{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\n", "\n", "\n" ], "text/plain": [ "" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from IPython.display import display, Latex\n", "from IPython.core.display import HTML\n", "css_file = './custom.css'\n", "HTML(open(css_file, \"r\").read()) " ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Python version 3.8.5 (default, Jan 27 2021, 15:41:15) \n", "[GCC 9.3.0]\n" ] } ], "source": [ "import sys #only needed to determine Python version number\n", "print('Python version ' + sys.version)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# M62 TP 3 - Implémentation de schémas\n", "\n", "\n", "Compléter le notebook en ajoutant l'implémentation des schémas indiqués et en vérifiant l'impléméntation sur l'exemple donné." ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "WyG-bTRQE3f6", "slideshow": { "slide_type": "slide" } }, "source": [ "## Implémentation des schémas" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "On écrit les schémas numériques : \n", "+ les $N+1$ nœuds d'intégration $[t_0,t_1,\\dots,t_{N}]$ sont contenus dans le vecteur `tt`\n", "+ les $N+1$ valeurs $[u_0,u_1,\\dots,u_{N}]$ pour chaque méthode sont contenues dans le vecteur `uu`.\n", "\n", "Comme `len(tt)` $=N+1$ et `range(1,N)` produit 1,2,3,N-1 : \n", "- pour un schéma à un pas $u_{n+1}=F(u_n)$ on initialise $u_0$ et on calcule $u_{n+1}$ pour $n$ de $0$ jusqu'à $N-1$, autrement dit `n in range(N)` soit encore `n in range(len(tt)-1)`\n", "- pour un schéma à deux pas $u_{n+1}=F(u_n,u_{n-1})$ on initialise $u_0$ et $u_1$ et on calcule $u_{n+1}$ pour $n$ de $1$ jusqu'à $N-1$, autrement dit `n in range(1,N)` soit encore `n in range(1,len(tt)-1)`\n", "- pour un schéma à trois pas $u_{n+1}=F(u_n,u_{n-1},u_{n-2})$ on initialise $u_0$, $u_1$ et $u_2$ et on calcule $u_{n+1}$ pour $n$ de $2$ jusqu'à $N-1$, autrement dit `n in range(2,N)` soit encore `n in range(2,len(tt)-1)`\n", "- etc.\n" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "application/javascript": [ "IPython.notebook.set_autosave_interval(300000)" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Autosaving every 300 seconds\n" ] } ], "source": [ "%reset -f\n", "%matplotlib inline\n", "%autosave 300\n", "\n", "from matplotlib.pylab import *\n", "from scipy.optimize import fsolve" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "skip" } }, "source": [ "### Schémas explicites" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "y69SGZjfIDo9", "slideshow": { "slide_type": "slide" } }, "source": [ "#### Schéma d'Euler progressif = de Adam-Bashforth à 1 pas\n", "$$\n", "\\begin{cases}\n", "u_0=y_0,\\\\\n", "u_{n+1}=u_n+h\\varphi(t_n,u_n)& n=0,1,2,\\dots N-1\n", "\\end{cases}\n", "$$" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "colab": { "autoexec": { "startup": false, "wait_interval": 0 } }, "colab_type": "code", "id": "_Bgo6mNyIQgu", "scrolled": true, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "def EE(phi,tt,y0):\n", " h = tt[1]-tt[0]\n", " uu = [y0]\n", " for i in range(len(tt)-1):\n", " k1 = phi( tt[i], uu[i] )\n", " uu.append(uu[i]+k1*h)\n", " return uu" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "bJ2pbhejIQM2", "slideshow": { "slide_type": "slide" } }, "source": [ "#### Schéma de Adam-Bashforth à 2 pas\n", "$$\n", "\\begin{cases}\n", "u_0=y_0,\\\\\n", "u_{1}=u_0+h\\varphi(t_0,u_0),\\\\\n", "u_{n+1}=u_n+\\dfrac{h}{2}\\Bigl(3\\varphi(t_n,u_n)-\\varphi(t_{n-1},u_{n-1})\\Bigr)& n=1,2,3,4,5,\\dots N-1\n", "\\end{cases}\n", "$$" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "colab": { "autoexec": { "startup": false, "wait_interval": 0 } }, "colab_type": "code", "id": "g38fKrIgSiBQ", "scrolled": true, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "def AB2(phi,tt,y0):\n", " h = tt[1]-tt[0]\n", " uu = [y0]\n", " uu.append(uu[0]+h*phi(tt[0],uu[0]))\n", " for i in range(1,len(tt)-1):\n", " k1 = phi( tt[i], uu[i] )\n", " k2 = phi( tt[i-1], uu[i-1] )\n", " uu.append( uu[i] + (3*k1-k2)*h/2 )\n", " return uu" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "nI8swyc6RxIR", "slideshow": { "slide_type": "slide" } }, "source": [ "#### Schéma de Adam-Bashforth à 3 pas\n", "$$\n", "\\begin{cases}\n", "u_0=y_0,\\\\\n", "u_{1}=u_0+h\\varphi(t_0,u_0),\\\\\n", "u_{2}=u_1+\\dfrac{h}{2}\\Bigl(3\\varphi(t_1,u_1)-\\varphi(t_{0},u_{0})\\Bigr),\\\\\n", "u_{n+1}=u_n+\\dfrac{h}{12}\\Bigl(23\\varphi(t_n,u_n)-16\\varphi(t_{n-1},u_{n-1})+5\\varphi(t_{n-2},u_{n-2})\\Bigr)& n=2,3,4,5,\\dots N-1\n", "\\end{cases}\n", "$$" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "colab": { "autoexec": { "startup": false, "wait_interval": 0 } }, "colab_type": "code", "id": "3ymFHJHrSkOh", "scrolled": true, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "def AB3(phi,tt,y0):\n", " h = tt[1]-tt[0]\n", " uu = [y0]\n", " uu.append(uu[0]+h*phi(tt[0],uu[0]))\n", " uu.append(uu[1]+h*(3*phi(tt[1],uu[1])-phi(tt[0],uu[0]))/2)\n", " for i in range(2,len(tt)-1):\n", " k1 = phi( tt[i], uu[i] )\n", " k2 = phi( tt[i-1], uu[i-1] )\n", " k3 = phi( tt[i-2], uu[i-2] )\n", " uu.append( uu[i] + (23*k1-16*k2+5*k3)*h/12 )\n", " return uu" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "awcWzBp7SXvQ", "slideshow": { "slide_type": "slide" } }, "source": [ "#### Schéma de Adam-Bashforth à 4 pas\n", "$$\n", "\\begin{cases}\n", "u_0=y_0,\\\\\n", "u_{1}=u_0+h\\varphi(t_0,u_0),\\\\\n", "u_{2}=u_1+\\dfrac{h}{2}\\Bigl(3\\varphi(t_1,u_1)-\\varphi(t_{0},u_{0})\\Bigr),\\\\\n", "u_{3}=u_2+\\dfrac{h}{12}\\Bigl(23\\varphi(t_2,u_2)-16\\varphi(t_{1},u_{1})+5\\varphi(t_{0},u_{0})\\Bigr),\\\\\n", "u_{n+1}=u_n+\\dfrac{h}{24}\\Bigl(55\\varphi(t_n,u_n)-59\\varphi(t_{n-1},u_{n-1})+37\\varphi(t_{n-2},u_{n-2})-9\\varphi(t_{n-3},u_{n-3})\\Bigr)& n=3,4,5,\\dots N-1\n", "\\end{cases}\n", "$$" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "colab": { "autoexec": { "startup": false, "wait_interval": 0 } }, "colab_type": "code", "id": "-r1BaNeLTrHq", "scrolled": true, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "def AB4(phi,tt,y0):\n", " h = tt[1]-tt[0]\n", " uu = [y0]\n", " uu.append(uu[0]+h*phi(tt[0],uu[0]))\n", " uu.append(uu[1]+h*(3*phi(tt[1],uu[1])-phi(tt[0],uu[0]))/2)\n", " uu.append(uu[2]+h*(23*phi(tt[2],uu[2])-16*phi(tt[1],uu[1])+5*phi(tt[0],uu[0]))/12)\n", " for i in range(3,len(tt)-1):\n", " k1 = phi( tt[i], uu[i] )\n", " k2 = phi( tt[i-1], uu[i-1] )\n", " k3 = phi( tt[i-2], uu[i-2] )\n", " k4 = phi( tt[i-3], uu[i-3] )\n", " uu.append( uu[i] + (55*k1-59*k2+37*k3-9*k4)*h/24 )\n", " return uu" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "heLmvMe_S0y6", "slideshow": { "slide_type": "slide" } }, "source": [ "#### Schéma de Adam-Bashforth à 5 pas\n", "$$\n", "\\begin{cases}\n", "u_0=y_0,\\\\\n", "u_{1}=u_0+h\\varphi(t_0,u_0),\\\\\n", "u_{2}=u_1+\\dfrac{h}{2}\\Bigl(3\\varphi(t_1,u_1)-\\varphi(t_{0},u_{0})\\Bigr),\\\\\n", "u_{3}=u_2+\\dfrac{h}{12}\\Bigl(23\\varphi(t_2,u_2)-16\\varphi(t_{1},u_{1})+5\\varphi(t_{0},u_{0})\\Bigr),\\\\\n", "u_{4}=u_3+\\dfrac{h}{24}\\Bigl(55\\varphi(t_3,u_3)-59\\varphi(t_{2},u_{2})+37\\varphi(t_{1},u_{1})-9\\varphi(t_{0},u_{0})\\Bigr),\\\\\n", "u_{n+1}=u_n+\\dfrac{h}{720}\\Bigl(1901\\varphi(t_n,u_n)-2774\\varphi(t_{n-1},u_{n-1})+2616\\varphi(t_{n-2},u_{n-2})-1274\\varphi(t_{n-3},u_{n-3})+251\\varphi(t_{n-4},u_{n-4})\\Bigr)& n=4,5,\\dots N-1\n", "\\end{cases}\n", "$$" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "colab": { "autoexec": { "startup": false, "wait_interval": 0 } }, "colab_type": "code", "id": "yPXMx8CITt4C", "scrolled": true, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "def AB5(phi,tt,y0):\n", " h = tt[1]-tt[0]\n", " uu = [y0]\n", " uu.append(uu[0]+h*phi(tt[0],uu[0]))\n", " uu.append(uu[1]+h*(3*phi(tt[1],uu[1])-phi(tt[0],uu[0]))/2)\n", " uu.append(uu[2]+h*(23*phi(tt[2],uu[2])-16*phi(tt[1],uu[1])+5*phi(tt[0],uu[0]))/12)\n", " uu.append(uu[3]+h*(55*phi(tt[3],uu[3])-59*phi(tt[2],uu[2])+37*phi(tt[1],uu[1])-9*phi(tt[0],uu[0]))/24)\n", " for i in range(4,len(tt)-1):\n", " k1 = phi( tt[i], uu[i] )\n", " k2 = phi( tt[i-1], uu[i-1] )\n", " k3 = phi( tt[i-2], uu[i-2] )\n", " k4 = phi( tt[i-3], uu[i-3] )\n", " k5 = phi( tt[i-4], uu[i-4] )\n", " uu.append( uu[i] + (1901*k1-2774*k2+2616*k3-1274*k4+251*k5)*h/720 )\n", " return uu" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "OldEmxFfTJfq", "slideshow": { "slide_type": "slide" } }, "source": [ "#### Schéma de Nylström à 2 pas\n", "$$\n", "\\begin{cases}\n", "u_0=y_0,\\\\\n", "u_{1}=u_0+h\\varphi(t_0,u_0),\\\\\n", "u_{n+1}=u_{n-1}+2h\\varphi(t_{n},u_{n})& n=1,2,3,4,5,\\dots N-1\n", "\\end{cases}\n", "$$" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "colab": { "autoexec": { "startup": false, "wait_interval": 0 } }, "colab_type": "code", "id": "BCR9Z7VzTxEN", "scrolled": true, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "def N2(phi,tt,y0):\n", " h = tt[1]-tt[0]\n", " uu = [y0]\n", " uu.append(uu[0]+h*phi(tt[0],uu[0]))\n", " for i in range(1,len(tt)-1):\n", " k1 = phi( tt[i], uu[i] )\n", " uu.append( uu[i-1] + 2*h*k1 )\n", " return uu" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "dADQEhyYTVQz", "slideshow": { "slide_type": "slide" } }, "source": [ "#### Schéma de Nylström à 3 pas\n", "$$\n", "\\begin{cases}\n", "u_0=y_0,\\\\\n", "u_{1}=u_0+h\\varphi(t_0,u_0),\\\\\n", "u_{2}=u_{0}+2h\\varphi(t_{1},u_{1}),\\\\\n", "u_{n+1}=u_{n-1}+\\frac{h}{3}\\Bigl(7\\varphi(t_{n},u_{n})-2\\varphi(t_{n-1},u_{n-1})+\\varphi(t_{n-2},u_{n-2})\\Bigr)& n=2,3,4,5,\\dots N-1\n", "\\end{cases}\n", "$$" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "colab": { "autoexec": { "startup": false, "wait_interval": 0 } }, "colab_type": "code", "id": "bS1FABgRTzdC", "scrolled": true, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "def N3(phi,tt,y0):\n", " h = tt[1]-tt[0]\n", " uu = [y0]\n", " uu.append(uu[0]+h*phi(tt[0],uu[0]))\n", " uu.append(uu[0]+2*h*phi(tt[1],uu[1]))\n", " for i in range(2,len(tt)-1):\n", " k1 = phi( tt[i], uu[i] )\n", " k2 = phi( tt[i-1], uu[i-1] )\n", " k3 = phi( tt[i-2], uu[i-2] )\n", " uu.append( uu[i-1] + (7*k1-2*k2+k3)*h/3 )\n", " return uu" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "LsgdqQnfTf66", "slideshow": { "slide_type": "slide" } }, "source": [ "#### Schéma de Nylström à 4 pas\n", "$$\n", "\\begin{cases}\n", "u_0=y_0,\\\\\n", "u_{1}=u_0+h\\varphi(t_0,u_0),\\\\\n", "u_{2}=u_{0}+2h\\varphi(t_{1},u_{1}),\\\\\n", "u_{3}=u_{1}+\\frac{h}{3}\\Bigl(7\\varphi(t_{2},u_{2})-2\\varphi(t_{1},u_{1})+\\varphi(t_{0},u_{0})\\Bigr),\\\\\n", "u_{n+1}=u_{n-1}+\\frac{h}{3}\\Bigl(8\\varphi(t_{n},u_{n})-5\\varphi(t_{n-1},u_{n-1})+4\\varphi(t_{n-2},u_{n-2})-\\varphi(t_{n-3},u_{n-3})\\Bigr)& n=3,4,5,\\dots N-1\n", "\\end{cases}\n", "$$" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "colab": { "autoexec": { "startup": false, "wait_interval": 0 } }, "colab_type": "code", "id": "dbDTaW5LUcss", "scrolled": true, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "def N4(phi,tt,y0):\n", " h = tt[1]-tt[0]\n", " uu = [y0]\n", " uu.append(uu[0]+h*phi(tt[0],uu[0]))\n", " uu.append(uu[0]+2*h*phi(tt[1],uu[1]))\n", " uu.append(uu[1]+(7*h*phi(tt[2],uu[2])-2*h*phi(tt[1],uu[1])+h*phi(tt[0],uu[0]))/3)\n", " for i in range(3,len(tt)-1):\n", " k1 = phi( tt[i], uu[i] )\n", " k2 = phi( tt[i-1], uu[i-1] )\n", " k3 = phi( tt[i-2], uu[i-2] )\n", " k4 = phi( tt[i-3], uu[i-3] )\n", " uu.append( uu[i-1] + (8*k1-5*k2+4*k3-k4)*h/3 )\n", " return uu" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "_50Xo95mT9tC", "slideshow": { "slide_type": "slide" } }, "source": [ "#### Schéma de Runke-Kutta RK4\n", "$$\\begin{cases}\n", "u_0=y(t_0)=y_0,\\\\\n", "\\tilde u_{n+1/2}=u_n+\\frac{h}{2} \\varphi(t_{n},u_{n}),\\\\\n", "\\check u_{n+1/2}=u_n+\\frac{h}{2} \\varphi(t_{n}+\\frac{h}{2},\\tilde u_{n+1/2}),\\\\\n", "\\hat u_{n+1}=u_n+h\\varphi(t_{n+1},\\check u_{n+1/2}),\\\\\n", "u_{n+1}=u_n+\\frac{h}{6} \\left(\\varphi(t_{n},u_{n})+2\\varphi(t_{n}+\\frac{h}{2},\\tilde u_{n+1/2} )+2\\varphi(t_{n}+\\frac{h}{2}, \\check u_{n+1/2})+\\varphi(t_{n+1},\\hat u_{n+1} \\right)& n=0,1,2,\\dots N-1\n", "\\end{cases}\n", "$$" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "colab": { "autoexec": { "startup": false, "wait_interval": 0 } }, "colab_type": "code", "id": "rbRn1INwGY-8", "scrolled": true, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "def RK4(phi,tt,y0):\n", " h = tt[1]-tt[0]\n", " uu = [y0]\n", " for i in range(len(tt)-1):\n", " k1 = phi( tt[i], uu[i] )\n", " k2 = phi( tt[i]+h/2 , uu[i]+k1*h/2 )\n", " k3 = phi( tt[i]+h/2 , uu[i]+h*k2/2 )\n", " k4 = phi( tt[i+1] , uu[i]+h*k3 )\n", " uu.append( uu[i] + (k1+2*k2+2*k3+k4)*h/6 )\n", " return uu" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Schémas implicites" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "y69SGZjfIDo9", "slideshow": { "slide_type": "slide" } }, "source": [ "#### Schéma d'Euler régressif\n", "$$\n", "\\begin{cases}\n", "u_0=y_0,\\\\\n", "u_{n+1}=u_n+h\\varphi(t_{n+1},u_{n+1})& n=0,1,2,\\dots N-1\n", "\\end{cases}\n", "$$\n", "avec $u_{n+1}$ zéro de la fonction $$x\\mapsto -x+u_n+h\\varphi(t_{n+1},x)$$" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "colab": { "autoexec": { "startup": false, "wait_interval": 0 } }, "colab_type": "code", "id": "_Bgo6mNyIQgu", "scrolled": true, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "def EI(phi,tt,y0):\n", " h = tt[1]-tt[0]\n", " uu = [y0]\n", " for i in range(len(tt)-1):\n", " temp = fsolve(lambda x: -x+uu[i]+h*phi(tt[i+1],x), uu[i])\n", " uu.append(temp)\n", " return uu" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "23PyYGzhQwuo", "slideshow": { "slide_type": "slide" } }, "source": [ "#### Schéma de Crank-Nicolson\n", "$$\n", "\\begin{cases}\n", "u_0=y_0,\\\\\n", "u_{n+1}=u_n+\\frac{h}{2}\\Bigl(\\varphi(t_n,u_n)+\\varphi(t_{n+1},u_{n+1})\\Bigr)& n=0,1,2,\\dots N-1\n", "\\end{cases}\n", "$$\n", "avec $u_{n+1}$zéro de la fonction $$x\\mapsto -x+u_n+\\frac{h}{2}(\\varphi(t_n,u_n)+\\varphi(t_{n+1},x))$$" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "scrolled": true, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "def CN(phi,tt,y0):\n", " h = tt[1]-tt[0]\n", " uu = [y0]\n", " for i in range(len(tt)-1):\n", " temp = fsolve(lambda x: -x+uu[i]+0.5*h*( phi(tt[i+1],x)+phi(tt[i],uu[i]) ), uu[i])\n", " uu.append(temp)\n", " return uu" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "23PyYGzhQwuo", "slideshow": { "slide_type": "slide" } }, "source": [ "#### Schéma de AM-2\n", "$$\n", "\\begin{cases}\n", "u_0=y_0,\\\\\n", "u_1=u_0+\\frac{h}{2}\\Bigl(\\varphi(t_1,u_1)+\\varphi(t_{0},u_{0})\\Bigr),\\\\\n", "u_{n+1}=u_n+\\frac{h}{12}\\Bigl(5\\varphi(t_{n+1},u_{n+1})+8\\varphi(t_n,u_n)-\\varphi(t_{n-1},u_{n-1})\\Bigr)& n=1,2,\\dots N-1\n", "\\end{cases}\n", "$$" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "scrolled": true, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "def