiIiKSY6hI7hFjTBVjzFxjzB5jzD5jzFJjzG2ZvEYhY8xAY8wmY8whY8w6Y0xvY0zedM6PNsZ0McasMcYcNMZsNcaMNcZckMFnNDTGfOGLcY8v5ioBxtfNGGN923V+x3IZY5oYY8YbY34xxiT4rv+FMeaBdK5X2RgzwRf/LmPMAWPMb8aYd40xl6dx/mXGmGd9P9u/jTGHjTHxxpgRxpgS6XxGfKqY/bfBaZw/NoPzfwrk5yQSKso7mc87mf0OxpgXMsgJKdtzfu8xxpimxpjPfdfeZ4xZa4x50xhzXhqfcbLrJwXysxLJjkKdpzJ7b+F7Tz5jzIu+PHLIGLPDGDPNGHNNgPGlm6dO5Tv4zs/SPCUSqcIh5/jel6l7I2PMA8aYFcaY/caY/4wxy4wxd6VzbgtfDvsz1fV/8OW5swL8/lt8uWNaGseLGWOGGGO+Nsb84/sZbTTGzDTG1DjZ9UXCVajzi+/8U3n2ijbGdPDljL2+nLHGGDMkg/fU8f0O/+v7nPXGmA+NMRelc/7lvjhSvsffxpg5xpjqfuctDuAe5eZU52cqvxhjqgVw/YXpfW+RcOTBvc7NxrVlrE51r/OTMeZ5Y0xsBp+RqVxkjLnSGPOJcc9iCcaYb03G7TqZzafFjTGjjDGbjWtP3mSMGWqMKZLO+af1jCgSSbJ73jEhqBmlel+g90CnlDv9rjHTF8/uQM6XY7QmuQeMMbWA2UACMNH32gy4AGhtrR0bwDXOBJYBVwNzgO+BikB1YAFQz1qb5PeesUBL4Eff518ENAW2ARWttX/5nd8KGOM7/hEQAzQHCgD1rbULMoivNPAdkATkB6631n6X6vgVwFpgL7AQ+A0oDNwFnA2MsNa287vmk0AXYAWwGTgIXAE0ABKBOtbapanO/xC4x/ezWQbs9/2MbgV2ATdZa3/2+4x4oBDwVhpf62tr7Sy/88fifqZvA7v9zv/HWjs0jeuIhJzyzqnlncx+B2NMNaBaOiF2BgoCla21X6V6z1tAJ1xe+xT336YicAuwFShnrf071fkvpHP964BGwBxrbf10zhHJtrzIU6dwb5EXWAxUAlb7/lwUuNt3Sk1r7ZcZxJdhnjqV7+B7z1iyME+JRKJwyDm+97QiE/dGxpi3gY7AFuAz3+47gPOBJ6y1A/zO/xS4FPgW+BvI7fsOVYB4XA7ZnsHPYCwuB+YHpltrG/sdL4+771oB/Il7DrsAd89SEHjKWvtGetcXCUdh9OyVD5gO1ObYfU0SUAq41Vp7QjHIGPMS0AOXw2bifqfPx91btLDWfuF3fkNgMnAE96yzAfcMVh6YYq19OdW5rYCSafw4CuGel3YD51lrD/rOz1R+McaUBFqlcX2AxsC1QHdr7WvpnCMSVjy619mK+x1fissrMUBdoLTv7zdba/f7fUamcpEx5mpfTLlx90bbcL/3lwMvWGtfPM3vcBnwJVDE9/NbA1wF1APWAVVS3xud7jOiSCQJh7wTipqR7z2ZuQfKdO70+6xWwGjgMHDIWlsovXMlDdZabSHcgFzAeuAAcHWq/UWATcAe4OwArvMSYIE+fvuH+fY/5Le/lm//IiBXqv33+PZP8Du/sC+WbcD5qfZfiisw/Zn6On7vjcLdTHwDTPBd/zq/cy4A2gP5/PYX9f18LO4hLvWxvOl8XnXf+Uv99rdK/TNOtf8p3/mz0jgWD8Rn4r/nWN+1Snr9b0ubtvQ25Z2j55xK3snUd8jgZ1fGd/4av/3nAsm4gv0Zfsde9b3n+QA/42Pf+U29/jenTVtmNw/zVGbvLVLuISYC0an234B78Fmber/fe0+ap07xO2RpntKmLRK3MMo5mbo3Air4rvMrUCjV/rOBP4BDwMUBxvRiWt/N75z6vnM6+l6npfOzPiEvAufhOgMewO8eSJu2cN48zC+Zvh8ABvuOdU3jWEwa++72nT8ZyHOy9+AK3v8BvwAXBPIZ6fwsHvF97pA0ftannV+AaOAvXGel87z+N6RNWzA2D3NRN6CY374YYJrv/G5pfEZmc9EXuHaU2qn25cN1+EsESp/md5jp2/+I3/6U+52RfvtP+RlRm7ZI2sIl7xCamlFJMnEPdCq5M9V55+OK+2/64tzt9b+FcNs8DyCnbbheZyf8D9V3rJPvWLuTXMPgbuD3ALF+x4rgeows99v/oe/aVdO43ipcg0mBVPva+87vkcb5A3zH6qYT35O+GK7mWBH5ukz8jJ7xvefJTLxnJ/B3gOdG43oI7UvjWGYTXsr3K+n1vy1t2tLblHcC+hmlmXcy+x0yuP4bpPHQB1T27R+Vxntu9h0bHMD1z8aNRvsXyO31vzlt2jK7eZWnTnK9E+4tcA0yFrgyjfM/8R2rmc71TpqnQpFrM/i+aeYpbdoicQujnJOpeyOONSh1SOP8xzlJ0dvv/Gt8509M53hBXGPXh7hGIEsaRfKTfMYU3/tKZ+Z92rRl582r/JLZ+wHcKPNEIC4T3+0XX0wnva/wnT/CF9Otp/kzXem7zg2ZeE/A+QVo6Dv3M6///WjTFqwtu93r4GaoscAMv/2ZykW4GXgsMD+NY418x/qe6ncA8uIK23/jm4E31bEoYDtuZOwZqfaf8jOiNm2RtIVL3sng/GDWjIJ1D3TS74CbPWwdEIuK5Ke0aU3y0LvV9zo/jWNz/c5Jz+W4nrHLrLUJqQ9Ya//FPQBV9Fuj4VZgH24aKn/zcFPUVD7dOI1bS6838Kq19seTfI/0HPG9JgZysnHr8Z0FBLoGuPVdO73r5zHGtPStTdEhwPVjbjPGdDdu/a8axpjoAGMRCQXlnZNLL+9k9jucwBgTA9zn+4wJfof/8O2/OY01Zhr4XhdlGLlzH5AHeN9aeziA80WyG6/yVJoyuLco5nuNT+NtKfuqpXG9QPNUKHLtCU6Sp0QiUbjknMzGeUo5Kh0p6wam94w1ADdqq2OA1zuOMaYwblrS/3BTD4pEinB59roL1xj8iTGmgDHmfmPMM762kHP8L2CMuRY35ed8YL8xJqUN5BHfslb+5xvcyPN/rbVLjDEVjDFdjTFPGGNuOcn3T32dq3GjMX+w1n4b4Hsym18e9L2+G2hcImEgW93rkH6bS6ZyERl/rwW4Eeapv1dmv0Nh3OjNjdZXfUp1fjKwEXf/UynVoWDef4mEs3DJO+kJSs0oWPdAPhl+B2PMA7jOfm39f14SuBivA8iBLvO9/pHGsXW4X8ZLT+MaAL/j/mddCvjZGHMGbkrfH63fmlWpzsf3ufMC+IzU5x9ljInCrZe3HjeKIdN8xeUWvr+mufawMeZGoA6uIHQpcDvwD26EViDuxK3hNzmd4+fiRnil/sxZwP3W2p3pvGew399/NcbcY639PsCYRLKS8k4G0ss7p/gd0tIQ99A01Vr7T+oD1tp/jTG9gL7AWmPMZ7heyeWBG4GXrbVTAvgarX2vatiRcBXyPJX6QCbuLf71HS+BG02VWknf6+V+185MngpFrk1LunlKJEKFS87J7L3Rv77XEmmcX9L3enkaxzDG/M937EygHK4xdyUwMI1z6+HuPe631v7jW+c3Q8aY84G2uIbw83HrpBcCHrS+9YVFIkS4PHvd4Hs9C7dEw7mpzt9vjGlnrX0/1b6U83filo+pmOqYNcYMBLqkKipd7Lv2N8aYEUCb1AEZYxYDd1lrd6XzHVM85Hsdnd4Jp5NfjDFFcfdB/wAzThKLSDjx9F4nDS19r/7Fs8zmonRjstbuN8b8xfHfK7PfYRduPfTixhiTulDue64r7vvr5cBC358z/YwoEqHCJe+kJ1g1o2DdA0EG38EYcx5ujfTR1tqF/sclcBpJHnoFfK97/Q9Ya4/g1mwoeKrX8Nufcp3Mnn+y96R1PkBnXM/kh05jJGMv4DpgnLU2vVELNwLPA91xvXI2Aw0CKUj7Hp4G4aYl7pXGKe/iGoSK4n4GlYHZuBGdU9M4fwnQBDc9UD7gSlxyuhSYb4wplsZ7REJNeSdj6eWdU/kOaclwZIK19lXcTU8R4FHcGjjVgcW4dcYzZIwph4v/W3XMkTDmRZ5KLdB7izm+1+d8jSQAGGOuxxW5wDXKptaZwPNUKHJtWjSCSnKacMk5mb03SslRnY0xR/cbYwpxbMR3oXTi/Z8vpidwz0PzgNustf+lPskYUwA3feBsa+176VwrLef7rt8Tl3PyAq2ttZq9QiJNuDx7pYzQfB7XIeYKXH5ojhu1NNYYc10a5z/ou84tuE41N+IaqTvh1g73P7+c75r3+a5/OW4q9Gq4XJIuY0xuXGfmw8D7GZx6OvnlftwaqhN8/31EIoXX9zpHGWNqAR1wRXD/Di+ZzUWBxBRoO1Pq/QUBfCMxl+KKYW39zn0E124Dx99PncozokgkCpe8k9b5wawZnfY9UIDf4R1fvIEOHJV0qEgeesb3ajM8K7jXOJXPNCc/JdXJxlyGGx01yFqb1vRegVzjfuA54Afcmnlpsta+Ya01wBlABWANsMwYc89Jrl8At0bDuUB7a+3aNK7d21q7xFr7r7X2P2vtV7hexV8AtxhjavqdP8ZaO8Vau9lae9Ba+4u1tgvwGi5pPhb4T0AkyyjvpH+NjPLOaf/cjDHnAvVx61nNTuec54FRwAvAhbibrTq4nofLfEXwjKi4JZHAizx1VCbuLQbgRgf8D9cruL8xZjywjGOjBo6O4DqFPBWKXHv8BQLIUyIRKFxyTqbujay1S4APcFMi/2SMGWKMGYqbMv2A77S0RplirW3oi6kIbqr1C4BvjTFl/U59E9fI0y6Tsa30XT83boTIEGC8MWZAZq4jEgbC5dkrpT1wG9DMWvurtXaPtfYj4GnczJOPp3F+FHCPtXaptXaftXY50BQ3xfETaZwfDfS01r7vu/7vwL24KYibGGOKk747cDlpurV2R3onnWZ+0YxcEqk8vdc5egG3ZMLHuOUgmqUxu0Nmc1Eo8uMTuHWJ3zHGzDTG9DPGzMTNrpMysCL1/VSmnhFFIli45B3/84NdMzrte6CTfQdjzH24+6RHrLW7M/p+cnIqkofeHt/rCb1djDG5cKOR9/gfC/QaPgX8zsvs+an/XIATpXX+SNwNTY90PiNDxpi7cVOR/gLU9h+xkBZr7X5r7UrcSO61wAhjzFnpXD8/MAvXg6eTtXZcoLH51pwZ4/tr1QDfltK7J9DzRbKS8k4aAsg7p/Id/D2Ae6gbn9bUh75egS/gCmj9rLVbfDdb83Ejy84AXszgO+TBPYgdxDWKi4QrL/LUCU52b2Gt3Yv7f/sgXKPt48DNuEJ4ylTq21NdMrN5KhS51l+GeUokQoVFziHz90bgfqe7+vY/hCtezfF9Bhyfo9KKaYe1dhZQD5fn3kk5Zoyp5rtmd2vtpoyuk8H1j1hr/7DWdscVsjr7d0QWCXPh9uy1wFp7wO/8lGnHb0jj/E3+s174GpPXAaV8M1f4f9Znfucfxk0banBtNOnJVGfgzOYXY0xF4CrgK2vtyaZsFQk3nt/rGGNK437XcwH1rbU/ZPAZmc1FGcWUVq4L+DtYa1fjpnP+xPfaEbdG8t1AnO+07anOz+wzokikCpe8k/r8rKgZndY90Mm+gzHmbOBtYJK1dlqg8Ur6VCQPvTTX1fW5BPcLkt6aC4FcA1zP2WTgTwBr7T5gK3Cxb+3dtM7H73Mz+oy0zr8Ot87KPmOMTdk4tm7Cat++av4XM8bcCUz0xVvTZnItTGttIu4mpYAvDv/rx+KSXVXgSWvtoMxc3ydlfb/YLDpfJCsp7/gJJO+c4nfwd7KRCfV9r4vT+PwfcWv+XZ/B9e/ErXMzRT0HJcyFPE9lJKN7C2vtTmttR2ttCWttbmvtxdbaV3BTAwJ8m+r068hcngpFrvWnEVSSE4VLzsnsvRHW2iRr7ZvW2qustXmttUWttQ/jGnfh+ByVUUybcYX7yr5GLVLFNsQvp6337W/k27c4kM/g2Np6twR4vkg4CJdnr998r2k1Mqfsyxfg+Wm9Zx3HRk4G+hlH+aY9rYNbjmJeWuecRCD5JaUIf9JpWEXCkKf3OsaYy3H3Nmfilm9Zns41MpuL0o3JV+w6n8DbmSCd72CtXWOtvdtaW8Ram8daW85aOwXXsQb87qcy+YwoEqnCJe+knJ9VNaNTvgcK8DsUB84GmqZ+JvM9l5UACqb6uwRARfLQW+J7rZ3Gsbq+189Pco3fcFNiVjXGHPfLZIwpguuF8o3fNAxLcCMSK6dxvTq4NZ5W+J2fmTjH4x4s/LeUxDbV9/e//eK9A/gI2AhUt9YedzwTzve9JvpdPxbX8/AW4Flrbf9TvH5F32t8Fp0vkpWUd46PNzN5J7PfIfXn3Ih7IPrCWvtbWucAeXyvRfwP+EaJFwAOZRCfplqXSOFVnspImvcWafGtPXeP79xPUh3KbJ4KRa5Nfc1A8pRIJAqXnBOMOFP8z/f6UYDnp8RkOdbI8xNp57SUa27w/X1mJq4PAeRZkTASLs9eKaMhr0zj/JR9G1LtW46bvaqU7zkldUy5cI3fCfhGS/piS/m8QD8jtVa4aUrH+kZqZVaG+cX3c22OizkzeVEkXHh2r2OMuRRYhFue5XZrbUafk9lclNH3qoWrdaT+vKDdrxljLsKNEF97stGpvvPTe0YUiVThkneytGZ0qvdAmfgOO0j7mWw0bnr2w6n+LoGw1moL4YabJmE97kb8qlT7i+AKNnuAwqn2F8c1Xsb6XedlXINFH7/9Q337H/bbX9u3fxGQK9X+e3z73/M7v7Avlm3A+an2XwrsxfXWyRXA9x3ru/51aRy7DVf8iQeKB3Ctm4CoNPbXwv3y7wDyptqfF1jg+/xeAVz/cqBIGvtv9P33SvD7WRQGrkjj/PNx6wpaoLHX/+a0aVPeOe5YZvNOpr6D33tH+c5pncE5//Od8yNwpt+xl3zH3k3nvRfhGq3XA8brf2fatJ3O5mGeytS9he9YAb+/RwGv+67/VoDfN6M8laW51u+9J81T2rRF4hYuOYdTuDfyz1G+fY1xDbQrgZhU+88Erk/jfAM85/sOMwP4eZb0nTstjWM3APnT2H8RrmHIAhW9/jehTVuwNg/zS2afvaKBX3Gjsar7xT/D9562fu9JuW94wW//M779H/jtv8+3fx6QO9X+qrjnmA2pc5Lfe3/zxVYqg5/1KeeXVLGN8/rfjDZtWbF5mItKAZtwnWrqBBDnqeSiZb7za6falw83WjsRKH2a3yGff27C3TPF+c6/M43vcdrPiNq0hfsWRnknS2tGvmOZugfK7HfIINZ4YLfX/xbCbTO+H56EkDGmNm4qhwTcdL8JQDPgAlwj5dhU5y4GbsXdKCxOtf9M4EvcNC+zge9x66RUBxYCda3fupLGmLG46T1/9L3nQt/n/oN7cNjid35r3OjEbbietdHAvbiRjfWttQsC+K4pn3m9tfa7VPuvAL7DjaIcz7Ep+lL7zqZaV8EYE+/74wpcYs0HXI37+RwBmlprp6fx2Rs5tj6Ev7esb4piY0xn4FXcz289LimVwa3Hl4xLwGNTXf86YDXuv8Na3PQaJYCGuB7co62b2lDEc8o7p5Z3TuU7+N6TH9fz0QDnWmv3pxNrDG6q9aq4KRI/A/4Dqvi27b7PiE/jvb1w65W/YK1Nd91ykXDhRZ7K7L2F7z17cQ3Qf+ByVG2gLDAX1zkukFEIY0kjT53Kd/C7XtDzlEikCqOck6l7I2PMPNy9zg/AfqA8UBPXEFPdWrs+1bklcfdDq3D5429cYf4m3AiHv4BbrbUZTouY6jrTrbWN/Y6NxRXpF/tiOIJrBGrgi/N1a+3TGV1fJNyE0bPXjb5rReNGOf6NyxfX4BqP61u3HETK+UVxI8ov8b3vO1wOqwNsASql/gxjjMHNmtMIN5BgPlAUt66vwY2SOmEqdWPMLbjRaIuttdVP+AEf/30bcwr5xRizCPezrGatXZLWOSLhzsN7nRK40aJxaYS121r7ll+cmc1FV+MK5bmBD3E5rhGukPWitfYFv+tn9jvc5ItjHm7Jh8LAHUAxoLe19nn/LxWMZ0SRSBAOeSera0a+92TqHuhUcmdafNcpZK0tdLJzJRWvq/Q5dcP1NJmHGwGwH/c/94ZpnLcY1+ukWhrHzgIG4f6HfQg3kqAPfiOeUp0fDTyBK+gewt1EjAMuzCDOhr7Y9vtinQdUycT3HEsaI6WAar79GW1j/d7TFteLcCMuGR3ETVc6AiiTwc8uo61kqvMrAh/gejDuxY3m2IxL6BXSuP45wDu4QvkO3APZDlzSa+b1vzFt2vw35Z3M553T+A4tfdcbHUC8+YAeuJu+BF/uWQ8MT+8zcDdUKWvclPD635Y2bcHaQp2nyOS9he897/juFfbjprL6CugARGfie6aZp07lO/jOz9I8pU1bpG7hkHN87wv43gh4BDdifI/v+r8CfXGNJf7n5gd6A0txnfWO4DrrrfJ9h7MD/DmWJP2R5LWACbhRof/h7nO24BqN6nn9b0CbtqzaQp1ffOefyv3ANb7fx52+9/wC9CTVqCe/84sAQ3wxpfw+DwfOS+f8XEA34GdfTtoFfAqUzyCmMb6fyf0n+RmfUn7x5axkXDFLM3Jpi+gt1LmIk7e5xKcTZ2ZzURlgiu/8A7h7l5YZ/Bwy8x2KA5NwozoP4dp6Z5PB6E6C8IyoTVukbNk975DFNaNU7wv4HuhUc2ca14lHI8kzvWkkuYiIiIiIiIiIiIiIiIiI5BhRXgcgIiIiIiIiIiIiIiIiIiISKiqSi4iIiIiIiIiIiIiIiIhIjqEiuYiIiIiIiIiIiIiIiIiI5BgqkouIiIiIiIiIiIiIiIiISI4R43UAJ1OkSBFbsmRJr8MQET/ffvvtv9baol7HEWzKOSLZl/KOiISSco6IhJryjoiEWiTmHeUckewrEnMOKO+IZGcnyzvZvkhesmRJVq5c6XUYIuLHGLPB6xiygnKOSPalvCMioaScIyKhprwjIqEWiXlHOUck+4rEnAPKOyLZ2cnyjqZbFxERERERERERERERERGRHENFchERERERERERERERERERyTFUJBeRY+LioGRJ9yoiktWUc0Qk1JR3RCSUlHNERERERESyLRXJRcSJi4OGDWHDBveqhhwRyUrKOSISaso7IhJKyjkiIiIiIiLZmorkInKsASchwf09IUENOSKSdZRzRCTUlHdEJJSUc0TEK5rBQkRERCRgKpKL5HT+DTgp1JAjIllBOUdEQk15R0RCSTlHRLwSF0dSfc1gISKhk5wM77wDBw96HYmI5BQrVsDy5cG7norkIjld69YnNuCkSEhwx0VEgkU5R0RCTXlHREJJOUdEvBAXh72tIdGHNIOFiITOiBHQoQNMn+51JCKSExw8CC1bwv33Q2JicK6pIrlITjdmDMTGpn0sNtYdFxEJFuUcEQk15R0RCSXlHBEJNd8MFuaAZrAQkdD56y94+mmoUQOaNfM6GhHJCfr2hd9+g6FDISYmONdUkVwkp6tenXVNup24PzYWZsyA6tVDH5OIRK7q1bHTp5PsfwuinCMiWaV6dXjmmRP3K++ISFaoXh0+/RSidK8jIiGiGSxExAOdOsGhQ266dWO8jkZEIt3PP7si+Us146jTtmTQOgGqSC6Swx3YuoczPhhOfMwl2Hy+EQ9qwBGRLPTNhF+IIpmk6Nxuh3KOiGSlPXtg2DAoVerY6E7lHRHJSr/+6hbpzK17HRHJeokjx3DAaAYLEQmdzz6DyZPhuefgss1xULKkZq0QkSyTnAzt2kH9vHE8+2VD2LAhaLPlqEguksN93+AZiiRtY/vADzEzZ0CJEmrAEZEss/OHzZSZ8AwrCtaBObOVc0Qk63XrBlu3wkcfuXyjvCMiWWnTJjf3aJ06MFv3OiKS9d5cXZ3x9r4TD6iDjohkgX374NFHoWxZ6FbBLfcQzIKViIi/UaMg5os4Jh9KtbxMkJaVCdKs7SISjtZN+JKKq99h/pWdqNuhvNsZH+9pTCIS2dbf/jhX2iQKTRxGdK1SyjkikrXi4mDECHjqKSivex0RyWLWQocObqjD8OFuVJVyjohkofXrYVyvdayKGg9VqsLq1a7RWAVyEckizz3n+gT+ODCOXHc2PLbcQ0rBSrlHRIJo61b47Ik4Zkc1JNdhv+VlgpB3NJJcJIdKPngY2rXlr6gLuWFWH6/DEZEc4IfeU7lh4zSWVH+BK+qX8jocEYl0CQnQpg1ceim88ILX0YhITjBxIsycCa+8AiVLYi0sWOBq5yIiwWYtdGhvGZTYnlyxuTRrjohkuZUrYeBAGHBHHFd1T1UgTxGkkZ0iIik6d4bB+1uTNzkh7RMSEqB161O+vorkIjnU183e4JIDa/i90xCKlDzD63BEJMId2LaXc3o/xs+5r6XatC5ehyMiOcELL8C6dTBy5LG1yEVEssr27dCpE1SqBI89BrhpAWvXdrOui4gE28SJcM68CdRIWkDUa6/CBRe4wnh8vArkIhJ0iYmuD3KxYtBxdesTC+QpTrNgJSKSYtYs1wdwSasx6bfrxMbCmDGn/BkqkovkQFuX/s51n/Xm83Puplr/270OR0RygO9ve5Zzkv5mX/8R5CuQy+twRCTSrVwJ/ftD27ZQrdrR3bNmwY8/eheWiESwzp1hzx4YPRqio9m0Cbp2dSmoXj2vgxORSLNzJ/TpuJ2BMU9gq9wI7dt7HZKIRLi334bvvoNBgyBq3BiISWcl39MsWImIAOzbB488AmXKQPPh1eGuu048KQjLy6hILpLTWMs/TdpzkLwUnzYQY7wOSEQi3br3V1Dx26EsuOJxKj5W0etwRCTSHT4MDz4I554Lr79+dPdff0GLFq6OJSISVDNnwgcfQI8eULYs1ro+OklJrmYepZYXEQmyp56Cnju7UIC9mFEjlWhEJEvFx0OvXnD77b461dlnQ3IyREcff2IQClYiIgDPPw8bNsDw4ZD71x/hww+hTp1jI8qDlG90ByWSw6zqPJ5rti9iReNXKVnlPK/DEZEIl3zoCLRtw99RF3DD7Je8DkdEcoLXX3fDxd95BwoWBNyane3awaFDbreISNDs3QsdOkDZsvDMMwCMGwdz5kDfvlCqlMfxiUjEWbwYNr87lxb2faKefcYNsRIRySLWulsdY2DwYDBJifDQQ1C0KHzySdALViIiq1bBW2+5jsc3VUmChx+Gs85yHZNnzIASJYKWb9KZE0NEItF/f26n5OCurI69kZoftvU6HBHJAb5u3p/KCT8R12ka1Uue6XU4IhLp1q6FPn2geXM3zMFnwgT3/DRgAFx2mYfxiUjkeeYZ2LwZli+H3Ln56y/o0gVuuuno0uQiIkFz8CB0brOfz2Lak1yqNFHPPut1SCIS4T76yHX+e+stKF4ceOMt+PZb+PhjaNTIPWi1bu2mWFeBXEROU2IitGkD55wDr72G653z9dcwcSIULuzyTHx80D4voJHkxpiLjDGTjTF7jDF7jTFTjDHFA/0QY8yVxphJxph/jTEHjDG/GmM6nXrYInIq1jboyhnJe4keNYJcebL3RBLKOyLhb9uX67h22ossLXoX1QY08jocEYl0SUluRMMZZ7gF83z++gs6dXIFq44dPYxPRCLPF1/A0KEuyVSqhLVuWeCDB+Hdd7PX7Md6vhKJDH37wn1/PM9FifFEjRoJefJ4HVK6lHdEwt+uXe42p3x5X+e/devcvOuNGsHdd7uTUgpWHhfIlXNEIsOgQW4k+dtvQ6Hd8W5Jq9tug3vuyZLPO+lIcmNMLLAIOAS0BCzwEhBnjLnGWrv/JO8v73v/YuBhYA9wGXDGaUUuIpnyy+AFVPx1AnPK96DevWW9DidDyjsiEcBatt3Znnzk4sIpAzHG64BEJOINHepGck6Y4Locw9F1gQ8dyn4FKxEJcwcPumn/SpaEl9ySMhMnwmefwRtvZK9ZK/R8JRIZ1q6FOa98y3IzANq0hZtv9jqkdCnviESGp5+GHTvcSPLoKN/DVa5cMGQI2amhRzlHJDJs2ADPPedq4k3vttCgvcs1Q4dmWc4JZLr1NkApoLS19g8AY8wPwO9AO+DN9N5ojIkCxgELrbV3pjoUd8oRi0imHdl7gNiu7fkz+jJunNnT63ACobwjEuZWd32P6/9ZwJzbh1Dvpgu8DkdEIl18vJvyuH59aNHi6O7x42HmTE2zLiJZoE8f+PVXmDcP8udn2zZ4/HGoVAk6d/Y6uBPo+UokzCUnQ4c2iYywbbDnFPPNP5qtKe+IhLmlS2HkSHjySbj+emD0u7BoEQwfDhdku3Ye5RyRMGctPPqoex0yBMzED2DuXDe0vHjAk0JkWiBjKe4AVqQkFxesXQ8sA042d2o1oAwZJCERyXorG/eh+OF1/NXrHQqck9frcAKhvCMSxvbF/0vxt5/g+3yVqfFxe6/DEZFIZy20a+d6Fb/zztHexVu2aJp1Ecki330Hr78OrVpB7dqAa9DZt8/NWhEd7Wl0adHzlUiYGz0ayi97i2uTVhM9ZBAUKuR1SCejvCMSxg4dcoPGS5SAF14A/v4bunaFW291M+lkP8o5ImFu8mQ3yKFPHygRu9016FSuDB06ZOnnBlIkLwv8lMb+NbjkkZGbfK95jTErjDFHjDH/GGMGGmPyZSZQETk1m2b/SPm4fiws3oqbetXwOpxAKe+IhLGfGzxJgeTdMGIEufNqbmMRyWLjx7uRnK++erR3cco064cPw5gxmmZdRIIoMREeeggKF4b+/QGYNAk++cQ1Ipc52dOKN/R8JRLGtm6FwV3/5KWoXthGjeCuu7wOKRDKOyJh7NVX4ZdfYNgwyJ8ftyD5oUNuaHn2fLhSzhEJY7t3u8EN5cr5Bjk88QTs3QujRmV5D+RAMtrZwK409u8EzjrJe8/3vX4EzANqA6/j1nX4IL03GWPaGmNWGmNWbt++PYAQRSQtNjGJffe2YY8pxJUz3vA6nMwIad5RzhEJnl+GLqLi2nEsKvcU1953tdfhiEik27YNunSBqlWP6108fjzMmgV9+8Kll3oYn4hEngEDYNUqGDwYzj6b7dvdKPIbboCnnvI6uHSpXUckjHXuZOm/rz258sVgBg/OVusAZ0DtOiJh6pdf4JVXoHlzt5oVU6a47YUXsvMaVrrXEQlj3bvDP/+4fjgxC+bAe++5JfXKls3yzw5kTXIAm8a+QO7IUorw71lre/n+vNgYEw28aowpY639+YQPs3YEMAKgfPnyaX22iARg5cPvUGHPV8x7YAJ1ri7sdTiZFbK8o5wjEhyJ/x0gtks71kdfQuWZz3kdjojkBI8/DgkJbg5S34iGlGnWb77ZHc6ujDEXAQNwjTAGWAB0ttZuDPD9VwK9gepAfmAjMNRa+3bWRCwi/PEH9OoFjRtDkyaAG+mwezcsXAgxgbaweEPtOiJhaNYsyPXxe9RiPrw2GC680OuQMkPtOiJhJjnZrWQVGwtvvQXs2uV6A15/vZtuPXvTvY5IGPriCxg+3A0eL3f5PrirPVxxBTz7bEg+P5CR5LtwPXH8nUXavXNS2+F7ne+3f57v9boAPl9ETsGun7Zwxfhn+KpAbWqObuF1OJmlvCMShr6582WKH/6DzT2HU/BczUglIlls6lQ3x/Hzz0Pp0sDx06y/+252nQkQjDGxwCLgCqAlcD9wGRBnjMkfwPvLA18BeXAjHBoA/YHstxKySKSwFtq0gTx5YMgQMIZp0+DDD6FnT7g6e0+go+crkTC0fz/0aPcvA6O7kFy5SpavyRlkyjsiYWjMGPj8c+jXD4oVw02Ts32765ScvXsDKueIhKHDh13HnOLF4cUXgeeegw0b3DTrefKEJIZAMtsa3JoO/soAJ/SgSeO9cGIvnpQePMkBfL6InIJ1DTtS1h6h4AfDiI4Ji6m4UlPeEQkzm+f8RPmFr7Howgeo/nxNr8PJNI3oFAkzu3bBI4/AddfBk08e3T1unBtx9fbb2X6a9TZAKaC0tfYPAGPMD8DvQDvgzfTeaIyJAsYBC621d6Y6FJd14YoIo0bB4sVuDsDzz2fnTlevuvZaNxNgNqfnK5Ew9Pzz0GXzExSM2UvUqGy7DnB6lHdEwsy2ba4mfsst8OCDwKJFrjj+9NNuJHn2ppwjEoZefx1+/hlmzoQz1nzlGnMeecQtqRcigdxdfQpUNsaUStlhjCkJVPUdy8hs4BBQz29/Xd/rysDCFJHM+PGl6ZTfMIUltz7PFbdd4nU4p0J5RySM2KRk9tzbjr0UpPSM/mGyRN4xGtEpEoZSj2jIlQtw06x37uwadR57zNvwAnAHsCKlQA5grV0PLAManeS91XCNPekW0kUkyLZscR1yqleHhx4CoEsX+PdfN+LKl4ayMz1fiYSZVavgpzfn8QATiOr+dEjW5Awy5R2RMNOli5vBYvhwiDqY4GbQuewy12Mn+1POEQkzv/0GL70EzZpBg1qHXc45/3zo2zekcQRSJB8JxAPTjTGNjDF3ANOBTcDwlJOMMSWMMYnGmJR1G7DW7gD6Au2NMa8YY2oZY7oDvYBxqRuFRCQ4Dv6zl6IvPsovua/m1k+z/Vox6VHeEQkjK9uOoOzuL/m2xZtccG0Rr8M5FSkjOhtba6dZa6fjClglcCM60+U3ovMO3/vjrLUjrLUqYIlkhYULXXH8ySehXDng2CzI2X2a9VTKAj+lsX8NrgCekZt8r3mNMSuMMUeMMf8YYwYaY7TWhUiwWevW4jxyBEaMAGOYORPGj4fu3cNhYBWg5yuRsJKYCB0f2s/wqPYkXVYaevTwOqRTobwjEkbmzIGJE93sOFdcgSuM//mnm0EnX1g8YijniIQRa6F9e8ib1w0ep18/+PFHGDoUChQIaSwnnW7dWrvfGFMDNwXpBNw0EwtxU5DuS3WqwY2Y8m+S6g38BzwCPAn8DfQD+px29CJygtUNe1Ip8S82vP0J+Qpk/yENaVHeEQkfu9b8RekxT/N1gZrUHHu/1+GcqjRHdBpjUkZ0ZlTsroYraLXP0ghFxNm/3y067jeiYexYmD3bPVxdEh6T6JxN2mvj7cStm5eR832vHwGDge5Aedz9z0XAnf5vMMa0BdoCFC9e/NQiFsmpJk+G6dNdw82ll7Jnj1s3r2xZtxZ5ONDzlUh4GTwYGn33AiVYD6OWuBbkMKO8IxI+9u93S8iULu1bQmblSnjzTffcdeutXocXEOUckfAybhzExbmZK87d/Qv07u2GlN9xR8hjCWRNcnzrcTY5yTnxHFunIfV+i2tc1mgqkSz254dfU+mbwSwo/Sh1OlbyOpzTorwjEh7WNexEWXuYM997h+iYMJtn/ZiyuB7G/tYATU/y3uNGdAI34ApfHwJPW2sPBC1KEYFevdyIhiVLjo5o2Lw5rKZZT81/zTtI474mDSkNOu9Za1NGQCw2xkQDrxpjylhrj1t3z1o7AhgBUL58+bQ+V0TSsmOHSyw33OASDdC1K/z9N0ydCnnyeBteZuj5SiQ8bNwIk55Zxee8iX24DeaWW7wO6ZQp74iEhxdfhPh494iVJ+qIW1rm3HPdYsFhRDlHJDxs3+6eqapWhYcfTIYabSF/fhg40JN4sv9EhCISkORDR0h6qA1bzfmUm/Wy1+GISA7wU9/PKB8/mSU3P8eVt1/qdTinI1gjOucBtYHXcWuTf5Dem4wxbY0xK40xK7dv3575iEVyoq++grfecsMcfA3GKdOsJyaGzTTrKXbhco+/s0g7H6W2w/c632//PN/rdacelogcp2tX2LnTLfEQE8O8ecdWe6hQwevgRCTSWAuPtU9k8KE22KLnYPqFV4FKRMLPd9+5QeMPP+x7xOrXD374wU15XLCg1+GJSAR64gn47z+3klXU6JGwdCn07w/FinkST0AjyUUk+/v63gFUTviBRY9PpUap0K7bICI5z8Ht/3F2r0f5NddV3PLpk16HEwwhG9EJGtUpkmmHD7sRDeefD6++enT3mDFu/byBA8NmmvUUa3CzWPgrA5yQM9J4L5yYt1JyVvJpxCUiKebNc/MA9ugB117Lf/+5TjmlS7sRVyIiwTZ5Mlw2+22uZxUM+RgKFfI6JBGJYElJ7t6mcGHfoPFff3VTHjdtCo0aeR2eiESg+fPhvffgueegTMEt0K0b1KgBrVp5FlP4jLUQkXT9s+JPrpn6Al8UaUz1txt7HY6I5ACrb3+OcxM3s+u1EcQWyu11OKdLIzpFsru+fWHNGnjnHSjgOgNu2gRdurhl8h591OP4Mu9ToLIxplTKDmNMSaCq71hGZgOHgHp+++v6XlcGKUaRnGvfPrcOZ+nSRxcef/ppl3fefTcslwcWkWxu927o98h6XorqRXLD2+Huu70OSUQi3JAhbvnxt96Cswomu+HksbEwaJDXoYlIBEpIgPbt4fLL4dlnrGvIOXzYDSk33i3hqZHkIuHOWv5q3IFSxHDBlEFe5hMRySHWf/wNFb8axMLLOlC7SxWvwwkGjegUyc7WrIGXX4b//Q9uuw0I62nWU4wEHgOmG2N64nJIH2ATMDzlJGNMCWAd0Nta2xvAWrvDGNMXeM4YsxdYBJQHegHjrLV/hPSbiESinj3dwsBLl0LevMTFwbBhrmPOjTd6HZyIRKLuT1v6/NuB3LFRRA0d4mljsYhEvk2b3GQ59epB8+bAO8Phiy/cVF0eTXksIpGtd2/480+Ii4O8s6bA9OluGguPpwUMv+YkETnO6qc+4Lpt81je8BUuvvlCr8MRkQiXfDiRIw+25R9TjOtmveJ1OMGiEZ0i2VVSkptmvWBBN8TB5913Ye5ceO01KFUq/bdnV9ba/UAN4DdgAvA+sB6oYa3dl+pUA0Rz4nNbb6Ab0AyYBXQA+gFtsjZykRxg+XK3hsMjj0DVquzf7wZWXXopvPSS18GJSCRatgz+G/EBdZlL9Gt94aKLvA5JRCKYtfDYY+5Ra+hQMFs2uylzateGli29Dk9EItAPP8Abb0Dr1lDt2l0uCV1/veuF7DGNJBcJY/s27OCiAV34Pl8lqn/cwetwRCQH+LrFW1Te/x0LO0ym5qUFvQ4nWDSiUyS7GjQIvvoK3n8fihYF3KiHJ56AatVcDStcWWs3Ak1Ock48x2amSL3fAm/6NhEJlkOHXEX8wgvdMg/As8+6EQ9LlrgZSEVEgunwYej24L98GtWZpBsqE91BbTsikrWmToVPP4V+/eDikhbu6OAq5sOHaxYLEQm6pCS3ktXZZ7u8Q7dusH07zJwJMd6XqL2PQERO2ZoGT1EueReb3xlB7nzRXocjIhFu+9fruWZyL5YVvoMag+/yOpygsdbuN8bUAAbgRnQaYCHQORMjOv8DHgGeBP7Gjejsk8Whi0S2P/90cwDedhvcey9wbJr1pCQYPTosp1kXkeysb1/4+WfXYHPmmXzxheur8+ijcMstXgcnIpHo9deh7W9dOSt6N1GjR0C02nZEJOvs2eMGcF53HXTuDHz0EcyYAW++CRdf7HF0IhKJhg1zYx/eew8K/7gYRo1yhfJy5bwODVCRXCRs/fpOHJV+HsPc65+m7gPXeB2OiEQ6a9nS6BEuIZrzPhmMiYqs3sUa0SmSzVgL7dq5huJhw46OaBg92k2zPnhweE6zLiLZ2E8/wSuvQIsW0KABCQnw4INQogS8+qrXwYlIJPrtN1jeez49GQ/de8DVV3sdkohEuGefhW3b3FLAMXt2QMeOULGiexURCbLNm13eqVMH/nfnAbiurVuD/PnnvQ7tKBXJRcJQ4r6D5O3cjvjoUlSe2cvrcEQkB1j99Idcv3UOcxq8Tb1btUaeiGSxsWNhwQJXIPety7lx47Fp1jUTqYgEVVISPPQQFCwIb70FQK9e8PvvLhWdcYa34YlI5LEWOrVJYGhSexJLXU5Mz55ehyQiEW75cvd41bEjVKgAPNAFdu2ChQs1i4WIZInHH4fERN/Yh5f6uAeshQuz1TpWKpKLhKFv7nyFKod+Z+lz8yh5XvZJKCISmfZt3MmF/TvzY94K1Jj8qNfhiEik+/tvVw2/5Ra3cBXHpllPTtY06yKSBQYOhK+/hg8+gCJFWLECBgxwKahmTa+DE5FING4cVPv8RS7mT3h3MeTN63VIIhLBjhxx9zUXXAB9+gBz5sCECdCzp2axEJEsMW2a2159FUr9971bY6Z1a6hRw+vQjqMiuUiY2TL/Z25Y8CpxF9xHtRdrex2OiOQAa27rxg3JO9g8dC6586l3sYhksccegwMHYOTIo9Xw0aNh3jxNsy4iWWD9etdAfNtt0Lw5Bw+6adYvuAD69fM6OBGJRNu3w9hOq1lAf+xDD2NuvdXrkEQkwr3xhltZ5tNP4Uyzzy1tdcUV7h5IRCTI9u51TTvXXANPdEyEWx6GwoVdMspmVCQXCSM2KZndzdqSjzO5fMabKctziohkmd9GLqHST6OZd+1T1Gl9ndfhiEik++QTmDLFdTW+/HJA06yLSBay1g2rio72zQFo6N0b1q51A6wKFPA6QBGJRE92TqT/f22gcBFMv9e9DkdEItwff8CLL0KTJnD77UCnHrBpEyxdCnnyeB2eiESgHj3gr79c806uYQNh5Ur46CM4+2yvQzuBJioUCSMr242k7O5lrLy3PxdcV9TrcEQkwiXuP0Tux9uxIfpiKs583utwRCSSxcW5tcfbtIFy5aBrV8DVrx5+2E2z/u67mmZdRIIkLg5KloSnn3aLjr/2Glx0Ed9+e2wWwLp1vQ5SRCLR/Plw9geDuMF+S8zQgXDWWV6HJCIRzFpo397VwgcOxC1MPmgQPPIIVK3qdXgiEoG++gqGDHEjySsW+dPNWHH77dC0qdehpUkjyUXCQVwcyfc9wJV/7eKbM6tTc3xLryMSkUgWFwetW/Nr0Vspe+hXPn92DrdckN/rqEQkUsXFQcOGkJDg/v7aaxDjHlNGjXKNyUOGwMUXexijiESO1DmnXz+3Dme7dhw+7Irj55wDb77pdZAiEokSEqDPQ/HMMT1Jqt+Q6GzaWCwikWPCBFi4EIYOhfMLH4LaD8OFF0Lfvl6HJiIR6MgRN/bh/PPhpT4WmrZ37TtDh5Jdp0VWkVwku/M14kQlJJAfOKdbK6JjsmdCEZEIkKrhuMyG8XxXuCY3v6ShVCKSRfwL5ACdO8Oll7Lxkup07QrVq7vRDyIipy2tnPP777BkCS8vrs6PP7q1OgsV8ixCEYlUcXEcatyafnvPIXe+KKLfyb6NxSISGf791y1bVaWKW4Kc3n3h559h5kw480yvwxORCPTmm/DjjzB1KhSYPuHYqIcLL/Q6tHRpwkKR7MyvEccAJfp2cPtFRIItjZxzzf4vMYuVc0QkC6RVrAJISMA2bMigu+JITobRozXNuogEQXo55+BBkhs0ZNlLcbRo4VurU0QkmOLiSG7QkLP2bqAS3xDzUCu3zIyISBbq2hX27IERIyBq7Rp45RX43/+gQQOvQxORCLRuHbzwAtx5JzS+8R/o0gVuvDHbj3pQc5NIdpVBwzENG6pQLiLBlU7OiTp4QDlHRLJG69Yn3uf4mIQEHv22Nf36aZp1EQmSDHJO1MEExtCat98OcUwiEvni4rANGxJ1MFX+efddPV+JSJZasADGj4du3eCqK5PgoYegQAF46y2vQxORCGQtdOgAuXLBoEG4GQL37YORI7P9qIfsHZ1ITpZBIw4JCe64iEiwKOeISKiNGeOeoNKQQCyDrh/jpgUUEQmGMWMgX740D+0nlvW9xlC4cIhjEpHI5uuIbDT4QURCaNs2eOABuPxy6NkTGDwYvvoK3n4bihb1OjwRiUD9+7uZ1V99FS74biZMnAg9ekCZMl6HdlIqkotkV2PGkBSdO+1jsbGukUdEJFjGjMGm03CsnCMiWSYxEaKjj9t1MCqWu/PO4PEp1bN7h2MRCSfVqsEtt5ywez+x9K82g1uerx76mEQksqkjsoiEWFKSm1F91y6YNAnybYuHZ5+F+vXdARGRIPviC+jeHXrdHEeHV4u7+5uyZd3OMKBmJ5Fsav2/Z5KUlEyS/69pbCzMmAHV1YgjIkFUrRq/nn0j1n+/co6IZIXNm+Gee6B0aZg+3eUa4EjuWOonz+COAdUpWdLbEEUkwowcCXPnwv33H805B6JiaVFgBh0+1n2OiATftlfHcIC8aR9UR2QRyQIvvgiLFsEnj8dxzR0loWlTN9XxO++AMV6HJyIR5p9/XNNO82JxvLCyIWbTJti+3a1DnjudAaDZjIrkItnQ/s27yNWiKduizmf36E+ONuKoWCUiWWVlm+FcsWUhX5dtrZwjIlnr8GHXWHPgAEyZArfdBjNmkHhBCRpFzSCqRnXatvU6SBGJKN98A48/DnXruqLUjBnsKVSCBskzuHdEdc08KiJBd/gwNOtfia3mPHVEFpGQmDsXXnoJXq0bR4MhDWHDBli50o3qLF7c6/BEJMIkJUGLFnDV9jjG72yIOZBq9pynnw6bZWVUJBfJZmxSMr9Wack5R7bw91sfU/jBxu7hqUQJPUSJSJaI/+Rbrh7dieWF6lHu21HKOSKStZ54AlascIWqK68EwFarTr0r4lkaU53Ro9E06yISPP/+C02awHnnwfvvQ3Q0v5xXnWIH4jnrzuo0a+Z1gCISibo9ZXlwZQdKEo957TV1RBaRLLVpkytWtS4ZR7fPGx6/1MPo0WFTrBKR8NGnDyQuiGOGaUjUQb/lZRISoGHDsMg9MV4HICLH+7rZG1Ta/Bmz671N/ccruZ3Vq0N8vKdxiUhkStiyi5h7m/Jv1DmUWDKBXHmilHNEJOtMmABDhsCTT8Lddx/dPXw4LFwIw4ahadZFJHiSkuDee908gMuWQeHCJCS4XbGxMHSoZh4VkeCbPBn2DxxFS8ZDr+ehWzeoUMGN5hwzRgVyEQmqI0fcdMcV98cxcn9DTHrFKnXQEZEgmTcPeveGf/K3Jtf+hLRPSkhw9z7ZvI1ZYzREspHfRn3ODVOeZUmxptT57HGvwxGRCGeTLb9UaU2xI5vY3P9jzr+miNchiUgk+/57aNcOqlWDvn2P7v7tN3jqKahZ0x0WEQma55+HBQtc55wbbsBaaNvWpaP33oNzz/U6QBGJNL//Dm+3XMVg8zjJterAc8+5AykdkVWgEpEge/ppWL4cJp3R+sTRnClSilUiIqdp82Y3c0WZMpD/4zHprz0eG+s6B2ZzKpKLZBN7f99GwfbN2RhdirJfjiI6RkMaRCRrfd28P+U2TWdBnX5U6lzF63BEJJLt2gV33QVnnQUffggxbkKrvXuhUSPIkwfefVcjOkUkiD79FF5+GR56yG3AwIFuxvU+faBBA4/jE5GIc+AAtG68iwkH7yb63KJETXRLPIiIZJUpU2DAAHjsMV+xKk+etE8Mk2KViGRvKTNXHDzoZs7JV6wAWHvimnlhtLyMiuQi2YBNTCK+6v8okLSLPaMnU6RUAa9DEpEI98fYL7hhUnc+P6cJdWZ28jocEYlkycnwwAOwcSNMmgTFih3dfd99bsTVpElQvLjHcYpI5PjjD5d3brgBBg8GYPFi6NoV7rwTnnnG2/BEJDJ1ejyZbj+3pLjZRMyUSVBEM3WJSNZZt84NDq9QAd54AyhVyhXJ/Xseh1GxSkSyt2efhS+/hJEj4YpzdkKTJm56rk8+cbkGwi7nqEgukg181eBFrtm+iM+bDeH6ltd4HY6IRLi9f/zDGQ/fw6boi7ly2WjNXCEiWatvX/eANGAA3Hjj0d0vvgiffQZvvhk2z04iEg4SElxjTXS0G96QNy8bN0KzZnD55TBu3IkDHURETtf48XDW6H7cwWdEvdkfKlf2OiQRiWAHD0LTpu52Z9IkyGMPwt13u4PjxoVtsUpEsq/p012HnEcegebNfKMe/vrLPXM1buxyTYkSYZdzYrwOQCSn+3nAXCrOf4mFxVtR58MHvQ5HRCKcTUxifdUWlE7awd/vzuTiSwt6HZKIRLJ589xanC1awKOPHt09dSr07g2tWsHjj3sXnohEGGuhXTv48UeYNQtKluTAAbfaw6FDLveceabXQYpIpPnpJ3i/zWJm8SzJTZsRpZsbEclinTrB6tXHalK06wQrV8K0aW49qwsvdMPMx4wJq2KViGRPf/4JLVtC+fJuoAMvvwyzZ8PQoVCxojupenWIj/cyzFOiIrmIh3Z+v4lzn2zBb7mv4oblQ7QOp4hkua8a9qHyPwuYe/dI6ra+zutwRCSSxcfDvffCVVfB8OFHp/1bs8bNglyhAgwbpnXIRSSIhg2D995zU1XUq4e10KEDfPutG/lQurTXAYpIpPnvP+jQ+G8+SWyOveQyokeP0s2NiGSp996DESOge3e47TZcIXzECLeeTKNG7qQwLVaJSPaTMnOFMfDxx5BnyTx4/nm4/35o397r8E6biuQiHkk+dISt1e7houRDJE2cRKHzY70OSUQi3Nq351Fxbm8WXfQAdT56yOtwRCSSHfRN95eUBFOmQP78AOza5dpt8ud3u/Pm9ThOEYkcK1ZA587QoAH07Am4gQ3jxrk2nDvu8DY8EYk81kL7hxN5ed09FM77H9HTF2q6ChHJUmvWuElzbrkF+vQBVq1yPQJr1vTtEBEJri5dXKqZPh0ujtoA//ufGwzxzjsR0TFQRXIRj3xd/Wkq717O/Ic/ovZdGtIgIllr14+bOeeJFvyeqwzllg/FRIX/TYyIZGOPP35s6OallwKuXt68OWzcCHFxbgZAEZGg+Ocf1zHnoovc8KqoKJYudTXzhg2hVy+vAxSRSDRsGFz78bPcwlIY9R6ULet1SCISwfbtc6M5zzgDPvwQYvbuhCZNoGhRmDjRLVAuIhJEH3zgauFPPQV31D0ENzeFI0fgk08gNjIGfapILuKBH16YQuXlA5h3+WPUHtHM63BEJMIlHzrC37fcw0XJBzny8WQKXZDf65BEJJKNGuW2Z589bujms8+6JcqHD4eqVT2MT0QiS2Ki64GzYwcsXw5nncXmza5mXqrU0Zq5iEhQrVwJcZ2mMYl+2HbtMS1aeB2SiEQwa90I8l9/hfnz4bxiydDwPtiyBZYudYVyEZEgWrsW2raFm25yS5DTqQt8842bFvCyy7wOL2hUJBcJsW3L/qBk79b8kLcCN375RiTMSCEi2dzXNZ+h8u4vmf/gRGo3ucLrcEQkkq1cCY89BrVqQe/eR3d/+CG8/rpbrqptWw/jE5HI07Onm55i7Fi47joOHXKDqhIS3O6CBb0OUEQiza5d0LXxOj5LaknideWJefstr0MSkQg3fLgb0dmnD9SoAbzYB2bPdlNaVKrkdXgiEmH273edjmNjXXtOrg8nuHzz1FNw551ehxdUKpKLhFDifwfYU7cpuWw0+T6bxBmF83gdkohEuB/7TKPysv7Mv+wRao1q7nU4IhLJduxwT1HFih033d/q1fDgg6738dtvexyjiESWqVPhtdfc0KqWLbEWHn0Uvv7azQBYpozXAYpIpElOhjb3HWDglibEFogmZuokyKO2HRHJOt9+C506Qb16bnYuZs+GF1+EBx5w90AiIkFkrRvgsHatmw3wgh0/uFxz663wyitehxd0KpKLhNC3N3Wi0v7viOs6g+q1SngdjohEuH9W/Enx51vxY97yVFn+pmauEJGsk5QELVrA33/DF19AkSIAbN8OjRvD2WfD5MmQO7e3YYpIBPntN2jZEipUONoDZ8QIGD0aevSAu+7yOD4RiUhvvAH1Zj3OtXwPH8yAkiW9DklEItiuXW4d8nPOgQkTIGrDevfcdc01blSnGnpEJMhGjnRLVr34ItSqsAfKN4FChdyQ8pjIKykHtDKXMeYiY8xkY8weY8xeY8wUY0zxzH6YMeYZY4w1xnyR+VBFwtuqLhOo9MNI5lzfnepv3OZ1ONme8o7I6Uncd5BdtZuSbA15p3+smStEJGu9+CLMnQuDB7uCFXDkCDRrBtu2ucGexYp5HKOIRI79+10VPHdu1wMnTx6+/BIefxzq13cpSY6n5yuR0/f55/Br9zE8zGjssz3gNrXtZER5R+T0WAutW8OmTfDxx1Ak/wE3c1dyspsyJzbW6xCzFeUckdO3ahV07Ah16kDPHhZatYL1610SOvdcr8PLEict+xtjYoFFwCGgJWCBl4A4Y8w11tr9gXyQMaYU0AP459TDFQlPm+euofRb7Vl5xq1U+7yP1+Fke8o7Iqdv5S1dqLxvFXFdPqV6nYu9DkdEItmMGW5xvAcfhIcfPrr7ySdh8WIYN+5o3VxE5PRZC23auPn/5s6F4sX56y+3Dnnx4vD++0dXexAfPV+JnL5t26BPk+/4jEdIvKUGMb3VGycjyjsip69/f5g+HQYMgCpVgIcecxWszz6DSy7xOrxsRTlH5PTt3u1mrihSxI0kj3rzDZg2Dd58062fF6ECGRvfBigFlLbW/gFgjPkB+B1oB7wZ4GcNA94HSgf4uSIR4dCOfRxu3JR95kyKzp9I3jP0zz8Ayjsip2HVkx9QefU7zL22G3XfvN3rcEQkkv3xB9x3H5Qr50aR+6b7GzsWBg6Ezp3dUnkiIkEzaBBMnAgvvwy1anH4sGvM+e8/mD8fzjrL6wCzJT1fiZyGpCRoe88e3tlxN9FFziZm0kT1xjk55R2R07BsGXTv7joBduoEjBoF774LPXtCw4Zeh5cdKeeInAZr3biHjRthyRIoumaxS0J33+0adiJYINOt3wGsSEkuANba9cAyoFEgH2KM+R9QDnjmVIIUCVvW8kOVdpQ4+Ct/9J5IicrneR1RuFDeETlFWxas5fL+bVmV/2Zu/eJlr8MRkUiWkOBabaKi3HTH+fIB8PXX0L491KgB/fp5HKOIRJZly6BrV7jjDtdog2uz+fJLGDMGrrrK2/CyMT1fiZyG3i9aWi1pxcUmnlxTP3aLA8vJKO+InKLt2+Gee+Dii2H0aDDfroRHH3XzH7/wgtfhZVfKOSKn4a233DJ5r70GN5b8C5o3h8suc51zfIMhIlUgRfKywE9p7F8DlDnZm40xZwEDgG7W2p2ZC08kvH3z8HAq/P4B827qTdWe1b0OJ5wo74icgkM793Po9rtJMPk5e96HmrlCRLKOtdCuHfz4o5vb+GK3rMPWrXDnnXDeefDRRxCjNJQurZknkklbt7oh4yVKuHUcoqIYPRqGDYOnn3aHJF16vhI5RfPmQUKf/tzJNKL6vQ5Vq3odUrhQ3hE5BUlJ0KIF/PsvTJoEBY/86zomn3uu1pTJmHKOyCn68kvo1s215XR57Ag0awb79sGUKXDmmV6Hl+UCKZKfDexKY/9OIJCJzPoBvwFjAw3KGNPWGLPSGLNy+/btgb5NJFtZ/8m3XPNuJ5afVZ9aC9QBLZNCmneUcyQiWMv3N7an5MG1/Pb8B5S88XyvIworKlaJZNKwYW6RqhdegPr1ATh0yLXf7N7tlq0qUsTLALO3VGvmXYFbM+9+4DLcmnn5M3EdrZknOcORI25I1e7drrGmUCG+/hoeecQNqnpZk+ecjNp1RE7B5s0wqNlS+tKdxMZNoEsXr0MKJ2rXETkFL73klo8ZPBiuu9pXMd+61c3cpQesjOheR+QU/Puve8wqXtw3aLz70272rpEjocxJ+5dEhECK5AA2jX0nHWNvjLkZeADoYK1N6xppf5i1I6y15a215YsWLRro20Syjf2bdxFzb1O2RxWj5OcTyJUn0F81SSVkeUc5RyLBN21HUvHX95h744vc9HxNr8MJKypWiWTSihVufuMGDdyaeD4dOx6b8vjaa70LL0ykrJnX2Fo7zVo7HTdFYAncmnmBSlkzb23wQxTJRp55Bj7/HEaMgGuuYds2uOsuuOACtzy5BlUFRO06Iplw5Ah0uHMrI/beQ3KJUsSMi/zpRrOA2nVEMmH+fHjxRXjgAXjoIdxf5s1zFfMKFbwOLxzoXkckE5KT4b773BIPkydDofmTYMAAePxxuPder8MLmUAqd7twPXH8nUXavXNSGw6MBjYbYwoZYwoBMUC07+95MhOsSDiwyZZfbmxNsSOb+WvAx5x3VWGvQwpHyjsimRA/ZRVXj+rIikJ1qbWoh9fhhCMVq0QC9c8/cPfdcNFFbiR5lHucGD7c1a66d3czc8lJac08kUBNngz9+7u1OO+7jyNH3NTqO3e6dfPOTuupQfzp+Uokk57tlsgTK++laK7d5P50MhQo4HVI4UZ5RyQTtmxxg8bLlIGhQ8HMnAF9+kDr1vDww16HFw6Uc0Qy6eWXYe5cGDgQrs/3Czz4IFSpAm+84XVoIRVIkXwNbk0Hf2WAn0/y3iuB9rhElLJVBSr7/twh4EhFwsTX9/Tnhk3TWVSvHxU7VvY6nHClvCMSoIS/dhPdvCk7oopSfMl7mrni1KhYJRKIxERo3hx27IBPPoGz3Kx1X3wBjz3mZl1/6SWPYwwfWjNPJBBr17rG4cqV4c03AejaFZYuhVGjNGtFJuj5SiQTpk6Fs97qRXUWEzNiGFxzjdchhSPlHZEApawqk5Dg1iHPv3Ud3H8/XH89DBmiWSwCo5wjkgkLF8Lzz7vOOW3u3eem6cqXDz7+GHLn9jq8kIoJ4JxPgTeMMaWstX8CGGNK4hJF95O8t3oa+94CooHHgT/SOC4Stn4f8wU3TO7O0nOaUPuzjl6HE86Ud0QCYS1rq7TmmiMbWTXgcypdo/WpTlFZYHoa+9cATU/2Zv9ildEDrESqHj0gLg7GjYPrrgPcWp1NmsDFF8MHH2jK40wI+TqdQFuA4sWLBxahiNf++88lmHz5XItx7tyMGweDBsETT8D//ud1gGFFz1ciAVq3Dj5s8Rkf0Zek1g8T3bKl1yGFK+UdkQA9+6xbAviDD+DKEglwYxNXGP/kE3cfJIFQzhEJ0F9/uWepK66Ad4ZZTNs28OuvbnmHCy/0OryQC6RIPhJ4DJhujOmJW9uhD7AJNxUFAMaYEsA6oLe1tjeAtXax/8WMMbuBmLSOiYSzvX/8w5lt7mFT9MVc+eVoomNUJDkNyjsiAfiq+QAqbZzGnDpvUq9zFa/DCWchLVaJhKVPPoHXX4cOHdwiecCBA3DnnW7EQ1wcFCrkbYhh6HTXzCuXmXU6gREA5cuXD3idPRHPWOsW4/z1V7dA54UX8u230K4d1KgBr73mdYBhR89XIgE4eBA63bGe9w4+wKGy15Nn6CCvQwpnyjsiAZg+3c1s3KED3NvcQqsO8MMPMHOm64ksgVLOEQlAygSB+/a5dpwzxg6GDz+EV16BmjW9Ds8TJ52T1Vq7H6iBa/ydgFtrcz1Qw1q7L9WpBte7RvO8So5jE5NYf2MLCibtZPeoyRS5pKDXIYU15R2Rk/t93JeU+/hplha9i9ozO3sdTiQ43WJVh0CLVb73tTXGrDTGrNy+fXsmwhQJobg4KFnSjRxv3RoqVoQBAwBXv2rfHlaudEuTlznpBOHiR2vmiaQlJe88+qgbPd63L9SowfbtrlNOsWKuDScmkO7+cpSer0QC0/XRg7z4893kj7Xk+XQy5M3rdUhhS3lH5OT+/BNatoQbbvA9Zg0fDuPHQ69ebi0rCZhyjkhgevRwS1eNGAFl9ix3U3Tdfjs8/bTXoXkmoEdLa+1GoMlJzokngMZka221QD5TJJysuK0PVbYvYG7TUdRtpYXxgkF5RyR9e9dt58yHmrE5ugRXfPmuZq44fUErVvn2HS1WAQestYf836RRnZLtxcVBw4ZumHjr1nDmmTB5MuRx9deBA137zQsvQKNG3oYapk53zbyUdfP87QK64KYHFAkvqfPOsGFw003w1FMkJkKzZrB9u5uKtGhRrwMNT3q+EsnYe+/BNe924gZWwQfToVQpr0MKe8o7Iuk7eBCaNnWzqk+aBHm+/xo6dXLF8V69vA4vLCnniGTs00/dBIHt2kGL2v9AuaZQvLhr3InKuf1G1P9a5FTFxUHr1qxv8AiV5vVm0UUtqfPhg15HJSKRLC4O26oV/+w9hwuT/uXvd1dw8aWauSIIVKwSSS11oQrcsPFDh+CPP+Cii1i4ELp2hcaN4bnnPI00nGnNPJHU/PMOwLffwuLFdPusOosXu7abcuU8i1BEItiaNbDkofGMZATJTz1N1B13eB2SiES4Ll1g1So33frFZ2yHW++G8893PXZycLFKRLLG+vVu5opy5eCtNxKh0b2wYwcsX57j185TkVzkVKRqxCk57Gk2RZek3IqhmCiN5hSRLOLLOyYhgUvZyDe3PEGF1td5HVWkULFKJEVahSpwRfKGDfl75Azu6Vid0qVzfGfj06U180RSpJd3DhwgsV5DVh+eQceO1bn/fm/CE5EIFhdHcsvWTDzyHG8ffpxDVW4lzysveR2ViES4Dz6Ad96Bp56CO25Lgnr/g3/+gS+/hLPTmuROROTUHTrkZuay1s1ckfeVXrBoEYwZA9dd53V4nlOzlkhm+TXiGODCmK0U+vUrb+MSkciVRuNx+ZXvuP0SDCOBeFyxqpEx5g5gOmkUq4wxicaYo3OfWWsX+2/AbmCP7++bQ/lFRE5b69YnFqpSJCRgW7UmKQmmTXMzsMup0Zp5IqlkkHdiDicwMU9r3ngjxDGJSOSLi8M2bEjUpg303tqGmDPzkmfKhxCj8UQiknXWroW2bd2qMi+/jJtafcECGDpUU+aISJbo2hVWroSxY6HUT59C377Qpg20auV1aNmCGltEMiOdUQ5Rhw66/SpYiUiwpZN3TEKC8k6QqFglksqYMZA7d5qHDkXHct+RMUycCJddFuK4IpC1dqO1tom1toC19kxrbWPfGnmpz4m31hpr7QsnuVY1a+1NWRmvSJYZORKio9M8lGBiyf3+GHLlCnFMIhLZUs3SBRCFJffhBFe9EhHJIv/+C3fdBbGx8OGHkGvWdHjlFXj4YXhQS3iKSPC9+y4MGeJbMu/qdfDAA65DzsCBXoeWbaiRVyQzTjK6itatQxuPiEQ+5Z2QULFKxGfjRjh8+ISC1ZFcsdRLmkHdV6tTr55HsYlI5ElMhFGjICkJ/0r4fmLZOGQGZzdJa2UTEZFTdJKlZdQJWUSywt69UK8eFF8Xx8aoklywaIIrVt1wAwwa5HV4IhKBJk2C9x+OY2vekrx662xo0sStmTd5MuTN63V42YaK5CKZMWYMSdHpDGOIjXWjr0REgmhf7/4kY9I+qLwjIsH00UduBEOtWjBzpssxQGKeWOoemUGxe6rTrZvHMYpI5EhOdjnn44+hXz+YO/do3tlPLJ8/NYMrOqhALiJBpk7IIhJiKRMBFlodx8yohuTdtgFatnQLBH/yiYpVIhJ0s2fDiHvjmGEaUuzgBmLuvB2+/x7efx8uvtjr8LIVFclFMuGbcT8TnXSEJPymA4yNhRkzoLoacUQkePZv2snWDi9yiNwk5fJ7aFLeEZFgmjYNWrSAqlXdn+vWhRkzOHJ+Ce6MmcHOa6szejSYdPrsiIhkirXQoQNMmAAvvghPPgnVqxPXdQbxlGBkoxnUf133OCISfCvajeEQaS8to07IIhJshw+7wZsxS+OYE9OQmEO+TjrWuoN//ultgCIScZYsgbcaxfFpckPyJftyTsrMXeqUcwIVyUUCtKrzeCqMe4wvCjci8bPZR0c5qFAlIlnh4Pb/2HhVAy5K+JWVvWYQPXeW8o6IZI05c+Cee6B8eTeCPH9+APbeUJ1rC8azPG91pk07ultE5PRYC126wIgR0L07PPccAIsWwW1vVOe+qvE88rHucUQk+JYsgWHPbyUXh7FRfk2iesYSkSBLTHT9kA/OiWNu7obEHNYyDyKStVauhNfrxzEtsSH5rF/OOXJEOScNKpKLBOCHF6dy7dut+bpATa5d+yF5GtZ2D08lSughSkSCLnHfQX4r05jL9q5kWcePufnFWi7PKO+ISLAtWgR33glly7pi+ZlnArB/PzRuDL/95mZCLlnS0yhFJFJYC88+C2+/DZ06wSuvgDEsWeLaay65BKZOhdzpDPIUETlV33wDQ+t9yugj95NU5RbMjBnqhCwiWSY5Gdq2dUv/Tj+rNbn8C+QptMyDiATJmjVuUsDhh1ufWCBPoZxzAhXJRU7i57fmUfqF5vyYrxKX/jiNM4v6pqSoXh3i4/UQJSJBlXzoCD9c0Yxr/l3EovvHUuPtRscOKu+ISDAtWwa33+6qUvPmQaFCgCuQ3367G201bhzUqOFtmCISQV56CV59Fdq1gwEDwBiWLoXbbnNL4y1cCEWLeh2kiESan36CvjUXMP5gU5KvK0euOZ9B/frqhCwiWSJl0pwxY+D556HAJ2MgT560T9YyDyISBOvWQe3aLtVEjRuT/rTqyjkniPE6AJHs7PexyyjZpTF/5r6S81bN5OziZ3gdkohEMJuYxLdXtaTCls+YfftQ6o+/z+uQRCRSffONaxy+8EJYsACKFAFcp+KUAvn48W56QBGRoHjjDejVCx54AIYOBWNYtgwaNICLLnITW5xzjtdBikik+eMP6HHrF0zc1whKlyb3wjlQoIA7mNIJWUQkiJ5/HgYOdIXy558H5h9x6wFHRbkh5ik0i4WIBMHmzVCrFhw+7Npyzs99IeTLBwcPHn+ick6aNJJcJB3xU1ZR7MEG/B1zEWd8OY9iV5zldUgiEsms5esKj1Dhj4nMuvVV6k3v4HVEIhKpvv/ezcFVpIgbtnnuuYArkDdsqAK5iGSBwYPhqaegWTMYPRqiolixwvXVOf98VyAvVszrIEUk0mzeDJ1v/pYJu24jusSF5FkyH84+2+uwRCSCvfEG9OkDDz0E/fuDWbIYGjVyy1tNmaJlHkQkqLZvdyPId+yAuXOhbP54qFkToqPh3XeVcwKgIrlIGrYsXMuZTeuyxxTCLFjARTdoSIOIZCFrWXFrNyp9N4LZ1z9L/binMcbroEQkIv38s3uCyp/fVaUuvBA4vkA+bpwK5CISRKNHw+OPuwbi996DmBi+/tr11SlWzKWi887zOkgRiTT//APtb17DuG11yXPuWeT5fIF644hIlhox4lifwOHDwSz/0j1klSoF8+e7eyEt8yAiQbJ7t3umio93KeWGc7e4Avl//7mc07q1ck4ANN26iJ/tX68num5tEm00+6Yt4MpbL/I6JBGJcCvueJnKS99g3uWPUfebl1QgF5Gs8ccfbg6u6GhXlSpZEjixQH6fVnoQkWB5/31o08a13nz0EeTKxcqVUKeOm8wiLg4uuMDrIEUk0uzeDQ9X+4NR8bU4o3Bu8ixd6NZ1EBHJIhMnQvv2bhmZCRMgevXKY1PmLFgARYu6E7XMg4gEwf79rh3np5/g00/hltLb4Naabmj5ggVw3XXuROWck1KRXCSVXWv+4uBNtciflMCmCUu49o7LvA5JRCLc1y3epvKM51h00QNU/+FtoqJVIReRLBAfDzVqwJEjrhp+mbvHSVmDfPFiN8W6CuQiEjSffAItW8Ktt7rpRfPkYdUqN5nF2We7ArlvMgsRkaDZvx8erLWRQWtrcnaBI+T+/HO45BKvwxKRCPbZZ/DAA3DLLTB5MuRe+73rEXj22W55K02ZIyJBdOgQ3HUXLF/u+iHXq7gTqtWGjRvdnOsVK3odYlhRkVzEZ1/8v+yqUJuiR/7hl8ELqXDf1V6HJCIR7tvHxlDxg84sLXoXN/48mlx5tAqKiGSBLamm3IqLgzJlgGMF8rg4FchFJMhmzIDmzaFSJddyHBvL99+7AnnBgi7vFC/udZAiEmkOHYIHG2zl1W9rcX7sbnKluu8REckKixZB06Zw/fVuNGe+9T+72btSlrfSLBYiEkSJiXDvvTBvnlty/O7ae6BWXfjtN/cMdvPNXocYdlQkFwEObNvLlqvrUfzAn6x6aTZVH1VvGxHJWt/1mMR1Qx7mq4J1uH7tB+Q9Q/9LFpEssG2bK5D7TbmVkDJcuJAAAFXpSURBVAB33KECuYhkgfnzoUkTuPZamDULzjiDH35wqSh/fpd3SpTwOkgRiTSJidDmrh30/Lw2F+feQq7586FcOa/DEpEItmKFe6a69FKYPRsKbPvd3fDExLgC+cUXex2iiESQ5GR46CGYOhXeegtaN9sPdW+D775zO2vV8jrEsKQWecnxjuxJ4I8yt3PFvu9Z9uQ0qvWo5nVIIhLh1rwxmzKvtOCH2CqUXjOFMwrn8TokEYlEO3a4YZubNh035VZKgXzRIq1BLiJB9vnn0KgRlC7t8k7Bgvz0k2svzpvXFcjVXiwiwZacDI/ct5fHZ9XjypjfiZk1E2680euwRCSC/fCDW3L83HNd/8DCe9e75a0SE49b3kpEJBishY4d3SCH3r2hU9sD0PAON+f6hx+6BcrllKhILjla0oHDrLmiCdfsXMqihydSq99tXockIhHut1GfU+qpu/g9z9Vc+P1MCl2Q3+uQRCQS7d7t1sH77TeYORNuugk4sUB+//3ehikiEWTFCrjtNjdMfMECKFyYn392BfLcuV2BXMsCi0iwWQtd2+/n/o9uo1zUd0RPmeISj4hIFvn9d/eolT+/u+U5L2mzyzv79x+3vJWISLD07AlDhkDXrtCz22G4626Xb8aNc2s+yClTkVxyLHskkdVlW1B+6xzmNBlJvZH3eB2SiES49ZNWcl7bhmyJKUmhFXMoemlBr0MSkUj0339uWMOPP8K0aUcbihMS3ADPRYtg7FgVyEUkiFatgnr1oFgxWLgQzjmHX35xA6qiolze0YAqEckKvZ4+RP2Rd1LVfIl5/wO4/XavQxKRCLZxo5vROCkJFi+Gknn+hltruFm8Fixwy82IiATRa6/BK69AmzbQr28i5t7/uWWthg9Xw04QqEguOZJNSuab69tScf1kZtV+kwaTH/Y6JBGJcJvnrqHQPXXZGVWE6LgFXHBdUa9DEpFIlJDgptn65huYNAkaNDi6u1EjV7saOxYeeMDbMEUkgvz0kxtOVbCgSzLnn89vv7kCObgCeenS3oYoIpHp9ZePcEO/e6jDfOyodzHNNfhBRLLOtm2uQL5njxvAeUXh7VCtFvz1F8ybBxUqeB2iiESYYcOge3do3hyGDU7CtG4Fn3wCAwZA27ZehxcRVCSXnMdavq7ahUprxjC74vPUn9vF64hEJMJtXbaOXLfV5iB5OPDZAq646QKvQxKRSHTwIDRuDEuXwvvvw513AnDggArkIpJFfvvNtRbnzu2STIkS/PEHVK/uluRcvBiuvNLrIEUkEg0bnMQFPVvRmOkkvzWQqAdbex2SiESwXbtcn8AtW1w9/PoSO6FmHfjzT5g9G2680esQRSTCvPcePPqomyRn/DhL9KPtXVvPK69A585ehxcxVCSXHGdFveep/NVA5pbpTN0vn8cYryMSkUi284fNJFavRb6kw/w1cQlX1y/ldUgiEokOH4ZmzWD+fBgzBu69F3AF8jvucLWrMWNUIBeRIFq/3g0XT052w6kuvZQ//3QF8sOHtSSniGSdCeMt0Y93oAUfkNTnFaI7Pe51SCISwfbtcxN0/fILzJgBVa/aA7Xrwc8/w2efQbVqXocoIhFm2jRo1cqll48/suR6qjOMGgU9esAzz3gbXIRRkVxylK+a9afyvD4sKPkQNb97k6hoVchFJOvsXbedPZVqU/jIDn5/ZxE3NC/rdUgiEokSE6FFC9dAM3Soe5LixAJ5y5behikiEWTTJlcgP3DAVcOvvJL4eFcgT0hwU6xfdZXXQYpIJJo6xbKjVVc6M5LEbs8S01MNxSKSdQ4edLNypaxmVbvKPqh3G6xeDVOmuOHlIiJBtGAB3HMPlC8P06dZ8r74DAwcCF26QJ8+XocXcaK8DkAkVL5pM4JKk55kybnNuHnNcGJyqUAuIlkn4e89bL22LucejGfNqzO4oV15r0MSkUiUlAStW8PkyfDmm9ChA3D8FOvvvqsCuYgE0d9/Q82asHMnzJ0L11zDhg2uQP7ff65R59prvQ5SRCLR/PmwpukLdLYDONyhIzGvvuR1SCISwY4ccYWqRYtcp+M76/l6IS9fDhMnujmQRUSC6MsvXVtO6dIwaxac+fZL8Npr0L499O+PpkUOPhXJJUdY3W0iN4xqz/KzGlBh7QTyxEZ7HZKIRLBDO/ezvsxtlNz/E193n0qVp2/xOiQRiSRxcVCypGutad/eLVT10kuuVzHHCuQLFrgCuW9guYjIqUnJOXFxsH27W4P8r7/c+pvly7NpkyuQ797tCljXX+91wCISiZYtg8W39aNncm8OtXiQ3IMHqKFYRLJMcrJ7jvr0UxgyBO5vdgjuvBMWL4bx4+Huu70OUUQizHffuaUdzj8f5s2Ds8f0h1693Lp5Q4bovieLaLp1iXg/vvIZV/V7gNVn3EKZnycTWyi31yGJSARL3H+ItVfexdW7l7O4/UfU7FvP65BEJJLExUHDhm4+47p13VTrPXq4jeML5KNHq0AuIqcpdc657TbXYrNliyuQ33gjW7a4AvmOHS7v3HCD1wGLSCRavRqm1BpK/yPdONjoHvKOGwFRGvcjIlnDWnjkEfjgA3jlFXikzRG4u5mbQWfUKLfUlYhIEP36q1u9oUAB91x17pSh8OST0KyZa9zRfU+WUZFcItraoYu4rEdTfsl7PSV/+JSC5+bzOiQRiWDJhxP5vsy93PDPPOY1f5c6w9SzWESCKHWxClyBPCbGrQuMK5A3bnysQN66tXehikgE8M85Bw7AunVuur9q1fjrL1cg/+cfN4K8QgVvwxWRyPTLLzDqlvEMOfgoCbVuJ3bSBIjW7IAikjWshaefhuHDoXt3eOapRPhfCzekfPBgeOghr0MUkQizYYObrMsY155TIm4sPPqoW97hvfdcu49kGXU/kMjjmw5wy7NDuOjRO9iQ6zKKfDObwhcX8DoyEYlEvpxjFyzkm2sf4oaNU5ld723qTFR1SkSCyL9YlSIxEW6/nUNz4mjc2BWqVCAXkdOWXs4BePFFdkyOo0YNtzz5nDlQqVLoQxSRCOZ7xto6MY43q37CwH2t2V+lJrGffQy5cnkdnYhEsFdegX793EjyV/okuQerSZPcWsCPPup1eCISYbZudQXyffvcFOuXr/rQdcapXRs++kj3PSGgLggSWVI15pzf9zG2Rp1PvqXzOO+qwl5HJiKRKFXOSa5bj0rJicy+sQ/1ZnX0OjIRiTStW6ddrAJISGD3na2ZfyieUaNUIBeRIDhJzjl4b2s254lnzhy48cbQhiYiES7VM9ZZ/6vPEBI5eF1l8s+fDnnzeh2diESwQYOgZ0+47z4Y9HYypkN7N4rzpZfgiSe8Dk9EIszOna4W/vffbsDDtfHTXQK66SaYNk33PSGikeQSOfxGOxigWK5dFE/4xdu4RCQy+eWc6OREkkwM9XrfiDEexyYikadvX9JLLgejYrn34BhGjYIHHwxxXCISmcaMgTx50jx0wMTycPQYZs1y7TciIkHj94yVh0PEmGTy9+4O+fN7HJyIRLKxY6FjR7d81Zh3LVFdOrn1x3v2hB49vA5PRCLMf/9B/frw228wfTpU2TvXrT9evjzMmAGxsV6HmGOoSC6RIZ3pAKMOHXD74+I8CkxEIlI6OSfaJmLuuF05R0SCa8kS12ITG3tC0epgVCwNkmdw3+jqKpCLSHBYC999B4cPn9A554CJ5c5cM3h6TnVuucWb8EQkQqXzjGWshebN9YwlIllm2DA3u3GtWvDhREvMs93c+uNdu0Lv3l6HJyIRZutW6F4pjo+/Lsmi5+KoGb3Y9dApUwZmz4Yzz/Q4wpxFRXKJDCeZDlDzjopIUCnniEgoWAtDh7rWmiJFYNUq98Dk61GsArmIBN3Bg9CqlZtStHFj+OyzoznngImlccwMnppVnWrVvAxSRCKSnrFEJMSOHHFrjz/yCHSrEMfcX0uSp21LeOMNt/54v37pzuYlInIqVq+GTtfE8frahpRgA1VfbuCGlJcq5RYlP+ssr0PMcVQkl7Bnk5L5uWgGwxhiY910gSIiQbLziZdIJp0HJeUcEQmGw4ehXTvXOFO3LqxYAZdfDtWrc3jKDLblLUF9FchFJJi2bIFbboHx4+HFF2HyZLjtNna/N4O/cpWgccwMus6oTs2aXgcqIpFoTrPRHCZX2gf1jCUiQbZjh3vMGjYM3rknjld+bEjUpg0wYQI0aAADB6pALiJB9ckn8GyVOMb825D8+DoGHjwIhw6556+iRb0NMIdSkVzC2qGd+1l1SVPKrJzAt8XqY/P5rdUQG+vWcKhe3ZsARSTirB26CNO5I/9xJkm5/NbqVM4RkWDYtg1q1ICRI+HZZ90CVQULAq4xp0G/6px7MJ77RqlALiJB8uWXbv27tWth6lTo1Quioli5Eq7tXJ1SUfF0+bQ6dep4HaiIRJqkJHi24z729xtKbo5go6OPP0HPWCISZD//DJUqwbJlMKd7HO0+a4hJPZPF4sVuySsRkSCw1q3cMPjuOKYcaUisTTjxhJYttbSMRwIqkhtjLjLGTDbG7DHG7DXGTDHGFA/gfeWNMSOMMb8YYxKMMRuNMe8bYy4+/dAlp/v32w1sLF6V6zZMY3adAVy/ZSZm5oyj0wHqQSq8Ke9IdvRN66Fc9mgd/ok5n79nrSZ67mzlHBEJrpUrXaFq1Sr48EN4+WXwNRZ/+y3ccAMsXQpjx7p180RETtuoUVCtGuTP72ataNwYcIM2b7rJnbJsGdSr51mEEgR6vpLsaM8eeLhWPPcMqsqdZhpJ/d7EzJunZ6wIobwj2dGsWVC5MuzbB6v6x1F3YMMTl3pISICGDVWwCjPKOZIdJSRA8+bw/PMwKX9r8iVraZns5qRFcmNMLLAIuAJoCdwPXAbEGWPyn+TtzYGywECgPtAdKAesNMZcdBpxSw73x/gvsRUrcs7+9XzRfSb153YmKtq4B6cZM6BECT1IhTHlHclukg8dYUW5R6gw9lG+Prs+hX/5kivql1LOEZHgev99uPlmiIpyozrvuefooXffhapVITkZvvjCdTIWETktR47AY49BmzbuHubrr6FsWQ4fhg4d4MEHXZF85UrXQUfCl56vJDv64w94/JolvL64Alfk20jUnNlEP9nFzaajZ6ywp7wj2Y21bqnxhg3h0kvhm2+g7OstTyyQp1DBKqwo50h2tHmza+KZNAlefx0KT38XcmlpmewmJoBz2gClgNLW2j8AjDE/AL8D7YA3M3jva9ba7al3GGOWAet91+11KkFLzraq41jKDmrHX9HF2T95Cbc2ueL4E6pXh/h4T2KToFHekWzjv/gdrK/QlMr/xjH72qepufxlcudLNQWgco6InK6kJHjmGejXz60HPHny0bWoDh6Ejh3dzOu1asHEiVCkiMfxSlD4GlwGALUBAywAOltrN57kfeWBtsAtQHHgX2Ap0NNauz5Lg5bIsX07NG3qphJ98kno2xdiYtiyBe6+2w0o79bNTWYRE0irgWR3er6SbGXRIph5+zuMTnicwxddQp4Fn8Lllx87Qc9YkUB5R7KNQ4egXTsYNw6aNHGv+TeudT2Q06OCVbhRzpFsZcUKuPNO2L8fPv0UGtZIgIdHuY7K0dGuHSiFZs7xVCDTrd8BrEhJLgC+xpdlQKOM3uifXHz7NgDbgQsyF6rkdDYxiRU3PUm5Qa35vsDN5PvhK67yL5BLpFDekWxh87yf2X15RUr/u4x5942n3upXjy+QS8TQtFzimV273HCGfv3gkUdgwYKjBfING9wozpSlyefMUYE8Umikg3jqu+/csg5ffQXvvefyT0wMS5e6EeM//ggffwyvvaYCeQTR85VkG8MHH+HXWo/QP6EDh6vVIf+PXx1fIJdIobwj2cK2ba7uNG6cm+74448h/4LpblHyxER4++1jSzykUMEqHCnnSLYxYYJbzSo2FpYvh4bXbHSNOx9+CK+8AlpaJlsJpEheFvgpjf1rgDKZ/UBjzJXAOcDazL5Xcq4DW/fwXfHbqbysP/Muf4yrN83m3DJnex2WZB3lHfHcT6/NpGC9yuRO3M/3by+hzoT7McbrqCQrqFglnlm71jXOLFwIw4fDkCFHp96aNw/KlYPff4dp045bmlwiQ8pIh8bW2mnW2um4hp0SuJEOGXnNWlvVWjvUWrvEWvsBUA84y3ddkfR99BHceOOxtRtatMBaGDjQzXBcoICrnTdt6nWgEmR6vhLPHTkC3R78l9KP16aDHcahTt3Iv+BTKFjQ69AkayjviOdWr4YKFVz/wI8/hhd6JRPV50Vo3BhKl3ZrynTs6ApUKliFO+Uc8VxSEnTvDg88AFWquOeqsjs+dx2U162Dzz5zswhqaZlsJZAi+dnArjT278Q1xATMGBMDvIPrhTM6g/PaGmNWGmNWbt9+QkceyWG2fvEHf19chav+ns+cxu9Q+5dB5CuQztoNEilCmneUc+Q41rKi6RuU6X47G3Jfxv64b6jYsbLXUUnWUrFKQm/GDFcg373bzTnati3g6lYvvwz16sH557t2m0YZ9nuXMKWRDhJaKcs6NG/ueuD4FhpPSICWLaFTJ2jQwLc+Z1mvg5UsoHYd8dTOnfDITT/QYUwFqkavIHncBPK89Zp6AEY2teuIpz75xA3ctNb1C2xady/cdRe88IK7+Vm6FC680J1cvboKVuFP9zriqf/+c9Orv/aaW95h3lxLkUnDoGZNOPtsVzG/7bZjb0hZWkb5xnOBFMkBbBr7TmU83WDgRuA+a21aSct9mLUjrLXlrbXli/qmm5Scae3QReS5pSIFD/7DNy/Pp97UdhrJmXOELO8o50iKxH0H+bpMKypPfoql5zblwj+XUupWDQbOAVSsktCx1k2vdccdcNllrlB1002Aq5c3bgw9e8K997o1rC67zNNoJetopIOEzu7dcPvt8OqrrsVm0SIoVoz166FqVTfjep8+MHWqBnRGOLXriCfWroUeZaYy4OsbKVboMLmWLyXqgfu8DktCQ+06EnLWuvuau++Ga65xHQDLnfEbVK7sCuADB7q1xvPmPf6NKlhFAt3riCf+/NONHJ81CwYPhmFvHybXY+3cknp167oC+RVaNji7CmSFsV24njj+ziLt3jlpMsb0BdoCLa218wJ9n+Rc37QeyvVjO7Iu1xUw/VNurF/K65AkdJR3JOR2/7KVLZXvouKe5cyq0ps6S3oSk0u9cnKIssD0NPavATI94ayKVZKu/fvhwQfdXH/33gujRh2d1u+HH9zAhg0bXLvNY4+hjoGRLeQjHSSH+uUXNx3Fn3/CsGHQvj0Ac+e6NGStay9u0MDjOCWr6flKPDF7ZjKrmrzEsEPP81+ZisTOn+qmypGcQHlHQi4hAVq3do9b998PI0ZA3kWz4H//c8taLVjgFgqWSKScI55YsgSaNHETd82ZA7Wu2go1msCXX8Kzz0Lv3po5J5sLZCT5Glzjsb8ywM+BfIgxpgdujc5O1toJgYcnOVHyoSOsKPcIFcY+ytdn16fIr19SWgXynEZ5R0IqfupqEq6uSMk937Oww2QafPmcCuQ5i6blkqy3YYMbMT5pkpt/6/33jxbI33vPDWxISIDFi+Hxx1UgzyFCNtJBOSeHSlnWYdcuN3q8ffujk1nUr+9mGF25UgXyHELPVxJS1sLbr+wnoWEzehx6nv133c+Z3y5RgTxnUd6RkNq8GW655djj1rixlrwD+kLDhlCqlLvpUYE8kinnSMiNGAG1akGRIvD111Cr0Eq3/vh338FHH7m19FQgz/YCKZJ/ClQ2xhytUhpjSgJVfccyZIzpCLwE9LDWDjrFOCWH+C9+Bz9dWJfKq4cx+9qnKb95GoUvLuB1WBJ6yjsSMt8/N5mid91EcjL89u4yag5t4nVI4g1NyyVZZ8kS96C0fr0rWnXrBsZw+LAriN9/P1SoAKtWuamPJUcI9kiHBzMa6aCck8OkXtbh0ktdo/DNN7N3rxvl0KOHW5p8+XK45BKvg5UQ0fOVhMyhQ/BUsw3c2qMqjZnKoVfeIP/kcSdObSyRTnlHQuarr9zz1K+/wqefQrdH9mHuaeZGcTZv7hYlL1HC6zAlaynnSMgkJkLHjm4lq1q1fEvlrZjgBkbExMCyZdCsmddhSoACKZKPBOKB6caYRsaYO3BTkm4ChqecZIwpYYxJNMb0SrWvOfAWMAdYZIypnGrL9Fp7Etm2zP+Z3aUrcvm/XzLv/gnUW/0qufOpp00OpbwjWc4mJbOi/otc+1JTfo+9luQV33B96+u8Dku8EdJileQg1rrpjWvVgsKFXeuNb8jmli1uIMPgwdC1q5v579xzvQ1XQkojHSRr7N8P99zjKuH33gtLl0Lx4qxdCxUruobjN990k1nkz+91sBJCer6SkNi2DbqUX0q3yRW4Ik88ZuZM8jzTVVPk5EzKOxIS770Ht94K+fK5QlXDK9e5xYGnTIE33jhuBi+JaMo5EhK7drlZuQYNgieegBnTEinUpys88IDLPd98A9dd53WYkgknXZPcWrvfGFMDGABMwI2qWgh0ttbuS3WqAaI5vvBez7e/nm9LbQlQ7ZQjl4jy02szKfHMvSQQyw9vL6ZOx8pehyQeUt6RrHZ4dwI/lGtF5fWTWHRRSyquHs4ZhfN4HZZ4J5jFqo4qVgnA0WHiI0a4wvgHH0DBgoCbUv2ee1wt6+OPoWlTb0MVT3wKvGGMKWWt/ROOG+nQ/WRv1kgHSdP69dC4Mfz0E/Tr53rgGMPUqa7NJl8+LcWZU+n5SkLhu+/gwxojeHvXoxw8rxR54z6F0qW9Dks8orwjWS052fUJfPVVVySfPBmKrJ7vHrTALQ5cu7a3QUrIKOdIKPz6K9x+O8THw+jR8GDjnXB7c5g/37X/9O8PuXJ5HaZk0kmL5ADW2o1AhvPPWmvj8ZuW1FrbCmh1aqFJjmAtXzXrT4XJ3Vib53ryzZ1GxVsv8joqyQaUdySr7PhuEztuakS5/d8xu+Yb1J37BFHRGtmQw6lYJcERFwetW7sHowED3BRbzzwDffpAdDTWukPdu7sZkBcvhiuv9Dpo8chI4DHcSIeeuCUf+pDGSAdgHdDbWtvbt++EkQ6prrvXWhtQ5x6JACk5Z8wY9/emTSEpCWbNgrp1SUqC556Dvn3dKPJPPnHrkEvOpOcryUpTPz7CthZdeDVxCHturEfBmROhUCGvwxKPKe9IVvnvP2jRAj77zE13PPBtS+5B/eHpp6FsWZg2za1DLjmKco5kpblzXR+c3Llh0SK4qdBPUKERbN7sq5g/6HWIcooCKpKLZIXEfQdZVbEdldaOZ8m5zbj22zEUOl/T34hI1vnjvRUUbNmYYskH+PypGdR/vYHXIUn2oGKVnL64OGjYEBISXKEqVy6YONGtgYdryGnd2hWpmjSBd9+FAgU8jlk8o5EOctpS55y6dV1xvHRpmD4dLruMHTvcbOvz50ObNm46wDyaNEdEgsxa6P/Mv5R7rRl3Esf+Dk9ScNCrEK2l80Qka6xfD3fcAWvXuqWrHmmVgHmwjZu56+67XefBM87wOkwRiRDWwsCBbmr1q65yy1eVWDUV6t0PZ57pRj9UqeJ1mHIaAlmTXOT0xcVByZLuFdj9y1Z+vbAGFdeOZ3aV3lTd+KEK5CISXH5559vOE7jo/lvZZ85g44fLqaYCufhYa/cDNYDfcMWq94H1QI1MFquW+21Dszx4yR5SF6vAPUVFRUGxYgBH1wKeOtXNgDxpkgrk4kY6WGubWGsLWGvPtNY29o1sSH1OvLXWWGtfSLWvlW9fWlu1EH8N8YJ/zjlyxK33+/rrcNllrF4N5cvDkiVuxYcRI1QgF5HgS0iAp+r/xF2vVeSmqC85PGoc+Yf2U4FcRLLMkiVQoYIbuDlnDjzacAPmpqquc/Irr7i1rFQgF5EgOXzYdTju3Nl1zlm2NJkSY16Au+5ys1asXKkCeQTQSHLJeqkbcRo2ZGv3AST3fomSiTtY2GEy9YdmOAuKiEjmpco7tmFDfr7kdm748SNWnlmdC76cxMVXFfY6QslmNC2XnLK4OLjtNjhw4Pj9Bw9Cw4YsfnIGt79ZndhYtxZw9erehCkiEcK/QJ4iKQnuuYd5HWfQ6K3qFCkCS5e6DjoiIkHjW+Zh++tjePXZvbyw7j7MmWeSa94STOVKXkcnIhFs5Eh45BG45BI3zfplm+OgfDPXWXDGDGiggRAiEjzbt7tZAJcuhZ494cUn/yOq5QNuOYeWLeGddyBvXq/DlCBQkVyyln8jTkICxXq1419TlN/eXUbN1td5Gp6IRCC/vGMSEij740d8c0Ejrvp5EvkK5PI4QBGJGEeOuKcm/wJ5ioQESvZuzdVV4pk0CS64ILThiUgEeuCBEwvkKRISuPzV1lS6NZ6PP4ZzzgltaCIS4VI9ZxW6py79OcLuyypQKG6qbnJEJMskJkLXrm6647p14cOJlkITBrm5jy+/3BWsLr/c6zBFJIL88IMbOb5tm1vJ4d4Kf0DVxvDLL/DWW9Cxo5vJSyKCpluXrJPOKAcDFM6zj+tL7vImLhGJXOmNrgLK75pPvm+/8CAoEYlIS5fC9dfDrl3pTiu6n1g+bTyGxYvVdiwipykx0bUO79yZ7in7/9/efYdHUe5tHP9OekFagvTeAgrSe4sUFSIeyxHwFY9RBFHEdhSPvaIeu0dQREBFxV6jUo1KL1IFQwdBagolpGfn/eNJJIQElrRt9+e65grZzO7O7ji3M/N7CmH8cM0M5s9XgVxEylih66xAsrH9/an6+pM6yRGRcpOSYjqIv/463H03xH2eQdW7Y+HOO00mLVumArmIlKlvvoEePUyfiF9/hRERc808D/v3w5w5Jn9UIPcqKpJL+YmNLbaXg19Guvm7iEhZOkPuWGlpyh0RKb2DB83QWn36wPHjpufC3LkQFnbKaicIY8l/4hj/VTRBQa7ZVBHxEosXQ8eO5oZMr17w3ntFZs7yh+O47bNoAjRenIiUpfh4HEOK6ACRm2tG1ImPd9GGiYi3sm0zzfiopvFMndeI7++L5+V79hJwcR9zHvT44/Dll1C5sqs3VUS8xMGDMHIkvPqPeLZmN2LdKz/R+ZcX4bLLoH59WLkS+vd39WZKOVCRXMpN5ktvkOtXzB2asDCYMaNiN0hEvN6eq+/CQTGt+ZQ7IlIaubkweTK0bGnu2PznP7BpE1xxBVx8MfZ3cWQHmqJVuhXGgalxDJyoCchFpBQOHYIbbzSF8ZQU+OILmD0bbriB7K9Oz5yLn1LmiEjZys6GY1f9C7/04qd5UENkESlLmzfDwIHw9nXxfHA0hobsZvDrl0GbNvDHH6aR8mOPgZ/KGiJSegVv9RyYFc+cgBhqZ+0m8rpBcN99cNVVsGQJNGni6k2VcqL/m0jZs23WPvAxR4aNxnLkkGsVKpSHhUFcHETrJo6IlI1j2w6xvNW/qP/y3Ry2zic3IPjUFZQ7IlIaK1dC165w++2mN+f69TBxIoSHA7BqFfR6JJpB2XEcCm1I7jdxNB2lvBGREsrNhUmTzPChH30EDzxgbgpfdRVYFnPmQNs7T2ZOztfKHBEpe4sX2Tza5ANyjqRiF7eSGiKLSBlJT4dHHoG2bSF0WTxzg2IIdeQ10MnMhKNHzbjrV1zh2g0VEa/x22/Qvbu51XNzk3jmBMYQlJOXO7m5EBgIY8dCpUqu3VApVyqSS5k68OsW1tUaRLvnR3A4oA6/TV6J/4ICQ5CqUCUiZcjOyWXlzW/haNGS9gmzmN3xIYL37sB/7o/KHREpveRkc0HUtSvs22d6kM+fD1FRABw4ADfdZKan2rYNrn8nmsjUXVS6XHkjIiW0dKkJlXHjzM/16+HZZyE8nO3bzX3hSy81U5T/Oy6a89N2cd5QZY6IlJ3ERHj4yo1k947m2b0jsZo3h7feOm2aB11niUhZ+eEHuOACePppeLxvPN86YgjMKjSChW2b8yNN8SAipXTkyMnLrT17YP5D8by4OQa/jEK5k50Nl1+u3PFyKpJLmcg+ls7SgY9SrW8bGh5ayezLJ9E8eTmdx3YyF0xxcdCwoS6gRKTM7PpyNQkRPeg8fSxbK7Vny2fruXTV01StE6bcEZHScThMr6iWLWHqVDMPcEICDB8OlkVmJvz3v9C8OXzwgRmBa+tWuPlmjfonIiV0+LAJkR49zDDrn34Kc+dCVBSpqfDgg9C6Nfz0Ezz/PPz+OwwZ4uqNFhFv4nDAe28c5+P6/+axr9vROWQDmf97m2oJS7HGjDHXVWqILCJlaM8eM1DOkCEQEmLqUP/ZfCOWpngQkXJg2/Dhh6bfw5tvmkJ5QgL0n/5/WGnKHV9VzITRIs7b+OKPVH5oHN2zdhBf93qafvkCl3apdepK0dGwa5dLtk9EvEva/qOsG/owXVZNJtGqwfzYD4l+ewT+AYXmIlfuiEhJrF8Pt90GixebYtXkyXDRRYC5oPr2W7j3Xti+HYYOhRdfNMVyEZESyc01jXEefBCOHzetbh59FCpVwrbhow/h/vvNYBYjR8Jzz0GdOq7eaBHxNuvW2nx27WfcuvUe6vEXKVePotpbz0Jk5MmV8hsix8aaxoQqkItICWVnw6uvwhNPmAY6zz4L99wDQT/NNudGxdEUDyJSQgkJ5lZPfLzpQf7999CxSQo8+LAZJrA4yh2vp74uUmLJ6/eyqtE1XHDfYDIcQSx68if67ZlJg8IFchGRsmDbrLl/Fqn1o+i6ahILWt6GlZDAgOnXnV4gFxE5V8eOmTszHTrA5s0wbRosXPh3gfz332HQIPjHPyA4GObMgW++UYFcREphxQozncPYsdCuHaxbZ4apqFSJ1auhd2+4/nqoXRuWLIH331eBXETK1vHjMPFfmznU/hKe3jqM0IbnYy9ZSrXPp55aIM+X3xBZBXIRKaGFC6F9e9MI8OKLYdMmeODaHQT98wq47DIIDzfD5miKBxEpA2lp8NBD0LYtrFljepAvXeyg49pp0KKFmVLmjjtMjwjljk9SkVzOmSMzm+XXvkTQRVG03v0DP/aZSJ1D6+j1SDSW6lQiUg72xW9mXc2BtH/hOg4G1mP1WysZlPA/zm9R1dWbJiKezrbhk0/MeFuvvgqjRpki+U03gZ8fycnmeqldO1i1Cl5/HdauNQVzEZESSUqC0aOhWzfTRXzWLFiwAFq35vBh86dOnWDLFtNeZ8UK6N7d1RstIt7EtuGLmWnMqPMQ/36/DT2DVnDiuf8RsX0lVvdurt48EfFChw+bgSj69DENdL75Br79OI1G0x81c8osWGCK4xs2mAq6pngQkVKKi4MLLoCJE2HECNOb/NZOq/Dv1d3c+4mKMpXz114zc48rd3ySiuRyTra+u5gd1TvS9bN/s756NHtnb+SyX/5DeLUgV2+aiHih7KNpLO3/MJEXt6Hh4VXMuWIyLZOX0WlMR1dvmoh4g82bTbV7+HDTVXPZMtOKuHp1cnJg0iTTU3zyZLj1Vti2zRTMAwNdveEi4pEcDnj7bdNjYfp0M3rF5s0wfDjZORavvWYyZ8YMuOsuUyTPa68jIlJmtm21eaLDN3S8oTXjUydy9LLhhP25mfAJ48Df39WbJyJeJv/0p2VL+OADeOAB2LTRZmjOl9CqFTz1FFx9tTknuv9+CMq7x5w/xUPDhipUicg5+fNPuPJKU/cODYWff4b3Xk6i5qNjoEsXs8LMmfDrr6aLeT7ljk/SnOTilOM7E9kUcz9dN81gj18D4u/8mn6vXKGe4yJSbn5//nuqPjKO7tm7iK83kqZfvsAlnWu6erNExBukpcEzz8ALL5jWwW+8YargeTeG5883BaqNG80QgK++Cm3auHSLRcTTrVplJsFbuRL69jW5c+GFgMmcO+80w40OGmQyp1Ur126uiHifjAyYMmEHzd8Yz+OO70msfSE5H/5Cjeg+rt40EfFSa9aYWWWWLzenP5MnQ2vrD7hyvDkBatvWFKr6FJND+VM8iIg4ITsbXnkFnnjCjJrz3HNw9/hcgt6bClc9BEePwt13w2OPQeXKRb+IcsfnqE26nJGd62DlmHfIadqSDptmMqfdBCrt3kT0qyqQi0j5SFrzJ6saXsWFD8SQTiiLn44nes/7NFCBXERKIj4eGjUyP8HMM9W69cnxtjZvhttvB39/tm83c44PHAjp6fDVV+bejQrkInJOCuZOcrK5O9ylC+zZY7pQxcfDhReycydcdZXJnIwM+PprmD1bBXIRKXvzvsvgrTpPMvr1C4j2+4Vjj71E5O7VBKhALiLl4Ngx0+i4UyfYsQPefx/ivzlG6+n/NoXxVavgf/+D334rvkAuInIOfv3VTJM3YYK5vvrjD5jQdxlBvbua67G2bWHdOnjppeIL5OKT1JNcirX723WcuGEsnY8u5bdKfQiaOplLhl/g6s0SES/lyMxmxXWv0ubLx2mNzey+z9L7q3torukcRKSk4uMhJsb0HB88GNq3h6VLzaRUv/zy9w2Z48dNx/JXXjFDqT/7rLmpExLi2s0XEQ9UMHcuvdQEyYkTpqv4449DlSqkpZleDf/9rxnA4plnzMjryhwRKWt//QXvjpjNsIXjGMh2DvQbRq0PXiK0bl1Xb5qIeCHbhk8/NR01DxyAMWNg4jM21X74EKLug4MH4eabTYPlGjVcvbki4gUOHTIzNbz3nhkl/dtv4fJuh83cDtOnQ506MGsWDBuGen1KUVQkl9OkHzrOmqGP0WX566RY1Zl3/XtcPGMk/gEKEREpH1umLcT/jrF0S9/I4oihnD/rNS4d2MjVmyUinqxgoQpMN82lS82dmv/9DwIDcThMr4b//MfcxLnxRnO/pnZtl265iHiqwrmTlQU5OTBlCowaZW4cfwL33Wc6lV93HTz/PNSr59rNFhHvk5MD7z75JzUm3s1DuV+SGNmSrPfmUWvwAFdvmoh4qS1bYNw4mDcPOnQwI+R0CVoLQ8fB4sVmVJ1vv4XOnV29qSLiBRwOmDrV3M9JTTU/H5qQQ/jMt+CGR8yD998PjzwClSq5enPFjWm4dV9XcChA22bNQ59xtE4U3Za/ys/NbiF342YGzrxBBXIRKTsFcufY9sMsb3UjLUb1ITAzlZ/v/oYeh7+huQrkIlIa8fEwZMjJQlVBM2fCokUsWQJdu0JsrImkFStgxgwVyEWkhObNMz3HC+eOwwF33sm2d+Lp1w+GD4eICDMc4IcfqkAuImWg0NQyS3/JYlL95xjxVCsusX8k+d8Tidy7jiAVyEWkHKSnw6OPmimqli837ZFXzE6my3u3Q8eOpno+fbppsKwCuYiUgTVroHt3uPVWuOgiM4r6xCGLCe/bCe64w8z1sGGDaZGsArmchXqS+7ICPR0clw1me9iFtE9ZxcbgDux57SsG3N7F1VsoIt6mQO7kDroUKyeIDmQwp/0DdP3uYfrVDXf1FoqIJ7Nt+PlnUyBPTy96nbQ0DsfE0jNtF3XqmOmBr7tOo26JSAnt32+6MDz5JOTmFr1OWhoBt8SyMWIXb70Fo0aZYdZFREqtwPWVPSSGz9o+SZvl73AnCezr8g9qf/IqIY0aunorRcRLzZ5teo9v326uqV58Ppfa378DrR6CI0fMH594AqpWdfWmiogXOHrUdAyfNAkiI00fiP/rfwDrgQlmmMD69eHzz+Gqq3STR5ymIrmvKjQUoF9mBs0yV7Gy2x20XfAKwWG6ayMiZaxQ7vjnZBFGDn8+8g6XPBnr4o0TEY+Wmmqq3W+8ARs3QuXKkJ1txhot5ARhXJ89g4cfhgkT1KhYRErAtmHRInN35osvTNZ07gzr10Nm5mmrnyCM766cwdZpUK2aC7ZXRLxToesrKz2Na5f/m6PhtUl/73vqXD3YxRsoIt7q8Kfx2LGxPJ82A/8W0cyfD/3DlsIV42D1aujb13Qpb9PG1ZsqIl7AtuGTT+Duu+HgQRg7Fp5+LJtqH02CqMfM9HoPPmiWcHXAknOj4dZ9UXw89uDBpw0FaAGd108jePmvrtkuEfFa9rz5OC657LTc8cdB45fG/T00oIjIOdmyBe66C+rWNVdJwcFmzPQDB2DuXAgLO2X1E4TxYt84pmyJ5qmnVCAXkXOUmmrmF2/XDvr0gTlzYPx42LrVzNnw44/YhXInwy+MQ9PiuOPLaBXIRaTsxMdjD4kpcmqZKo4jhFYPdcFGiYg3s20zYvrEgfGEDYvh/LTdzAmMYcMTX9D/g1jo0cNch82aZe7xqEAuIqV07Jhpl3xT43i6jWjE0MrxLF8Ok679hWr9O5iqeY8e8Pvv8MwzKpBLiagnuQ+xc3LZ+PIcmj94DcG5GUWvlJZmJufctatCt01EvNPRhP1suucduvz4BP4UPwSpckdEnJabCz/+aHqNz5kDgYFw7bVmKL+uXf8eUiupbTQ/x8YxeHIMoXYa6VYY216O47G7ol38AUTE42zeDJMnw7vvmjs17dqZIdavu+7vxjhJSfD+2mjWRcYx6c8YwkkjJyiM4B/jaHyxckdEys5vK3JpPngYlTNOL5ADZsoZXV+JSBk5cQI++sicClVdG8/3xBCGyZ+g7DQYcY2ZR+aBB+Chh9QSWURKbcMGePNNM5x6p9R4fvCLIZQ03tozBOuB7vDTT9CoEXz9NQwdqqHVpVTUk9wHpO5KZOmV/+WvsOZcOGEIJ3JDyPULLHrlsDDTA0tEpKRsmy3v/MrKJsMIa9WA7j8+yubw9uQGBBe9vnJHRJyRnAwvvgjNm8Pll5urpiefhD17zFDr3brhsC0WLIARI6BOHbhmUjT3towjNaIhQXPjuEgFchFxVk6OuekycCBERZm7NDExsHixGUZ01Cjs0DB+/tnUyuvUgXvugYTa0fzy7zgcDRoSMDsOSwVyESkDGRnw6esHeLP+M0R2bULljMPYxa2s6ysRKQObN58ctGv0aOhwNJ65QScL5KcIDIRBg1QgF5ESy8qCjz82A3a1bQvTp8PDPeOZHxJDqCN/apl0UyAfORI2bYIrrlCBXEpNRXJvZdts/3AZy1veQEDjenT/egL7gxuy4NZPCTlyEP/5c04bgpSwMIiLg2jdyBGRc5dx6BgrbpzM9vA2tLilL812ziX+wvFs/GoLrVNX4j/3R+WOiJy7tWth1Chzd+a++6B+ffj0U9M76pFHoGZN9u2DiRNN/XzAANPB/NZbYd06mPxHNJUSd+E/QDkjIk44fBiefRaaNoUrr4SEBHj6adMg58MPoUcPDh22eOEFaNnSnML88IO5ebxuHSxbBoNfiMZv9y6d34hIqe3YbjNleDyzqwzjyjvrM3bvw/i1aM6J9z7HKmJqGV1fiUhp5OTAl1+aa6qoKNN7fPBgWLQI3sm+gcCsYkawyMgwI1iIiJyjPXvMrZ0GDUyHh7/+ghdegIMfxzPhl8H4FzVyzhdfmAsvkTKg4da9TNaRNNZN+IgqH02mReoaanAeC1veQs3Hx9JpWOuTDWuio82FU0zeHFa6kBKREto7+3f2PDiZNmtn0sVO5ffgDswbPo3OLw1nUJ0CN22UOyLirOxsc3fmjTfMHZnQULjhBrj9dtOkGHMD54dv4Z134PvvweEwcfLUU3DVVRAS4uLPICKew7Yxk9tNMo1wsrKgf3949VUzckVAAA4HLJhnRln/+msTUz17wsMPwzXXnF6nEhEpqdxcmPfZEXY/+R59/niLMSRwPLAa+68ZT/2nx1C/ZYuTK+v6SkTKwP795rpqyhRToKpf30zve3Osg5qb4uF/U81KxdEIFiJyDhwOWLDANMT59ltzORYTA7fdBoP6ZuL31Rcw/CbIzCz6BTR1p5QhFcm9xIFft7Dj/je5YMUMOttHSQhsw9wr36Tjy//HwEbnFf2k/IJVbKw5kdGFlIg4KTc9i/VPfEXg1ElcmLyQSIJZ2mA4le6/jU5jO3OhXzFD3Sh3RCRffPzpWbB/P7z9trk7s3+/6cn58stw441QrRoA27ebYbdmzDCr1KoFEybATTdBs2au+zgi4uaKypy0NDOm36RJZgj1886DMWPM3ZmoKMDkzIwZ5sbxzp1QvTqMG2cGuGjd2oWfR0S8zuHD8MMTKwl57y0uT51FGOnsqdeNlHvfpdqYazkvNPT0J+n6SkRKyLbh119NkerLL00j5Esuyes93vEgAR+8C72nmguw6tXhjjtMg+Vx48w5VD410BERJ6WkwLvvmpmstm6FyEi4/35zCdYoc7NpkXz9u5CUZOazOnzYtE4uTA1zpAypSO7BHFk5bJj4HUyezEWH51OdQJbWuYbgu2+jy909ifJ3Yj6G6Gi1uBERpyWv20PCPW/T/JeptM89yC7/JswZ8AJtXo4luk2Ecy+i3BGR+PiTvZ5iYuC552DJEvj8c3N35rLLTEXq0kvBz4+MDPhqlnnop5/Az88M+zdqlPkZGOjqDyQibq1w5kyZYqZymD7d3Km54AJzR/j66+G888jNhbk/mjY7331nenX262d6VF15pUaqEJGyY9uwIv4EGx76mPbL3+Rf9m+k+4ezf8BI6j9zK/W7tD/7i+j6SkTOwbFjMHOmOfXZtMm0RR4/Hm4d7aD5nwvMCdDVX5vrsr594cknTx2qq1EjjWAhIudk9WqTOR99BOnp0KMHPPYYXHN5JsE/fAWxU+DnnyEgwFxwjR4NF18Mv/xyMm/yKXekjKlI7oGO/LGfTfe+Q5N5U7go5y/2+tVnTp9niHrhZvp2qenqzRMRL2PnOkiYtIATL06m/Z5v6YbNsupD+GP0bXR77BIahfi5ehNFxJMULFaB+Tl+PISHm94Jt932d5fw3383hfGZMyE52dyPeeop01mqbl3XfQQR8SBFZc7Ikaa1zdVXm2kc+vQBy2LvXpj+CkybBn/+CTVqwD33mAY5LVqc+W1ERM7FiRPww4ubyHnjLS5LfJ+uHGVf9QvYP/YNat93PU2qVHH1JoqIl9mwwfTenDkTUlOhY0fTXnBYn/2EfTIDLssbNiciAu6805wA5Y2scwqNYCEiTsjIMDNZTZ5sZrYKCzNtkm+7DdqFbzUNcu56FxIToXFjePZZkys1C9S3NHWnVAAVyd1V4eEAbZst0xZydOIk2u38kh7ksLzKIDbfNIluTw3hknDtShEphSKGIE37K4X1975Hra/fpFXmFhKtSBZ0uJ9Gz46hx6BGrt1eEfE8DoepPN1+e9HDZTkccPnlpNZqxsfvmOL48uUQFGQaEo8aZRoS+6ldjog4w7bNWH5jxhSdOcHBMHYsOT378sN3ZmS/H34wUTRwILz4IlxxhckgEZESKeIaa/OGLJZN+Iqmc9/kn7m/kGUFsbvzNQQ9dSt1BvUCy4kRAUVEnJSVZYZSnzwZFi40pz8jRsBtY3LpfGSeKVLd8q0ZNic6GiZONBdfwcFnfmGNYCEixdixA956yzTCSUqCli3htdfghuFZVP35a7h3ihkiMCDAXHCNHg0DBhR/s0cNc6ScqbLqjgr0drCHDCGh92iCFs6nRfpGUqhKfJvx1HvqVrpe0dzVWyoi3qDQEKQHJrzMrk9X0nbjR3QjnbVh3VkQ+wFd/nsNgyLPcqEkIlLQzp0wfz4sWGCWxMTi101PJ3FoLI3ZRWqqmev35ZdNh8/IyIrbZBHxYPv2mayZN89kz/79xa+bnk7KlbFcGL6LffugVi144AG4+WZo0qTiNllEvFTB+zoxMawc/Q7bvtpA/93T+BeHOBTemF0jn6Ph47E0r3m+q7dWRLzMnj2m/j11Khw8aM5tXngBbr70L6p9NR2GT4PduzVsjoiUidxcmD3bNMj58UdT7/7HP0yv8ej627DemQoXzjBzjDdqZOaxio2F2rWdewM1zJFypCK5u4mPx46JwcobDtBKT6fV3NfYGdic+SOm0enF4QyqE+bijRQRr1HEEKS1HruVKgSztOkNVHtwLO1i26tDg4g4JzHRtAhesMAUqHbsMI/XqWPmGa9b1zQhTk8/7aknCGNk9gz+eR3ccgt066bOVCJyFqmpZp66/KL4xo3m8chI6N8f6teHSZOKzZyrj86gXU+zypAhEBhYwdsvIt6p0DWWlZZG51evoyMW26NiCHpkLOcPv0TD44hImcqeG0/OyFgmNp/BxKXR2LaJotvG5DLIMRu/d96GCXFm2JwBA0zVXMPmiEgpJH4WT+DoWG4NnsHHB6OpVQseeQRG35hF3VXfwLNvm+s0f38YOtSM8jVwoM6BxK2oSO4GclPT2f7xSrKnvU/Ushn44zhtnUaBf9H4lsagArmIlIGUdX9y+JkpNP38v/jbOaf9PSTEj4unjoDo9i7YOhHxGGlpZty+/KL4mjXm8cqVoV8/uOsucwMmKgosi4wM2FZnEC3vjSEwO+3vl0n3C+Onu+L45LFoKld2yScREU+QkwMrV5q8mTcPli41j4WEQO/ecMMN5qbLRReBnx85ObCj2WAa33Fq5qRZYXw2Mo53n4qmQQMXfh4R8RoOBySsyyT5+bfp9um9BNinTvNgAX4hIbSYfLeGCRWRMnHsmDkVWrgQUr+L55n1MYSTxn8OxdBgRByXjmtG/XnTYew007X8/PPh/vtNr/GmTV29+SLiYWwbtmwxmbNoEeTMi2fKPpM7M/xiGPNoHD2va0jgu1Oh23Q4dAgaNoSnnza9xuvUcfVHECmSiuQukLY3me3vL+b4j4uo8vsimh1ZRQuyzvgcKy3NhImGlRCRc2TnOtg3byN7P14EixfRYNdCaufsodoZnmNlpCtzRHxVEfNn/i0nB1atOlkUX7LETHQXGAg9esBTT5mieKdO2P4B7NljbtwsnWJ+rlkD2dnR9COO760Ywuw0HCFhhP4Qx+W6YSzim86UObYNW7eagvi8eWbdY8fMMBMdOsC995qieM+eEBJCUhIsWwZLPjfxtGIFpKXlZQ4xhJFGTnAYwXFx3DhAmSMiJZeZCet+SmLPJ0uwFy+m3q5FtMtZRWsyi32OrrFEpDT27TOFqUWLTJFq/XrTQKe/XzzfEUMopkFgGGnc8ulA+NhhzqUGDYJXXoHLL1evcRFxWna2uYeTnzmLFp2cQe8fVeKZlRpDSF7uhDjS6Pf0AHjSYXqNx8SYXuODBpnfRdyYiuQVIHnNbnbOXETWTws5f8simqZvpA2QRSCbwjrxS7u7CO7fi9ZRudS48/9ODntcUFiYuXEkInIWuWmZ7Ph0FYe/XkTIyoU02b+YuvYR6gL7rdpsrdmbDZ3uo1FUMM0n3Y2VrswRkTwFhweNiYHvvjNzROUXxfMLVADt2sH48aYo3qsXGf7hrF4NSxfD0hdNUXzfPrNqaCh07mymu+veHbp1iyZsUxzExuJXVGFMRHxD4cyJi4MLLjiZOfPmmZ5PYOauGzbMFMWjo3FUj+SPP0wxfMkHJnM2bzarBgSYiBo1yrTf6d49mtBtcXBTLAHKHBEpgaNHbNZ9sY1DXy8mZNVimh5cTBf7D7pg7u3sqdGB7R3HUbtlZaq9/RxWEdM86BpLRJxl2+a8Jr8wtWjRyZmswsLMNdWjj8LlofNo/+hQrMyMU18gN9ecEL33Hlx3XcV/ABHxOKmp5poqP3OWLTtZpmra1Fyu9eoFAwN+ov6tQ7ByC+WOw2E6UHzwAVx7bcV/AJESUpH8XJypl0MeO9fB3rkb2ffxQtNjc/ciaufsoTpwlMr8Ua0H2zqPoPLg3kSN7Ey7OqGnvkDTuFPnBwZz9hMXp5s5Ir7IidzJOHCEre8v4dgPi6iyfhHNUlbQnEyaA1sDoljd+BocPXtTb3gvmg9qTO2AApP8Dm6uzBERo9D8maSlmTl98zVubApUAwZAdDR7MmqYXuKzYeljsHq1aWmcv2q/fubmTffu0LZtEXP91oxWTyoRX1Zc5ti2+b1qVfP7gw/CwIEci2zCipWWKYpPMzdtjh41q0ZGmmL4jTean506mdOZUzRQ5ohIHieusf7amcWmD9eQOnsRlX9fzIVHF9OHQwAc86/K3kY92NhjJHX+2ZNqgzrTNLTAvZ0reusaS0TOSXa2uZ7K77G5ePHJHps1aphZZcaNg+hWB7jw+FICVi2DBXljrRcnJ8ecR6lILiJFOHjw1F7ia9ea9jV+ficbHPfqBb1bJVLrzxWwfDl8vgLmzjUF8aJkZ5tpHVQkFw/iVJHcsqz6wCvAQMxUSvOBu2zb/tOJ54YATwHXA1WBtcAE27Z/Ldkmu0hRvRyio8k9kWF6bH61iJBVC2lyYAn17SPUB/ZZddhaqzcbOvWixpW9aHVtG7qFn2V4ieho89r576ULKfFRyh2KzZ2UDXvZ8f4iMhcspMbmRTRN20AbbLIJ4I/QDixsO47A6F40vaEnzdrXoLl1hvdQ5ogAPpg5WVmwfTskJJguCvHxptdmURc6QUFkTZnOqhb/Z4rin8Kye+Cvv8yfQ0NNQeruu/N7iUOtWhX7cUQ8kU/ljm3D3r0mcxISTE/x7747PXNsGwIDsV99je39R7NkuT9Ll8KSN2HDBvNny4ILL4Thw/N7iUOzZuZxESmeT2XOmRRxjWX3i2bL8hR2fLiU7J8XUXPbYtpmrGAgpofUvtAmHLjoElIu7kWDET2p3LEVrf38in8PXWOJAMqdMzl+/PQem/kDUDRrZuKjb/csLq6+lvp7l2ItXwavLYXdu81KgYFm6pmrrjL5klXENJ4avUJ8jDKneLYN27adOjrF1q3mb6Gh0LWraVPTu0smPULXEL4xryj+n+Xm3hGY6vkFF8Cll5r7R8od8RJnLZJblhUG/ARkAv8CbOBpIN6yrLa2bZ84y0tMA4YA9wE7gNuBOZZldbdte20ptv0kJ1oBl/r1C/VyyB0wiD9Do6hzYgvNycrrsdmK1U3+id2rN3WH9aLFoEbU8S/B3Zr8C6ry/Ewibky5Q9G5038gyX6R1Mg9SEfgOJX4o0p35ve8mkqX9ablyC60bRB+7u+lzBEf57WZY9um+0F+IXzz5pP/3rHDNBHO5+dXfEvgrCz2xz5ET/4PMCMe9+lzspf4RRcV0UtcRM7Ia3MnI8PcbckvhucvmzfDiQIfybJO9hgvLDubvXc8T3PHWAAqVzZZc/XV5mfXruYxEXGe12ZOSd7jtGusQey16tHSsYuWQDYB7KrWnj+63ErlIb1oNKIHderXps65vpeuscTHKXdOfZ/cG2JZdPMMvjoSzcKFpsemw2Euw9q3h9GjYWCrvfTwX0a1P5aaqvms3yAz07xG/fqmNfL48eaEqH17CAk5+Tk0eoX4OGXOqXLnx5MzMpbvrprBrAPRLFoEh8yAOEREmB7io2+xGdhoKxecWEHAb8th9nJ4bu3JIQLr1jUXX7fcYn526gSVKp38LMod8RKWXdzNifwVLOtO4GWgpW3b2/IeawxsBe63bfvlMzz3Ikyrm5ts256R91gAsBHYbNv20LNtYKdOnexVq1YVv0LBA/IcD8Tso2mkbE3k+K4kTuxOJGNfEjn7E3EcTsJKSsT/aBIRSVtoenQ1fpz+PTnwY3XTazgx9Dqa3tCTeu0inXpfEW9gWdZvtm13KqfXdlnunDVzoMS5Y+fkkronhaM7kkjdlUjaniSy9iWScygJDifidySJoKOJRBzZTsMTG4vMnVz8WdP1VvxujqXV8IsIPU+zZojvKK/c8fhznfxe4YUL4QkJkJLy92qOoGDS6rXgaM2WHI6I4q9KLdkVEsVWqwXVdvzGhIUxhDjSTnv7dL8w3v9nHOcPi6Z7d/USF9+hc51icse24fDh0wvhCQlmOPO860vbssis1ZBjdaJIioxif5UododGsdU/ivBdG7n358uLzhwrjNcHxVH96mh69IBWrcwNZBFfoHOdc7+vk5Ntk7IvnSM7kjm+O5n0vUlk7Esm51AyjsQkrORkAo4lUyNlMxceW4I/pzcKdFh+bO15I+FjRlL3yi5Y4YXnaxDxXt6YO+V6X8c2T0lKMkti4sl/F7U03xvP1P0xhJHGCcK4OiiOrJ7RRHfP4JIaq2mbvoyQ1XlF8b17zZsEB5tiVLduJ4fqqlu3XD6PSEXzxsyB8j3Xyc01t3aczZ2W++J5LzmG8LzcuaVWHIGDoul/USL9wlZQf99yrBXLYcWKk/eMwsNN7nTtenJR7oiXOFvuOFMkXwCE2Lbds9DjvwDYtt33DM99BHgEqGrbdlqBx58AHgAq27adeab3P2PAFNFixREUwtaRT5AUXJecg0nYhxPxS0ki8GgiwalJhKUncl5WEtVyEwnNGzqrKClU5Yh/JHVz/ySIIoaOyNewoea2E59UzjeOXZY753RSk8cRGMzmax4kKagOuYfMmUpASiJBx5MITUskPCOJKtmJVLVTiix8A2QSRLIVwdHASBpnbyH4TNGo3BEfVY4XU551rhMYxOGe/yA3NZ3wPxM4L3EHfo6TvcITg2qzM7AlCbRkQ1YUG7JbkkAUf9IAB6dO+xIQANWrm2WAfzwvJMQQknvyveywMCxd6IiP0rlOgdwJCCTxov5w9CiV9yUQknayAU6GXyi7QqLY4hfFxpyWrM2IIoEottKcdE4vNFWtanovDAyI55WtpzbOsUPDsL5X5ojv0rmO4QgKYWvsMySGNSTrYDKOQ0mQkoz/kWSCUpMISUsmPDOZ87KTqW4nEULxb59BMEcDIqiee5hAO7v4jdQ1lvgob8ydkpzr5AaHsfLhb9hcux9JSZCcfGrRqeDvmWe4TVylsjnPiYiAfvzM42uuILjg9VVAAFazZqaRc35vzUaNThbD84fqCgoq/k3O9Lk0eoW4OW/MHCjBuU5IGOue/Ibt9fv9XfQumDMF/33kCMXcTYbAgJOZExEBvXN/5sHlp+YO/v5Qsybs22d+zx82vWBBvHVrs965Uu6IBzhb7jjTBfEC4JsiHt8I/NOJ5+4sGC4FnhsENMv797krakgHwC8rg5bTJvz9uwOLFKs6RwMiOB4cSUqlBhyo3IHcKhHYEZH41YggsHYkIXUjCGsQSeXGEVRrWp2qlQOoZhX/PoDmWBApP56VO9mZtJr12N+/pxNCsl8kx4MiSA2J5GiN+uyqEomjagTUiCTg/AiC6kQSVj+CSo0iqdIkgqr1KlE70KL2Gd4HUO6IlA8Py5wszv/5U3bSiCV0JIFr2e7fkgNVo0ip0YKgGlX+LnxHRECf6vCP6ieL4QWXSpUKzuMbDfGnzp+pArlIufGs3MnJJvK32aylHcsYzmai2FspikPVo8iuWY9qEX5/50qrCOhZKGsiIszPqlUL3ntR5ohUIM/KnKwMWk65l5YFHssgmCP+EaQGVictNIJjVZqTXLk6O6tWx4qMIOD86gTVqk5ovepUahBB1SbVCatXnZDwMELO8F6ArrFEyodH5Y5/ZhrdHhlItxK9aAHH8padRf/ZysmBLVvg2mth2DBTGC+robqio9XYR3yZR2WOX0Ya7e8fSPsSvWgBOcDBvKU4ublw8KCZ12HEiFOHTS8t5Y54AWeK5NWBlCIeTwaqleK5+X8/jWVZo4HRAA0aNCj6lWNji764yZN9fh2O/LKeao2rEhHsT8RZNrRY+fNIaY4FkYpUobnjVObAWXMnp2Zd0tdtodL5YdS1il3t7JQ7IhXN4851LKBebZugFZ8zuDqEhhYsdpeC5s8UqSged67jB7Spk0KjDZOpUqVkHQ1Oo8wRqSged64DkF2jNimzV1C1aQQhVUIpVRlJ11giFc3jznUAcs+rSvb4ewkOLuX11Usvme6fRXE4YOlSmDWrFG8gIoV45LlO7nlVSRt7L6GhZqS/UjlT7uTmwpw5MGVKKd9ExPs4e+gVNaKDM6cKVkmea9v228DbYIaqKHKlGTPO2Ao48OMPqBFV4tL4qQpfTOkiSqQiVFjuOJU5cNbcCZg1k/NqltH8dcodkYrmcec6QR/OoF49J7bwXKklsEhF8bhzncAPZlC9yFtEpaDMEakoHneuE/jJh5zfoQxPdnSNJVLRPO5cx/+bL/Evi0zo2VOjV4hUPI871/H/5kvOK6vzEOWOSIn4ObFOCkW3lqlG0S1sCko+w3Pz/14y+Rc3YYUKUuV1kZP/fg0b6iJKpPwpdwq+n3JHpLwpc0Skoil3RKQiKXMKv6eusUTKm2/njs6pRCqab2dORb+XiBdxpki+ETMvQ2GtgU1OPLexZVmFu1a2BrKAbU68f/EKH/jlfcDn93JQoIiUN+VOwfdT7oiUN2WOiFQ05Y6IVCRlTuH31DWWSHlT7uicSqQiKXMq+r1EvIQzRfJvgW6WZTXJf8CyrEZAz7y/ne25gcA/Czw3ABgGzLVtO/NcN/g0agUs4o2UOyJSkZQ5IlLRlDsiUpGUOSJS0ZQ7Ffk+IqLMccV7iXgBy7aLn6YFwLKscGAdkA48jJmf4SngPKCtbdupees1BLYDT9q2/WSB538MXALcB+wExgIxQA/btlefbQM7depkr1q16tw/mYiUK8uyfrNtu1M5vbbLckeZI+K+yit3dK4jIkXRuY6IVDSd64hIRfPG3FHmiLgvb8wcUO6IuLOz5c5Ze5Lbtn0CuBjYAswEPsQExcX54ZL/XoB/Ea8ZC8wAnga+B+oDlzoTLiLim5Q7IlKRlDkiUtGUOyJSkZQ5IlLRlDsiUpGUOSJSUgHOrGTb9p/A1WdZZxcmZAo/ng7ck7eIiDhFuSMiFUmZIyIVTbkjIhVJmSMiFU25IyIVSZkjIiVx1uHWXc2yrMPAbidWjQQSy3lzpHS0jzyDs/upoW3bNcp7YyraOWQO6L9pT6B95P7OZR/5eu7ov2fPoP3k/nSuo3Mdb6J95P50rqNzHW+j/eT+fDp3dK7jdbSPPIOusXSu4020n9xfmZ3ruH2R3FmWZa0qrzkDpWxoH3kG7Sfn6btyf9pH7k/7yHn6rjyD9pP70z5ynr4r96d95P60j5yn78ozaD+5P+0j5+m7cn/aR55B+8k5+p48g/aT+yvLfXTWOclFRERERERERERERERERES8hYrkIiIiIiIiIiIiIiIiIiLiM7ypSP62qzdAzkr7yDNoPzlP35X70z5yf9pHztN35Rm0n9yf9pHz9F25P+0j96d95Dx9V55B+8n9aR85T9+V+9M+8gzaT87R9+QZtJ/cX5ntI6+Zk1xERERERERERERERERERORsvKknuYiIiIiIiIiIiIiIiIiIyBmpSC4iIiIiIiIiIiIiIiIiIj7DrYvklmXVtyzrc8uyjlqWdcyyrC8ty2rg5HNDLMt6wbKs/ZZlpVuWtdSyrD7lvc2+qJT7yS5maVfOm+1TLMuqZ1nW//KOg7S877iRk8/1qWNJueP+lDnuT5njPGWOZ1DuuD/ljvOUO+5PmeMZlDvOU+64P+WO+1PmOE+Z4/6UOZ5BueM85Y77U+64P1dljtsWyS3LCgN+AqKAfwEjgeZAvGVZ4U68xDTgFuBRIAbYD8zRf7hlqwz2E8C7QPdCy5Yy31jf1gy4FkgBFp7jc33mWFLuuD9ljsdQ5jhBmeMZlDseQ7njBOWO+1PmeBTljhOUO+5PueMxlDlOUOa4P2WOR1HuOEG54/6UOx7DNZlj27ZbLsCdQC7QrMBjjYEc4J6zPPciwAZiCzwWAGwGvnX1Z/OmpTT7KW9dG3ja1Z/D2xfAr8C/R+V9742ceJ5PHUvKHfdflDmesShznP6elDkesCh3PGNR7jj9PSl33HxR5njOotxx+ntS7rj5otzxjEWZ4/T3pMxx80WZ4zmLcsfp70m54+aLcsczFldljtv2JAeGAsts296W/4Bt2zuBxcAVTjw3G/ikwHNzgI+BSyzLCi77zfVZpdlPUkFs23aU8Km+diwpd9yfMscDKHOcpszxDModD6DccZpyx/0pczyEcsdpyh33p9zxAMocpylz3J8yx0Mod5ym3HF/yh0P4KrMceci+QXA70U8vhFo7cRzd9q2nVbEc4Mw3falbJRmP+Uba1lWZt48Az9ZltW77DZPSsnXjiXljvtT5ng3XzuOlDmeQbnj3XztWFLuuD9ljvfztWNJueP+lDvezdeOI2WO+1PmeD9fO5aUO+5PuePdSnUcuXORvDpm7PnCkoFqpXhu/t+lbJRmPwF8ANwGDABGAxHAT5Zl9Suj7ZPS8bVjSbnj/pQ53s3XjiNljmdQ7ng3XzuWlDvuT5nj/XztWFLuuD/ljnfzteNImeP+lDnez9eOJeWO+1PueLdSHUcBZb45Zcsu4jHLiedZpXiunLsSf9e2bY8s8OtCy7K+wbTqeRroVQbbJqXji8eScsf9KXO8ly8eR8ocz6Dc8V6+eCwpd9yfMse7+eKxpNxxf8od7+WLx5Eyx/0pc7ybLx5Lyh33p9zxXqU6jty5J3kKRVf4q1F0q4CCks/w3Py/S9kozX46jW3bx4Hvgc6l3C4pG752LCl33J8yx7v52nGkzPEMyh3v5mvHknLH/SlzvJ+vHUvKHfen3PFuvnYcKXPcnzLH+/nasaTccX/KHe9WquPInYvkGzFjyRfWGtjkxHMbW5YVVsRzs4Btpd88yVOa/VSc4lp+SMXztWNJueP+lDnezdeOI2WOZ1DueDdfO5aUO+5PmeP9fO1YUu64P+WOd/O140iZ4/6UOd7P144l5Y77U+54t1IdR+5cJP8W6GZZVpP8ByzLagT0zPvb2Z4bCPyzwHMDgGHAXNu2M8t8a31XafbTaSzLqgwMAZaX1QZKqfjasaTccX/KHO/ma8eRMsczKHe8m68dS8od96fM8X6+diwpd9yfcse7+dpxpMxxf8oc7+drx5Jyx/0pd7xb6Y4j27bdcgHCMRX+DcAVwFBgHbADqFRgvYZADvBooed/jBkqYRTQH/gcyAA6uPqzedNSmv0E/BuYClwH9AP+lfc6WUBvV382b1uAa/KWNzGtnMbm/d63uH2U97jPHEvKHfdflDmesyhznPqOlDkesCh3PGdR7jj1HSl33HxR5njWotxx6jtS7rj5otzxnEWZ49R3pMxx80WZ41mLcsep70i54+aLcsdzFldkjss/9Fm+kAbAF8Ax4DjwNdCo0DqN8r6sxws9Hgq8DBzI+zKWA/1c/Zm8cSnpfgIuBxYDiUA2kIRp9dHF1Z/JG5e877+o5efi9lHe4z51LCl33H9R5njGosxx+ntS5njAotzxjEW54/T3pNxx80WZ4zmLcsfp70m54+aLcsczFmWO09+TMsfNF2WO5yzKHae/J+WOmy/KHc9YXJE5Vt4LiIiIiIiIiIiIiIiIiIiIeD13npNcRERERERERERERERERESkTKlILiIiIiIiIiIiIiIiIiIiPkNFchERERERERERERERERER8RkqkouIiIiIiIiIiIiIiIiIiM9QkVxERERERERERERERERERHyGiuQiIiIiIiIiIiIiIiIiIuIzVCQXERERERERERERERERERGfoSK5iIiIiIiIiIiIiIiIiIj4jP8HmaBIjIaxGQ0AAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"yy = sol_exacte(tt)\n",
"\n",
"schemas = ['EE','AB2','AB3','AB4','AB5','N2','N3','N4', 'EM', 'RK1_M','RK4', \n",
" 'EI', 'CN', 'AM2', 'AM3', 'AM4', 'BDF2', 'BDF3', \n",
" 'heun', 'AM2AB1', 'AM3AB2']\n",
"\n",
"uu = { s : eval(s)(phi,tt,y0) for s in schemas }\n",
"err= { s : norm(uu[s]-yy,inf) for s in schemas }\n",
"\n",
"fig, ax = subplots(nrows=3, ncols=7, figsize=(28, 12),constrained_layout=False)\n",
"ax = ax.reshape(-1)\n",
"\n",
"idx = 0\n",
"for key in uu:\n",
" ax[idx].plot(tt,yy,'b-',tt,uu[key],'r-D') \n",
" ax[idx].set_title( f'{key}\\nmax(|err|)=\\n{err[key]:g}' )\n",
" idx += 1\n",
"\n",
"fig.tight_layout() "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"colab": {
"collapsed_sections": [],
"default_view": {},
"name": "EdoExplicites.ipynb",
"provenance": [],
"version": "0.3.2",
"views": {}
},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
},
"latex_envs": {
"LaTeX_envs_menu_present": true,
"autoclose": true,
"autocomplete": true,
"bibliofile": "biblio.bib",
"cite_by": "apalike",
"current_citInitial": 1,
"eqLabelWithNumbers": true,
"eqNumInitial": 1,
"hotkeys": {
"equation": "Ctrl-E",
"itemize": "Ctrl-I"
},
"labels_anchors": false,
"latex_user_defs": false,
"report_style_numbering": true,
"user_envs_cfg": true
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": true,
"sideBar": true,
"skip_h1_title": true,
"title_cell": "",
"title_sidebar": "Contents",
"toc_cell": true,
"toc_position": {
"height": "calc(100% - 180px)",
"left": "10px",
"top": "150px",
"width": "196.475px"
},
"toc_section_display": true,
"toc_window_display": false
},
"vscode": {
"interpreter": {
"hash": "916dbcbb3f70747c44a77c7bcd40155683ae19c65e1c03b4aa3499c5328201f1"
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}