AM2(phi,tt,y0):\n", " h = tt[1]-tt[0]\n", " uu = [y0]\n", " temp = fsolve(lambda x: -x+uu[0]+0.5*h*( phi(tt[1],x)+phi(tt[0],uu[0]) ), uu[0])\n", " uu.append(temp)\n", " for i in range(1,len(tt)-1):\n", " temp = fsolve(lambda x: -x+uu[i]+h*( 5*phi(tt[i+1],x)+8*phi(tt[i],uu[i])-phi(tt[i-1],uu[i-1]) )/12, uu[i])\n", " uu.append(temp)\n", " return uu" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "23PyYGzhQwuo", "slideshow": { "slide_type": "slide" } }, "source": [ "#### Schéma de AM-3\n", "$$\n", "\\begin{cases}\n", "u_0=y_0,\\\\\n", "u_1=u_0+\\frac{h}{2}\\Bigl(\\varphi(t_1,u_1)+\\varphi(t_{0},u_{0})\\Bigr),\\\\\n", "u_{2}=u_n+\\frac{h}{12}\\Bigl(5\\varphi(t_{2},u_{2})+8\\varphi(t_1,u_1)-\\varphi(t_{0},u_{0})\\Bigr),\\\\\n", "u_{n+1}=u_n+\\frac{h}{24}\\Bigl(9\\varphi(t_{n+1},u_{n+1})+19\\varphi(t_n,u_n)-5\\varphi(t_{n-1},u_{n-1})+\\varphi(t_{n-2},u_{n-2})\\Bigr)& n=2,3,\\dots N-1\n", "\\end{cases}\n", "$$" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "scrolled": true, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "def AM3(phi,tt,y0):\n", " h = tt[1]-tt[0]\n", " uu = [y0]\n", " temp = fsolve(lambda x: -x+uu[0]+0.5*h*( phi(tt[1],x)+phi(tt[0],uu[0]) ), uu[0])\n", " uu.append(temp)\n", " temp = fsolve(lambda x: -x+uu[1]+h*( 5*phi(tt[2],x)+8*phi(tt[1],uu[1])-phi(tt[0],uu[0]) )/12, uu[1])\n", " uu.append(temp)\n", " for i in range(2,len(tt)-1):\n", " temp = fsolve(lambda x: -x+uu[i]+h*( 9*phi(tt[i+1],x)+19*phi(tt[i],uu[i])-5*phi(tt[i-1],uu[i-1])+phi(tt[i-2],uu[i-2]) )/24, uu[i])\n", " uu.append(temp)\n", " return uu" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "23PyYGzhQwuo", "slideshow": { "slide_type": "slide" } }, "source": [ "#### Schéma de AM-4\n", "$$\n", "\\begin{cases}\n", "u_0=y_0,\\\\\n", "u_1=u_0+\\frac{h}{2}\\Bigl(\\varphi(t_1,u_1)+\\varphi(t_{0},u_{0})\\Bigr),\\\\\n", "u_{2}=u_1+\\frac{h}{12}\\Bigl(5\\varphi(t_{2},u_{2})+8\\varphi(t_1,u_1)-\\varphi(t_{0},u_{0})\\Bigr),\\\\\n", "u_{3}=u_2+\\frac{h}{24}\\Bigl(9\\varphi(t_{3},u_{3})+19\\varphi(t_2,u_2)-5\\varphi(t_{1},u_{1})+\\varphi(t_{0},u_{0})\\Bigr),\\\\\n", "u_{n+1}=u_n+\\frac{h}{720}\\Bigl(251\\varphi(t_{n+1},u_{n+1})+646\\varphi(t_n,u_n)-264\\varphi(t_{n-1},u_{n-1})+106\\varphi(t_{n-2},u_{n-2})-19\\varphi(t_{n-3},u_{n-3})\\Bigr)& n=3,4,\\dots N-1\n", "\\end{cases}\n", "$$" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "scrolled": true, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "def AM4(phi,tt,y0):\n", " h = tt[1]-tt[0]\n", " uu = [y0]\n", " temp = fsolve(lambda x: -x+uu[0]+0.5*h*( phi(tt[1],x)+phi(tt[0],uu[0]) ), uu[0])\n", " uu.append(temp)\n", " temp = fsolve(lambda x: -x+uu[1]+h*( 5*phi(tt[2],x)+8*phi(tt[1],uu[1])-phi(tt[0],uu[0]) )/12, uu[1])\n", " uu.append(temp)\n", " temp = fsolve(lambda x: -x+uu[2]+h*( 9*phi(tt[3],x)+19*phi(tt[2],uu[2])-5*phi(tt[1],uu[1])+phi(tt[0],uu[0]) )/24, uu[2])\n", " uu.append(temp)\n", " for i in range(3,len(tt)-1):\n", " temp = fsolve(lambda x: -x+uu[i]+h*( 251*phi(tt[i+1],x)+646*phi(tt[i],uu[i])-264*phi(tt[i-1],uu[i-1])+106*phi(tt[i-2],uu[i-2])-19*phi(tt[i-3],uu[i-3]) )/720, uu[i])\n", " uu.append(temp)\n", " return uu" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "23PyYGzhQwuo", "slideshow": { "slide_type": "slide" } }, "source": [ "#### Schéma BDF2\n", "$$\n", "\\begin{cases}\n", "u_0=y_0,\\\\\n", "u_1=u_0+h\\varphi(t_1,u_1),\\\\\n", "u_{n+1}=\\frac{4}{3}u_n-\\frac{1}{3}u_{n-1}+\\frac{2}{3}h\\varphi(t_{n+1},u_{n+1})& n=1,2,\\dots N-1\n", "\\end{cases}\n", "$$" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "scrolled": true, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "def BDF2(phi,tt,y0):\n", " h = tt[1]-tt[0]\n", " uu = [y0]\n", " temp = fsolve(lambda x: -x+uu[0]+h*phi(tt[1],x), uu[0])\n", " uu.append(temp)\n", " for i in range(1,len(tt)-1):\n", " temp = fsolve(lambda x: -x+4/3*uu[i]-1/3*uu[i-1] + 2/3*h*phi(tt[i+1],x) , uu[i])\n", " uu.append(temp)\n", " return uu " ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "23PyYGzhQwuo", "slideshow": { "slide_type": "slide" } }, "source": [ "#### Schéma BDF3\n", "$$\n", "\\begin{cases}\n", "u_0=y_0,\\\\\n", "u_1=u_0+h\\varphi(t_1,u_1),\\\\\n", "u_{2}=\\frac{4}{3}u_1-\\frac{1}{3}u_{0}+\\frac{2}{3}h\\varphi(t_{2},u_{2}),\\\\\n", "u_{n+1}=\\frac{18}{11}u_n-\\frac{9}{11}u_{n-1}+\\frac{2}{11}u_{n-2}+\\frac{6}{11}h\\varphi(t_{n+1},u_{n+1})& n=2,3,\\dots N-1\n", "\\end{cases}\n", "$$" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "scrolled": true, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "def BDF3(phi,tt,y0):\n", " h = tt[1]-tt[0]\n", " uu = [y0]\n", " temp = fsolve(lambda x: -x+uu[0]+h*phi(tt[1],x), uu[0])\n", " uu.append(temp)\n", " temp = fsolve(lambda x: -x+4/3*uu[1]-1/3*uu[0] + 2/3*h*phi(tt[2],x), uu[1])\n", " uu.append(temp)\n", " for i in range(2,len(tt)-1):\n", " temp = fsolve(lambda x: -x+18/11*uu[i]-9/11*uu[i-1] + 2/11*uu[i-2]+6/11*h*phi(tt[i+1],x) , uu[i])\n", " uu.append(temp)\n", " return uu" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Schémas predicteur-correcteur" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "p4f0txAsIwNG", "slideshow": { "slide_type": "slide" } }, "source": [ "#### Schéma d'Euler modifié\n", "$$\n", "\\begin{cases}\n", "u_0=y_0,\\\\\n", "\\tilde u = u_n+\\frac{h}{2}\\varphi(t_n,u_n),\\\\\n", "u_{n+1}=u_n+h\\varphi\\left(t_n+\\frac{h}{2},\\tilde u\\right)& n=0,1,2,\\dots N-1\n", "\\end{cases}\n", "$$" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "colab": { "autoexec": { "startup": false, "wait_interval": 0 } }, "colab_type": "code", "id": "O5rOYvtPI7TO", "scrolled": true, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "def EM(phi,tt,y0):\n", " h = tt[1]-tt[0]\n", " uu = [y0]\n", " for i in range(len(tt)-1):\n", " k1 = phi( tt[i], uu[i] )\n", " uu.append( uu[i]+h*phi(tt[i]+h/2,uu[i]+k1*h/2) )\n", " return uu" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "23PyYGzhQwuo", "slideshow": { "slide_type": "slide" } }, "source": [ "#### Schéma de Heun\n", "$$\n", "\\begin{cases}\n", "u_0=y_0,\\\\\n", "\\tilde u = u_n+h\\varphi(t_n,u_n)\\\\\n", "u_{n+1}=u_n+\\frac{h}{2}\\Bigl(\\varphi(t_n,u_n)+\\varphi(t_{n+1},\\tilde u)\\Bigr)& n=0,1,2,\\dots N-1\n", "\\end{cases}\n", "$$" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "colab": { "autoexec": { "startup": false, "wait_interval": 0 } }, "colab_type": "code", "id": "1ewZyxhHRYxg", "scrolled": true, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "def heun(phi,tt,y0):\n", " h = tt[1]-tt[0]\n", " uu = [y0]\n", " for i in range(len(tt)-1):\n", " k1 = phi( tt[i], uu[i] )\n", " k2 = phi( tt[i+1], uu[i] + h*k1 )\n", " uu.append( uu[i] + (k1+k2)*h/2 )\n", " return uu" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "23PyYGzhQwuo", "slideshow": { "slide_type": "slide" } }, "source": [ "#### Schéma AM-2 AB-1\n", "$$\n", "\\begin{cases}\n", "u_0=y_0,\\\\\n", "u_1=u_0+h\\varphi(t_0,u_0),\\\\\n", "\\tilde u=u_n+h\\varphi(t_n,u_n),\\\\\n", "u_{n+1}=u_n+\\frac{h}{12}\\Bigl(5\\varphi(t_{n+1},\\tilde u)+8\\varphi(t_n,u_n)-\\varphi(t_{n-1},u_{n-1})\\Bigr)& n=1,2,\\dots N-1\n", "\\end{cases}\n", "$$" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "scrolled": true, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "def AM2AB1(phi,tt,y0):\n", " h = tt[1]-tt[0]\n", " uu = [y0]\n", " uu.append(uu[0]+h*phi(tt[0],uu[0]))\n", " for i in range(1,len(tt)-1):\n", " pred = uu[i] + h*phi(tt[i],uu[i])\n", " uu.append(uu[i]+h*(5*phi(tt[i+1],pred)+8*phi(tt[i],uu[i])-phi(tt[i-1],uu[i-1]))/12)\n", " return uu" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "23PyYGzhQwuo", "slideshow": { "slide_type": "slide" } }, "source": [ "#### Schéma AM-3 AB-2\n", "$$\n", "\\begin{cases}\n", "u_0=y_0,\\\\\n", "u_1=u_0+h\\varphi(t_0,u_0),\\\\\n", "u_2=u_0+\\frac{h}{2}(3\\varphi(t_1,u_1)-\\varphi(t_{0},u_{0})),\\\\\n", "\\tilde u=u_n+\\frac{h}{2}(3\\varphi(t_n,u_n)-\\varphi(t_{n-1},u_{n-1})),\\\\\n", "u_{n+1}=u_n+\\frac{h}{24}\\Bigl(9\\varphi(t_{n+1},\\tilde u)+19\\varphi(t_n,u_n)-5\\varphi(t_{n-1},u_{n-1})+\\varphi(t_{n-2},u_{n-2})\\Bigr)& n=2,3,\\dots N-1\n", "\\end{cases}\n", "$$" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "scrolled": true, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "def AM3AB2(phi,tt,y0):\n", " h = tt[1]-tt[0]\n", " uu = [y0]\n", " uu.append(uu[0]+h*phi(tt[0],uu[0]))\n", " uu.append(uu[0]+0.5*h*(3*phi(tt[1],uu[1])-phi(tt[0],uu[0])))\n", " for i in range(2,len(tt)-1):\n", " k1 = phi( tt[i], uu[i] )\n", " k2 = phi( tt[i-1], uu[i-1] )\n", " pred = uu[i] + (3*k1-k2)*h/2\n", " uu.append(uu[i]+h*(5*phi(tt[i+1],pred)+8*phi(tt[i],uu[i])-phi(tt[i-1],uu[i-1]))/12)\n", " return uu" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Comparaison sur un exemple\n", "Considérons le problème de Cauchy\n", ">trouver la fonction $y \\colon I\\subset \\mathbb{R} \\to \\mathbb{R}$ définie sur l'intervalle $I=[0,1]$ telle que\n", "$$\\begin{cases}\n", "y'(t) = \\sin(t)-y(t), &\\forall t \\in I=[0,1],\\\\\n", "y(0) = 0\n", "\\end{cases}$$\n", "\n", "1. Calculer la solution exacte en utilisant le module `sympy`.\n", "1. Calculer la solution approchée obtenue avec la méthode d'Euler explicite avec $h=1/N$ et $N=8$ (pour bien visualiser les erreurs);\n", "2. même exercice pour les méthodes *multipas explicites* (AB$_2$, AB$_3$, AB$_4$, AB$_5$, N$_2$, N$_3$, N$_4$);\n", "3. même exercice pour les méthodes *multipas implicites* (Euler implicite, Crank-Nicolson, AM$_1$, AM$_2$, AM$_3$, AM$_4$)\n", "2. même exercice pour les méthodes *multipas explicites Runge-Kutta* (RK$_4$);\n", "3. même exercice pour les méthodes *multipas implicites BDF* (BDF$_2$, BDF$_3$)\n", "4. même exercice pour les méthodes *predictor-corrector* (Euler modifié, Heun, AM$_2$-AB$_1$, AM$_3$-AB$_2$).\n", "5. Pour chaque méthode, afficher solution exacte *vs* solution approchée ainsi que le maximum de la valeur absolue de l'erreur." ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "ve4iOfOIGsYc", "slideshow": { "slide_type": "fragment" } }, "source": [ "**Correction 1** \n", "Calculons la solutions exacte en utilisant le module `sympy`:" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "colab": { "autoexec": { "startup": false, "wait_interval": 0 } }, "colab_type": "code", "id": "W3EcAN2eGz2j", "scrolled": true, "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAANIAAAArCAYAAAANBNaTAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAH8ElEQVR4Ae2c7XXVOBCGnZwUwLIdZDsIpIKFDoCtYNkO4PAr+ZcTOgipgI8OFioIoYPQAdl0kH0fIxtfWfKVfXUTf8ycoyt7NJKlVxqNNJbvzu3tbZFKx8fHB5I9V9hX+KD7f1LzmpwhMGcE9vo0TorzTfKPFKN9//bJa7KGwJwR2O3bOCnRE5fnc9+8Jm8IzBWB3ookIJ4qfJdC3cwVFGuXIdAXgSGKhEUya9QXaZOfNQKdeyRZHZwKpwrfFX4ooEA4HE4UjAwBQ8AhEFUktxf6KDmcCyhSobhyMJhFcgBaZAiAQHBpJ4V5oDSU6HWlRAiLUKhv4tn+qITDfgyBnwgEFUlJLOceSGHeeUDZ/sgDxG4NARCIKdILpa0s35yVYs9ULe/Ib2QIGAJCoKVITmFY2vkKg3IVSl9RMHhGhsDSEWgpUgOQ0sHQuOf9EScbUKZnClgnI0PAEBACLUWSguBIwOrUioLi6B6391cF6Kl4vqL9TMn0m6qoqXKZqjWJYlIxSZWbRKMzVDIVj5BcS5FcfZ4rPlSGVwrVeyQs0kN4is+c3FYi9wwUN4X2nXyK7OxlDLthXbwpbjt9Tn8Pq2K/XGoQ1g8lfp2a04Fwo9j3MqYWMQu5uWKndrE6ulTgdUz2Ps6B26gUSQ3CyfFF8aPQyHbpANpaWioN/p+KF/mOy2EzS+zUNl674Px6p+usn+7kwi22tFOd74VYRnYtGwGU2ek6UDvykX+pdK/YMdgVXm4DfJXLnv03xVmVyNU1C25jU6QXAqvLdEdPnrt85MeqLZHuGztw3xr26tdtrTSy4DYaRRJQ7I3WeQKxSJ86tIT85fuuDpnZJRl2w7o0J257w6qwPpcqyeyEqf9D4VL3taVxaeeK8Q5WhLVpveyVDMqDSac8lnUH4nEO8ELxW8VNIj/l1M9qJk7lWu1aFHZqLx5a+hmrQ9uhv8TnwDR9Tn8Tf9Z9OWZcnnPH/6CYJRqTMXSoEBofZWLjJ9uY25oiqbJv1Fi8LDSOBjcHN1ajarQuS3qs39b+SPlRDgBEnnU4jY/RlRLokCRSWTwvWd4VyqHd5gSQ9KyeQqPHrmd7ouLCEsU59ftV9+V+SDGrDBQKZ1JNuq/+9oA+f6jABFtOrIpRTCbvTwpdq5xsY24riuQacuFazcD3nQOhmQBAfTlXRBmRB/C6iPzMXEmkem5j85r07JjQVLCL1X8An8H8WO3mkDQWqSJ/Uo2NDRSFCbae3HTNZEc5TJLNCRxek7KNua0okmrKp+jVoMf6nDRrr2sa6POYVZpAelnKPF37I+QBFXDuldR26vBFoU9dnjvMRo2d6hiz4vRfofTQ5BS14pJntYGS/Me1YtzcWBJ/2S52lKoTN77AOvyzjbk9VTj9/7j8anr3KmsHluIbF6MwNKaeFZSG2YXX2g+JFyTlQR5LA8hdtA6YrrzZ0lz7g+/C1j1k7NipfiFFKcRn6c0pkz4KUMEBVm8UKIO9Dku97O+MVG4y6fm9xhyKVA7+5Cf0E8Tc+h8ColycQqgsVlUisxKVDxF5CuWplU/X/lIAEfJTThKpjNjs2pU/Ort2ZRqQNmrsBrQnmEV9wAR5rZiTLOVpFl3jpDqjfxT8cRIsZyAz25jbG1iB1GyA5G/2QvsjykMO+RCt7I8ELjMX8j7IWCT/eaHySp7KCc6u0Qx3mzBq7DJCwQqFttaWTP2CNaLP2T/5fSxWNso25nazVSlc0MqgFjhYFkJoiQZgh+FiSq9MWZbKKE2u4hDALBFC/Eixo2YvCTu8lP5qhPt6BeJ6ypeBzeQ5lLKNuW1bJEw174tY9/5Q4J0S5AME770C7wtCRDmY+fIIiuJ69vKEUdIxWxmvup23S8HuRiiwh36pfq0A+V0X7JNwvGCx2D9hnQrdM0b+VsCKwSedrQL8EwX41RhAQTkAXXv0lNakfGOO0993FY6Ojk4VLmPPU9qVwkEsvYuvfPvk75KZcpraNmrsVL9nCq+mhjFjRmHjMddpkaTJaDsvU9HyXn+ar7xYoSeKS++VYswyFoXZJEbkYTapZpSYXIjPDE7+ydNEscOyEKZGWcbcbler1aF4qFAElGBlX4NiKFwpoGQhwiHwvpGAQrKJjL4LUhomHhdqrMxGcb8unTz5ajf7r9RJXk0OO2HP+6DJ4e/qvPGY67RIDEE9iH0H5O9r4DPgr0kMEBai+qKWvRF7HL+MQLaC9SzrXbw2qYQbe4gVSy3/ruUMu7tFfPMxt25Nq/Uja/PW3kO8sxB/XXkp6SqX/U7Sehs55FPKXYKMYTdsz78pbmu/kJUV4bDgV8UrM77uOSzIUQ5mTyNDYNEIrCztpBQs1dh88Q4DdzVLMRwOJwqF0lnOoVDsmZDt+qRByUaGwDIQqC2SUxL2Jv6f5qM8fOZbe2R0zWb4o+JtHi9aRg9YK2eBwC6tkEJgYVCi1D/NxxEwlxMEaoqRIbAZAqUiqQiWc7izffcl1ijkaYvxN6uN5TYEJopApUh8M7SiMM5KsQ9qvT8Sr8WfaPut2oZAFgR2ncK0Xriq9PJPRJS+omDiY42KJt+VAdvIEFgkApVFovErp411X++DpCjNP82v+WQiTREWysgQWCwCWCS8cVidWhmccuD2rj7hbf6z6UPxUz5pkJiRIbAMBEr3txSHpR1n4S4UOMLOGTkUDCcEPM5RlV46xSgcR3Lw8hW69x0UsI0MgUUh8D+YHDfshrgJcAAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle \\frac{d}{d t} y{\\left(t \\right)} = - y{\\left(t \\right)} + \\sin{\\left(t \\right)}$" ], "text/plain": [ "d \n", "──(y(t)) = -y(t) + sin(t)\n", "dt " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWYAAAAzCAYAAACkEqLmAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAQsUlEQVR4Ae2d65XWNhPHH/ZQAJAOoAMuFUA6SEgFIR0kh2984yQdJFQASQdJKgDSQejgJdvBvv+fVmNkW7b12PJ1Ned4ZcsaaS7SaDSSn711dXV1KlAkMEYCr169+ii8b5V+GoNfcOaTQNHNfLJdouaLJRo5Shvq7H/qengUfqbwITncEf5DpZs3yqLxfgqvqeVS6lqzzJ50E8opVf5nlLujsoxZ+uquoBjmRHVJub+r6O9K/0lEOXqxZ2Jw87KQvn4UnamT6X1ffu+624VuQiHPoSfVeak2ftL1Ufe7Ms63Sigj7B7xeykVo/xJKUq+0SAZ4H3+oOsbXXT8v3S9Vf7ZRtrXRTjkJ93/pjQrqE5ofKI0WW8qiyG/nIOerMxFKhPN2XQTqX62LNE9q558/T8rfTAbE5krLoZ5QKBS5gsV+UHpo4GiN+q15IFBfa30j7GMCxfP7k9dv+keY58NVB8e0t9Ko3rz7+Hha93XwjF6Jv+pUiae3YGnf5JulmJatC6iJ7Xzs3hiRfTtUrxNaaeEMnqkJyXigaDQXSizh5U5XhEewFseDZIv+HeVZjXKniD09msPcUwK6PdzpAx44O8VJutmQcYX0ZP6GKsm9kRwtDYPxTD3qwhvDs+j5lH1oxz/reSBUWO5P9mjzFFHh8Sfq+6+8MjXwiM81eLB44GPN7crEM3ZdLMQ40vqCeNMSGPzei2GuaP3SXnMrPeU/tJR5CZnVx4ZnVxX6ubaIjITPcQshyZTDFhfGAb854sQnLeRTesmZHVpPak99I1eN78auh0KqtzXJIDy+jyuWuEjPagD41G81PU/zxebJmzQmXfJ83v/jnKv/X0tUXmMhPPglJqX8p3yH+kijMCmKulfenbhIo/zxue/U4oeMLTAE13vVWZossQbboVZhActhE2ghXZZ2kJDrE7wqWdTfUD0ZtGN+Dr5upCv6ZVsZFFNWEGZf3kpQPecTqrkq/tOPTuM7j9r6AmvmSN0eM5Dk3c35TO/KYY5ImApjJ15BkDU4ERQDpMl3jFexFj5cMSdtFDKwMMA2+kG3rMhyqqCExnhwFbWl0Gvdwy+CvTs4slKGRQYaDbaKtAzbZKPIbinC+PpDLFS6ODo0x+6+gbVY5WDxhoIB2PCJIChf6a0Rlut8OlE+8hiMyB6s+gGhlQXExOy/173zhD7+jG6hHj+0YW8mbhqG6TKd+f5lf6ii3GCkavJUs9Oz3rXB4vrSXShf/oYE9Jm946KYY53GzoVg79lcOLFj5ErfhmsxNUxus4oe84wCOQ78O+GBh6D7rHKEuoI5dg0mJ99tc0Ew4vxrAYP7eqiHPT0ebIYi656wceIhPyR1wTwkccmQHzn1A08YXAxwJV3rGfkBpi+KBObBJmgmSCZ6Jg8U/SsYi1YS0+vRQkTULNvtghcK6MY5obkpSy8BAZBZRAaRY78aEaTDsuqAfhKFx5StXR1uQN/KK8L4/afx8WwM8iHwhBhzR/Ch+DeDEiQVbvFWJhxqb3wDxj20CDFyjAxDLUTw5srL6du4It+XtOFdINMnFx0b+PgfZMhvbMJkrAUIa6xel5LT9aXWfHVZNDkda3nYpjbkn+prEs6X/vV4XOcwRLvuTorZ4iRJ6EDlo4sebOfWVa9yaD2MUrmffbhDRmNPtw53uXUja0EbA8hRq+V6ZvgMN5Adj3PqSfVzfjGOLPqy9XXkUM2uMhW03EqYgDYjHocrtI5aXlI6ahfSqrju4GtFI/qga5bestAeKF7G9BfEPLe4cF1ebvo9yQaKh3rPlaWPOrZEmTRjRiy+Hzfl3BWJiYbkwmhkCl6XlNPhGn44MQmIONptVS0EB5y9FysRsUGG5ZQMBh0xCqeukEy5ySJwUjoogWSDV7vOYAsa4f5VQdxYZbKxJ/nBPjoGnC1+LLnK1b2nuow4zQnral1Z9ONeL5Uo6wIo3pAJrp4T7napp6eT3rnJjfdYtym6HlNPb2DF4Hxcv200l/JFLvDRrfrc8Uw1xVhSqq8qfrrwz8RbjAZOGbpMLqIbzJQz4WXvsOFeHTApnzJawKGcSxAK0frYlAZXE8bXlOMN5bnsfxYnUvk5dYNeyjw3pw8acf4fqp7PgDB+IZAGU5kmB5T9RzWwf1qehLtTDpcrYkHwlYAxp3J/ZTltzLEJAoe9C5Sy60gFNek6MNTZof57lo0rN2ueGfTD6/Zzq1imM+OwwmHjkanD+OY1Os2EvWewU782SYCBvn3uvBeLS7NwCGfXXTyCYVQ3uWrjugGra+bXffWUl151MNEg7d30nP0dIfy4Z/TKWZ8KL4qiJYsujEmVN8d3WNkAdN37RSGyiAvTmEgc8DJz+SitFfP1yjxv8KlD6ymJ7XPeMd2tfpJnOL8uWrb+jUrUuvvbycbZlVMZ2keu4lyoLIosTqXGi20Yqbo+0/Nf1C6lVl0RWnsu2npEENTncU+hxvhMliYQFYbsOfQu+eya+pJbTMp/aiU/Y9VQTRwppyff3CnYm5PoUaVYOW/UprkUakcR6gwzC90RT2VKfRMwRU9eA9cg55/Xzu+HpaHGHfzMkBhoHMiwc2QSu1jDd4VyC8BBh0eNte5gG7MkzwXt5Q/TwJr6smtEjQWOS+/9sqI1UNFw2iPWYxgxA7zs4riB8Ewa3GKIGmiUdkaCI/VA8twlt4Y4cow655JDGPNqsEdG1NaYEYJSOYsVQlHJE+2KsvE+avSsmqaUTdh1WvpSe1OHvMhH9z7OlMm9apfCgebQEinCqFO8ZhpnFhdF9AYnfxzpAB4NlNGXq+SBa1A8iC+Lu6UwSTljt8o5Xd8qyB+UIbYHYOddqqZ0d5PSb1iiZVtahUyhadMuMSg0cs5Rpa+OcbLzkTyjaxmLT3ZWM8WsvJj/5z+hsIrb1n42JL7FxO6wZI/1zeBzGTUe76kKSsZUQX/1sXRI37joWWUg4owEhxuH9NGUE3rFmVyFQgkIDlf6hHPhJXMIPhylScziFAKZJHAWnry7cKDjf0s/IyohInhvcdjxf1plMcshliWDxkXPGYXyPYNNhPwn+vaipdnho3BnAySBZ4/Mx4bTUO4rB7s/GRyG6XgeAlIJ/SzpNCUyiaVG09NweySwMp6srHfRd7c+W6VJhmwN+V+FMwZZmVAGJlYbr4+qYylf/dGaXg0CVe9tRxXGYwxy0DqY8nORh9e4nulzU4PPvVUbel+TbAPK2Khlyhd4gkek0+lqCxGAiUUKBIoEtiGBHCmkj1mjXlsG16tHQPFZrIvRT2jQLissmvhM/OYOSBO5XjCb3SFxhKvlvwQWLa3DIzwMbbZf1ZR9dIWRv8c4IdWwslkCBeBnwsmzJYsYhWJHpTXF+qIoZW8IoEigfkkgCOWNPY1frFBjPXqGKbyWC2/1JX1lNVtX7HFN/Bgmx5jzDuGkWY5ZVUAzpABAh+PcxBEoxnAwbITCrhZU21hPFPBJqy+kE1nXWoLOTLxEdfkS7MCRQJFAstLYNBj1vjEVtkpn9C2YazJzwp4zO5HsX2tGInXjRZouJkHI30GDJwhY8WyHsO0ZzBjDi+DgCHW5eSm9KEQkBOQJAfhdK0cjI7YBJa0clDdV9eklL99EpCcOj9G0Dv0yEZwkj59O5X31dVu0U2XZOL5fTqKYyTl2qqYMUz4Eqi+ZL1+zPcXj9kMBUaCDlWFMfQO40FeK56svCgIh/I2u0TL+EyMiWu7r9CC79wKAPpNJgltgwO/g6A68a4x4G621TMpRtO87pQ6Yob35OvguFwzjj9YpxUQbqfBsTIl7ZeAZEh/zr7yKbrpl3uGt27sD9TjnM0pY2yg/trr28ET8VgMRWgsIYbjXc6YBGVhpMsggXMSTmXMdR8zduCnCIS6ujxFmuqCJE8xQDa+z5kw4PGF6Ev5rZAnKje0igjIKbdFAkUCC0iA8Z604lU5C/nOTlZomPFymwTG4ssQRbmu+HAtvixjVPMUQfaQLBDVEfUUraJMqe2ydk04sWY4KsdpFnjs9FZFP+Wa4SBlFSgSKBLYgASadi9GEmXs5FbtPTZOV1an6yJooUacGsLz5YoFtvGgnwS44W1lcFUHRg5vsulxU54lXyyfd2uAeczJbYsvZMZKg0+sMdA1UN4zXc4oKz27/lpl5aFIoEhgDglgo1JW7oxjFw0wIjSmiQSwms9ux0KPmeMenFeGALxH+0yxCkkoz+CtbjifHAPq4bcGnKFS2uVJwuQSnnCMxlieKYeJJRnEH59a8407xplJzAww9fH9e9ZjNMmElYJFAkUCvRLQ2MQoAzZmr58if1WW377BEGMf3Y8fKeV5FhtWGWY1AHHVuV9PAHHamicNzcojn5QPSGqzhZ4pTzijE1TGhUGUxox+J97ML4zPrhBNZ/PiA9nNoqDORg/4wvcLm8gei0UmN87X1/rYAVnfBUsH1I+NdQtj9upB/Hc5mb14Y15egKQG8fY+WgW6ZybB4+2LizJzjDVGDD7wNwPi2QZ/9l31BZhkYuDaLUj+DBJWWpzptnPd6IQvUVldFVhRAgfVjxlmc8pWlHC9aWeYlcXmFeEJgze6wXXvDGjrHcfqiB8bc4bbm/ry4FXH8noRln2JgvDUZgfkoIvJ6aUud69nOx95VvvC42vLLcrzHD5aE714YgJnwukKm51Tfyk7TQJH1I/ZLnPKpkkoI7aFMhgA97xhILaM55ISZiD0waDpDV3ofQgEy8d62mE9c9yjoEW8M8mXScCW7XPwsrc6kfu/kstdXaH3Tz9k15vJa3Oezd6EPIHeI+rHHWDYYr9yhlmEdXrGfYoU3qUulp38e5bB+AvlVB/ltzrA2LzDCBDUD41DnxjKuzwSwACzZ9El9zt5mim1jJTAEfXDZJPigI4U2Xg0Z5jHo7v4NEZ20CjThgZdUrkp9EzE/eDxUdioyWpi+zcWXX2j2nhuCOEhz3q/ueVmg85DPx5NP+KHMAaTfew48Oq6tBjz6oRsgQA/+PHYvtsCPTedBukDo8wAKiGfDXaGnesH5wvYpANWDPO1csK/7/RgSgvzy/3yEmD/gnPiW19pLS+ZbbS4Z/2wL8YPuG0yrFoMc7uD09mIMRfj3JbNYjmSP5vEDJyuEMditJSG2hI4gH44iUYf2yQUw9xQizocmwHMosUgNGSz1KN0wBl6Tgmdc9pnKfJufDt714+nHz1u9ohpMczxYcaZzRdSYDkJEJfPbLmSOZ7MA6XVxKh7jsrdn63RUnGyBA6iH/YsCJGxn7RJKIY5ohYpjJkUpfHxR4GFJCC5s9nHz6M2N/sw1p8XIqM00yGBI+hHPBCiZJJv9rEOrtfJvnV1Vf5xRUz0UiDLaWJQzQ8eYsVL3kQJSN4MFo4uxc6VPtN7+1GtiS0V9DESOIp+xAd9jO8vqhXZGHnMjXN77gb2Wr8UxyfpfKGI17zp2XWvMm7QzYDBOLtfJWy8K2eYGwJZ4XH3+tF4xlvm4tcgNw3FY+5RjxTJ0pr/4fZI95s8VtNDfnlVJFAkEEhAY5if6+TXCjd5djkg9VRizKE0GvdSIJ4av7C32WM1DZLLY5FAkUBEAhrLbOjzc8WbN8qQXwxzRIlhlhTJxw3EpFBsgSKBIoGdSUBj14UwlG46rhyKtRjmUBod916hbEBxOqBAkUCRwE4koDFLOBKn6ulOSHZkFsOcqC0pmB/Q55fxUHSBIoEigY1LQGOV7xDe6Hqq+82eWY6J8f/i5qpNsyJ2jQAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle y{\\left(t \\right)} = \\left(C_{1} + \\frac{e^{t} \\sin{\\left(t \\right)}}{2} - \\frac{e^{t} \\cos{\\left(t \\right)}}{2}\\right) e^{- t}$" ], "text/plain": [ " ⎛ t t ⎞ \n", " ⎜ ℯ ⋅sin(t) ℯ ⋅cos(t)⎟ -t\n", "y(t) = ⎜C₁ + ───────── - ─────────⎟⋅ℯ \n", " ⎝ 2 2 ⎠ " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAFMAAAAyCAYAAAAgGuf/AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAFcElEQVR4Ae2b63UUORBGxz4bAHgzGDLgEQEmAyADIAM4/mX/84EMzEbAQgZABkAGQAa7ZGDubUuie9QPjafH9kxPnSN3SSo96utSSaoe752fn8/66OTkZE79mTLwj/pkt7EOne+i12fSKfybPh33+ypp/JL676QfpCd9sttaBwbfgu5H8N9JGlcr7XVZJo1e00IwX8C/bW29wYXopMW9J92D/zWkCjK3kNFCBdM2GliD/mrkQgbBQ1iBfAu/NUAGQP5Br/9I90mdVkZdg2j7i/SQwp8k3V7m8lotk0YfET7kucdzKwndNBZX3234QcuMICAbV6zWqQtItJ+4JqNlfmoW7XIBgXfhKUYNysAEbX2DVPy2LsQn8zf6yjuLGmdg1gT0KztaAoE+MJfoZicqAjswR7SDHZg7MEdEYMSudpa5A3NEBEbsasqW+XfA8WAsPFvv5mN1fhP74VJicEOKN5j3lHkQ/8hzpTjE6GCGG9RzJmcgoH6LqiZL/ZxyI1GveF45Me7aQomjgslEDR4ckU5JT8gnMOEfk4y2aBEGC7aORgETkLzPu3y0uofkG9EUUaPsA0lrVWYbgiiZr23bgFRWSlZ1ke39a9DU+GAWllpoJeDGBWOwYKH65meZe8RFA2pQm2W6DCVjmoNE5y5Zo9aNZd3R0ODJvx11m1Tsyos4pXm3WaY+7wcgDS5FZLRi/aTyH1Kv3YwWqd9ciRjLbzEr97PCJNwTZszBjTZRA8zaBLOQfGrRZF6EbJFi9O8Sz/xps8v+HO1dXr5E3cq1EHPQcDxGncE7l4oSmBQKyFOSG0ipT3t80c2sxCqD6J8H49wiPSd9/VPazyGrz/JTw71+yfXWMr6GJKBf4XVzs73j42PftMpoMc/CZGGHCdn/kRKQom9FyCkrGDOeTiD6Hc+dWeRaubGI/vt/IFAbCNkifWyCrAblvnFW34DcHJYl2/gyBikMqsVXy5y8z2+hfLD9qgKMUwzQJcaqjkn7DKIfi1bxE74y2cIOq02KNslv9LR7gFwFZI/MRlWhj0c9Px3rGt/UfaY+wGPL50JwEE03meg7LcuI/lwG1Q6YVW5oQdBJvdMlJYGpTggIqEs3BgMs7iTkXbbedV/DN44JNqLskFQBybPylZavQvSj3z0nFW9aq4zX1pax9fUeCfX1abXVfWZs564uOAJRctb0mng7tPGgH0GrXgp1owY06E+35Ev8QrouqnRiHo0oUxuYEUDPmpHvnbQKIqBVXwkxXvTxS49H2zmN4gu+D+9Lf0V5srCCTrXMTL4NzHjGLNqlCwa+MSIBSA/a6VICrxvyrPiINGg8yERcIk5Jv4bPTKVXwDCpOUlFjkgVT14/tE5yvMYKYkyt1JVVtE/UJqdFN6jNMhsC68qghG82Lrd1DbPYr8vTe/3ij7W0SOOtvtTM4hY76cpfm2V2TWjN5YJmUEZLbKO4hNvqBsuuzTIHZ7YGAUDs+mRRXVSozzaVZaYxNcvMsAFAgazv8JlMacHkwQQoNx7Pyr0//i8BdNJgAqAXFH1o1/IvwTDJTBZMAPT6e8AznTkTKpdkJgkmABqguFO3SHiPRfNL4lg1mxyYAOaGYzhw8YwrwNlBfBlwp3Y00vLccD4Bpv6yTgZ2VtqE+sA8qI+0JbxRLQHNwoWUlZ4xO3HJwOTtGOKi77LPEQpuCqHXpaNNNR3jLSm7RXX5TK9dmn1sWOtr8uxhQODdIhJdYEbnbERnRwGBYFxi4ofAzC20ghkEdcYv4d3lJk8BSH9TJbUe8lvBVJrGWqfJH4Mu7nyKTIbQ36XtNyfdXut/9ApG6z+iWhGJjubwFZjwo90WYv83/YnOnku1yFP43qPTb7pMx2dVw9UAAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle \\left\\{ C_{1} : \\frac{1}{2}\\right\\}$" ], "text/plain": [ "{C₁: 1/2}" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQ8AAAAvCAYAAAD99E+8AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAMxUlEQVR4Ae2d/5HdNBDHX26ugEyogKSD/KiA0AGECiAdJJP/8l8GOgipAEIHQAWQdAAdkFwH4fvRSRpZT7L1bL1Y9mlnfLKllbS7Wq1Wa/ndrU+fPh06rCuBly9f3hcF70qpEP6tUty18ETjD+r7X6V/rEVDzX7Fx2tdT2u2ufW2LrfOwE7o/1F8PJByvt8DP+LjG8vPz3vgx/Lwo/j6XdfXO+JpESsXi2r3yoslIGXE6zgo3YvhuC12XoifXa3S4udf8fVW6TPG6yaCeH+n667jvXseThLrpS/UNZ7HXuCtGHndMjN2AvwuGv1EiOi9JxyMxQCU97Ouf2x6NSjc+YN4ZlG4r9TLpRuPFQddA4Hy3lXq4wI277kl66HSD7qeK795z8TS/lBps669aGMSIN8Huu7oeqw8jALbEid3ZWcBw/hG17dZjH0WPBZbAx3sxmPdgUZZvcJKeTEmBOb85EOplYe7+LUub2TWJTvbO7yMxjnEA5OX4DD8+FUs2+IZCtSv2VIpJaj7m6WptCf4w9Dc1rV770M8opPIizjWlZ7Rx1+Uvr/QTYcVJCDhM4lYpUODwMAMYgUqZ0KipGwHWgcmI9uBMWAFQyHxqE4GyQNPgX5mgeqGE94ZMOhhPCbB1mcFfjKJvAME8csbM6eDr7jXZTyQbjzWG2AMxauoeyYWe+pYkTEwrHQoeZMg2kzgV8T9PUEgXhUKGU7iiSqDYmQTy2eAUPIQyZLtC1cpwONN27YwvuFCd+jbllJ1qYgnxUX5WUEHXoYdHIJSuYm1eNJUZCNuCsNXYhTA+y2uvMIzq2noJUFXKfwjxE16HtItjAAL1xQ8Fa7ZVipFNmxZBnp5OdVCLz+LBJJvWDQ4udWMAT+ofBCwCilTGYYFpQgH+C/l+4ka4KD8wD1dvH70K4ru6csoi1JnrL5TPgHGMXikwrBvj6u6tIehpD28Jwwk2zDo+0npGkAwGgNyEA1/6PqgqzSOwTiAW4pPN02AaIZ2H1MrJMp7HfCsOgT533fjUSi9UjQJ1QWW/IRM1P1GeEzcSRAeA8eEM4qeqiAcyglCfq97YyyUMmExDHgD73XRDhPW7fN1ayYOB5+YzD/pQjEIBg6US8+xh2TqRn+o+yHKM4+qjyyYoMgGj2vQfqrOufNEw8AY6rloPCxdjk/kzmRsBsQH48Di9J8lCr6IU1zZ5zkJbfxlK9K22W5fzGmp10lLQAPEASJe42XdQovD675SYMLzRmBshQYHI+G9DD2jRIBTGtdO/IYDo4TBwLiwGhPEdXX1aKCE3jvCdH3ZakcJRqOpyXZEYVmG4xOemwGNGwsGiwhvQ1gM0BnGjgm/BGiDsy8Eqmnb8N89jyUiDepKoEw+XuN9oesZz7pSE4W9ZNEqJzwGDaOQ284cVMZEp++BcVE+hsR5IZSzSrrVQ7fXIDy8Eh7YmrBCsap+VIq3QExgynAJxQB0UHcMUO7QwGVx1T+8gx+DmbAqT3lD8JKVFQ2pvPhjLuHmviGa4jOm+ezPopXxZbzQr1DvkGEY2zmZFtvekbwvT26pV0hKwA2YUlw6PBCs/UCRVYblZlJMgsW9o3TKxUdpAOemXj8N/zoct2IOS6+fMDAA7jy0s8XAg8Ir4RDVkfKoLATaNhM7zHT3qo9xcQrusrNprj/lQxd77oGxzDYUFaheziBEmKOPjs+WjIjTK+Iw6B/AQsa2dGwLbRDn/OnGY47URupooK504YH8oBQlD7cJbBEGe+1UU6rDBMFN9MaHtsBVGrZHlnse82YcDhM4B3g49EHgEDpNjEX3xuAp5fBauKLl2snlGy9CbXhF1v3mAo6WOSdHDGYrgHxLvcQqNF9UaaU3EkvAxTzMBKRQEwWDwOCOKpzK8QAeKfV1qS+g/tFKZ9tjUj8EKQaVE5ylnH6PvBiVmUmtMmIi9D04gKVyDCFbjWT7yneAgXKTyuWF6SDeAV0qNAYxRFrrXvQQKyiFFj0PaD/alpYyNAevG485UpuoI0VkIrHC4n24CcVWgC1NFoTLZGISsyKz0vtLeexlc4YHDwUvJ574GDHnLXyl+yfCwUCEAA7BNecRvNC9o9nh8ezKXV6corhjBoYJZzwg27553Rc3ssaz6MHNj+UyRgrjhIeZG4+xuucqQ7ZsU45AdGKoq0OVbYuIi93zJKGleMnK28tkUrKqY0AY2L+VTikbgS0Uc2AE9Aw4I3D9FPylfV1fKov4BHtfd44D4+MmLMFEtkzhazv64tkZBuhzWy7dGkAhade0Y/NSCfRh9HJbETwp6DG8KZ0Vs0h1vCRPdDBGU7zFXSBHJ7O4bK1n9G0Ql2IslEc+V3W4tfSXxEQgVjt+TZgk1A6UOVOQRNhZpvjFFWaCopzf6vlUJd2URMTfR8vn2SaW+jDbHaWLjY/aYHJhzDCYvGEqCqYKj3HFEFKvGRA9zEWMvVs8MOSL5ZRjcJHnIcIYyC9KCRQeB4UwHqzGTQk+J6CF+WxT2IZgXHdtOKycflVKbONsxkNt4x1x1QD00B2OK2pP+Bgctjjw2hTAy+ck6GJuZ1aI7I/jwJ5pknJdfOTFyutBzzDI/p1B2DWIRwKNuPNJGe2QebZMqS1XNVYlUxagxQuP2mDhKzpzEhH/hHqqX8uARc1v53G28RCL7KPcu+UUx+wlMRwfEoXUO8s+LNHXqllSMn6b9CZ4HQfxiaF0x9BXlftY56ITveQMzZxxYSGothiIBo7rn9XgjsliSdkS40HkfmwFwH3FXT+y0LYe9XfvfSwZnI3W/V50v2icdvSOczQEgn1A0T5n30yonEnug9CVeISWTc6DWTEPCREBT1ltPI8xt5D6uIBjBkjFHbYkAenGla5XupiY1VbomjIQXXhIXAb0jCeCYYDuq+vc4V+LQ9CbRbGDJGCMhwSC5UN4nFLkJ+/8hLZlb5T6047CSQbFhIPB4HUR7TEgBEcJGKY+vSaoRju+L9132IEENObEBNgW4JKfM3i6WFqiD713BgGDx3Hu1KKHIQznwOK+t96A8zxM4FNCw6N4oyuc0HgHsSv3UHlH8Q7VR1HcnhfFcYOi7CPgdRLGZhLUDn0V4QaNTX4kFeD228oS0JiFOlS59XrNWTonaRXe4AxFPQq229KlhMJrJ04HAkz2OMBJXrx64FnEeMryQB3vFvrc4Q318U4moQ/cpIg6QpfAZ5cAngdBTTfR8TI4mxACK36cx1Hj5N7QVqROyvWzxSYh5oERWg3EN/3/qesUOtj3OnkZ2vVc/Jn3asz2js8uAelB9pCZynLeM3PpoPKUZ1PkPavuKvqH52GMgFImPJPIu3DKwyshL/Y8lJUG1QEfj2LqNwSmDFC6g4q5lneOGi8CtZNVmkUN98q7kYB0JGUcDsonJMDnHbMPeKnuKvqH5+GAYBCWzhgTm4lBIXo+WGmVx5YDI5EC6hxUxxsc3XNgLGwXFOrTziSobs5qj9UtstpjDfSyLoEugbwEQuOBtxC/fk3FO2gNvFy8YhDv0MTHsoIfGyA8j7g/ZR2D2kha7WPMntMl0CXwuSRwEXQ0mMiasHgQXKntB4bgUVA3vPVGQW3gXeQ+vWa7EBuUsJ1+3yXQJdCwBELPg/fYnOfgxB0/aed+mcpvPwI+ftE95zdSQDucwuP9+UFpbi+HYeoeBULq0CWwQQlkP8m3RuSx0mRAUfmc0zh681AiA9U1AVWlzkCVVOs4DUnAjqE7Qcq5H+JX/DZI9yZPGCfJa3HA9ITuDjXHzWxb1CAn6/zPsOme7YY5rjtCGB7KXM8BpaN+hw1KwCog3iVfR3O5LSink/EoO5RLgBcJXGcHjQ2LdrVxczEPrB9bEQfmlKk6y57VUBmvdIlnQFAxWHzq+VfCxZU7YisSOFo4NJ4sCEyC3Ha2FdqbokNyq/ITA4VMVR03ZzzMwIsR/t8Ir0WxTs4lHaOL17vgnwLgz/VYTumn455PAngXm/yH3OcTySZarjpul7AsQ5H1MMZEonqcAcFtxejkAqO+CfD0AP7gzY5H6DdbkQBBdD56zLnbt7fCyA2js+q4ZQOmN0yond0KEpAxIYjOlnSVE48VWLiRTcwdN7dtuZFC60zXk4AUkE8ZiH+VbHfrddxbWiSBJePWjcci0ffKgQQIlPI7HpPb16BOv11fArPHrW9b1h+8zVMgg0EQnO0KnyZ02IgElo5b9zw2MtCtkikF5DwQvxrWDUerg5Sgq8a4deOREGzPKpOAFJDzQUf/kFv5xD46NCqBWuPWjUejA9w6WVJAAqSPlMYBUgwKR9U7NCiBmuPWYx4NDnDrJEkB8Sz42jr10STfQ/VvlhocxNrjZg6JNchnJ6ltCWA4MCDmy+mI1P5hXCSQhh6rjtv/zGypaJwOajIAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle y{\\left(t \\right)} = - \\frac{\\sqrt{2} \\cos{\\left(t + \\frac{\\pi}{4} \\right)}}{2} + \\frac{e^{- t}}{2}$" ], "text/plain": [ " ⎛ π⎞ \n", " √2⋅cos⎜t + ─⎟ -t\n", " ⎝ 4⎠ ℯ \n", "y(t) = - ───────────── + ───\n", " 2 2 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import sympy as sym\n", "sym.init_printing()\n", "\n", "t = sym.Symbol('t')\n", "y = sym.Function('y')\n", "edo= sym.Eq( sym.diff(y(t),t) , sym.sin(t)-y(t) )\n", "display(edo)\n", "solgen = sym.dsolve(edo,y(t))\n", "display(solgen)\n", "\n", "t0=0\n", "y0=0\n", "consts = sym.solve( sym.Eq( y0, solgen.rhs.subs(t,t0)) , dict=True)[0]\n", "display(consts)\n", "solpar=solgen.subs(consts).simplify()\n", "display(solpar)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "On définit la solution exacte à utiliser pour estimer les erreurs:" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [], "source": [ "sol_exacte = sym.lambdify(t,solpar.rhs,'numpy')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Correction de 2 à 5** " ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "cnwNf75iGe0F", "slideshow": { "slide_type": "slide" } }, "source": [ "On initialise le problème de Cauchy" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "colab": { "autoexec": { "startup": false, "wait_interval": 0 } }, "colab_type": "code", "id": "OLLu4aFJFENg", "scrolled": true, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "t0 = 0\n", "tfinal = 1\n", "y0 = 0" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "xpjn_ogYGo20", "slideshow": { "slide_type": "fragment" } }, "source": [ "On définit l'équation différentielle : `phi` est une fonction python qui contient la fonction mathématique $\\varphi(t, y)=sin(t)+y$ dépendant des variables $t$ et $y$." ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "colab": { "autoexec": { "startup": false, "wait_interval": 0 } }, "colab_type": "code", "id": "df9F-MXWGm2a", "scrolled": true, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "phi = lambda t,y : sin(t) - y" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "bA_8O6n7GDZD", "slideshow": { "slide_type": "slide" } }, "source": [ "On introduit la discrétisation: les $N+1$ nœuds d'intégration $[t_0,t_1,\\dots,t_{N}]$ sont contenus dans le vecteur `tt`. \n", "On a $N+1$ points espacé de $h=\\frac{t_N-t_0}{N}$." ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "colab": { "autoexec": { "startup": false, "wait_interval": 0 } }, "colab_type": "code", "id": "vpENCboHGiku", "scrolled": true, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "N = 8\n", "tt = linspace(t0,tfinal,N+1)" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "SnKKU27oGyQb", "slideshow": { "slide_type": "fragment" } }, "source": [ "On calcule les solutions exacte et approchées.\n", "\n", "Nous pouvons utiliser deux méthodes différentes pour calculer et afficher les solutios. La première méthode fait appelle à la notion de dictionnaire, elle est compacte mais peut-être plus difficile à comprendre. La deuxième méthode est celle utilisée lors des deux premiers TP.\n", "\n", "\n", "Première méthode : on crée \n", "- une liste avec les noms des schémas,\n", "- un dictionnaire avec comme clé les noms des schémas et comme valeur la liste solution approchée\n", "- un dictionnaire avec comme clé les noms des schémas et comme valeur le maximum de la valeur absolue de l'erreur." ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAOVCAYAAADzyICFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZyNdf/H8ddnxti12opKm3b169Z+V7Qqou4WCTFkSUohWpWKUikpIssQiTZ3pUjdnfYS7kpSSiKSqFAMM2bm+/vje83tODPDMMt1Zs77+XicB+f6Xuc6nzNzPnOd87m+iznnEBERERERERGRxJQUdgAiIiIiIiIiIhIeFYdERERERERERBKYikMiIiIiIiIiIglMxSERERERERERkQSm4pCIiIiIiIiISAJTcUhEREREREREJIGpOCQiIiIiIiIiksBUHCrjzKyWmS02s8rB/Y5mNqEEnsdF/b+lmU0t7ucQKc/MrJKZLTKzusH9Jmb2Xgk8zzIzaxD8v5GZfVLczyFSnig3ReKTclMkPik3y6+EKQ4Fb67NZrYx6vZU0NbRzLJj2jaa2f5hx10ItwFpzrktpfWEzrnXgGPNrFFRj2Vm+5jZdDPbZGbLzeyanex/i5mtNrMNZjbezCoF2yuZ2bjgGH+b2RdmdlHMY881s+/MLN3MImZ2UEz7iWb2QfC7/83MekW1nWBmHwbPu9LMBhT1tScyM3vPzNbl/v6itk8ws8zgd/C3mc03s7Oj2pub2Udmtj54H4wxsxql/wp2S1fgA+fc6tJ6QufcAmC9mV1S1GMFOTbezP4Kfva9d7L/NUE+bjKzf5vZPoU5lpmdmc/fYmdml+fzHO8GbRWith0VbN9gZkvM7LKivvZEUoTcbGpmXwe5+Ufwd71e6b+C3aLcLMSxlJvh2t3cjNk3Lfi9HFY6UReZcrMQx1JuhqsI580mZpYT83vrUPqvYLcoNwtxrDKZm865hLgBy4DzCmjrCHwUdoy78ZoqAb8D9WNey4TdPF6Fgrb5t8p22+8EniqG1/A8MA2oDvwT2AAcU8C+FwK/AccAewPvAQ8FbdWAe4EG+KJnC+BvoEHQXjM49pVAZeAR4LOoY9cE1gBtg59rDeCoqPZFwCAgGTgU+BVoGfZ7oCzegt9RNvAncGVM2wTggeD/ScB1wB9AcrDtGqAZUDV4D8wERoX9mgr5uhcCZ0TdbwK8t5vH2lGuLst93wf32wIziiH+B4EPg5/7UcBqoFkB+x4T5N9ZQW5PAabu5rGaBMeqFrO9LfAB4KJeewXge6B3kKvnAJuAhmH//svCrYi5WQfYP/h/JeBh4LWwX1MhX7dyc/eOpdwsvffobudm1H7/jPq9HBb2ayrk61Zu7t6xlJul9x7d7dwMfk8rw34Nu/m6lZu7d6y4z83Q31yldaMUi0P4osUDwCfARuB1YF/gOeAvYG7MG/0JYEXQNh84M6rtTWBo1P1pwPjg/2cBS/J5LROi7u8JjMMXM34J4kqO2vdj4PHgj9oD+W0L9nUxz3MG8FMRf07VgMzoNzkwiaDgk8/+U4DBUffPBVbv4PgLgMuD/3cFPol57s3AkcH9wcCkHRwrHTg66v6LwO1hv6/L4g0YELzHHiPmDzxRJ9LgftXgD+X+BRzrX8DXRYhlAjASX2TaGMRVFxgGrAO+A/4vav/bgB/xf9gXAZdFtT0NvBR1fwjwH8CAA4P3W4Wo9iZEnUjxX6gfBX7GF0FHAVWi9l0J9MefdCblty3Ydxnb/32pFzx3pSL+3n4BLoi6fz9RJ8eYfQcDU6LuHxrkeo3dOFYavndk9LY98SfMU9n+RHps8Hu0qH1nA/eH/b4vC7fiys3gvfwgsKgIsSg3C/+zUm6W81tRcxP/JeMLoBFFLA4pN5WbuhVPblLMxSHlpnKzOG4JM6wsBFcD7fFv4kOBT/FviH2Ab4F7ovadC5wQtE0BXrRgDiGgE9DezM4xs7bASUDucKfjgMU7iWMikAUcBvwfcAG+cp3rFGApUBvfM6agbbG+BRqY2R4AZjbS/HCC/G4LCjhGQyDbOfd91Lav8BXa/BwTtEfvW8fM9o3d0czqBMf/Jr/HOuc24f8g5j7XqcCfZvaJma0xs9fN7MCoQw4DrjWzFDM7AjgNeKeAOGXHrsUXSp8DLgx+V3mYWXKw70/4E0t+zmLb73h3XQXche89loHP1f8G91/Cn/Bz/Qicif9DPhCYbGb7BW19gEbmh6meCXQGOjj/1/w4YKlzLmsHcQzBv2dPwOdrPfyHjlx18X8jDsIXOwvath3n3C/AVuAIADO7bQe5uj6/Y5jZ3sD+5M2/QuWqc+5HgkLwrhzLzKoCV+D/jkUbjP/gEtud2fILH3+ClZ0rUm6a2YHBe2gz0Bffe6golJvKTfGKet68BT8EpKDPY7tKuancFK+ouVnb/FQWP5nZ42ZWrYjxKDeVm0VTkpWneLrhK48bgfVRty5BW0d8ASW67cciPNd7wJ1R94cCM6PuXwJ8uYPHrwOOj7r/L3zPot+Bf0Ztv5OYyiRRPYfw3fwzCCq1wbY2QCRq35/zefzP+cTkYu6n4KubBxbh53QmMT1/gC4U0C0R/0esWT4xNMgntneA0VHbxhHTIwlfUe8Y/P/74Pd+En7Y2XDg46h9TweWBO8TBwwM+z1dFm/4bu1bgZrB/e+AW6LaJwBbgt/FluDWtoBjnR/kym53rwyeb0zU/RuBb6PuHwes38HjvwRaRd0/Gd/jbjnQJmp7W6KGMQbbmuS+1/F/7DcBh0a1n0bQOy/YNxOoHPP47bYF25flkxO/AGcV4ed0QPC+j37+84FlBez/H6B7PjE02ZVj4QvsP7H9VZPGwc+9Ar47d/RVlhR8Ybtf8P8Lgp/RW2G/9+P9Vsy5uQ/+6t+pRYhHuVm4n5Nys5zfipqbwe91CbBncN9R9J5Dys2d/5yUm+X8Vgy5WRc4Gj/k7GD8sKLRRYhHuVm4n5Nycwe3ROs5dKlzbq+o25iots9i2g7N7wBmdkfUhFKjdvBc0VXhzfncrx51zD5m9m0w2dR6fAW3ZtT+M/BjDRc75z6K2r4OPzdOQQ7Cv5l+jaqgjsb3CMq1Ip/H5bctVu7z5luVLaSNwB4x2/bAd28szP65///f/maWhO+emAn03IXn2gxMd87NdX5y74HA6Wa2ZzDp2CzgPnzh6AD81YEeO32FEqsDMNs593twf0qwLdqjzrm9gCr4P5qPWN7JxU8NHnuF277nWfQ+baNydeYOYtqVXL3WzL6MyqdjicpV59zn+D/kBrwQdZyd5WotfHfj+VHHnhVsz7XW5Z14Pr9t+alB0XMV8uZfYXM1ev9dOVYH4FmX+2nD5/dIoJfL54qVc24rcCnQHH8Fpg/+97CygDhlm2LJTQDn3J/4K2OvRk+smEu5uR3lpuxMUXNzGHCfc27Dzp5Iubkd5absTJFy0zm32jm3yDmX45z7CV8EuCK/J1Jubke5WYISrThUZM65wc656sGte1GPF3TV64/vBrh38AdkA9t3JRuEH8a1n5m1idq+AN9lryAr8D2HakYVvfZwzkV3dXP5PC6/bbGOwldF/wpexyjLOxt77q2gYT/fAxXM7PCobcdT8DChb4L26H1/c879EcRg+B5CdfBzDW0t6LFBt81Do55rAdu/7tz/G3AIfvjbs865LOfcSmAqcHEBcUo+zKwK/n1+tvnZ/Ffju7ofb2bHx+7vvIX4Hl7No47zf8BrQCfn3H8Kej7n3HNRuZrnC+xuxH8QMAZfdNw3yNWFROWqmd2AH2e9Cn+Sz7UAOCS/L8qB3/En7WOicnVP51z1qH12K1fNr7pYkWAIakyBO88tv2M459bh5y2Lzb9C5aqZHYL/uXxf2GOZ2QH4qzLPRm3eA//halrw/pkbbF8Z/C3FObfAOXe2c25f59yF+Pz9vIA4heLLzRgV8BciYj9QKTe3xaTcVG7uUDHl5rn4L6S5jwf41PJZHVa5+b+YlJvKzR0qofOmI/+hRMrNbTEpN0s4N1UcCl8N/FCltfhCyQCiPkyb2VlAKn6c6rXAk7ZteeDPgb2sgOWCnXO/4ieuGmpme5hZkpkdagUscbqLzsZPeJb7XN2j/mjF3vIdw+n8vD+vAPeZWTUzOwNohe/5k59ngc5mdrT5MZ534btQ5noaX7S6xDm3Oeax04Fjzexy8/M5DQAWOOe+C9rTgMvML1mfAtyNn6R8Pb6IZeaXMUwys7pAa7YfXyo7dyl+RYej8WOQT8D/vj7Ev7fzMLMj8d12vwnuH4u/+nCjc+71Uog5WjX8iWttEEsqUeN+zawhflL3dviuo/3M7ASAoKD4A76Lbh7OuRz8SfpxM6sdHK+emV1YDHE3Ad51zmUEzzV4B7lafQfHeRa4y8z2Dn4vXdg+/6I9B1xifgnPavhed68453KvpBTmWO3xk8j/GLVtA35sd+77J7dA+w9gDoCZNTKzymZW1cz6AvvtIE7xiiM3/2VmRwR/I2vh5zX4wvleRCVNuancLK+KnJv4i4jHRz0e/PQG00ss6m2Um8rN8qo4zptNzM/VZ0Hx4CHg1VKIHZSbys0CJFpx6PWYimL0ifG0fCqOJ5VCTG/hiyzf48d0biEY1mV+sudngZ7OuV+cH1I2DkgzM3POZeLfIO12cPxr8RXWRfhugC/h31hF1QY/RK2oeuC7Wq7BL2t/vXMu94/mgcHv4UAA59ws/ASnEfzPajnBxN7mK+Dd8Mm1Oup32DZ47FrgcnwvrHX4Sbevzg3COfcucAfwRhDLYfhl03G+d9S/8FcE1uHHhi6k4Mm6JX8d8DP0/+x8V9rVzrnVwFNAW9t2BaJf8LvbhC9uprHtvdYH3y11XNTvuKgTUheKc24Rfv6wT/HddI/DXwEiiH0yMMQ595Vz7gf8+2mSmVUKDjEaf3IoSH/8vBCfmdlf+HmzjiiG0NviV4koqnvw834tB94HHglyEoDgd5F7peMboDv+hLoGXwTvUdhjBa4lZtK+4Mpb9HtnbdD0W/D3EPzP+Nfgec8Fzs/9ECEFKo7crIcv3P4NfA3kAJeVRvDKTeVmOVbk3HTOrYl5LMDv+VxEK3bKTeVmOVYc580T8bmxCb/C9ULgptIIXrmp3CyIOVeYEUQSr4IrtB/ilybcbGYdgSbOuY7F/DzOOWfB/y8B2jvnrirO5xApz4IT6hfAuc65X82sCXCvc65JMT/PMvzfgGVmdhzwjHPutOJ8DpHyRLkpEp+UmyLxSblZfhU0VlDKiKBHzJGl/JyvA6U9pEekTAsq/UeX8nN+jV8hQkQKoNwUiU/KTZH4pNwsvwo1rMzMmpnZYjNbYma35dPeyswWmJ/xfJ6Z/TOqbZmZfZ3bVpzBS76+BP5dAscdWALHlCJSbpZpyyiZccPDKNoqDlIMlJtl2jKUm+WWcrNMW4Zys1xSXpZ5y1Bulgs7HVZmZsn4+XDOxy+dNhdoE4xVzN2nOrDJOefMrBHwgnPuyKBtGdDYbVvmT0SKgXJTJD4pN0Xik3JTJP4oL0XiR2F6Dp0MLHHOLQ0mR5qKX1Hqf5xzG922KlPu7OciUrKUmyLxSbkpEp+UmyLxR3kpEicKM+dQPYLVswIr8Ss9bcfMLgMeBGoDzaOaHDDbzBww2jn3zM6esGbNmq5BgwaFCE2k/Jk/f/7vzrlahdi1VHNTeSmJTrkpEp+UmyLxqZC5qe+aIqWsoNwsTHHI8tmWp1rrnJsOTDezs4D7gfOCpjOcc6vMrDbwtpl955z7IM+TmHUFugIceOCBzJunIaOSmMxseWF3zWdbseam8lJkG+WmSHxSborEp0Lmpr5ripSygnKzMMPKVgIHRN2vD6wqaOcgGQ81s5rB/VXBv2uA6fiug/k97hnnXGPnXONatQpz8Uck4ZV4biovRXaLclMkPik3ReKPvmuKxInCFIfmAoeb2cFmVhG4GngtegczO8zMLPj/iUBF4A8zq2ZmNYLt1YALgIXF+QJEEphyUyQ+KTdF4pNyUyT+KC9F4sROh5U557LMrCfwFpAMjHfOfWNm3YP2UcDlwLVmthXYDLQOZpOvg+/+l/tcU5xzs0rotYgkFOWmSHxSborEJ+WmSPxRXorEj50uZR+Gxo0bO40DlURlZvOdc43DjiOW8lLKrUgEUlMhLQ2aNi1wN+WmSHxSborEJ+WmSHwqKDcLM6xMRESkfIpEoEULWL7c/xuJhB2RiOSKRKBBA+WlSLxRborEpyLmpopDIqVk0yZYsiTsKETkf3ILQ+np/n56ugpEIvEiEiGnuQq3InEnEiHnYuWmSNwphtxUcUiklNx2G5xwAvz2W9iRiEiewlAuFYhEwheJ4Fq0IGmzCrcicSUSwTVvQdIW5aZIXCmm3FRxSKQUvPsuPPUUXHcd1KkTdjQiQmpq3sJQrvR03y4ipS8o3JoKtyLxJTc3Nys3ReJKcEGlOHJTxSGREvbXX/57ZsOGMHhw2NGICABpabgqVfJvq1rVT04tIqVPhVuR+KTcFIlPqal5L6jk2sXcVHFIpIT16QMrV8LEif47p4jEgSZNWFX7BPKs11m1KsyYscNVy0Sk5GSNSWOzFXCyVOFWJDTpI9LYbLqoIhJv/ng0jc1Uzr9xF3NTxSGREvTmmzB2LNx6K5x6atjRiEiuX4ZMpt7yT5nV4HpcbtVWhSGR0A3+tCkvusvzNig/RUJ1y6tN+Nodo4sqInHEOeg04SyWcmix5KaKQyIlZN066NIFjjkGBg4MOxoRybV12S/UuOsm5lQ4gxM/fhKbMQMOOkgfbkVC9sUX8MZ982lrU+CCC7Z1t9WXT5FQvfUWZI8Zx8nMw266SbkpEicmToRD33iCY/gGu+22IuemikMiJeSmm2DNGnj2WahUCT8ZWIMGmrBPJEzOseyCrlTIzmDdY2nU2T/ZnziXLdOHW5EQZWTAde0zmGgdsDp1YOpU/8FWhVuRUK1fDwM6LGdYUm+yz24Kjz+u3BSJAytWwPCe3/Ng0p24Fpf4yW2LmJsVSiBOkYQ3fTpMngz33gsnnsj2y2a3aKGTqUhIlg+cwOE/vMmz/3iCa288POxwRCQwcCBc8c29HMk3MP5N2HvvbYVbEQnNzTflMPi3zlSp6kieMB6SkpSbIiFzDrp0ymbE5lQq1KiCPTMazIqcm+o5JFLM1q6Fbt18UeiOO9i+MARa8lMkJBlLVrDP/TfzacWzaDGrZ9jhiEhgzhx476HP6G8PQ+fOcNFFYYckIsCrr0KVSaM5l/+Q/PhQ3wNeREI3ejQc/c4TnJbzCclPDYf99iuW46rnkEgxcg6uvx42bIB334WUj2IKQ7nUg0ikdDnH8gu6sH9ONptHprFPTV0bEYkHmzdD1/abeTm5I9StB0OHhh2SiAC//w6DOi/lvaRbyTnnApK6dAk7JBEBli6F0b0X81nSnbgWLbG2bYvt2CoOiRSjqVPh5ZfhoYfg2GOBBql5C0O50tMhNVXdckVKwY93jqPhT28x+bQRtOt8SNjhiEjgzjvh2h/u4jAWQ9rbsOeeYYckIkDPHjk88mcnKlVLJmn8WD9kRURClZMDnTtmMyozGE42alSx5qYunYoUk19/hRtu8EvW9+0bbExL2zZrfKyqVX27iJSozd8tp86Q3nxc6Rxavtk97HBEJPDBBzD38Y+4hcehe3c477ywQxIRYNo0qP3iU5zt3id5+DA44ICwQxIRYPhwOPHDYZyS/SnJI54stuFkuVQcEikGzvll67ds8UsKJicHDU2bQr9+eR+gpT9FSodz/HxBZ1yOw8aPY4+9dNoTiQcbN8L1125icoWOfmWVRx4JOyQRAVavhke7/cDDSbeRc9HF0LFj2CGJCLB4MYzvv5jBSXfhWraEa64p9ufQp2SRYjBhArzxBjz4IDRsGNXwxx8wciQcdti2HkQqDImUmu/7jOaIFf9hRpOhnH5Ng7DDEZFAv37QffntHJT1I0kT0qB69bBDEkl4zsH1XbMZ/ldHUqpXImnsGA0nE4kDWVmQem02Y3NSSdmj+IeT5dKcQyJF9PPP0KsXnH023HhjTGOvXvDnnzB7tv83NdUPJVNhSKTEbfz6J+oN68tHVc6n5euaSFMkXrz9Nnz7dISRPAk33QRNmoQdkogAzz4Lh7w+jNP4BEZMgv33DzskEcF3rj3t82GczKfw1ORiH06Wq1A9h8ysmZktNrMlZnZbPu2tzGyBmX1pZvPM7J+FfaxIWeacX3U3J8fXfJKiM+r11+G55/xsm8cf7wtCy5YVa2FIuSlSgJwcfrmwE9kuicqTx1Kteule+VRuiuRvwwa4sePfTErpRM6hh8HgwaX6/MpNkfytXAlP9fyOwXYnrmUrKMYVkHZGeSlSsK+/hucGLObBpLtwrVqVyHCyXDstDplZMjACuAg4GmhjZkfH7PYf4Hjn3AlAJ2DsLjxWpMwaNQreecevvHvwwVEN69ZBt27QqBHccUeJPLdyU6Rgi3qO5Ihf32N2s8dp/K8DS/W5lZsiBbvlFrh5VT/qZS0naeIEqFat1J5buSmSP+egS2oWI9M7UGGv6tgzo0ttOJnyUqRgmZl+OFkaqVTYs2qJDSfLVZieQycDS5xzS51zmcBUoFX0Ds65jc45F9ytBrjCPlakrPrxR78q2QUXQNeuMY29e8OaNb47UcWKJRWCclMkHxvmL6HBqP58WL0ZLV7pFEYIyk2RfMyYASvS3qY7o7DeveGMM0o7BOWmSD6eeQaOf+dRTsr5nOSnR0CdOqX59MpLkQIMGgRNvnyck7I+JempJ6Fu3RJ9vsIUh+oBK6Lurwy2bcfMLjOz74A38BXdQj82eHzXoJvgvLVr1xYmdpHQZGf76YNSUmDcuJgC7syZfobq/v3hxBNLMoxSyU2RMiUnh18v7kSmS2HPaWOoXCWUiTRLPDd1zpSy5o8/oHfnDTyb0hl3xJFw//1hhKHcFImxdCmMu2Uh99k9uCuugKuuKu0Q9F1TJB/z58NLD3zH4KS74NJLoU2bEn/OwhSH8vtk7fJscG66c+5I4FIg94xfqMcGj3/GOdfYOde4Vq1ahQhLJDxPPAEffuj/rV8/qmHDBt+N6OijYcCAkg6jxHNTJ1IpaxZ0eZIj13xIpNUTNLq4/s4fUDJKPDd1zpSypmdPuH1tb+pm/4JNnABVqoQRhnJTJEpODnTpuJXRGR1J3mdPbOTIMFYn03dNkRhbtkDH9tk8m5xKhT2rwdNPl0puFqY4tBI4IOp+fWBVQTs75z4ADjWzmrv6WJGy4Lvv/DRCLVvCtdfGNN56K6xa5YeTVapU0qGUeG7qRCplyZ+ffc9h42/ngz1a0OKF2OQsVTpvikR56SXYMPVNUt14rF8/OOWUsEJRbopEefJJOP3Dh/i/nPkkj34awvmsp7wUiXHPPdDs28f4x9bPSmU4Wa7CFIfmAoeb2cFmVhG4GngtegczO8zMl7LM7ESgIvBHYR4rUpZkZUGHDn7+zNGxc/W98w6MGQN9+sDJJ5dGOMpNkYDLymZN81S2UJna00eTUjGU4WS5lJsigd9+g9u6rWNCShfcMcfAvfeGGY5yUySweDFM6fcl99h9uDZt4PLLwwpFeSkS5ZNPYMYj3zI4+e5SG06Wq8LOdnDOZZlZT+AtIBkY75z7xsy6B+2jgMuBa81sK7AZaB1MGpbvY0votYiUuIcfhs8/h2nTYgq4f/8N110HDRvCwIGlEotyU2SbLzoM48Q/P2HG1ZNpcc7+ocai3BTxnIPu3WHg+l7Ust+wia+VRq/aHcSj3BQBP3fmdddmMja7I1arJvbkk6HForwU2SY9HTp1yOb5lFQqVCu94WS5bNvE7/GjcePGbt68eWGHIbKdBQugcWO47DJfHNrODTf45P3oIzj99CI9j5nNd841LtJBSoDyUuLVmg++Y4+zT2DO3hfxzzWvkFyhZE6iyk2RXTN5MrzY/lVe5VI/D18JXTxRborsmiFDIOO2AQzgfnj1VT9XQglQborsml69oOLwR3iEfjBlSon1GiooN3fac0hEIDPTzy+0994wYkRM43vvwciRcPPNRS4MiciucVuzWNeyA0lUp/6MUSVWGBKRXfPLLzCgx+/MS+mKO+YE7M47ww5JRICFC2H6XfP52Abj2l+LlVBhSER2TSQCs4d/y4Lku6HlZXD11aUeg4pDIoXwwAPw1Vf+4krNmlENmzZB585w6KEwaFBo8YkkqrlXD+XkDZ8zq+NUmp1eJ+xwRAQ/nOy662BIek/2TlqHTZgNFSuGHZZIwtu6FTq3y2CC6wB16mBPPBF2SCJCMENJajYvV06lQtXSH06WS8UhkZ2YNw8GD/Y9h/JcXLnzTli61Pceqlo1jPBEEtYvs7/h+FcG8H6tK7hg7FVhhyMigXHjoPqsF7mSaXDv/XD88WGHJCL4z7OXfnUvR/ENjH8T9tor7JBEBOjbF674eSgnuDkwfgrUCeeCp4pDIjuwZYsvCtWtC3kurnz8MQwf7ucbOvvsUOITSVQ5GVvZeEUHKrEHB785gqRkDScTiQfLlsGgXmv4IqUHrtE/sP79ww5JRID//hdm3z+HD+1h6NQZLroo7JBEBJg1Cz545lsWJA8IbThZLhWHRHZgwAD49luftNtdXNm8GTp1goMOgoceCi0+kUQ15/KHOe3v+fyn2wuc27h22OGICJCTA51SHU9kdmfPpL+wiRMhJSXssEQSXkYGdGm3manWEfavB489FnZIIgKsWwfdOmfxeuWOVKhWPbThZLlUHBIpwMcfw6OPQteucOGFMY0DBsD338M770D16qHEJ5JwIhFITWX1dXfxjzcG8v5+rTnn6SvDjkpEAiNGQJ33ptKS6f7CyTHHhB2SiAD33ANtvr2bw/kOJrwNe+wRdkgigl+d7Jpfh9LIfQ5pz4c2nCyXikMi+di0CTp29B2DHn00pnHOHH/FpWtXOPfcMMITSTyRCLRoAenp1L67KxvYkyNmPxXmxRURifLDD/B4v1/5KuUG3D9Oxfr2DTskEYlEyLgmlfTVfejNY9C9O5x3XthRiQh+oaN5kxYxPnkAtPoXtG4ddkgqDonk5/bbYckS/320Ro2ohi1bIDUV6tWDRx4JLT6RhBJVGHmDv/gAACAASURBVAJIwrFHhc0kr/0aaBpubCJC9jsRqjdP5fms/alecTM2YQIkJ4cdlkhii0RwzVtQaXM6w+gFtWvrs6tInNjw7wgnXt6RGZWqkly9BowcGepwslxJYQcgEm/efReefNJ382vSJKbxvvv8JERjxqhLrkhpiCkM5UrOyvDbI5GQAhMRACIRci5uwX6Zyzkl51MsNRWOOCLsqEQSW3DutM3bLqokbVgPc+eGHJiIuHcjVLqiBQfk/MwhGd9hPXqEPpwsl4pDIlHWrfOrkzVs6Jf73M78+fDww77nUJ5JiESkRKSm5ikM/U96um8XkXAEhaGUrVE5OnGiirYiYSrgogoZuqgiErpIhOyLWlA5Oyo/hw6Nm7xUcUgk4Bxcfz389hs89xxUrRrVmJnpv4TWqaMVHkRKU1paTDJGqVrVt4tI6QuGrCRtifkCmp6uL6AiYdJFFZH4FFxQqZAZv+dNFYdEAlOmwLRpMHAgNG4c0zhoEHz9NYweHbOmvYiUqKZN+f7a+3Gx26tWhRkzoKnmHBIJRWrq/4as5KEvoCKhcePT2JKsiyoi8cZ1TM17QSVXnJw3VRwSAZYvhx494IwzoH//mMYvv/RjzNq181VdESk165ZvoNqYYaxOro+rUsVvVGFIJHRze6Sxmcr5N+oLqEhonl3RlAezb83boHOnSKimnJ/GZirl3xgn500VhyThZWf7eYacg0mTYhZY2brVV3H33ReeeCK0GEUSkXPw9dk3Uid7FevHvYy98QYcdJA+3IqE7I8/4IrHz+C3lPrq1ScSR5YuhQd6rKJ3hSdxDY/YNixbeSkSqvnz4cYJ/2BL5b1wsauSxVF+qjgkCe/RR+GDD+Cpp+Dgg2MahwzxPYeefhr22SeU+EQS1Yc3vchZyyfxyTl3c1SHk/1Jc9myuDh5iiQq56BrV7h+zUAabF2CDRyoL6AicSArCzq0z2FUZio1UrZgr7/m81EXVURClZ4ObdvC6Eo3slfmWuyJJ+L2vKnikCS0//4X7r4brrwS2rcPNkYi0KABjB/vl65v3RouuyzMMEUSzoo5qzh2RHcWVT+ZM964I+xwRCQwcSKsfuVj+rmHfM/aAQP0BVQkDgwZAid8MoJzs2aT9NhQv/SuLqqIhO7WW6HR4he4Mv1Z7K674MYb4/a8WajikJk1M7PFZrbEzG7Lp72tmS0Ibp+Y2fFRbcvM7Gsz+9LM5hVn8CJFkVvFrVULRo0CM7Yt/7l8OXTp4qu5Tz4ZdqgiCSU7y7Hqok5Udpup8e9JJFdOCTukXabzppRHS5fCHT3/4sXK7bEGB20bbl2GvoAqN6U8mjsXpt2ziKHJ/aB5c+jWLeyQdonyUsqrN9+EV0euZELl7nDyyXDXXb4hTs+bFXa2g5klAyOA84GVwFwze805tyhqt5+As51z68zsIuAZ4JSo9qbOud+LMW6RIuvfH777Dt5+OxgxllsYyl3+MycHNm+GhQvjLnFzmVkz4AkgGRjrnHsopr0tkDvF9kbgeufcV0HbMuBvIBvIcs7FrtEmEop3Ln+aC9e9xZwOIznl3IZhh7PLdN6U8igry/ewHZJ5C/tlL8cmfQA1aoQd1i5Rbkp5tGkTpLbN5PmkdlTYswaMGxdc8SwblJdSXq1ZA5065vBqtQ5UIRMmT4aU+L7gWZieQycDS5xzS51zmcBUoFX0Ds65T5xz64K7nwH1izdMkeI1c6afY+iWW+C888hbGMqVmem3RyKhxLkjUSfTi4CjgTZmdnTMbrkn00bA/fiTabSmzrkTVBiSeLHw5cWc+VpfvqjbjJPHdw87nN2l86aUOw89BLU++Tftt47H+vf3y3uWPcpNKXf69oV2P9zDcVu/IGncWKhTJ+yQdpXyUsod5/wglA5/Ps4pm97Fhg2Dww8PO6ydKkxxqB6wIur+ymBbQToDM6PuO2C2mc03s667HqJI8Vq7Fjp1gmOP9SvUA37ehNjCUK70dN8ef3QylXIlfcNWctq1J8Oq0OA/47GksnPlM4bOm1KufP45PH3Pap6t1AVOPBHuvTfskHaXclPKlRkzYOGoD+nHELjuOmjZMuyQdofyUsqdsWNh2WtfMYg74NJLoXPnsEMqlJ0OKwPy+3SeZ+VSADNrik/Yf0ZtPsM5t8rMagNvm9l3zrkP8nlsV6ArwIEHHliIsER2Xe4qK3/+CW+9BZUrBw1pafn3HAI/71BaWqnGWUj5nUxPKWBfKPhk6oDRzrnYXkXKSylVkfMG0XzLXL6+5yWOO3q/sMMpihI/byo3pbRs2gTt2jomVexEDTb6bvEVK4Yd1u5Sbkq58dtvcFPHv/gwpT12wCHw+ONhh7S79F1TypUffoDbem1mXrW2JNfYB8aMKTNDPQvTc2glcEDU/frAqtidzKwRMBZo5Zz7I3e7c25V8O8aYDq+t0MezrlnnHONnXONa9WqVfhXILILxo+Hf/8bHnwQGjWKamjaFB55JO8D4mx5wRi7czLtH7X5DOfcifhhaTeY2Vl5Dqa8lFLy8WNzuHDeA8w7+lqOu/fysMMpqhI/byo3pbT06QPnLhnNOVtmYg8/DEcdFXZIRaHclHLBOd9RaOC6m9g/ewU2eRJUrx52WLtL3zWl3Ni6Fdq1g0E5t3Pwpm+wCROgZs2wwyq0whSH5gKHm9nBZlYRuBp4LXoHMzsQeAVo75z7Pmp7NTOrkft/4AJgYXEFL7IrliyBXr3gnHPg5ptjGjdtgmHDoHZtqFLFb4vvwhCU0slUpKSt+WkTdfu1Z01KPY6LDA87nOKg86aUC6+/Du+O/p4nUvrA+efDDTeEHVJRKTelXHjmGag04yXa50z0S2OfdlrYIRWF8lLKjQcegD0/n033jCf8kvUXXhh2SLtkp8PKnHNZZtYTeAu/ItJ459w3ZtY9aB8FDAD2BUaa7zKVu/JRHWB6sK0CMMU5N6tEXonIDmRl+SpuSgpMnAhJsWXRfv189ejdd/3lmNRUP5QsfgtDEHUyBX7Bn0yvid5hRydTIMk593fUyfS+UotcJOAczGt6K82yl7BsTIRKtfcMO6Qi03lTyoPffoNunbYyu2o7UipV8ufEPCfPskW5KeXB4sXw8M2r+CKlG+6Ek3xxqAxTXkp58emn8PT9v7O4Skc4+GgYMiTskHZZYeYcwjn3JvBmzLZRUf+/Drgun8ctBY4vYowiRTZoEMyZA9OmQf3YKZlnzYKRI6F3b2jSxG9btqyUI9x1OplKeTDzpplcvPxp5jftyz9Szw47nGKj86aUZc75uTN7rBvEsdlzYcILUG9H88OWHcpNKcu2boX2bXMYk5VK9ZQtWBlYGrswlJdS1v39t5+fb2KVbuy19Xd47s1to1HKkEIVh0TKss8+g/vvh/bt4aqrYhr/+MMvXXbMMb6CVMboZCpl2ZLPfufEpzqxtPpx/N8bD4QdjogERo+GtW/M4Y6kB/zJ88orww5JRID77oNT5o/gHGbDk09Dw4ZhhyQi+ClLmi5L4yL3ip/H9oQTwg5pt6g4JOXaxo1+OFn9+vDkkzGNzsH118Pvv8Obb0YtXSYiJW1rpuPni7pxBn+SNP0tkqpUCjskEcEPWbn7lo18WbUdVrNePidPEQnDJ5/A9EGL+G9yP2jWHLp1CzskEQFeeQXeG/8ji1Jugn829aNRyigVh6Rc690bli6F996DPWOnMpkyBV580S9dVkaruyJl1atXTOKK9a/wdfshHHdeo50/QERKXO4qK4+4Puy/+Ufs2Ug+J08RKW1//w2pbTN5OaUdFWpUh7Fjy8zS2CLl2a+/wvVdsni7WjsqFji5bdmh4pCUW6++CmPGwG23wVmxi7SvWOFXXTnjDLj11lDiE0lUc19cxgWv92RxnTM5Lq1P2OGISOC++6DOvBl05Bl/bjy7/MwDJlKW9eoFqcvu4Vi+gHH/hrp1ww5JJOHlrmF041+DaJT1GUydCgccsPMHxjEVh6RcWr0arrsO/u//YODAmMacHOjY0S9hNnEiJCeHEaJIQtrwZzY57TtgBvXeeVb5JxInPv4Yxgxaw+LKnaFhIz9Zn4iE7uWX4Ye0DxnLEP/htlWrsEMSEWDECFj/1mfckRRMbtu6ddghFZmKQ1LuOOfnmN64EZ57DipWjNlh+HC/ZP2YMXDooaHEKJKoZl7wOFdnfMCSO9M47NgGYYcjIsBff0H7do5JVbqwR9Z6mPwOVNI8YCJhW7UK+nT5i08qtscOOAQefzzskEQEWLQIBvb9m6+qtsNq5Te5bdmk4pCUO08/DTNnwlNPwVFHxTQuWuTHmV1yiV+nV0RKzVuPLOCy+Xey6MjLOPr+DmGHIyKBXr3g3OXjOd+9BkOHwnHHhR2SSMLL7ej+wF83sZ9bgU36CKpXDzsskYSXmQlt28Iwu5n9tvyETXqv3MzPp+KQlCvffgt9+kCzZtCjR0xjZqafabNGDd9rSBP5iZSalT9mUP/2dmxM2ZvD/zNa+ScSJ156CT6Y8COLUnrBmef49XhFJHRPPQV7vP0S7ZgId98Np50WdkgiAgwYAAd/+QptGQ933AFnnhl2SMVGxSEpN3JrP9WrQ1paPt8977sPvvgCpk+HOnVCiVEkEeXkwMfn3E3r7K/5ZeQM9t2/VtghiQjwyy/Qo2sW71Rr71dZmTChTK+yIlJefPMNPH7rKr5K6YY74STs7rvDDklEgPffh0lDVrG4Uhc4rjHce2/YIRUrFYek3Lj3Xvjvf33tJ88iDp9+6pesT02FSy8NIzyRhPXSje9z5c+P8u1Z3Tiqa/OwwxERfNE2NRVu2PgQjbZ+ClOmlPlVVkTKg4wMaHdNDuNdKjUqbMEmT4aUlLDDEkl469dDh/Y5TKvakWpuM5TD3FRxSMqFDz+Ehx7yizjkqf1s3OhnkD/wQBg2LJT4RBLVwo83cMrIa1ld7VCOnPFo2OGISODJJ+HPt+dxd9JAuPpqaNMm7JBEBD+C7J8LRtCU2TD8aWjYMOyQRATo2RMuW/kk/3Rv+0lujzgi7JCKnYpDUuZt2OBrP4cUtIhD376wdCm89x7ssUdphyeSsLZsgR9b9KIFK/n7pY+xGppIUyQeLFwI9/ZL5+tq7bC968LIkWGHJCJAJAJvPLKIL5L7QbPm0K1b2CGJCPD88/Dlcwv5skJ/aNai3OamikNS5t14I6xcCR/lt4jDG2/A6NFw661w1lmhxCeScCIRSE0lUjeVVusnsqTN3RzW7NSwoxIR/JCVtm3h0eR+1N+0GF59B/beO+ywRBLeunXQuX0mr1dqR0r16jB2rBZvEIkDP/8Mvbpn8HHVtiRX3xPGjSu3ualZB6VMmzYNJk3yXXBPjf3u+fvvfrn6446D++8PJT6RhBOJQIsWsHw5zebcy297NeSwiZpIUyQuRCJsqt2ACxcMofPmEXDLLXDuuWFHJSKRCFn1GzDol44ck/EFNm5sPhNoikhpy/lPhIoNGzBqU3sOT1+AjR8PtWuHHVaJUc8hKbNWrIDu3eGUU+DOO2ManfPd/datg9mzoVKlUGIUSSi5haH0dAAMqL3lZ9+tr2nTcGMTSXSRCNkXtWCfjHSGcBs0aACDB4cdlYhEImQ1a0GtzHSuZjlcfDG0ahV2VCISnDfrbk3nXyyHli2hefleWEU9h6RM2roVWreG7Gw/UXyF2DLnpEnwyiu+x1CjRqHEKJJQYgpDuWzLFr89EgkpMBEhEsE1b0FyxrbCLatX+5U8RSQ8kQg5F7egQmZUbkYiOmeKhC0SIfviFqRsjfpc+/bb5T43VRySMumOO/xn2rFj4bDDYhqXL/fTyZ95JvTpE0p8IgknNTVPYeh/0tN9u4iUvkgE16IFtjkmP1W4FQlXULRN2hKTm5s3KzdFwpR7QSUBc7NQxSEza2Zmi81siZndlk97WzNbENw+MbPjC/tYkV31+uvw6KPQowdcdVVMY04OdOjgh5VNnAjJyaHEWFqUmxI30tLIrlQl/7aqVSEtrXTjCZlyU+JGaiqmwu3/KDclbqSm5i3a5kqw3FReSjxxHRM3N3daHDKzZGAEcBFwNNDGzI6O2e0n4GznXCPgfuCZXXisSKEtX+5rPyeeCEOH5rPD44/D++/D8OFw8MGlHl9pUm5KPFl7TBM+dafiYhuqVoUZMxJqziHlpsSTeTekkY4Kt6DclPgyu00am6mcf2MC5abyUuLN1AsTNzcL03PoZGCJc26pcy4TmApsN0uac+4T59y64O5nQP3CPlaksDIzfU+h7Gx44QWoHJuzCxf68WatWkHHjmGEWNqUmxIXcnJgctNx/DMzwh+XdvYnTkjIwlBAuSlxYdUquPiRpsyrdrYKt55yU+LCokXQ9omT2VCptnJTeSlx5KOPoPu4k9hYpVZC5mZhikP1gBVR91cG2wrSGZi5m48VKVD//vD55zB+PBx6aExjRga0awd77QXPPANmocRYypSbEhfG3PQ13RfdyMqjzqfmy8/4E+dBB5X7E+gOKDcldFlZ0KYNtNwwibM2zcLatVPhVrkpcWDTJrjyShie05M6mSuwRx9N9NxUXkpcWLvWL3iUVq0nNbesxIYOTbjcLExxKL9v2XkKaQBm1hSfsP1347FdzWyemc1bu3ZtIcKSRDJ9OgwbBjfeCJdfns8O994LX30FY8ZA7dqlHV5YSjw3lZeyM++/uYmzRlxFRuW9qPfuJEhK8ifOZcvK/Ql0B5SbErp77oE1H3zLKLrD2Wf7bvAq3Co3JXQ33ACNFz1Lm4wJ2F13+cVTEjs39V1TQpeTA+3bQ7M1z/Kvvydid98NvXsnXG7GLgCen5XAAVH36wOrYncys0bAWOAi59wfu/JYAOfcMwTjRxs3bpxvUktiWrrUz/t10knwyCMxjZGIvzS6Zg107gwtW4YSY0hKPDeVl7Ijq1fDr5f35EwWk/HSO1jdOmGHFC+UmxKqWbPg8cHpfL/3VVSoUA2mTIEKFbYVbhOXclNClZYGcyZ+y1cp18PpZ/sqLiR6buq7poTuwQfhp7cW83qlHnDG2TBggG9IsNwsTM+hucDhZnawmVUErgZei97BzA4EXgHaO+e+35XHiuxIRoafZ8gMpk2DSpWiGiMRaN4cfvvN37/sslBiDJFyU0KTnQ1p5zzL1Vsm8Hv3u6nS/JywQ4onyk0JzcqVfpT1pL17UX/dQpg0CfbfP+yw4oVyU0KzcCH06bGZN6pdRcpeQdG2nK+qW0jKSwnVe+/BoLu3MHuvq6hQowo891zC5uZOew4557LMrCfwFpAMjHfOfWNm3YP2UcAAYF9gpPm5XrKcc40LemwJvRYph/r2hfnz/bCy7RYfi0SgRQvYvNnfd85XkRKkyx8oNyVcI2/6jpu+vZ7VR5xN3acGhB1OXFFuSli2boWrr4ZWG5/j8oyxfpGGCy8MO6y4odyUsGzc6OcZesJ6ccimhfDyLBVtA8pLCdNvv/lBKGP26MNB6xfAG29AvcSdtsqci79edY0bN3bz5s0LOwwJ2Ysv+nrPLbfAY49FNeQWhtLT8z6oHEwWZmbznXONw44jlvJScr3z+mZqtzyFgyv9So0fv0yYk6hyU+Jd//7w74cXs7DSP0g5+UR4910/nKycU25KPHMOrr0Wcp57nufcNXD77TB4cNhhlQrlpsSz7Gxo1gxqvv8yz2+9ws//9eijYYdVKgrKzfL/iUHKpCVL/BRCp5wCDz0U05iamn9hCPz21NSEGhsqUpp++QV+ueoWzuNrtkydmTCFIZF4N2MGDH94Mz/scxUpVnnbPEMiEqpx42DO5O/5umJXOOkMuO++sEMSEWDQIFjyzk/MqNIZ/u/khCna7khh5hwSKVVbtviutxUq+HmGKlaM2WH06IKXqq9a1c/2JyLFLisLxpw3jQ5bRvPHdf2pfGmzsEMSEeDnn6FDB5i0783U/3OBn2eofv2wwxJJeAsWQN+eW5hZ/SoqVq8Izz+voq1IHHj3XXjgnq28XbON/645dWo+XzoTj/46Sdy55Rb48kt4/XW/cmAer73m++hWquRnrM5VDoaUicSzYT2X0Pu7Lqw9/HRqjbw/7HBEBMjMhNatoWX6VK7Y8owfW3bRRWGHJZLw/v7bX+wcltyHQzd+5T+jHnDAzh8oIiVq9Wq45hp4ep87Oez3OX4uk+0mt01c6jkkceX552HUKLj1Vj+tUB7TpsHIkX5M6MyZviAEKgyJlLBZr2bQdHRrkitVoNY7z0NKStghiQh++pLfP/uBZ+gCp58O96twKxI256BrVzj+h5fomD7Sr7DSvHnYYYkkvOxsXxg6bf1MOv/5CHTvDldcEXZYcUM9hyRuLF7sT6Snn+7HgObx/fdw3XVw2mnw4IP+y+mMGX6OobQ0FYZESsjPP8Py1v1oxn/JmPQqHHhg2CGJCPDqqzDisS0s2fdKUlxF3y1ehVuR0I0eDZ9P/ZFvKnWG/ztVc5mIxImBA2Fx5Bd+rHEtHNEoZtUjUXFI4sLmzX5lskqVCvhsu3mz75tbqZLvPZS7Q9OmmnxapARlZsLI86fzUMZw1nW8mb2vbBl2SCIC/PQTdOwIk2r2pv7vGrIiEi+++AL69cpg3h6tqZSU5LvFq2grErrZs2Hw/dl8Xbcdlf9K998pq1QJO6y4ouKQxIWbbvKT9r35ZgGfbXv12skOIlISHu6xjP7fd+LPQxuzz+ghYYcjImybZ6hVxgtcuf5pPxZbQ1ZEQrdhg7+W+XhKPxr+NR+mT4cGDcIOSyThrVoF7drBE7Ue4KjV78GECXDkkWGHFXdUHJLQTZ4MY8fCbbcVMIfm5MkwZswOdhCRkvDay1s5b9zVVK6YQ5XZ+S0dKCJhuPVW+HPuEsZUCYZa5zsWW0RKk3N+9oNGP/2bzjnD/YXNSy8NOyyRhJeVBVdfDSf+/T49Mu+D9u39Ep+Sh4pDEqpvv4Vu3eDMMwuYQ3OnO4hISfjpJ1h2zR20ZA5b016AQw4JOyQRAV55BUYNz2BJrdakZFXQPEMicWLECJj70jK+q5IKxzSGhx8OOyQRAQYMgG8/XMvyva/BDjzML24k+VJxSEKTnu7nGapWzQ/HrhD7bty0yffNrVbNf/jNs4OIlISMDHjigjcYlvkof7W9nj2uuTLskEQEWLoUOnWCSbX7csCa/8Jrr2mCeJE4MG8e9L8lk/l7XU2lnBw/l4l624qEbuZMeOjBHL6q34Gqa/+AaW9A9ephhxW39G1bQtOzJ3zzDcyaBfXqFbDDokXw1luw//6lHp9Iohp0/UruWtKBDQ2OZ8+xWsVBJB5kZPgLKq22vsRVG56C3r3hkkvCDksk4a1f73PzsSp3cOT6OfDii+ptKxIHVqzwI8ge2e8xjls503fvO+GEsMOKayoOSSgmTvSrz991F1xwQT47pKX5icLuvhvOP7+0wxNJWC9NzeK8tGuokbKFSm+9AJUrhx2SiAB9+sCf85cytmpnOPlkePDBsEMSSXjO+d58xy2fQbecodCjB1xxRdhhiSS8rVv9PEPHpc+h94bb4fLL4frrww4r7qk4JKXum298bjZpAvfem88OCxfCDTf4ZervuaeUoxNJXEuWwE8d7uUKPiRrzGRo2DDskEQEeOEFGDMigx/qtCYlI0lDVkTixPDhMHf6Cr6v2gEangBDh4YdkojgOyB888l6Vta6Gqtaz69+ZBZ2WHFPxSEpVRs3+mmE9tgDpkyB5ORd3UFESsKWLfBos7cZmTmYjVd1onqHtmGHJCLADz/4FZCerduPA1fP09LYInHi88/h9r5bmbdPGypnZvoqrnrbioRuxgx4+GHH/EOuo/rPK+G1D2GvvcIOq0xQcUhKjXO+t+1338Hbb8N+++WzQ/fu8P338M47ULduKHGKJKIBXVcz8Md2bDrwKGqkPRl2OCKCL9pedRVc6qbTerWWxhaJF3/+6XPz0aoDOPrPj/3KKocfHnZYIgnv55/9KvWD6o/ixKUvw5AhcOqpYYdVZqg4JKVm/HiYNMkPJTv33Hx2GDsWnnsO7rvPDykTkZIXibDpyo5c/ce+7F3hbyq++S5UrRp2VCIC3HwzrP/yJ8ZW6wQnnaSlsUXigHOQmgrHrpxFj+yHoEsXP7mJiIQqMxNat4YjtnzFbRtvgWbNoG/fsMMqU5LCDkASw4IFfvGxc8/1Y0Dz+PJLuPFGPzv1nXeWenwiCSkSIefiFlT742dO5AuSb+oJxxwTdlQiEomwqVYDfhw9m/frtqZiBad5hkTiQSTCX/s2oOJrL/BC5fZw3HHwxBNhRyUikQgbazZg78/eZNZerUnadx949llIUrljVxTqp2VmzcxssZktMbPb8mk/0sw+NbMMM+sb07bMzL42sy/NbF5xBS5lx4YNfhqhvfbyHYPyTCP0119+h333hcmTlcS7QLkpuy0SwTVvQdKW9P9tSh41AiKREIMqP5Sbsttyi7a/L2cmzTlw9Vzf9fbgg8OOrFxQbspui0TIvqgFe65bzjTaUCV7o59nqEqVsCMr85SXUiSRCFkXtWCfv5fzurVkj1WL/ZfOWrXCjqzM2emwMjNLBkYA5wMrgblm9ppzblHUbn8CNwEFDYRv6pz7vajBStmTleW79y1d6qcRqlMnZgfnfHfcn37yX0qVxIWm3JTdFongWrTANqdvvz09HVq08DP5aWjnblNuym6LKdpWIAsqVIC99w45sPJBuSm7LSjaJmf43EwiB3Jy4Ndf4cgjQw6ubFNeSpFEImRf3IIKQW4mu2xISQk5qLKrMF00TgaWOOeWOucygalAq+gdnHNrnHNzga0lEKOUYbfcAm+9BSNHwtln57PD00/7qy4PPABnnlnq8ZVxyk3ZPampWHp6/m3p6X4yBSkK5absuoKKtllZvmirXn3FQbkpuy6fnraAn+BEuVkclJeyeyIRcpq3IDk2N7duVW7upsIUh+oBK6Lurwy2FZYDZpvZfDPrWtBOZtbVzOaZ2by1a9fug1/vfAAAIABJREFUwuElXo0YAU89Bb17+85Becyf76tHF18M/fqVenzlQKnkppQ/s64az1Zix3cGqlaFtLTSDaj8KfHc1Dmz/HEq2pYG5absMtcxNW/RNpdyszjou6bslpwOqSQpN4tVYYpDls82twvPcYZz7kTgIuAGMzsrv52cc8845xo75xrX0tCiMu+tt/yKuy1aFLC4yvr1fp6hOnU0WdjuK/Hc1Im0/PngA/jP0C9JIRtXIabbbdWqGlJWPEo8N3XOLH+mXpDGJgpYKVBF2+Ki3JRd9tQ/0kingHmFlJvFQd81ZZfl5MB9B+u8WdwK8418JXBA1P36wKrCPoFzblXw7xpgOr7roJRjixbBVVf5RY+mTMlnAmrnoFMnWLHCr76y776hxFkOlHhu6kRavixZAiOav8lDObeS2fIKbNbMbcvWqzBUnHTelF0yfTpcM6YpXx5wSd5G5WZxUm7KLnn6aegz/QzW1Tw8b6Nys7goL2WX3XMPDPygCb8dkU8tULm52wpTHJoLHG5mB5tZReBq4LXCHNzMqplZjdz/AxcAC3c3WIl/a9f63kJVqsBrr0GNGvnsNHy4/yQ8ZAicdlqpx1iOKDel0Natg5vO/5Yxm9qQdVQjKk6ZAOee60+eBx2kk2jxUm5Kof33v9Cunb8CesaKadCqlYq2JUe5KYX29ttwY0/HjPrXU+/3BXDHHcrNkqG8lF3y3HN+utqXGg/hkMWz4NprlZvFZKerlTnnssysJ/AWkAyMd859Y2bdg/ZRZlYXmAfsAeSY2c3A0UBNYLqZ5T7XFOfcrJJ5KRK2jAz4179g1Sp4/33/fTOPOXOgb1//4feWW0o9xvJEuSmFtXUrdL70D4Yvu4TK+1Sh4qxXoVo139i0KSxbFmp85Y1yUwpr1Sq45BK4qPqH3LWyG5x3Hrz0Enz4oZ8rIS1NH3CLkXJTCuvbb/3sB0NqD+WClePh7rvhvvt8jio3i5XyUnbFxx/7ASgDjn6Jy+fdDm3awIQJ0LGjcrMYmHO7MqSzdDRu3NjNmzcv7DBkFzjn83HixP9n777Doyi3B45/D72J4qVaAEWwV1BRr0qxICBYULGheBW5tp/12q6C2HsDERtNLyoqiBRBIIiIhaL0IiIogiioICSUJOf3x5mVZdkNIWR3luz5PE8eyM67syfJnp2ZM2+BQYOgY8eYBllZVtXdtMkqutOn+9K8CYjINFVtEnYcsTwvd02qcF2XzXR4rRXNykyi9MQJ3mOviDw3XXHKzoZTToGcuT8wo8JxlKmxJ3z5pR8bi8Bz0xWnVavg+OPhpNXD6L/2HKRDB3j7bZ8fswg8N11xWrIEjjsOTi7/Ne+tOhU5+mgYPx4qVAg7tF1Ootzcbs8h5wrj8cetMNS9e4LCUNu2diYMtq69n/w6lxLPPw+HvXYzLRkPr/f3wpBzaSA/3+6XfDdtLT/VPZsyf+VZN3g/NjoXqkgv+D1/mkHfMpcgjRtbrwQvDDkXqrVr7XKy1sYfeUfbIXXqwIcfemGomPknndtpH3wAdwe9+u6/P2ZjbGEIbFhZVlZKY3QuEw0fDgtv6c31vITefoddjTrnQnfffTDk/Ty+Ofhiqi5fYEPJGsaZ8NY5lzKqcO21sPCzX5hQ9WxK77mHTaBZKcFqSM65lMjNtc4Hy+evZfI/2lJm8wY7yfXFcoqdF4fcTpk2zSbSPP54eP11kOjFKOMVhsC+b9vWC0TOJdHMmdD7gvG8wI3ktmqDPPZo2CE554CBA+GRR2DUYf9h/3kj4cUXoUWLsMNyLuM98QS80z+HqXufQ+Wc1fDRR1CnTthhOZfxbrsNxozK5duDO7Lbj3Pthsohh4QdVonkxSFXZD//DO3aWdF26FBboWwrnTtvWxiKyM627c65YvfLL3B9q+95c+MFaKMDKfPO/6B06bDDci7jTZoEV18NTxz4OmfMfgZuvBG6dg07LOcy3pAhcPddyti6/2Kfn7+CN9+Eo48OOyznMl7v3rbQddZRt1B39ih74LTTwg6rxPLikCuS9eutMLR2rd1YqV07TqOnnorpShSlUiWbTd45V6xycuCStmt55Zez2a0qlB05DKpWDTss5zLe4sVw7rnQocan3L7433DGGfDMM2GH5VzGmz7desG/vPeDnPTjIHj0UUtW51yoPvnE7qH0PuRFTv62p3UhuuaasMMq0XxCarfDIhNpfvONDcU+4og4jdavh8ceg/Ll7fsNG7Zsq1TJxon6MoPOFav8fOjcKY/bpl3MgaW/o9SQMdCgQdhhOZfx1qyxJev32bSYAbnnI/vvD++8A2X8NMy5MC1fbrl5RcV36fJzNzvBvfPOsMNyLuPNnw8XXABd9hnJtfNvhvbtbQUkl1R+VuJ22H//a5NQP/OMTR20jbw8uOQSqx59+CFUrrxl7iEvDDmXNA88AI3fu4s2jISevT3PnEsDublw0UXwy4I1LN3nbEqvzbfj4B57hB2acxktO9t6wTf842t65l8BJ50Er7ySuNe7cy4lVq2yS8ejS8+k56qLkCOPhLfe8ikSUsCLQ26H9O9vvW27dIGbb07Q6LbbrEvRiy9uqR4NH25zDPXt6xesziXBW2/Bkh796c9T6HXXIz6PiXNp4ZZbYOzoXH44rCNV5i+EMWPggAPCDsu5jBbpBf/rtJ+YVK09pXavbRMPRXq8O+dCsXEjnHce5P60go+rtaVUxd1tDpPKlcMOLSN4ccgV2mef2TDPFi2gZ88EN1ZefBGef94qRzfcsOXx5s1hyZJUhepcRpk8GV65cjKfSBfym7Wk1HPPhh2Scw7o1cuOlxOOuYN9p38Mffr4DRLn0sB998Go99fzw17tqPDXehg+1pfFdi5kqrZGw9TPsvlp/3aUX/m7XYDuvXfYoWUMLw65QolMpLnffrZ6YNmycRoNH25FofbtbTJq51zSLVkC15/9I5/ouZSuX5dS772bIEGdc6k0Zgz83//BC4e/yqnTn7NvunQJOyznMt7AgfDoI/lMq3cZNX6aaeevhx4adljOZbwnn4T+/fKZffDl/GP+NJuexFcNTCkvDrntWrPGRoflB9MkVKsWp9H06TapwjHH+JhQ51Jk7Vq4oPV6BvzZjmqVNlB6xATYc8+ww3Iu482daxNpXlFvAjfMuw5atfKbJs6lgUmT4Oqr4c1693L00qHw3HNw1llhh+VcxhsyBO66C4YcfC+HzAsmtz377LDDyjheHHIFys2FCy+E776z5QQbNozT6KefrHpUvbqPCXUuRXJzoeOF+dw1/woOk1nIu8Ph4IPDDsu5jPfbb3ZIPLjsIl75/XykYUN4+21fmcy5kEV6wd9crT+XLH0Mrr0Wbrop7LCcy3jTp8Nll0GP+m/Qft5jNrYs4eS2Lpn8TMUV6OabrWv8q69Cs2ZxGqxdC23a2NL1n38OtWunOkTnMtKtt8Lxox/gfN6Hp572O5/OpYHIRJrrfl7DnDpnU/ov7KbJ7ruHHZpzGS3SC77Jxkk8tuEaaNnS5sn0lcmcC9Xy5dZBqG3lLO796Vo44wx44QXPzZB4ccgl1LOnTaZ5++3WBXcbmzdbv/l582DkSDjssJTH6Fwm6tULfnnxXV6gh60CeMstYYfkXMZTtY4IX0zK5acjL6LinEUwdiw0aBB2aM5ltNxcm/kgd+FiPqxyLrLffjB4sM/P51zIsrOhXTuo9ecC3ip9HtKoEbzrc2eGyYtDLq6PP7a5M9u1g8cei9NA1VYjGzMGXnsNTj895TE6l4lGj4b+N03js1JXok1PQnr39rsrzqWBxx+H/v3hy+Nvo85Xo63L7amnhh2Wcxnvllvgi9FrWFLnbMptyCtgAk3nXKrk50OnTrB02iqW1G5DmfxyMGKE97QNmReH3DbmzrU7LIcfXsDc0k8+Ca+8AnffDf/6V8pjdC4TzZ0LN3ZYwWel21O2dg1kyAdQvnzYYTmX8T74wA6Hrx7bh+O/esGuRuN2uXXOpVKvXtC7Zy6z63ek2rKFdlMz7gSazrlUuu8++Oj9jXy/37lUXr4MJkyA+vXDDivjlSpMIxFpJSILRGSRiNwVZ/tBIvKFiGwUkdt35LkuvUQm0qxUyaZJqFIlTqPBg+HOO62C9NBDKY/RbeG5mTn+HJLF7kfUY3hOC2qU+YNSHw2DmjXDDssl4LmZORb0yaLx+fV5ru7T/OubG2z+ryefDDssl4DnZobIyiKnVn2G3JTFB/vdxkFLPoaXXoLmzcOOzMXheZlBsrJYV70+kx8Zz4QDrmGfHyZZt9umTcOOzFGInkMiUhroBZwOLAOmiMgwVZ0b1ex34CbgnCI816WJ9evhnHNgxQr49FPYd984jb74Ai6/HE48Efr1g1KFqi+6JPDczBwbRmVRvkNb9sjPtgfuegCOPDLcoFxCnpuZ45dBWezbtS2VyOamH29H6tWDQYMSdLl1YfPczBBZWeS3bkvFDdmMlFaU+2GT9ea75pqwI3NxeF5mkKws8s5qS5WN2YyRVpRdtBkefNA6HLi0UJgr++OARaq6WFU3AW8D7aMbqOqvqjoF2Lyjz3XpYf16W3Tsyy9h4EA47rg4jb7/3iYh2mcf+PBDqFAh5XG6rXhuZoANo7KgbVsqRgpDYJObZGWFF5TbHs/NDPDLoCyqXmqFIQABWLnS1uR16cpzs6QLCkOlNlheltNNVqxt3TrkwFwBPC8zQVAYKr3RcrOsbrbcPPHEkANz0QpTHNob+Cnq+2XBY4WxM891KRIpDH32Gbz5JnToEKfR779bo/x8W5msevWUx+m24blZwkUKQxWiC0Ngyzu0besFovTluVnC/V0Y0pjc3LDBczO9eW6WZDGFob/l5UH79p6X6cvzsqSLKQz9LS/P1rH33EwbhSkOxVsGRwu5/0I/V0S6iMhUEZn622+/FXL3bmetX2/nsZHC0MUXx2m0cSOcdx788AMMHQqNGqU8ThdX0nPT8zI82dnw53mdty0MRTfo3Dm1QbnC8twswZYuhdzLO29bGIrw3Exnnpsl2KZLO29bGIrwvExnfq1Zwm24uPO2haEIz820Upji0DIgevaZfYDlhdx/oZ+rqq+oahNVbVKjRo1C7t7tjPXrrVg7caINJYtbGFK1Mdqffgp9+8LJJ6c8TpdQ0nPT8zIc2dmWm703dE58dlSpkuWkS0eemyXU0qXQrBlcX+E1tFSCeYU8N9OZ52YJNXMmXLi+LzkkmPLA8zKd+bVmCTZxIpz7Z182iOfmrqAwxaEpQEMR2U9EygEdgWGF3P/OPNclUeTi89NPYcAAuOSSBA0feMAqRw8+WEAjFxLPzRIokptVxg+jW+mHkEMPhYoVt25UqRIMH+6rrqQvz80SKFIYWvtHHq83G4jk50HZsls38txMd56bJdCsWdCyJSyv2ICy1XfftoHnZbrzvCyhJk60BTzL7lWDcpXLgcR09PLcTDvbLQ6pai5wAzAamAe8q6pzRKSriHQFEJHaIrIMuBX4r4gsE5GqiZ6brB/GFU5kupJIYejSSxM0HDDAikNXXgn33pvKEF0heG6WPJHCULnxH/NBmQsodczR8PnnMGKEHUDBD6S7AM/NkufHHy3l1vyRz/xTu1B9xADo0QNGj/bc3IV4bpY8s2ZBixZQt8xyJlVoSZnNG+Dllz0vdyGelyXTZ5/ZPPCn1FrAkHWnUapqFbu29NxMb6qadl+NGzdWlxzr16s2b65aqpTqwIFxGowfr1qvnuozz6iWLavaooXqxo2pDjOjAVM1DfIw9svzMrnWr7d0a8lY3Vy2gurRR6v+/vuWBpHcHD8+tBgznedmZlq6VHW//VR3r5qvK8+7VhVU77tvSwPPzdB5bmamWbNUq1dXPbzWSt24/0GqVaqoTp5sGz0v04LnZmaaOFG1cmXV0/dfpLm191KtWVN13jzb6LmZFhLlZplQK1MupSK9EiZMsMLtZZfFNMiylZHIzoZbb4W6deH996FcuTDCdS5jRHJz8/jPGF+uHWUObAhjxkC1alsaNW8OS5aEFqNzmejHH20o2e+rlQVn3kjNwX3grrusV22E56ZzKTd7tqVerTKrmbL7aZT7cSl8/DGccII18Lx0LhSffWZDyY6r/SMjN7Sg9KYNdvF50EHWwHMzrRVmziFXAmRnQ7t2Vv/ZbmEo4rff4JtvUhqnc5kmUhjKGf8F4yq0psz+dWHsWKhePezQnMtoP/1k57C/r1bmt76VWoN7wW23wSOPbDtvgnMuZWbPtqFk1cv8ydTqZ1J+yUIYNgxOOSXs0JzLaJMmWWHomNrLGZPXgjLr1sAnn8Dhh4cdmiskLw5lgEhhaPx46N+/kIUhgJwcezwrK2WxOpdJIoWhteOnMqFiK8ruUxvGjYOaNcMOzbmM9tNP1mNo1W/KvHZ3Uvvt5+Cmm+DJJ70w5FyI5syxwtDupf5ieu2zqLBgpvVyP+20sENzLqNFCkNH1l7JeGlJmVUrbV6+Y44JOzS3A7w4VMJlZ0P79lYY6tcPLr88TqPOnbctDEXvoHPnZIboXEaKFIZ+H/8tkyqfQblae1qi7rVX2KE5l9GiC0NzO9xHnTefhH//G557zgtDzoVozhzrzbdb6Wxm1G1LxVlT4J13oE2bsENzLqN9/rkVhg6ptZoJ5U6nzPIfYeRIOP74sENzO8iLQyVYTo4VhsaNs8JQp04JGj7xROIT3kqVoG/fZIXoXEaK9Ob7dfxsvtjtdMrvWcUKQ/vuG3ZozmW0Zcvs4nPVKpjTsQd7930Yrr4aevb0wpBzIZo713oMVS69gZn7t6fStEnw5ptw7rlhh+ZcRvv8c2jVCg6s9SeTKp1B2cXBMM+TTw47NFcEXhwqoXJy7OJz3Dir7SQsDC1ebJNrVqgA5ctvvc2XGHSu2EUKQ8vGLeDr3U+jQpWyVhjab7+wQ3Muoy1bZj2GfvsNZl/yCPu82h2uvBL69IFSfrrkXFjmzrVT0QqlNjHrwA5UnjwW3ngDOnYMOzTnMtrkyVYYalj7LyZXbUXZ+bNgyBBo2TLs0FwR+dlOCRTdY6hvX7jiigQN5861qu6aNfDppzBqlBWEwAtDziVBpDC0ZNz3TK/Wgorl1QpDBxwQdmjOZbTowtCsTk+y78v32gR9r73mhSHnQhQpDJUvtZnZh3ekyqcjrGCb8OTWOZcKkyfDmWdCg9rr+eIfbSg3cyq8+66NL3O7LD/jKWEihaGxwU2VhMfO6dPh1FMhP98KQ8cea0ff4cOhXj0vDDlXzCKFoUXjlvLtP1pQqdRGq+BGlvZ0zoUiMpTs119hxpXPUrfnf6xHQt++ULp02OE5l7EiQ8nKSB6zj+nEbp8Mgeefhy5dwg7NuYwW6TFUv1YOX9VuT/kpn8Nbb8E554QdmttJZcIOwBWfnBzLybFj4fXXrTd8XJMm2eR91apZ4+heC82bw5IlKYjWucwRKQwtGLeMuTWaU2XzWusxdNhhYYfmXEb7+Wc77K1cCTOu6Un9Z26F88+HgQOhjJ8iOReWefOsMFSKfOaceDVVh7wNjz9uqwY650LzxRdWGNq35kam1OtA+axg1aOLLgo7NFcMvOdQCREpDH3yiRWGEi4wNmYMnHEG1K4Nn33mw1mcS7JIYWjuuBXMqdWC3TassqU9jz467NCcy2g//2xDyVauhG//3Yf9nrnRut4OGuSFIedCNG+eFW0FZU6z69hjSD/o3h3+85+wQ3Muo33xhQ0l26fWZqYe0JEK40fCyy8XMLmt29V4cagE2LDBFmv45BObHiFhYWjIEFs7u1EjKwz5ykjOJVWkMDRr3K/M3aslVdcth48/huOOCzs05zJadI+h6Te+wf5PdIXWrW1Z7LJlww7PuYw1f34wq4Eqc864hWrv9LGFU+6/P+zQnMtoX35phaE6NfOYesjlVBw9FF54wYd5ljBeHNrFbdhgPYbGjLHC0FVXJWg4cCBccAE0bgxZWVCzZkrjdC7TRApD345bzfx9T2OPP5bAiBFw4olhh+ZcRosUhn75Bab93wAOePRq61H7/vvbrtrpnEuZ+fOtNx+qzG53N3sOfB5uvhkeeQREwg7PuYz15ZfBwJOa+Uw/+ioqDXsHnngCbrwx7NBcMfPi0C4sUhgaPXo7haGXXrLufs2aWRWpWrVUhulcxokUhqaN+5MF9c+g2q8LYdgwmwTeORea5cutMLRiBUy99X80fKSzTWwydChUqBB2eM5lrL97DAGzLuhB9dceh65d4ZlnvDDkXIi++sp6DNWsoUxv+m8qvzcAevSAO+4IOzSXBF4c2kVFhpJttzD02GNw/fU2nGz4cKhSJaVxOpdpNozKYu0/6lNh3HAWNmjFP36eBR98AKedFnZozmW0rQpDdw6m0YOXw8knW+G2YsWww3MuYy1YYLmZnw8zLnmcGr2626oqvXp5Yci5EH31lfUYqlFd+abZzVR56xW4+27473/DDs0lic+4uAtavdomhB83Dl59Ff71rziNVOHee+HRR+Hii6F/f59HwbkkWzM0i/Lnt6V2fjYfSXvkB6ww1Lp12KE5l9HmzYNHTs/ik+Wd0auuol73HjbEc/hwqFQp7PCcy1hffQVPnJXF12s6U/mituz5bC87b33tNSjl97CdC8vo0fDieVnM3dSZPQ5pSuU33oFbboGHH/aibQnmxaFdzJQp0KGDzZXQt2+C5erz822pz1694JproHdvKF061aE6l1HmvZRFvRvaUkGzARDNh7LloGrVkCNzLrO9+y70uyKL9za0pRLZ8Ho3OPhgGDnSe9M6FxJVOz0dclMWH+a3pZJmw6Be1ptvwAA/b3UuJPn58OCD8Gn3LEZIWypqNgxfavMlPP20F4ZKOC/J7yJUoU8f+Oc/7ftJkxIUhnJzbYxZr15w2232JD/AOpc0qjD05izqXh+c3EbbtAnatrVJ4J1zKbVpk81l2/uiLN7fFBSGIpYsgalTQ4vNuUy2fj1cdhkMvj6LjzTm2Dltmq2o65xLudWroU0bmNA9i1Glg8JQxNixMGFCaLG51ChUcUhEWonIAhFZJCJ3xdkuIvJCsH2miBwTtW2JiMwSkW9FxM/EiiA7G664wubla94cpk+HY4+N03DjRujY0YaQ9egBTz7p1d0SznMzXJET3KOe70xlsuM3ys6Gzp1TG5gLnedmuCIrks14PovRZdpSMT8mP3NyvHCboTw3w7VgARx/PKz4Xxajy7alQmxuZmd7bmYgz8vwTZkCxxwDeWOzGFO2LeXzPDcz0XaLQyJSGugFnAUcAlwsIofENDsLaBh8dQF6x2xvrqpHqWqTnQ85s3z3HTRtCm++Cd2720rY//hHnIbZ2dC+vS3F++yzcN99Xhgq4Tw3wzV/Phx3HLz9Nixt+S80UcNKlWwMqMsYnpvhGj8ejj4aZsyA4f+4gnK5Xrh1xnMzXO+9B02awMqVMKJ6J8pt9tx0npdhix2dMrza5ZT13MxYhek5dBywSFUXq+om4G2gfUyb9sAANV8Ce4hInWKONeMMGWIH0Z9/hlGjoFu3BCPE1qyBVq1smfrXXrN+9C4TeG6GZPBg67236td8vru0G6eOux856KBtVzyqVMkmvI2sz+syhedmCPLzbQ2G00+H6tXh28HfUblqAVMreuE2E3luhmDzZrj1VrjgAjj0UJjVbxoVS29O/ATPzUzjeRmS6NEpLVrAzOfGUW7TusRP8Nws8QpTHNob+Cnq+2XBY4Vto8AYEZkmIl2KGmgmyc2F//wHzjsPDjzQhpGdeWZMo6wsqF8fhg6Fli3hiy9g0KAES5e5EspzM8U2b7aFGi68EJoevIYlR53D/gN72F2Ub76xrn2RlY+8MJTJPDdT7I8/4Jxz4J577AJ02r0fcEDHJrB2LTz++LYrknl+ZirPzRRbvtzS7Nln4YbrlUlXvErt80+CcuVsfkzPTed5GYro0SkPdMtnxMmPsnuHM2DvvaFfP8/NDFWY1crijU2KHUFRUJuTVHW5iNQEPhGR+ao6cZsXsWTuAlC3bt1ChFUyrVhh0wZNnAj//rcdTMuXj2mUlWVjPrOzrYJUpowVidq0CSVmF5qk56bn5RY//2xFocmT4eHL53P3V+cg33wPPXvCddfZMM7mze3A2bmz3VnxA2im8txMoW+/hfPPhx9/hBefzeX6ZXcjlz1l4z4HD4a6da2rX+S46Se4mcxzM4UmTICLLoJ16+Cdvtlc+On1cF0/OOMMeOst6+J38MGem86vNVNsyBBb2KhMGfjk3T9oOeAK+OgjuPhieOUVW8mzbl3PzQxUmJ5Dy4B9o77fB1he2DaqGvn3V2AI1nVwG6r6iqo2UdUmNWrUKFz0JczEiTYR2JQptornSy9tpzAENlC0VKltq7suEyQ9Nz0vzbhxNofJzJkw8T8fcc/Q45A/frcN11+/9fxezZvbSkh+AM1knpsp8sYbcMIJth7DFx+s4IYhLZGnn7KC7cSJdnILWwq39er5CW5m89xMAVXrsNeyJVSrBt++t4gLnzvReiPcfz+MHGmFIfDcdODXmimTmwt33LFldMqsAd/Q8j+N4eOP4cUXrWhbpYo19tzMSIUpDk0BGorIfiJSDugIDItpMwzoFMwk3xRYo6orRKSyiOwGICKVgTOA2cUYf4mgCk8/bWM9d9sNvvoKLr88TsPYwlDExo0+e3xm8txMsvx8ePhhu8lZs3o+i6/swclPtINGjWy53VNOCTtEl548N5MsJweuvtpGUp94IszqNZEmXYK7KwMH2nCV2LsrXrh1nptJ9+efcO65cNdd1qPvm+4f0vDiJta1b8QIeOCBbSfQ9NzMdJ6XKbBihRVsn3rKRqd8/q832Ov8E2DTJvj0U7jhhm0XM/LczDjbHVamqrkicgMwGigNvKGqc0Ska7D9ZWAk0BpYBGQDkWnMawFDxN5oZYD/qerHxf5T7MLWrIGrroIPPrCDad++sPvuCRpfccW2haGIyOyBCxmrAAAgAElEQVTxS5YkK1SXZjw3k+uPP6xIO2IEXNVhLX1yOlGm54fQqRO8/PK2k087F/DcTK7Fi6FDB5vm6567lQerPUOp8++E/fe3hRkOPzzsEF2a8txMrhkzrCC0dCk891QuN/12H3LxY9C4sS1VVr9+2CG6NOR5mXwTJ9oQzzVr4K3Xcrjkixuh6+tWLRo0CDK0J5XbVmHmHEJVR2JJGf3Yy1H/V+D6OM9bDBy5kzGWWLNm2UF08WKr4t56awGrz3/8ceLCEPjs8RnKczM5pk2zi8+ff4aB9y3k0sHtke++g+efhxtvLCBRnTOem8kxfPiWnrUj317LWe92trsr551nx8CqVcMN0KU9z83k6NfPeiNUqwaT3l/J8c9dbD3ar70WnnsOKlQIO0SXxjwvkyMyOuWuu+z+SdYbizno3uDuyr33xu/J5zJaYYaVuSR48004/nj46y8YPx5uuy3B9eZff9n6gmedBbVqWY8Fnz3euaRQhVdfhZNOgrw8mPXYCC57/lhk1SoYOxZuuskLQ86FIC/PzmPPPhv22w9m/m82Z93XBD780O6uvPeeF4acC8GGDdCli3VeP+EEmN3nc47verStotuvn523emHIuZRbs8ZudN5xB7RvD98+NJyDLmkMP/xgk08/9JAXhtw2CtVzyBWfjRttKezeveHkk+Gdd6BOnQSNJ060qeSXLLHM7tHDDrCNGvns8c4Vs+xsm8O2f3848/R83m/8CJVvvx+OOsqWdahXL+wQnctIv/4Kl1xi87//61/w0klvUa5DFysGjR/vc385F5IffrCLz+nT4a47lYdqPE/p8+6w4+WoUXCkd+hwLgzRo1OefiKPW/7shlz0sK2u8t571o3IuTi851AKLV1qBaHeveH22+1EN25hKCfHxpg1a2YrkX32GTzxxJY7Lz57vHPFatEiu+M5YAA8dOdfjKpyAZUfuw8uvRQ+/9wLQ86F5IsvbBXPzz+Hvi9v5LVy11HuqsugSRPrFu+FIedCMXKkTSX0/fcwfNBfPLr4Ikrffgu0aQNTp3phyLmQRI9O+eyD37h19JnIIw/bKg6TJ3thyBXIi0MpMnq0neDOnw/vvw9PPglly8ZpOGWKNXz2WRu8PWOGjXGJ5bPHO1cshg61E9xly2DCa4u496OmyLAP4ZlnrFrkE087l3Kq8MILVvspXx6mvP8jV74e3F254w67u1K7dthhOpdx8vJsNfo2baBuXZj59lzadD/WTm4ff9x62u6xR9hhOpdxNm60HvCXXw7HHguzX/2CE6472u6uvP66zZvgQzzddviwsiTLz4cHH7T5vg491I6djRrFabhpkzV89FHrTjRmDJx+esrjdS5T5ObCPfdYobZJExh+/Shq3XKJjb8ePdpWcHDOpdy6dXaD8513bI6htzqNZrdOl9px8v33bfJp51zKrVplQzw/+cRmPejTbBDlOlwDVapYwbZZs7BDdC4jLV0KF1xgfQzuuF15dO+elD73VqvgTp5sw8mcKwTvOZQkqjZ/7T//Cd27w2WXwZdfJigMzZpl/f8eesgazprlhSHnkkTVpkK44dAsrnuyPs+ePZ4v2j1Krava2PCxqVO9MORcCHJzbc6vaxtl8dg79XnzqnEMbdyD3S48y26aTJ3qhSHnQrBhA/TsCV0PzOLVT+oz4uYxvFH5RspdeYlddE6f7oUh50Lw11/Wr+DGw7J4b2p9Jt0zkieWXULpW26yxYymTvXCkNsh3nOomKnaHZUHHrBC7d57wxtv2B2WbRY5ysuzbgv3329rfw4datPJO+eKnarNkfDAA1B5ShYjpC2VyObmkWfAR3nQsaN1u41dDdA5l1S5uTZHwkMPwb7fZzFS2lKRbOr3O8O63152ma14VLly2KE6l1E2bLCRKI89Bo2WZzGylOVmvRfOsty89VbbGHeeBOdcsqxdCy++aDMgHPF7FqNKtaWCZlP30bbW4JFH4M47be5a53aAv2OKiaqNRDnpJDjzTPjxR+jVyybq69w5TmFo4ULrVnT33dCuHcye7YUh55JA1VbsPO44W+SvwY9ZjCnXlkqabQ3y8uzE9pprvDDkXApt3gx9+8KBB9pxsoVk8Un5tlSM5GZ+PpQrZxu9MORcyuTkwPPP27y1N90EF1TPYmz5tlTMj8nNtm29MORcCq1dazdS6teH//4XujTMYmyFtlSI5Kaq5WbTpl4YckXi75qdpAoff2wrHbVqZZPa9u5tqx9dd51NpLmV/Hwr9R51lM1O/dZbMHgw1KgRSvzOlVSq8OGHNp9Qu3bw++8w4o4s/re2DWU3ZW/dePNmm9wkKyucYJ3LIJs3Wye9Aw+Eq66yuWsnPZhFn5/bUGZjTG5u2uS56VyK5OTAc89ZUejmm20qhG+eyeK5ha0pHS8327b13HQuBdassalp69eH++6zzgjzXsri0RmtKb0hJjc3bvTcdEXmxaEiigxRadrUhnSuWGG93r/7Drp2jSoKZWVZJmdl2Wxhp59ut2GaNYM5c2xmv226FTnniio/3xZLOeYYOOccO6D27QvzZ26i9WvnIzk58Z+YnW09FJxzSbFpE7z2ml1wXn017Lmn9eqbmvUXJz11ruemcyHJzrZFcvfbD265BQ4+GCZMgAnvreKobu1tfFmiJ3puOpc0f/5p0yHUr2+zkJx8sk0j9FHvZRx0x9mem67YeXFoB6nCiBE2f3SbNrByJbzyihWFrr02pqdQVpZVbpcutW5FBx8MX39tA7hHjIC99grt53CupMnPt4WMjj7a5qxdv94mt50/T7my8mDKHnkI/PFH4m62lSpZFck5V6w2bbLjZKNGNnqzRg0YPhymTN5M2596Iw0PsCpu6dLxd+C56VxSrF8PTz9tPYVuvdVW1f30Uxg/IodTv3gMGjSw5QPLJJii1HPTuaT4809b0Kh+ffv31FNh2jT4cMAaGr9/DzRsaAdXz01XzLw4VEix85b89pvVeBYutJPdcuVinhApDGUHXf02bbJufn362C1T7y3kXLHIz7eRmUceCR062E2UgQNh7lzotN9nlDn5BLjwQjtQjhplM8bHzi1UqZJdrTZvHs4P4VwJtGmTHfIaNrSbJ7VqWY/br75U2mweihxxuI2/Pugg+Oorz03nUmT9enjqKSsK3X47HHYYTJwI48bkccoP/a2Se/fddkU6Zw6MGeO56VwK/PGH9RCqV896DLVoAd98A0Pf3cQxn78IBxxgy5Odf771TPDcdMXMi0PboQrDhm2Zt2T1apsrYeFCq/FsUxQCuwBt1WpLYSgiP98qST4G1LmdlpcH77wDRxxhtZ/cXJvCa+5cuKzJfMp0OAdOOcUmAuvb146urVrZkXb48C0HUz+IOlesNm60YdYHHGDDrPfayw6LX34JZ1X7Ejn1FDj3XLtJMmyYjV857jjLQc9N55Jm3Tp44gkbPnbHHXZTZdIkGDsWTt7wCTRubMvr1qljeTlsmPV699x0Lql+/93mEqpf3+YWOu00+PZb+OB95ahF71m3vptuspPeadNsic969Tw3XbHz4lACkclsGze2RcTWrLEl6RcssAk0t1mcIT/fij5XXWXjzTZtir9jHwPq3E7Jy4NBg+Dww231eVX7fvZsuKTFL5S+4d92G3T8eFvKc+FCO9mNHrISOZjWq+cHUeeKycaN8NJLVhT6979hn31sFc/Jk6HVAYuQCy+w1Ru++86qR7Nm2WTT0T1pPTedK3br1sHjj1tR6M47bfj1559bp4OTqsywZXbPOMOWQho0yCq5p5669U48N50rdqtX26pj9evbKmRnnAEzZtg0CUeu+xxOPBEuuAAqVLCut2PH2qSa0Tw3XTFKMFAxc+XnW1GoRw+r2DZoAP36waWXJhjWOX++jWF5801bv3633ax3wvjxdqYcy8eAOlckeXnw9tt28Jw/326ivPOODSUrlb0OHnoannzS8u766+1oW9AqgM2bw5IlKYvfuZJqwwbrUfvoo/Dzz7aKyhtv2J1PWb0Kbn7QlvEsWxa6dbNxLFWqJN6h56ZzxeKvv6BXLxtCtnq1nZ7ef7/VaFm2DK78LwwYYEsGPvNMgmV2o3huOlcsVq2ylHvxRRvm2aGD9Rw6/HCsJ8J5d9vqKnXq2EoOsTc5Y3luumLixaFAXt6WotCMGTZHQv/+tpjYNkWhVavsKnXAAJgyxSa4PfNMuy3Trp0VgGLnHALv6udcEeTm2o3Mhx6yTkCHH25zDJ13HpTKz4VXX7cLzpUr7e7KI49Y1wXnXFLl5GwpCi1fDv/8px03W7QA2ZADjz9vG9ets3HY3bvbia5zLqnWrt1SFPr9d1tVt1s3W0yFNWvgnsdteTJVK9befTdUqxZ22M6VeL/9ZkWhnj2tKHThhVYUOvRQ4Ndf4foHbLK+ihVtfNktt0DlymGH7TJIRhaHVq603uzRX3Pm2Iluo0bWEahjx5ii0MaNVtgZONBWGsvNhaOOsmUeLrkEatfe+kUiXfwiBSIvDDlXIFVYsWLb3Jw3z3omHHmkdbM95xwoJcEM8Xfead2I/vlPGDoUmjYN+8dwrsRRtUU3Y3NzwQI7FJ58sh0amzcHyc+DAW9az71ly2zY2OOP27wlzrlilZcHixdvm5uLFllP+DZtrKfQccdh0x282Mfugq5aZV3iH37YhqI454pVbq6NoI7NzcWLbST1RRdZUeiQQ7DrxIeesWNlTo6t4NCtG9SsGfaP4TKRqm73C2gFLAAWAXfF2S7AC8H2mcAxhX1uvK/GjRtrQuPHq9arZ/9ux7p1ql99pfraa6r/93+qLVqo1qihaqe69lWzpmrLlqo9zx+v66rX09xPovabn686ebJq166q1arZE+rUUb39dtUZM7b7+jsar3OqqsBULUSeaIpzs8C8VN2h9/ratZZaffqo3nCD6qmnqu6559a5Wbu26umnq/bqMF7X16ineWOD/X71leopp1ijAw9UHTrUctW5JMuE3Fy9WnXCBNUXX1Tt0kX1hBNUd9tt69ysX1/17LNVX71kvObUqqf544L9jhmjeuSR1ujYY21HzqVAJuTmypWqY8eqPvOMaufOqk2aqFasuCUvRVQPOED13HNV37h8vG6oHew3P1918GDbCHYyPG3aDvx2nSu6wuZmWl1rqhY6N/PzVZctUx01SvWJJ1Qvv1z1qKNUy5ffkpulS6sefLDqhReqDug8XjfuFew3N9cuUvfayxqee67q/Pk7/Dt2rigS5WZhkrU08D2wP1AOmAEcEtOmNTAqSNymwFeFfW68r4QJO368aqVKFnalSn8nbG6u5dLgwar332+51aCBHSgjiVmpkp2rXnWV6rPP2gF25coE+33zTdUHHthyIK1YUfXSS1VHj7YXcy6JduBAmtLc3G7RNk5ubtqkOnu26qBBqvfcYxeU9etvfaFZpYpq06aq11yj+sILqllZqr/9Fme/FSqoNmumf1d1e/dW3by5WH/3zhWkJOVmTo7q9Omq/fvb/Y4zz9xyfhr5qlbN6rDXX6/68suqn3+uumZNnP1WqGBXqqC6336W8Hl5xfvLd64AJSk3169X/fpr1ddfV735ZruBWbPm1rkZubF5883W7uuv7YboNvstX171kEPs/4cdpjpypN9McSlVmNxMq2tN1YS5uWaNHQdfftmOi6ecsqXvQORr771VW7VSveMO1QEDVL/5xo632+y3fPktJ8RNm6p+9lnx/uKd245EuVmYYWXHAYtUdTGAiLwNtAfmRrVpDwwIXuhLEdlDROoA9Qvx3MKJncMnO5tNp7Xm2b2e4ONfG7MxWByslMC++8JF+0ODZjahdIMGtpRuqdi12RYB70yD//zHxq0E++Wyy+z/LVrAvffC+efbRNPOpZe0zs2nallu5ubZw6VLQd26cHkD2P8MaLC/5Wbt2nFycyEwKCY3N2ywpXU7dbLB2p6TLn2ldW4+Xv0JxqxqTF6+PVyurK2UcuLh0OCcLcfN6tW3XkgMgNnYMrqxuTl1qi1R9uyzBU9o61y40jo3H93TclODZhXK2wpjLY7dkpf7N4A9Y6cH2oxdEsfm5saNMHeuzSv02GMFT2jrXHjSIy8hYW4+tPsTjP2j8d/NKlWCg/aHNqdE5eb+ULVqzP6ygenEz82lS234WLducQ62zoWjMMWhvYGfor5fBhxfiDZ7F/K52xdvcmegXP4G7lx2E3dGP6jAj8HXhB1+pS0qVrQ5E3yOIJe+0jo371lxE/dEP5gPLAm+xu3wK23x3nu2aoPnpktfaZ2b9/16E/dFP7gZ+C742hn9+9uk8J6bLn2ldW52W3UT3aIf3AjMD752xksvQevWnpsuXYWfl1Bgbvb44yZ6RD+Yjd0smV2kVzKqtsruqad6brq0UZjiULxSphayTWGeazsQ6QJ0Aahbt+7WGzt33iZRt1Kzps2GuaMuv9xmho8nJ8de15cFdOkr6blZYF5COLmZne256dKd56Zz6clz07n0E/61JnhuOkfhikPLgH2jvt8HWF7INuUK8VwAVPUV4BWAJk2abJ3UffvGreQC1q/v7beLVnF9++2C99u3747v07nUSXpuFpiX4LnpXHyem86lJ89N59JP+Nea4LnpHBA700c8U4CGIrKfiJQDOgLDYtoMAzqJaQqsUdUVhXzu9kWWha9UaevHd3Z5+GTt17nU8Nx0Lj15bjqXnjw3nUs/4ecleG46RyGKQ6qaC9wAjAbmAe+q6hwR6SoiXYNmI4HF2BTPrwLXFfTcIkUam1jFlVDJ2q9zSea56Vx68tx0Lj15bjqXftImL8Fz02U8sUnf00uTJk106tSp8TdmZdnYzL59izehkrVf53aQiExT1SZhxxGrwLwEz01X4nlupmi/zu0gz80U7de5HeS5maL9OreDEuVmYeYcSi/Nmydn0q5k7de5TOG56Vx68tx0Lj15bjqXnjw3XYYqzJxDzjnnnHPOOeecc66E8uKQc84555xzzjnnXAZLyzmHROQ3YGkBTaoDq1IUzvZ4LPF5LPEVJpZ6qlojFcHsiELkJex6v+tU8Vji29Vi8dwsHh5LfB5LfJ6bqeOxxOexxOe5mToeS3weS3xFzs20LA5tj4hMTZfJzTyW+DyW+NIplmRIp5/PY4nPY4kvnWJJhnT6+TyW+DyW+NIplmRIp5/PY4nPY4kvnWJJhnT6+TyW+DyW+HYmFh9W5pxzzjnnnHPOOZfBvDjknHPOOeecc845l8F21eLQK2EHEMVjic9jiS+dYkmGdPr5PJb4PJb40imWZEinn89jic9jiS+dYkmGdPr5PJb4PJb40imWZEinn89jic9jia/IseyScw4555xzzjnnnHPOueKxq/Yccs4555xzzjnnnHPFIK2LQyLSSkQWiMgiEbkrznYRkReC7TNF5JgQY7k0iGGmiEwWkSPDiiWq3bEikiciHcKMRUSaici3IjJHRD4NKxYR2V1EPhKRGUEsnZMUxxsi8quIzE6wPWXv22Tx3CxaLFHtPDe33u65WUw8N4sWS1Q7z82tt3tuFhPPzaLFEtXOc3Pr7Z6bxcRzs2ixRLVLam56XiaMJTm5qapp+QWUBr4H9gfKATOAQ2LatAZGAQI0Bb4KMZYTgWrB/88KM5aoduOBkUCHEH8vewBzgbrB9zVDjOUe4PHg/zWA34FySYjlFOAYYHaC7Sl53ybry3Oz6LFEtfPc3LqN52bqfteem56bOxKL52bqfteem56bOxKL52bqfteemyHlpudlgfEkJTfTuefQccAiVV2sqpuAt4H2MW3aAwPUfAnsISJ1wohFVSer6h/Bt18C+yQhjkLFErgReB/4NUlxFDaWS4APVPVHAFVNVjyFiUWB3UREgCpYwuYWdyCqOjHYdyKpet8mi+dmEWMJeG56biaL52YRYwl4bnpuJovnZhFjCXhuem4mi+dmEWMJJDs3PS8TSFZupnNxaG/gp6jvlwWP7WibVMUS7V9YpS4ZthuLiOwNnAu8nKQYCh0L0AioJiITRGSaiHQKMZaewMHAcmAW8H+qmp+keAqSqvdtsnhuFjEWz82EsXhuFg/PzSLG4rmZMBbPzeLhuVnEWDw3E8biuVk8PDeLGEuKctPzsuiK9L4tk7Rwdp7EeSx2abXCtElVLNZQpDmWrP9MQhyFjeU54E5VzbPCZdIUJpYyQGOgJVAR+EJEvlTVhSHEcibwLdACaAB8IiKfqeraYo5le1L1vk0Wz82ix+K5GT8Wz83i4blZ9Fg8N+PH4rlZPDw3ix6L52b8WDw3i4fnZtFjSUVuel4WXZHet+lcHFoG7Bv1/T5YFW5H26QqFkTkCOA14CxVXZ2EOAobSxPg7SBRqwOtRSRXVYeGEMsyYJWqrgfWi8hE4EiguBO2MLF0Bh5TVQUWicgPwEHA18Ucy/ak6n2bLJ6bRY/Fc9NzM5k8N4sei+em52YyeW4WPRbPTc/NZPLcLHosqchNz8uiK9r7VpMwQVJxfGGFq8XAfmyZ9OnQmDZt2Hqipa9DjKUusAg4MezfS0z7fiRv8r7C/F4OBsYFbSsBs4HDQoqlN9A9+H8t4GegepJ+N/VJPEFYSt63Yb4HPTc9N3cwFs/N1P2uPTc9N3ckFs/N1P2uPTc9N3ckFs/N1P2uPTdDyk3Py+3GVOy5mbY9h1Q1V0RuAEZjs4O/oapzRKRrsP1lbGb01liSZGPVurBiuR/4B/BSUEHNVdUmIcWSEoWJRVXnicjHwEwgH3hNVeMuuZfsWIAHgX4iMgtLlDtVdVVxxyIig4BmQHURWQZ0A8pGxZGS922yeG7uVCwp4bkZn+em52YBsaSE52Z8npuemwXEkhKem/F5bnpuFhBL0nleJpas3JSgsuScc84555xzzjnnMlA6r1bmnHPOOeecc84555LMi0POOeecc84555xzGcyLQ84555xzzjnnnHMZzItDzjnnnHPOOeeccxnMi0POOeecc84555xzGcyLQ84555xzzjnnnHMZzItDzjnnnHPOOeeccxnMi0MlgIg8KiI3R32/RETqF/NrdBeR7lHffy0ihxbnazhX0nhuOpeePDedK/lE5FoReS7q+wki0qyYX+NKEekX9f0HItKqOF/DuVQQkRoiskBEKgTfb/XeLsbX0aj/txORt4trvyKyXkQeLo79pQsReSD4uVREyiT79TKiOBSc9K0UkcpRj10tIhOC/9cUkUEislxE1ojI5yJyfGgB7wARqQF0Avqk+KWfAnoUx45E5BIRWRq88YeKyJ4FtK0vIlkiki0i80XktKhtdURkWPB31NgTfREpLyJviMhaEflFRG6N2V5aRB4Knv+XiHwjInsE2zoGH5hrRORXEekvIlWL4+fPZNvLzeD7LBH5Lfi7zRCR9qEEu4M8N3coN/uJyCYRWRf1VTpqe+SAH9n2WtS2w0RktIisij7hcDunMLkZ9fipwd/ooZQGWUSem1vlZhsRmSQifwbHxVdFZLeo7XuKyDtBfq0SkbfiHftE5IrgPXB1zGPTgs/uZSLyhKTgxNZtLcjlnOCz85fg87ZK1PZ+0bkrIoeKyAoRuS1mPw1FZIOIvJnK+ItKRMoB/wWeTPFLPwYUy8WpiLQMcjY7yOF6BbTdU0SGBJ8JS0XkkuKIwW1fTI5FvnoG264UkUlhx1hIdwF9VXVDql5QVYcBh4nIEcW0yyNV9d7INyJyVHAcyg7+PSrRE2X714mviF0L5ovIlTHbXo75+28Ukb+ittcXkZEi8kew757Rx8Pg/GpR8NyPRWSvyDZV7Qak7MZSRhSHAmWA/0uwrQowBWgM7An0B0ZEHzzT2JXASFXN2dkdxTtpK+BEbhjQXETq7ORrHoqdoF8O1AKygZcKeMog4BvgH8C9wHvBiT5APvAxcH6C53YHGgL1gObAf2TruzsPACcCJwBVg5giH5CfAyep6u7A/tj7aZe4ENoFFJSbBNvqqGpVoAvw5s6+71LkSjw3C5ubAE+oapWor7yY7UdGbbs66vHNwLvAvwr7s7lC215uIiJlgeeBr1ISUfG4Es/NSG7ujh3L9gIOBvZh64vph4Bq2HGvQfB63WPiqQbcDcyJed1KwM1AdeB4oCVwe6F/UFeczlbVKsBRwNHY32sbwYVTFvCwqj4ds7kXdq68q2gPzFfVn3d2R2JKbe8xAFX9GqgqIk128jWrAx8A92HXJlOBdwp4Si9gE5ajlwK9xXsqptLZMecwN4Qd0I4QkfLAFUCxFH938Ng4CDu/L1ZBgfhD7Geqhl3ffxg8Hk93Cr5OnAFcB0yPfaKqdo3++2M/0+CoJi8BvwJ1sM/hU4N9ISKnAo9gn1l7Aj8Ezw9FJhWHngRul6AnSDRVXayqz6jqClXNU9VXgHLAgUV5IRFpFtwl+49YL5MVInKOiLQWkYUi8ruI3BPV/jgR+ULszt2KoJpYLth2otjdun2D748M2h0UPP0s4NPtxNNWRL4Nnjc5ujobVLvvFJGZwHoRKRPvsTi/sw3ANOCMovyOolwKfKSqE1V1HXYQPE+i7lxGxdoIOAbopqo5qvo+MIvgglNVV6rqSyQ+eekEPKiqf6jqPOBV7CIhcnJ7M3CNqi5VMztSPVfVn1R1VdS+8oADdvJndyZhbgKo6kxVzY18C5QF9i3KC3lu7pBU5maRqeoCVX2dbS9M3c4rMDcDtwFjgPk780KemzukOHPzf6r6sapmq+of2HHxpKhd7AcMVdW1qroGGMK2dzAfBV4Aoo+RqGpvVf1MVTcFF+hvxezbpZiq/gKMxi5OtiIixwFjgXtUtWfMto7An8C4nXl9sbvnKiKdReQnsbvoXUXkWBGZGeRbz6j2DURkvIisli091/aI2va7iBwTfL9X0KZZ8PTC5HnTIL//FOuZ3Cxq2wQReVhEPscKsPvHeyzBricAbYr0S9riPGCOqg4OPju6A0dGfY5F/xyVsZy+T1XXqeokrBh9+U7G4EIWvOceCt0gOiQAACAASURBVN6n60TkIxH5R5ALa0VkikT1xhaR54PcWivWU+bkqG0jReTpqO/fEZE3gm+PB/5U1WUFxLK7iLweHHN/DuIqHWy7UmzkzbMi8jvQPd5jCXY9gZ3Pl3iaYTe5nlPVjar6AiBAiwTtE14nAqhqL1Udx5aOA3FF5WP/qIf3A95V1Q3B5/DHbDmWng0MVtU5qroJeBA4RUQa7NBPW0wyqTg0FXvzbfeuldidk3LAop14vdpABWBv4H7sDXYZ1jvpZOB+EYkcVPKAW7C7aydgd9euA1DVydgdwv4iUhEYCPxXVSMn4ocDCwr4WY4B3gCuxe4a9gGGiVWIIy7GknKPqIvweI/FmgccGbxO3eDgmugrUffWQ7FKLMHP+z1256NRgraLVfWvqMdmUIiudmLFn72iXyvmuYcDuUAHse5+C0Xk+ph9/FNE1gB/YUn/HK44bDc3RWS4iGzAeidMCJ5TVJ6baZSbUa4LTvSniUi8HkYTg9z8QIp5bhiXUIG5KTbE4SqKaagUnpvpkJunsHWhtRfQVkSqBcfR84FRkY1iBYUmwMsJ9lfQvl2Kicg+WNEk9vz2OOxi5RZVfS3mOVWxHL+N4nM8dof+Iuxc6l7gNOx9eaHYnXSwC7lH2dKzbV+CC8zgfX8n8JaIVAL6Av1UdULw3O3l+d7ACKx33J7Y59z7sqVXHVhxpQuwG7C0gMdi/Z3nwWsVlOd3JdhHbJ6vB74nfu42AvJUdWHUYzt6DHbpqyP2vtsb68H5BfZ+3xN7r3WLajsFK/7uCfwPGCzBHELY8fpyEWkhIpcCx7Kld3CB+RLoj10rHYD1QDwDiO7JfTywGKjJlqGV8R6LNQ+oH3zWICIvFZAvM7cTY7RDgZmqGj3lwEzi5EUhrhN3xPnAb8DEqMeeBzqKSKXgs+cs7DMX7HNOosMJ/j2sCK+90zKpOAR2snljzAf/VoI35kDggeAuWVFtxrrlbgbexk5gn1fVv1R1DnaCdASAqk5T1S9VNVdVl2AnoqdG7as71vX7a2A5drIWsQdWrEjkGqCPqn4V9IrqD2wEmka1eSHoGZOzncdi/RW8Pqr6o6ruUcDX/xLsowoQ+3tegx10d6ZtvOdG2sd77j7Y77gRVt3tgFW9T480VtVJasPKIt3ulxTidV3hFJibqtoW+1u1Bkarav5OvJbnZnrlJlivg4bYycN9QD8Rie5hcCpQHzgI+z0PF5+7JFUKys0XCO5UF9NreW6GmJvB8e4K7G8eMR27WbY6+MojGMIW3DF+Cbhxe5/JItIZKyI9VVA7lzRDxea/+Akb2tAtZntT7H0xKvaJ2F3s11X1p2KM58HgDvoYYD0wSFV/DXqYfYZdeKKqi1T1k+Cu/2/AM0Tluaq+CnyH3TiqgxWZIraX55dhw0tHqmq+qn6CFcRbR7XpF9zNzw0+lxI9FuvvPA/iLCjPH0uwj1Qeg93OGxpTxLimGPfdV1W/D65LRwHfq+rY4CbEYIJ8AVDVN1V1dfD+fBooTzASRq3HSlesyPM80CnqxkGB+SIitbCCxs2qul5VfwWexQpXEctV9cXgtXMKeCxWdAyo6nUF5MuOzE20ozkU2b69tttzBTBAdaui1KdYoWktsAz7rBkabBuJFcWPCG5o3Y+NlKhUhNfeaRlVHFLV2cBwbMKtbQR/kI+AL1X10UT7ka0nnKqboNlq3TJnRiQZVkZtzyF4I4pIo6BnxC8ishYbd1g9Ku7NQD+sgvh0zJvtDwp+49YDbov+wMLuvOwV1SbeAb8wJwG7Yd2Md8Y6bH6faFWJ/wG1I23jPTfSPt5zI3+jHmpd72diFyfRJwkABCcvHwfbXTHYXm4GbTar6ijgTBFpF6+N5+bfdqXcRFWnR53MjMSGn5wXtX2i2tCUP7G7XPthd5FdkiXKTRE5G9hNVQuaAyO6veemScvcFJGm2F3mDrp174PBwEIs7qpYz4XInBTXYXdlvygoWBE5B5uk9yzdeni2S51zVHU3bJjFQUTlSiAyn9AnwR104O+e9KdhF4HbJSJzovL85AKaxuZ1ojyvKSJviw1hWYu992JjfxXL8xdVdWPU44XJ8wti8vyfWJEpokTluUuqc2KKGK9u7wkick9UvhTU+7JQ+RLs8zYRmSe2gM6f2E2S6JwZDpQGFqgNP4woTL6UBVZE5Usf7KZexM7kC+x8zsTa0RyKbN9e24TEhrOfCgyIeqwUNpz3A6Ay9veoBjwOoDZUrRvwPtYbcUnwugmH+CVTRhWHAt2wu4J7Rz8YdBcfCvyMdSVPSLeecOzHYoipNzZfQ0O1SXfvIap7WdD9rBvWhfDpmK7tM4nflTziJ+xObPQHViVVjZ7oKt4KP4VZ9edggu53Qff4dQV8XZpgH3PYuuvt/liVe2GCtvvL1vMqHEkhuqmrzaWwIvq1Yp4b6aZY2NWOymBdO13xiZubcST83Xtu/m2Xyc0ElK272O7odle84uVmS6BJUJz5BRsecrOIfBhvB56bf0u73BSRo7H5Sa4KTlKJadsnuFO8Dhs+Frlp0hI4N+o9cCL2u46eM6YVdvF+tqrOKvA345JOVT/FiqaxPbjysLmsfgRGy5YV6ZphvTZ/DP7GtwPni8g2E7IG+z80Ks8/K4aQH8Xy6oggzy9j6zyvgg1Lex3r7R29al9h8nxgTJ5XjunJs9N5HsRZUJ7fk2AfsXleGTv3iXdcXQiUEZGGUY/tzDHYpYCqPhKVL113dn9BQfZO4EKgmqrugfV+iT5fehgbxlVHRC6Oerww+bIRqB6VL1VVNXrY1c7kyxJVXRv8HLErf0V/7ch7eg5whIhE//xHECcvCnGdWFidgMmqujjqsT2xG0w91XpBrsbOTf7ugKA2n1FDVa2JFYnKALN38LWLRcYVh1R1ETbb/02Rx8RWW3kPq7520p0bslIUu2HdzNaJTTT376jYBDuQv46txrMC6+IbMZKtu9LHehXoKiLHi6kstnTtTnU1DU60GwOfwN/d46sU8PVWgl29BZwtIicHB74ewAe69fwIBK+xEPgW6CYiFUTkXCzJ34+KqwJ2kgxQXraMswWr4v5XbO6Eg7CLnX7Bvr/HujLfK7aU4cHYxc7wYL+XBifyIjbPxsPs5MSMbmsJcvMgETlLRCqKSFkRuQybt6LASSaLkedmCnJTRDqISBURKSUiZ2AXAMOCbYeKLUVaOrgQeBor4s8Ltkuwr8hkxBViCgFuJ8XLTWz4XyNsboOjsL/Xq0DnFIXluVkMuSkih2E9YW9U1Y/ivNYU4OrgM7giNtdK5KL3SuykPvIemIqt+nlvsO8WQaznq63g5NLDc8DpErOkc9Db7gJsYvGRwXvrFawgEfkbv4zN03NmimLdDbuj/6dYwfeOmO3PA9PUVrAcwdZzX20vz9/E8ujM4PhSQWxi/H2KIe5TiRqit508fyTBPoZgS3yfHxzj7sd66m0z+b/afEQfAD2Cz6uTsJWPBhbDz+J2HbthcwL9hhUL7yeqJ4yInIIdozsFXy8GeQU2BHuPqO+3oqorsMUnnhaRqsH5WgPZMj/YzojNl64F5MuOzAE0ASt83xRc20VWkBufoH3C60Sw1c+CXBSgbPCZEVtL6RT9nODnWYWtQPZvsQUs9sCGnkVuFFUQkcOC84262Ofu80HBKuUyrjgU6IF164o4EWiLTaz1pxSuS2xxuh24BOtC9ipbL1V5E7Ys5X2qqlhSd46KbQDQOjhp24aqTsXe3D2xLoOLiJp5fSe0Ayao6vKd2YnaPBJdsRPIX7EPtusi28Wqx9EH+47YvAV/YN3UO6iNQ4/IYUvXwPlsGZoAdhf5e6zL3qfAk6r6cdT2i7Fuk6uxk4z7ou6iHgJMDvb9OTZpW3GOJ3YmNjcFmzvkV+xg93/ARaoa965lEnhupiY3/w8r+PyJzed1jW6ZVLQW9ntfi01qWB9oq1vmeqgX7CtydyeH7U+q6HbcVrmpNg/QL5Ev7Pe+XlV/T1E8npvFk5u3ATWA1yX+ndmrsJxbhuXo/gS/C1X9M+Y9sAmIrGoGVkDcHSs0RPYdb04bl0LB334A9veJ3bYJG9K7AZtmQWP+xuuADf/P3p3H2Vi+cRz/3HZDsqaytlCpKL8pbWRaiZKSfRsKIUnJ0mLPWiL7NpJsKVmj1GQvS1FRSqKsEdnGNjP374/7zDgzRgZn5jkz832/Xl5mnmXOpVfPnOdcz3VfV6Lf7SmpB27a3iHcfdkncTuMMTWAKrhrAaADUN6cqbibC9xojPFfDhrPuh5KNXBVh/twlREducTPRsaYO3C/Cy8pIer7b/w07mHkQVxj3/j+LsYtSfK/nloDOXG/E6YCz/t+V0jqmGsSVrjM8iCGRbgky6+4zzon8C3rMq4acBLQ1lq707olZeOBCGOM8V37E3EP586lMe5B3Cbc/5MzSbgM82LVwy1RCyjfv+lJXNz/4t7PnvRtj3vw73+NnO9z4ue4e517cAmc47gH1vh+3t24vrT+I+zjPIX7fbUPd08RjRuqAW4QxxTc79fVuIbjZ/1+Ti3G2uRUe0kwM8a8BfxtrX3X9/02oLJ1TToD9RrdAay13X3ffws0t64fhYgkQdemSHDStSmS/hljWgBlrLXtfd9/DXT3e/gQiNdoivvd0dT3/ce4Bt4LAvUaIqnBuMETy4DbrbXHE/+/HcDXsdZa4/v6caCRtbZ2AH7uCdzSt6HWWs+SK4FmjOmGS35nB3LZM70ZU4SmvaQD1tpzrVdOydeskNqvKZLW6NoUCU66NkXSP2vtGA9e8+nUfk2RQPBVq92Yyq85F1flF4ifleP8R6U91toeuCrKVKHkUPr0LoHv+P51gH+eSEaka1MkOOnazCCMa5I9BDexZ5xNNErct1ypFxCLK/1v71uCEVdhdgTXxyLaWhuaiqHLpZuImwQUSOsJ/O8OkWCQUv9vp1qiQy6clpWJiIiISLpnjMmM68fxMK6P0hqgnrV2k98xuXE9Y6wxpiwww1p7o2/fNiDU12BUREQkXcmoDalFREREJGO5E9hird3qa0o6DdeUOJ619qg98+Q0F8kbxSwiIpLmBeWysoIFC9qSJUt6HYaIJ9atW7ffWlvI6zgS03UpGZ2uTZHgdAHXZhF803t8duCmQCVgjKkJ9AWuAKr57bLA58YYC4w+X08bXZuS0el9UyQ4nevaDMrkUMmSJVm7dq3XYYh4whiz3esYkqLrUjI6XZsiwekCrk2TxLazKoOstbOAWcaYSrj+Qw/5dt1rrd1ljLkC+MIY84u1dmmiWFoALQCKFy+ua1MyNL1vigSnc12byVpWZoypYozZbIzZYozpnMT+GsaYH4wx640xa40x9/nt22aM+TFu38X/E0RERERELtoOoJjf90WBXec62Jf4uc4YU9D3/S7f338Ds3DL1BKfM8ZaG2qtDS1UKOgKJkRERM7pvMkhX/O+4UBVoAxQzxhTJtFhXwLlrLW3Ac2AcYn2h1lrb9NUBxERERHxyBqglDHmGmNMNqAuMMf/AGPM9cYY4/u6PJAN+McYk8sYc5lvey7gEeCnVI1eREQkBSVnWVl88z4AY0xc8774yQ7W2qN+x6t5n4iIiIgEFWtttDGmLbAIN8p+grV2ozGmlW//KOBpoLEx5jRwHKjjm1xWGLfUDNz98xRr7UJP/iEiIiIpIDnLypJq3lck8UHGmJrGmF+A+bjqoThxzfvW+dZhi2RMkZFQsqT7O0C05FMkAFLg2hSRAEiBa9Nau8BaW9pae521to9v2yhfYghrbX9r7c2+ive7rbXLfdu3WmvL+f7cHHeuSIYU4GtT97MiAXKJ12ZykkPJbt5nrb0ReBLXvC/Ovdba8rhlaW18zf3OfhFjWvgu9rX79u1LRlgiaUhkJFSvDtu3u78D8GaqJZ8iAZAC16aIBICuTZHgFOBrU/ezIgESgGszOcmhFG/e59uvBn6SPsVdqFFR7vuoqEDd6MYv+bTWngLilnzGs9YetdbGJXO15FPEX8pdmyJyKXRtigSnlLk2dT8rcqkCdG0mJzmk5n0iFyvxhRonMG+mWvIpcrFS9toUkYula1MkOKXctan7WZFLEcBr87zJIWttNBDXvO9nYEZc8764Bn645n0/GWPW48oC6/iyu4WB5caYDcBqYL6a90mGEh5+9oUaJyrK7b94Kb7kU8s9Jd1K2WtTRC6Wrk2R4JRy16ZamIhcigBem8mpHFLzPpGLFREBISFJ7wsJcfsvXoov+dRyT0m3UvbaFJGLpWtTJDhFRBCTJXvS+y7t2lQLE5FLEREBWc4xhP4Cr81kJYdE5CKFhcHgwWdvDwmBefPc/ounJZ8iFyssDMYl7mdJoK5NTV4RuVhhYTBz5tnbA3RtisjF2X/lLRyJzkls4kKfS782dT8rciliYiA6+uwE0UVcm0oOiaS0WbMgd25szpzu+wDd4GrJp8glWr4cMmeGAF+bmrwicon27HF/Z/dVKSgxJOIpG2v57eHW5CSKnd3HnqnuC8C1qftZkUuwbx80agQ33QRz5lzytXmO+iMRCYglS2DhQhgwgI+2hnLP2HBCJkWQP0A3uNbaBcCCRNtG+X3dH+ifxHlbgXIBCUIkLdqzB8aPd+uw69d3f0dEBOrDZ/zkFQBjTNzklU1xB1hrj/odr8krIv5Gj3Y3usOGQbNmgbw2ReQirGo/nXt2zuTrR/tSuVtzqHRtQN83dT8rchGshaZN4eBBWLQIypZ1CaFLuDaVHBJJKdZCly5w9dX8eH9bGr2ek8ce38YnT3kdmIjw7rtw+jS8+iqUKgXbtgXypyc1eaVC4oOMMTWBvsAVQDW/XXGTVyww2lo7JpDBiQS1DRvg22/dkuwHHgj0tSkiF2jv+t3cNKw1P+WqwH2fvuI2hoXp2hTx2tChsGCBe5BStqzbdonXppaViaSUuXNh1SpOd+1Gg2dzki8fjBkDJqmZDCKSev79F0aMgNq1oVQpPv4YunZ1uaIA0SRBkYs1erRbTta4sdeRiGR4Ntay/dEW5LDHCfnofbLkUF2BSFD4/nv3gPOJJ6B16/jNgwbBmjUX/2OVHBJJCTEx7tNmqVK8tiWcH3+ECRNAwxFEgsDw4XDkCHTuzI4d8Nxz8OWXAX0FTRIUuRhHj8LkyVCnDuTP73U0Ihneihbvc+ff81j9ZF+urXqD1+GICMCxY1CvHhQs6Fok+CoPvvgCOnaESZMu/kcrOSSSEqZMgY0b+alebwYNycrzz8Njj3kdlIgQFeWWlFWrRuyt5WjSBE6dcp9Hs2YN2Kto8orIxZg61SVuW7b0OhKRDG/Xt39x6/gXWX/5/VT8qJ3X4YhInBdfhF9/dTevBQsCsH8/NGni2vUNGHDxP1q1gSKBdvIkvPkm0WVvp9qEWpQq5Ur8RCQIjBvn3kG7duWdd+Crr9ymUqUC9xLW2mhjTNzklczAhLjJK779o3CTVxobY04Dx/FNXjHGFAZm+fJGWYApmrwiGcbo0XDLLXD33V5HIpKh2VjL7seacQMx5P90ApmyqJ5AJChMn+6qhV57Lb7htLXQooW7vV2w4MwQ3ouh5JBIoI0ZA9u2MajyKHZtysTKlWemCoqIh06dgoEDoVIlvs95D127wlNPuWFIgabJKyIXaN069+e999ScT8RjyxqMotKBxSytN5JKla/1OhwRAddoukUL9wClW7f4zePHw6xZrhjhttsu7SWUHBIJpKNHoXdv9papTJevH6FnT7jjDq+DEhHAld/u2MGJYeNo0MD1AFOTeJEgMXq0e9zZsGH8Jmt1fYqktj+/3kr5aR1Zl/9hKk7WEk+RoBAdDfXru6+nTInvhfDrr26V2YMPwksvXfrLKDkkEkjvvgt//03DqNncdZehSxevAxIRwDWJ798fbr+dlxc9ws8/u8Z9BQp4HZiIcPiwu9mtVw/y5o3f3KkTHDzo8kaZtKpFJMXFRsdysEZTLiczVy0Yj8mk7KxIUOjRA1atgmnToGRJwE3ZbdAAcuSA998PzPuk3mpFAuWff7ADB7KiYA1W2buYPBmyKP0qEhw++QR+/ZV1j3ZlxEhDhw7w0ENeByUiAHz4oZu+4teIeuFCtwo0S5bAJoaMMVWMMZuNMVuMMZ2T2F/DGPODMWa9MWatMea+5J4rktYtrTWEcoeX8eOzQ7m6QrHznyAiKe/rr6FPH9cHoU6d+M3du8Pata4KvkiRwLyUPrqKBEq/fnDkCC1sH94dC9dd53VAIgK4tSlvvUX09TdQbVxNypaFt97yOigRAdz1OXq0a5TgW4e9ezc0bux6U7/zTuBeyhiTGRgOPAzsANYYY+ZYazf5HfYlMMfXIL4sMAO4MZnniqRZWxf8QoXZXfm28OPcO7qx1+GICLgu0w0aQOnSMHRo/OalS6FvX5cvevrpwL2cKodEAmHHDmKHvsdk05jrn7iZ5s29DkhE4i1aBOvX817OThw6mpkpUyB7dq+DEhEAVq+GDRtc1ZAxxMS4tkNHj7qhLJcydSUJdwJbrLVbrbWngGlADf8DrLVHrbXW920uwCb3XJG0KvpENFG1m3DchHDN52O0nEwkGFgLzZu7BNHUqZArFwD//guNGrlChCFDAvuSqhwSCYCYN3sQezqWIfm7s2CsGmiKBJW33uJIvmJ0+rEBbw+Fm2/2OiARiTd6tLvh9TXa7N8fvvoKxo2DMmUC/mpFgL/8vt8BVEh8kDGmJtAXuAKodiHniqRFy2sMpPKx1axsN417yl7pdTgiAjByJMyZA4MHw+23x29u0wZ27oQVKyB37sC+pCqHRC7V5s0wMYIR9nm6TyzJFVd4HZCIxFu+HJYto9uRjjxYJRtt23odkIjE+/df11yzQQPIk4cVK+DNN11f6mbNUuQVk3p0Y8/aYO0sa+2NwJNArws51xjTwteraO2+ffsuKViR1PDrxz9yz+fdWFX0Ge4ZUuf8J4hIyvvxR+jQAR57zI0j8/nwQze/oXt3qJACjyeSlRxS8z6Rc/u71Rsctzn4q9FrVK/udTQi4i+mT18OZCnEzMubExGhqj6RoPLBB3D8OLRsyYEDLilUogSMGpVi1+oOwL/LblFg17kOttYuBa4zxhRM7rnW2jHW2lBrbWihQoUCE7VICjl19BSxjRpzyOSj9OIRXocjIgBRUVC3LuTLh//N67Zt0Lo13HcfKTYR+7zJIb8GfFWBMkA9Y0ziQt8vgXLW2tuAZsC4CzhXJM06smQdV3z9ERPzdaD7CJUMiQSV9evJvHABg6LbMzwihCtVKS8SPOIaUYeGYm8vT/PmsGeP6zOUJ0+KveoaoJQx5hpjTDagLjDH/wBjzPXGuDtxY0x5IBvwT3LOFUlrVlbrw43H17O18xgK3FDQ63BEBFzF0M8/uwcoviUp0dGuHx+4zZkzp8xLJ6dySM37RM5hW72u7KcAd330csDXfCaHqvpEzm1v+74c5jJOhLfm8ce9jkZEEli5EjZuhJYtGTECPv3UDf0MDU25l7TWRgNtgUXAz8AMa+1GY0wrY0wr32FPAz8ZY9bjHnDWsU6S56ZctCIpa9Oktdy3tA/Lr21Ehbe8/Xim+1kRn08+cQ9OOnaEhx6K39yvn+sxNGIElCyZci+fnIbUat4nkoSvu0VSeffnLHrkbR598PJUf32N5BU5t39X/0qhJR8xLn8neg/L63U4IpLY6NFw2WX8UKYuHcJcW4X27VP+Za21C4AFibaN8vu6P9A/ueeKpEUn/j1BthZN2JfpSm5ZHOBxRxdI97MiPn/+6aaT3XEH9OoVv3n1atdjqF4916IvJSWncijFm/eBGvhJ2rJzhyV3ny7szVaUB2a29ioMVfWJJMFaWFtnACfJzl3T2hMS4nVEIpLAP//AjBmcqtuI2s1yU7AgTJwImTQmRSRVfPNoN64/uYmdPcaR95p8Xoej+1mRuHVjMTFubH22bAAcPeqGeRYp4qqGUlpy3oZTvHmf7zw18JM0ITYWxlafTWjMt9CtO1kvy+FVKElV5hVJfJAxpqYx5hdgPq4nWLLPFUmLZryzg0rbJrHp7uaUfbiw1+GISGKTJsHJk/Ta25Jff3XTV3TrJ5I6fhy9kkqrB7L0xhaEvl7F63BA97Mi0KcPLFvmxtdfd1385hdfhD/+gMmTIW8qFMInJzmk5n0ifoYPjeGZDa9xsPANFH61iZehaCSvSCJbtsC+Lm+TyVhum9zR63BEJDFfI+p9199F7zlleeMNqFzZ66BEMoZjfx/jsheasDNLCW7/cpDX4cTRKhXJ2JYtg549oXHjBOvGPv4YJkyAzp2hYsXUCeW8ySE17xM5Y9Mm2PDqZG5mE3mH9YEsyWnblWI0klfEz+nT0LbOPsJPj+Hk0w3IfG0Jz2JRc02Rc1i6FDZv5vU/W1KxIrzxhtcBiWQcax/uQsnTW9jffwKXXX2Z1+HE0SoVybgOHnQJoWuvhWHD4jfv3AnPPeeGNHTvnnrhJOuTrZr3icCpU9C03kk+jnmT0+VCyfr0U16HFF+ZB+zEVebV9z/AGHM98LuvgZ9/Vd+/5ztXJK3p3Rvu/W4oIeY4pmcnz+JQc02Rc4sZMZqozJczP1dtVn3o9TMWkYzj+3ciuf+H91hSrh33dwjzOhx/up+VjCcyEsLDoXhx2L0bVq2Cy1zCNjYWmjSBkyfdsuusWVMvLL0liyRTt25w9w+jKMafMGg8mKQqWVOPtTbaGBNXmZcZmBBX1efbPwpX1dfYGHMaOI6vqg9I8lxP/iEiAbBiBQzpdZid2YZhqteEm27yMpz4BpkAxpi4BpnxCR5r7VG/45Nsrnmuc0XSrH37sDNnMiH2eUZMDKFYsfOfIiKX7vCOwxR6NZw/spbijsV9vQ4nAd3PSoYTGQnVq0NUFGzfDi1buhIhn8GD4csvYexYKF06dUNTckgkGZYtg+H9jrAjRx+490F46CGvQwJU1ScCcPiwG/DQOe8och38F7p0ZitZXgAAIABJREFU8TqkpBpkVkh8kDGmJtAXuAKodiHniqRFGztO5ObY00Q1bMkTT3gdjUgG4KtO+CP2Fm6J+YtNw5dxTcHgG+Gp+1nJMPwTQ3E++ADq1IGwMNavh65d4ckn3VT71KahoSLncfgwNGoEPfINJs+JffDWW16HJCJ+2raFvdtP0MG8Aw8/nODpi0fULF4kkR1/xpLjgzF8n+s+Oowr43U4Iulf3IfQ7dsp99d8frzxGW5teY/XUYlkXEklhsB9X706Jz6LpH59KFDAVQ15sUhFySGR82jXDqL+3M8LJwfBU0/BnXd6HZKI+Eyb5h64zKgaQbYDe93jFu+pWbyIn+hoGFQtkutit3BV95Zkz+51RCLpXBIfQsttn+u2i4g3wsPPTgzFiYriWJ1wfv4Z3n8fChZM3dDiKDkk8h8+/thdoLPu7EuWE8dcx1sRCQp//gmtWsG9FaKptmkA3HUX3H+/12GBX3NNY0w2XIPMOf4HGGOuN8Y9E0rUXPO854qkNb16wT0/jeZk7vxc2baW1+GIpG/nqE4wx111ghJEIh6JiIBs2ZLcFZ09hFpHInjpJVcE7xX1HBI5h927XX+warf+yT3rh7u28d42uRURn5gYaNzY/f3xM9Mwr2yDoUM9bxQPaq4p4i8yEsb03MNfZhZZWrSDHDm8DkkkfTtPdQLh4bBtW6qGJCJA0aKQKZP7Exsbv9nmDKF29nkcuCHM8+4lSg6JJMFaaNbMvYdOLt0Ds9lC9+5ehyUiPgMHwpIlEDE+lsJv94Vbb4Vq1c5/YipRc00R2LfPNYvvWDCCLPujoUULr0MSSf8iIoh9rBqZThw/e19IiKteEJHUdeIE1K7trsGJE+M/aNqQELreOo8F68NYN8X75ydaViaShBEjYOFCGPfKL+SdNRHatIHixb0OS0SAdevgjTegVi1okm8ObNoEnTu7JzEiEhSshaZN4cD+WNpkHwuVK8MNN3gdlki6F1vxfrZkufHsSQYhITBvHoSFeRGWSMb2yiuwfj1MmuQmk82bByVKMPu5efT7NoyBA+Hmm70OUskhkbP88gt07AhVqkC9Ta+7N1PvR2OLCHDsGNSvD4ULw+hRFtOvL1x7rXsaIyJB4913YcECmP7sF2Tf+Ydbpy0iKW7p0+9S+uj3/PjIK+4eFpQYEvHSzJkwfDi8/PKZKvewMDYt2Ea90WFUqeIm7wYDJYdE/Jw4AXXruvfQD9qtwXz8scv0ahqQSFB4+WX47Tf34CX/+q9g9Wp49VXIolXSIsFi7Vro1AmefBIe3z3ajV2pWdPrsETSvV9n/sDdc7rwzVVPcutnA+KrE5QYEvHI1q3QvDlUqIB/Q6GTJ6FBA8id2630DIKWmYB6Dokk0Lkz5NsQycpC4YS8XsDd0Hbo4HVYIgLMng2jR7vKvgceAB58C666yjWLF5GgcPiwe8hy5ZUwofcuTLk5Lqur+fUiKerEvycwDRvwb6b8lIoci8lkXEJIzadFvHHqlFtClikTTJuWYFLZ66+7VWZz5rj3y2Ch5JCIz/z5sGFIJIuyVCfbvijYt931GrrsMq9DE8nw/vrL9e67/XY3Fptvv4WvvoJBg7zv3icigOsz1LKl+yy6ZAnk+2S8Gyn43HNehyaS7n3zYFcqn/yJtb0+I/SGgl6HIyKdOrlS2lmzoGTJ+M0LF7rb1+efh8cf9y68pGhZmQhubP3Y+pEsMNXJFu03/jMiws3hFRHPREe7PkOnTsH06b4ChL59IV8+TT8SCSIREe7haI8ecO9dMTB2LDz0EFx/vdehxTPGVDHGbDbGbDHGdE5ifwNjzA++PyuNMeX89m0zxvxojFlvjFmbupGLnNt3AxZT+bvBLLm1LaGvV/E6HBGZPds132vXzq2x9tm1Cxo3dkN2337bw/jOQckhyfBiY2FQtUg+PFydnDYq4c6oKKheXQkiEQ/17AnLl8PIkVCqFPDTT+5Nt107VfaJBImff3YNNR980C3RZuFCV/IXRI2ojTGZgeFAVaAMUM8YUybRYX8A91trywK9gDGJ9odZa2+z1oameMAiyXDw9wNc1aUJv2e7iTu+6u91OCKyfbsb1/m//8GAAfGbY2KgUSM3XGX6dMiZ07sQz0XJIcnwBg6EF74PJxdRSR8QFQXh4akblIgALi/bu7drK9SwoW9j//6QKxe88IKnsYmIc/y4a6uQOzd88AFkzoxrEFa4MNSo4XV4/u4Etlhrt1prTwHTgAQBWmtXWmsP+r79BiiayjGKJJuNtfxyf0sKxO7j1ITJhBQM8TokkYzt9GnXeC8mxq/c3enXz3VEeO89uOkmD2P8D0oOSYa2erVrCDaxUgQ2a9akDwoJcbXyIpKq9u1zkxxKl4Zhw3CZoiJFYMoUV41QoIDXIYoI8NJL8OOPborgVVfhKobmz3eNws713uqNIsBfft/v8G07l+bAZ37fW+BzY8w6Y4zWtIrnVrT6gLt3zmTloz25qUF5r8MRkddeg2++gXHj4Lrr4jcvXw5vvunaJARzzUGykkNany3p0eHDUK8eXH01vProBszp077HnX5CQjT+U8QDsbGuWujAAdfDJPeaSLfEc9cut7NCBa9DFBFg8mRXJNSpE1SJa3UybpzrTh18jaiTGhZskzzQmDBccqiT3+Z7rbXlccvS2hhjKiVxXgtjzFpjzNp9+/YFImaRJP219A/Kjm3LhjwVqTino9fhiMiCBW5JSqtWULt2/OYDB9xnzmuucS0SgmVsfVLOmxzS+mxJr9q0cRNVvn78bUJeewmefho++8wlhECJIREPDR7sLse334bbDvoSQ1F+Sz/Dw9ULTMRjGze6Ir5KldzyT8B1kB83Dh591N0JB5cdQDG/74sCuxIfZIwpC4wDalhr/4nbbq3d5fv7b2AWbplaAtbaMdbaUGttaKFChQIcvogTcyqGg9UbYTEUmD+JzNkyn/8kEUk5O3a4TtNly7qbWB9r3S3r3r3uYWeePB7GmAzJqRzS+mxJdz74wD3tXPjgQK4Z/go88wxMnQoPP+wSQiVKpInEkKr6JD1as8Y1tK1ZE1rflERiCNQsXsRjR4+6t87cud0Nb5Ysvh3z57sKvyBqRO1nDVDKGHONMSYbUBeY43+AMaY48AnQyFr7q9/2XMaYy+K+Bh4Bfkq1yEX8LKven7JHVvBTq+EUva+k1+FcMt3PSpoWHe1Kg06cgBkzIEeO+F3DhsGcOa4vdWgaKJPJcv5Dklyf/V/1/Odan22B0dbaxFVFIqlqyxZo3RpGlezHw190cV00J08+c2cbFuZKioKcX1Xfw7jrco0xZo61dpPfYXFVfQeNMVVxVX3+12+YtXZ/qgUtch6HDrk+fldfDePHg7k9/OzEUJy4ZvFp4HoVSU+sdbmfzZth8WJfn6E4o0e7C7h6dc/iOxdrbbQxpi2wCMgMTLDWbjTGtPLtHwW8CRQARhhX+x/tq3wvDMzybcsCTLHWLvTgnyEZ3KZJa7n3i26sLFaHe4Y38DqcS6b7WUnzund3TYUmT4Ybbojf/P338Mor7u3wxRe9C+9CJCc5dDHrs+/z23yvtXaXMeYK4AtjzC/W2qVJnNsCaAFQvHjxZIQlcuFOnXKJ3Vej36LlttfcN5Mm+T3yTFPiq/oAjDFxVX3xb6bW2pV+x6uqT4Ja3AfO7dthyRLIl9e6SUdDhyZ9gprFi3hi9GjXF75370QFttu2uRH2r78etO+r1toFwIJE20b5ff0s8GwS520FyiXeLpKajv19jJzPNmBf5isps2QkJlMQNy9JPt3PStr1xRfw1ltuAEODM8naI0dc/UGhQu5WNZj7DPlLzrKyFF+f7duvNdqS4l5/Haqs7cUbJ15zF3DaTQyBpq5IOjN+vJv62bMn3Fv+uKsKGjoU7roLcuZMeLB6gol4Yt069wS0alXo0iXRzrFj3R3ws2flVkQkANY90JFrTv/K3v7vk/eafF6HEyi6n5W0afduaNgQypRx8+n9tGkDv/8OH34IBQt6FN9FSE5ySOuzJV34/HPIObAHvXgTGjWC999Py4kh0NQVSUc2boR27eChh6Bz/T+hYkV3jXbrBitWuD4maahZvPonSHp08CDUqgWFC7vefZn87yJPn4YJE+Cxx0AV4CIBt6b7fCptHMnX/3uZ219+wOtwAinF72d95+qeVgInJsYVGhw54voMxd2j4m5fP/jAja6//34PY7wI500OWWujgbj12T8DM+LWZ8et0Sbh+mz/m9nCwHJjzAZgNTBf67PFC3/vtfz4VDd60J3ohk1dfV/isfVpj6auSLpw/Lgrvb3sMpjeKpJMd/wPfvsNZs9267gzZXKJoDTSLF5TPiU9shaaNoWdO919cIECfjsjI12foT17grURtUiatm/j35Ts2Yxfc9zK3V/18TqcQNMqFUl7evd2733Dh7vKIZ/Nm11v2/vvdytW0ppklU1ofbakZbExlq/ufYOXj/XhQM1m5H9/bKLHnWlWfFUfsBNX1Vff/4D/quoDMllrj/hV9fVMtchF/Lz0EmzcaPm5xbvkr9MRSpWCTz9N0NQPSDPN4lH/BEmHBg1yE1eGDHErPeNF+k0UNCbBlBYRuXQ21rL1oecoZw9xcPJisufJ7nVIgab7WUlbIiOhRw+3EqVp0/jNJ05A7dquiOjDD9NmHUK6+IQsck7WsrbKa9T9vQ8b73mW/DPTTWJIVX2SLnz0EUwaHcV3NzXkxjEd4Ikn4Ntvz04MpS3qnyDpyrJlrr/QM8/ACy/47fBPDIErL6pRw20XkYBY1nQcFfbM4dsn+1H66Vu9DifgdD8racrff7vlZKVLw4gRCTpNv/IK/PADTJwIRf7rri+IpemGKyL/yVr2hHfmzsUDWFiiJY8uHZFuEkNxVNUnadkff0CvZn+wPqQmpX75Afr0gc6d08N1muJTPjXhU1LL3r1u2ee118K4cX73wYkTQ3Giotz2IF/+KZIWbPviN/73QXvW5X+Iih+18zqcFKP7WUkTYmNdtdDBg24yZ+7c8btmzXIrzDp0gGrVPIzxEqX5O3CRJFnLqRc7cuX7A3g/1/PcsWYEJrP+dxcJFqdPw+Cqn/P1sVCuy7IdM38+dO2aHhJDoH5gkk7ExED9+u4+eOZMyJPHt8NalzFKnBiKExXlpg2KyEU7HXWaozUbcspk5+pFE8mUJV28P4qkXf37uwlHQ4ZA2bLxm7dvd5PsQ0Ohb18P4wsA/ZaR9MdaePllsr33NsNoS/E5wylQSP+riwQNa/ni4f4M3lyVTMWKkPm7tW4udvqhKZ+SLvToAV995Z6Gli2Le2o6cyaULw/79iUop08gJMQNfhCRi7aiam9uObaaX9qP5qrQNLpGRSSti4yEkiVh6FB44w33YOS55+J3nz4N9eq5hynTpkG2bN6FGgj6xCzpi7Wuu+3gwQyhHXu6DiXsgXPcvIpI6jt6lD2VavPYks58d90z5N20Cq67zuuoAkr9EyQ9WLTIDWNp2hSaNY6GyZPhlltc46GoKNdUYdGiBON7Afe9lpSJXJIfx6yi4tLeLL+2MXe/84zX4YhkTHHLp7dvh/btoXBhGDMmwYORbt1g1Sq3OT3czqrnkKQf1kK7djBsGMOyvcT08m+zpLsSQyJBY8sWTld/kkKbf2bQlQNp88PLEJI+r1H1T5C07K+/XL/N28ucZFToJLihH2zdCrfe6h6N1qp1ZgzLvHlneg8pMSRyyY7sOkKeNg3ZlaU4ZZe853U4IhlTUgMXDhyAdevi3+O++AL69YPmzaFuXQ9jDSBVDknaFlfq9+WX0LYtDBvGlKte5rXsbzNlqiFrVq8DFBEA5s/HhoYStXUPT2RbxGNfvkLOdJoYEknLTp2CRrWOE370Pb7553qyt20BBQrA7Nmwfr0rqfefzxsW5hJCJUooMSQSAOsrt6do9DYODJ5EnqJ5zn+CiATWuQYunDjhtkdGsnev6019441uxVl6ocohSbv8L9wqVSA6mqV3v0qDVf2YNs1QsqTXAYpkUJGRrhltRATcf7+bQtatG3uvvI27Dn3CG+NKUqaM10GKyFmOHGHRYyOZtvodrmQvlK4E74+Hhx8+d38hcAmhbdtSLUyRdMf3vrnprnAq/jaBr+/pSuW2Fb2OSiRjCg//z4ELtmk4jW/cxqFDsHjx2aur0zJVDknalDijGx1NbOYsdF/1KOHhhjp1vA1PJMPyX59drRpUrAhvvsnfjzTg+r0ruKdeSZo18zpIkQwqrto2MjLh9oMHoWdPTl1dgseXd+Jg8XKwZIn788gj/50YEpFL4/e+edP07mzLXpp7FnXzOiqRjCsiAnLmTHpfSAjTHo2IH1p2yy2pG1pKU3JI0p5zlPpliolmvnmc4bUiz3GiiKSoxNfm8eOwciXHm7cldOMkCpfMyahR+pwp4gn/xK2vLJ59+6BrV7ckrFs3Pj9RiaZlVnPdb4ugUiWvIxZJ/xK9bxqgOH+Sbc0Kb+MSycjuvhuKFz97e0gIG/vPo9GEMJ55JsHQsnRDySFJe/6j1C+njSJn6/BUDkhEzrk+GzATJ3DD7q+ZPh3yqH2CSOpLfH1GRbmKoKJFoV8/oh99jGdKb6BJnk/pseCOND+KVyRNONfDzpNn+pqIiAfatYPNm6FHjzNrxkJCODJ1HtUGhVGs2FlDy9INJYck7TlPqR8REakbj4j8Z9I2R0wUM/OEExqayjGJyLkTt9HREBMDERG0unwaM38ty+TJrohIRFLBefqaEK6HnSKpbtw4GDsWunSBN9+MH7hg584jfFIYO3e6oZ1583odaMpQckjSnrAw18ckEasRuiLeiYg4Z0e+E5lDyDNTSVsRT/zXB9CYGI6+3I3x493qsqpVUzc0kQwtIgKbQw87RYLGmjXQpo0bwtCrl9vmG7gwanMYH38Mb70FFSp4G2ZKUnJI0p5ly+Dzz4muXZ/jxn0YtTlDMEoMiXgnLAw++uisGtsoQjjx0TzMA7o2RTzxH4nb2Bwh1DoSQeXKrno+IzDGVDHGbDbGbDHGdE5ifwNjzA++PyuNMeWSe67IhbD3V+aXnLdjE+/Qw06R1LdvHzz9NFx1FUyZApkzx+/64Qd46SU3HPvllz2MMRUoOSRpy+nT0Lo1tkQJns8ylmp2HsevKIGZrzdREc998w1YC9mzA3CMEH59Zx55a+raFPFMWJj7oJkp4S2fzRlC04Lz2JA/jKlTIUsWj+JLRcaYzMBwoCpQBqhnjCmT6LA/gPuttWWBXsCYCzhXJNmWPPUuNx1cyYZ7nk/Q10SJIZFUFh0Ndeu6BNEnn0DBgvG7jh2DOnUgXz54//2z3krTnXT+z5N0Z+hQ+OknFlUdwrgpIVTqFkbOvdv0Jirite3bYeBAqFuXhS9+xjZKMKPRPG57SdemiOdiYiA2FrJmBdwy7F4V5vHhLpcYuvJKj+NLPXcCW6y1W621p4BpQA3/A6y1K621B33ffgMUTe65Isn107hvuHf2q3xz1ZOUWzY8vq+JEkMiHujaFb76CkaOhPLl4zdbC61bu97UkyfDFVd4GGMqSVZySCW4EhR27IDu3Tl4X3VqjH+CKlVcnzARCQKdOoEx/NiwP08OCaP5A9toNEE3uCKei41112fx4jB3LpQowafN59Ht6zD69IHKlb0OMFUVAf7y+36Hb9u5NAc+u8hzRZJ08PcD5G1Vhz1ZinLjigmYTCa+r4kSQyKp7KOP3MPN55+Hpk0T7Bo5EiZNcp83H3zQm/BS23mTQyrBlaDRoQM2Oprqvw/lqqsNkyen/9K+81HiVoLC8uUwfTpRbTryeJviXHGFm+SQEZapiAS96dPhu++gd2949FFWz9hGnVFhVK8Or77qdXCpLqnBw2e1fAEwxoThkkOdLuRcY0wLY8xaY8zaffv2XXSgkj7FRsfy2z1NuCJmN0fGzSDvNfm8Diko6H5WPLFpkxvacNdd8O67CXatXAkvvgiPPZaxihGS89FaJbjivc8/h48+YuLVr7HuwDV8/DEUKOB1UN5S4laCQmwstG+PLVKEOuteZc8et1y7UCGvAxMRTp6E116DcuWgQQMOHIDateHqqzNG74Qk7ACK+X1fFNiV+CBjTFlgHFDDWvvPhZxrrR1jrQ211oYW0i9CSWRpjbe58+95rHr6bco0ucPrcIKC7mfFE4cOQc2akCsXzJwJ2bLF79q9G2rVcis9M1oxQnL+qSrBFW+dOAFt2rA/fylabe3I8OHwv/95HVRQUOJWvPf++7BuHTPK92deZC5GjIDQUK+DEhEARo+GP/6Afv2Ijs1E3bqwaxfMmAH583sdnCfWAKWMMdcYY7IBdYE5/gcYY4oDnwCNrLW/Xsi5Iv/lh5EruG9BF1YVqUWlGW29DieY6H5WUldsLDRpAr//7paVFTmTnjh1Cp55xuWOPvnENaLOSJJT9H8xJbj3XcS5LYAWAMWLF09GWJJhDBwIW7ZQj89p1Dw7zZt7HVDQSCr5WuE/jj9f4va/zhU525Ej0LUr/5S+i7pz69OyJTRr5nVQIgLA4cPQqxc88AA8+iivvgxffAHjxsGdd3odnDestdHGmLbAIiAzMMFau9EY08q3fxTwJlAAGGGMAYj2VQIlea4n/xBJc/7ZvJ9CbeuwM0tJyqwc5/oMSRzdz0rq6tcPZs+GwYOhUqUEu155BVascNPsy5b1KD4PJSc5dKEluFUvtAQXXBkuvhLB0NDQJBNIkgFt3Upsn7f4NGttDtz6MHOHeR1QUEnxxK2StvKf3noL9uzh6UOzqVDBMGSI1wEFD2NMFWAI7kPkOGttv0T7G3Cml8lR4Hlr7YbknCuSLAMGwP790L8/E983DB4M7dqR4R+wWGsXAAsSbRvl9/WzwLPJPVfkfGKjY9l6XyPKxu5j66RVlCh+udchBRsVIkjq+fxzeP11qFfPNRXy88EH8N578NJLbndGlJxlZSrBFW9YS0zrFzh+OgtvhLzDzJmQI4fXQQUV9U4Q72zdin3nHWbnacSm3HcycyZkz+51UMFB/RPEc7t3wzvvQJ06rDodSsuWbtLK2297HZhIxrO0Wn/u2L+Qb+u+y00Nyp//hIwnxe9nQfe0gpsIWK8e3HILjB0L5kxu8fvvoUULN8FzwADPIvTceZND1tpoIK6M9mdgRlwJblwZLglLcNcbY9b+17kp8O+QdMh+OpvMixbwZmwPBk0twjXXeB1R0FHiVjxjO3bkZEwWXjjalxkzoGjR85+Tgah/gnire3eIjmZ32z489ZS7PqdP1wRBkdS24b2lVPz8dVYWq0PFD1ud/4SMSfezkvKOH4ennoKYGNdMKFeu+F0HDrhdBQrovTJZ/3SV4EqqO3aMo8++yB/cyuWvv0DVql4HFHzUO0E88/XXmE8+oTe9eOmdIlSu7HVAQUf9E8Q7v/wC48cT3aI1j7e/jqNHYfFiTfgUSW37Nv5N4fZ1+TPrddyycoz6DJ2D7mclxVkLrVq58qB58+D66+N3xcRA/fpuWMPSpXDFFR7GGQQycF5Mgtmu1r25+sCfTKqwjAE9snodTtBS4lZSXUwMh5u35wAl+LPWy/Rq73VAQUn9wMQ7Xbtic+bkhb2v89138OmncPPNXgclkrHERsfyZ6WGlIk9yL9TPiNP0TxehxTUdD8rKWrkSJg0yVXVVquWYFe3brBoEYwZAxX0KC5ZPYdEUtXBlT9TcNLbfJSrKV3m30cm/V8qEjT29x9Pnq0bGFZsACMn5vRfri1nqB+YeGPlSpg1i+V3v8qoT66gVy944gmvgxLJeJZWeYv/HfiCNQ2HcmOdcl6HI5JxrVwJ7du7pNAbbyTY9emn0KcPPPssPPecR/EFGX3slqASE23ZVr0Nx8hF6Vn9VQYvEkSO7zlEpm6vszJzRVp9+Yz/cm1JSP0TJPVZC506cSJvYap+0YE6daBrV6+DEsl4vn8nkopfdmN5yQZUfD/JYhcRSQ179kCtWlC8uBtF5ldxsHkzNG4Md9zhJpSJo2VlElQ+rjWV2gcjWdFwJPc+nMEXfYoEEWvh6wd78Wj0fmLefZfrS6lk6FzUP0E8MXcuLF9OlxwjKX17LiZMQJV9Iqls3097ubpjfbZlK81tq0apz5CIV06fhtq14dAhWLgQ8uWL33XkCNSs6aZgf/yxpmH7U3JIgsZn0w5RcfbL/FHwDu6dqNo+kWAytedv1No0lPW3hVPxRY3iPR/1T5BUFR1NTMfObM9amhmXNWfVpxAS4nVQIhlLzKkY/qpUnxtjD3Fo6hfkvjK31yGJZFwdO8KyZTBlCpQtG7/ZWggPd5VDixdDsWL/8TMyICWHJCj8/jtsb/Imj7KX05/OhcyZvQ5JRHxWroQ8PV4mOksObpvfx+twRCSRmAnvk/nXn+mSeSbTP8mKepSLpL5lj/Si8sGvWBY+gYpP3eJ1OCIZ15QpMGSI6zVUr16CXQMHumqhQYMgLMyj+IKYeg6J56KioOtj63nu1DCONnye7PeGeh2SiPjs2QNDH/+C6nYuvPYama6+0uuQRMRfVBRHO7zJKu7i4ZFPcd995z9FRALruwGLqbSkJ8uua8J948O9Dkck44mMhJIlYdw412G6UiUYMCDBIYsXQ5cubrVZhw7ehBnsVDkknrIWWreKpf2vzxN9eQHyDO3tdUgi4nP6NNStFc2Igy9xsui1hHTR3HqRYLOuyRD+d2wX39acSvvn1N9EJLXtXb+bYp0bsDX7TZRfOVy9vkRSW2QkVK/uKg5atID8+WHGDMiaNf6Qbdugbl246SYYP149+c5FySHx1OjRkOWDCdzNNzD0/QTNwkTEW6+8AjevGE0ZNsLQTyB7dq9DEhE/axf9Q6mZ/VhVoDptplfyOhyRDCf6RDS7K9ejlD3KoRmR5LpCYzxFUpV/Yghc5cGxY7BpExQuDMDx4/D00+6h56xZkFvtwM5Jy8rEM6tXQ892+3knaydsxYpoGx0FAAAgAElEQVTQqJHXIYmIz+TJ8MHQAwzI8aZblP3kk16HJCJ+du6EdU/1ITdHuWl2P/8HpCKSSpY/1J3bDi3h+xajuP6JMl6HI5KxJE4MxTlxwm2PjMRaeP55+O47d29bqpQ3oaYVSg6JJ/bvh1q14O3sXbgs9hBmxAjV94kEifXrXVXumCI9CDn1L7z7rq5PkSBy/Di0fmwbTaOGc7hmU/Lee7PXIYlkOGv7LKLSirdYWro5943WA06RVBcefnZiKE5UFISHM2oUvP8+vPkmPP546oaXFik5JKkuJsY1ji+55xvqHR2HeekluEVTHUSCwYED8NRTcOdlP/P0nuGY555LMAJURLxlLTz3HNT64Q2yZMtEvqE9vA5JJOPwNb39Z+QMSr7RkN+z30zoiqFeRyWSMUVEnLvlQUgIP70cwYsvwmOPQbduqRtaWqWeQ5LqunWDyMXR7C32PMQW0dUqEiRiYqBBA9ixA777XwfMiVzQs6fXYYmIn0GD4KcP1/OB+RDz0qtQtKjXIYlkDH5LWPK1rsdJsnH4k48IKRjidWQiGVOhQpA5s6tut/bM9pAQDkyaxyMvhFGsmFtOlkklMcmi/0ySqubOhT594IO7RlDgr/VuuYq6gokEhR49YOFC+LTFAvJ+s9DV4F5xhddhiYjPggXQqRNMLNwZ8uaFzp29DkkkY0jU2yQTsWTLEsu1OXd7HJhIBrV7N1SrBpdfDlOnQogvSRsSQvSn86jxbhj//usaUGveUfIpOSSp5vffXc/pR27dTd1Nb8Cjj7rW8SLiuTlzoFcveK7paaou7uA69r3wgtdhiYjPL7+4JdnPXfslt+1dhHntNZcgkgtijKlijNlsjNlijDkru2aMudEYs8oYc9IY80qifduMMT8aY9YbY9amXtTiqXM0vc0cfSq+6a2IpKJjx1wDoX/+gXnzoE4d93eJEjBvHi/PC2P5chg3Tp0RLpSWlUmqiIpyeaBMmeDja17BbD4B772nJrciQeDXX13iNjQUht88AjNxs8sWZcvmdWgiAvz7L9SoATmyxfJezleheHFo08brsNIcY0xmYDjwMLADWGOMmWOt3eR32AGgHXCuEY1h1tr9KRupBJVkNL1l27ZUDUkkw4qJgfr14fvvYfZsKF/ebQ8Lg23bmDwZhg6F9u3dYXJhklU5pKcsciniRgj+8AN89mokuedMcaXwmiUo4rmjR6FmTZcHmjV2P1n7dIeHH3ZPQ0XEczExULcu/PEHLGkzg2w/fQe9e0OOHF6HlhbdCWyx1m611p4CpgE1/A+w1v5trV0DnPYiQAlCERHYHDmT3hcS4priikjqePll9wBz6NCz7lXjpu3efz8MGOBRfGnceZNDfk9ZqgJlgHrGmDKJDot7yjLoHD8mzFp7m7U29FKClbRp4ED4c1IkB/KUoMKIJnDNNeqTECBK3MqlsBaaNXPLVaZNg6Jju8GRIzB4sKr6RIJEp06waBGMHHKKGz94zdXI63HoxSoC/OX3/Q7ftuSywOfGmHXGmBZJHWCMaWGMWWuMWbtv375LCFWCxfFyd7GNEtjEO0JC3FKWsDAvwkpXdD8ryTJ0KAwZAi+9dFb1bNy03fz5Yfp0yJrVoxjTuORUDukpi1y0GTPgs06RLMxcnbyH/oS//nIzeHOe4wmMJJsSt3KpuneHjz6Cvn3hwcI/wahR0KoV3Hyz16GJCDBpErz9trsHbn56FGzdCv37u+kscjGSynqf9Zn/P9xrrS2Pe99tY4ypdNYPs3aMtTbUWhtaqFChi41TgoSNtXx/ezNKnNjMz3V7Jmh6q8RQYOh+VpJlzhy3VqxmTVd54OfkSahVy03bnTkTChf2KMZ0IDnJoRR/yiLp04oVML5hJAsyVSd7jN9a7d691bwvMJS4lYs2frybUh8eDh1fse4pzOWXu5FlIuK51atdeXxYGAzucdh1jA8Lc8Mc5GLtAIr5fV8U2JXck621u3x//w3Mwr0PSzq25MGe3PPnNJZU7UeZqW8kaHqrxFDA6H5W/tu6dW4iQ2iom0vv94AkNtbdy0ZGuhWed93lYZzpQHKSQyn+lAVUhpve/PYbDKgayafR1ckZm6iJX1SUpjsEhhK3clE++wxatnSfMcfUi8RcWRgWL3alRAUKeB1euqASebkUO3fCk0/C1Ve7Ctys7w6E/ftdEwUt+bwUa4BSxphrjDHZgLrAnOScaIzJZYy5LO5r4BHgpxSLVDy38oWpVP66O8uuD6fyvI5uo6/prRJDAaX7WTm37dvd58ZChWDu3DPVez5du7pJ9n37QoMGHsWYjiRnWlnAnrIYY+KesixN4rgxwBiA0NDQC0k+SZDZtw+qVoXIY+HktJrukIICkbjdZYy5AvjCGPOLtTbBtel7k20BULx48YuPVILGunXwzDOubcknL0SS5UnfeF5j4KabvA4vXdBEJLkUBw64xO3Ro67XUMHTu+Gdd9yo3lCtmLgU1tpoY0xbYBGQGZhgrd1ojGnl2z/KGHMlsBbIA8QaY9rjlroUBGYZl5zLAkyx1i704t8hKe+ncd9Qflg46/NUosL3ozCZlJRNQSl+Pwu6p02TDh2CatXg+HH48suz1osNH+5WWj//vOvPJ5cuOZVDesoiyXb8uBu3u3MnHO071M2uT4qmOwRCipfHq3dC+rJtm3uPLVAAvugaSUjt6mfG81rrShVU0RcIKpGXixJXWPvbb25C76234pZ6njrllmTLJbPWLrDWlrbWXmet7ePbNspaO8r39R5rbVFrbR5rbV7f14d913M535+b486V9GfHiu0UblGDvVmKUmz1x2TLnc3rkNK7VFnuqXvaNOb0addIaPNm+OQTKJOwDdXs2dCuHTz+uOtTraLawDhvcshaGw3EPWX5GZgR95Ql7kmLMeZKY8wOoAPwujFmhzEmD1AYWG6M2QCsBubrKUv6FRsLjRvDN9/ArEG/c9OEV92Vmi3Rm6qa+AWKEreSbAcOQJUqrmnf0h6RFGjilxiKoyWfgaKJSHLBTp92VX3ffutK5MPCcDfF48a5RvHXX+91iCLp3pFdR4h66HGy2ZNEfzqPAjcU9DqkjED3s5KQte59b/Fi9x74wAMJdn/zzZkWRFOnQpbkrIWSZEnWf0pr7QJgQaJto/y+3oPL8iZ2GCh3KQFK2tGpk+sQP7XtCqp0f9Jli776CmJi3AfOqCglhgJI5fGSXCdOwBNPwB9/uPfZEo3Cz04MxdGSz0BI8RJ5LcVOX2JjoVkzWLAARo+Gp/JFQslwKF7cTfd84w2vQxRJ92JOxfDz7fUof2ITG/p+xv+q3eh1SBmC7mflLH37woQJ7r2vSZMEu377zVULXX21a0GUK5dHMaZTyrNJQIwYAYMGQcRDH1JnTDM3yWH+fChVyh0wb577wBkRocRQAClxK+cTGwuNGrnpgdOnQ8Xyx6B0adfgLyla8hkIqdKrT9IHa+GVV9wAlt69oUWpyDMPVLZvh6ZN4YorvA5TJN1bdndHKv89nyV1R3J/54e9DidD0f2sxJs6FV57zXWXTjRB9++/XV9bgIUL9daYEpLTc0jkP82bBy+0tUwp3Z2mixti7r7b1fvFJYZA0x1EPPLKK66i7+23ofbNG+GOO1z5UJMmZ018UGVfwKhEXpJtwAAYPNj1Tuh6t19iKM706VrqKZLCljYcQ+XvBrOkXDvun9rK63BEMqbly90DkUqVYPz4BI2Ejh1zb4+7drmKIa20ThlKDsklWbcOGtc+wbx8Dan3aw/3gfPzzyF/fq9DE8nw3n3Xfeh88UV4Kf/7LjH0zz/wxRcwcaJLBMUliJQYChj16pPkGj8eOnd2vRMGPxGJeTyJXmDHj6sXmEgK+m7gl9z9YRvWFKzKvd+87XU4IhnTb7+5qUYlS8KsWZA9e/yu6Gj3PrlunSssuusu78JM77SsTC7a9u3Q5LF9LIqtyR0HVsBbb7m7XLWLF/HczJnQoQPUfSKKdw61xYRHQOXKMGUKXHWVOygsTEs+U4hK5OV8Pv0UWrRwY+snToRMpdULTCS1bf1sM9d2qsW27DdQ+rtpZMmhj0YiqW7/fnjsMTflesGCBEUG1rrK2rlzYdgwlz+SlKPfgHJR/v0X2j70C3P3V6NE1l0wY4YbsyIinlu+HBo2hLrlfmbylmfI9PMm19SvWzfInDnhwXFLPkUk1SxdCnXrumK+jz+GbPt3uebT6gUmkmoO/PYPmWpU5zRZyfH5XC4vlsfrkEQynhMnXMbnr79chex11yXY3b8/jBzpBh+1aeNRjBmIlpXJBTt1CnqHfckHW+6iSJ6jZFrytRJDIkHil1/cZLIX8k3mw9/uINPfe13Xvp49z04MiUiq27DBTVq59lqYPzeWXB+OgTJlYM0aePZZ9QITSQWnjp5i+521uOr0n+we8SnFKl3jdUgiGU9srOsxtHIlfPAB3H13gt2TJ0OXLlC/vlugIilPySG5INbC5Mrj6Lu+CrZIUbJ9/y1UqOB1WCIC7NkDTz56nKHHn2PgnkaY8uVh/Xp45BGvQxMRYOtWt4wsTx74cvgvFHi6MrRsCeXLww8/wNix6gUmksJsrOXb/7Xm9n+/Zk2rCZRtdY/XIYlkHJGRrq9QZCS8/robutC//1mFBl9+Cc2auY4IEya4FWeS8rSsTJIvNpaVFTvTbNVAtlz/KNevnQ6XX+51VCICHD0Kzz/4Kx/99Qy32h/co5aePSGLfs2LBIM9e3x52lOn+K52fwpV6Q25crm73qZNz/TrUy8wkRS1pMY7VP51PF/f9zqVRzbwOhyRjCPSbyJnlSpuOUqLFtCxY4LDfvwRnnoKSpc+qze1pDB9apDkiYpie6WG3LtuFl/d8DxhPw6FrPrfRyQYREfDsPumMWnTc2TPkx2mLYCqVb0OS0R8Dh1yl2SxHauYX+Q5Qt7bCHXqwJAhULjw2SeoF5hIivj2tTlUmteRlUWfoVJkD6/DEck4/BND4BJDmTK5iiG/YUY7drj3y9y54bPPIG9ej+LNoFSgJee3ezeHy99PsXWfMrzUu9y3YThGiSGRoGCPn2D5rc/TeUM9jl1Xlmw/fa/EkEgQOXEC6lY7wrMbXuCrU/cScvqwqwyaNi3pxJCIpIjN09dz81v1+SXkf9z2/UQyZdHHIJFUkTgxFCc21jWjjowEzjxIOXzYJYaKFfMg1gxOvxXlv23YwOnb7yTT5p95ofhsGqx+kWzZNapeJChs2cLea++m8i+jWHZ3R678+Wu9k4oEkehoeLvyXMasKENrhmNeeAE2boRq1bwOTSRD2bt+N7kbPMHhzPkosGIOIQVDzn+SiARGePjZiaE4UVEQHs6pU1CzphusMmsWlC2buiGKo+SQJOTfJGz+fGLvvY/9+y1PFlhOp2WPq7RPxCv+1ybARx9x6tbyZNuznXcemMt9KwZA1qyehigiZ9jde1hfujavffsEOa/Ki1m50i0ju+wyr0MTyVCOHzjO/vtqcHnMAY58OJfCt13ldUgiGUtEBOTIkfS+kBBix0fQrJm7xZ3wf/buOzyKqu3j+PdOqEEUFEQEKWKhCYgoNoTY6GIXRUGsqIjdxy6PHfVRERXEAiJY0BcUKWIhKAqIIB0EqYqINFEkiZDkfv84E9lsNsmS7O5ssvfnunLB7szu3pvsb2fmzDln3oQzzohteWYvaxwye+V2+Vu/Hjp2RLt3Z0XOUbSrMIenP2tFvXp+F2hMggrMZrducO65cPHF/JDZjP6nLqD/lG6Bw7WNMX5ShddfJ/PwJjRfO4EvOjxGjXXz4MQT/a7MmMThnVDJ+eJL5re6kia75rL03jEcfUkrvyszJvHUrAkVKpBvZ9W7Iuf9X6QyZgw8/jhccYU/JRrHGoeMEzwWdM8ecjSJOzIeZfAHh9K6tb/lGZOwgrOZng4ff8y45Au5qflXDJtUjwoV/C3RmIQW2Kvvp5/g9NPh2mv5LrMlj1+8iDOm3Y+F1JgYCjihoh07c/IvY/m6yyDaPtHD78qMSTxLlrjt4n77wVtvuQYh+LdhaOiPqTz1FFx/vbvQrvGXNQ6ZAicJSyabjytcRNeUNJ8KMybBFTSBH9ApZzKfPvgt++/vQ13GGCeoxy3NmrF7znyuZTgvnTeNge8cZb364oyIdBKRFSKySkTuCbG8sYjMEpF/ROTOfXmsiQNB283knD1kSzLtbz/O58KMSUBLl7qGoXLlXDavuMJdkKF+fZg4kQk7U+nf30X2pZfydywysWeNQ6bQScLK73aThBljfFBINlM0nZp3WzaN8U2oHrfZOVye+TqrU69l9DtJJCf7W6LJS0SSgZeBzkBT4FIRaRq02nZgAPBsMR5r/FTQyU7NRs7pvnfOPmNM9C1blrdh6Kij3P2pqbBuHd+lpNKzJxx3nLt4Zzm7EHZcCKtxyM6ylHEjRhTc5T0lxS03ccmyWcYVMYGfZdMYnxRwEJqUk81b2odPbk8rMLrGVycAq1R1jaruBt4D8ow1UtXNqvo9sGdfH2t8FsYVkYwxMbB8uWsYSkpy28ujj86zeNUqtwmtXRs++QSqVPGpTpNPkY1DdpYlAXiXIFMJ+jh4Y0FJTfWhKFMUy2YCOPFEqFMHDb7fsmmMvwo5CK2s6VTpbwehcaoO8EvA7Q3efdF+rImFESPIKV8x9DI7oRLX7GRnGfLjj3v3T0M0DG3eDJ06uWs3TJkCtWr5UKMpUDg9h+wsS1m2bRucfz7pVQ/mEhlLRlLeScLs4DOuWTbLMlW48UZYvZr3WzzBLiybpYnt6JZxQ4cWPDmCHYTGs1B/tHzt7yV5rIhcJyJzRWTuli1b9qk4UzILFiXxzx7ICf5T2XYzrtnJzjJkxYq8DUONG+dZ/Ouv0L49bNzoegzljjQz8SOcxiE7y1JWZWVBz55k//obp/8xjg1tLyD7o72ThNlGNO5ZNsuy116DkSN5/6gHuXTRvXxynWWztLAd3TJO1U2QoIpWCOqlYAeh8W4DcFjA7brAxkg+VlWHq2obVW1Ts2bNYhdq9s2CwV9x5K1d+LViI/5644N8V0SyTMY1O9lZFuQ2DOXkwLRp0KRJnsXr1sFpp8GGDfDpp3DSSf6UaQoXTuNQ1M+ygJ1p8cX998MXX3B91itUPPV4pk6F/bq7ScJsI1oq2BnQsur779Gbb2buQR25bOXDDBkCPV+1bJYitqNblg0dCqNG8ceAh7n8oCmkW6++0uR74EgRaSgiFYCewIQYPNZEUW7D0KYK9Tlg7jSqXXVBnisiWSbjXkxOdto+bRStXOlylpXlGoaa5j2n9dNPrmFo+3b44gv3fxOfwmkcivpZFrAzLTE3diw8/TRDuYF1p1/F5MlQtarfRZl9ZGdAy6KtW8k5/wJ+l9p02jaG195Ipn9/v4sy+8h69ZVVs2bBrbfyV7suNHv/IT79J5X1L9tBaGmhqllAf2AqsBwYq6pLRaSfiPQDEJFDRGQDcDvwgIhsEJH9C3qsP+/E5Fo45Ot/G4b2n5dGzebeBCapdkKlFIlJRwTbp42Sn37K2zDUrFmexUuWQLt2kJHhRpq1betTnSYs4Vw07t8zJcCvuDMll4X5/CV5rImWxYvZc0Vf5nAyUzq+wCfjoXJlv4syxWDZLGuys9lz0aXk/LqZHvINQ945iEsv9bsoUwwx6dUHXAdQr1698CszxbdpE1x4IZk1D6PFwtEkVU1ixjRo0jQVblznd3UmTKo6GZgcdN+wgP9vwp0wCeuxxj8Lh3xNowFd2FShHlW/n7a3YciUNjHpiGCiYNUq1zC0e7dr+WnePM/iH36As892F8VOS8s30szEoSIbh1Q1S0Ryz5QkA2/mnmXxlg8TkUOAucD+QI6I3Ao0VdW/Qj02Wm/GhOGPP9iReh7puw/g9Y4f8sHHFahYwIUdTHyzbJY9u+56mCrTv6Bf8mvc+2Ebzj3X74pMMcWkVx8wHKBNmzbhNjyZ4tqzBy6+mOxtf3Aas6lQrzpffe46DBljYm/hSzNoNKALv1c4jKrfp3Fwi0P8LskUn53sLI1Wr3YNQ5mZIRuGZs6Ezp2henX48kto1MinOs0+CafnkJ1lKSuys1l9Yi8O2/Yzz6R+xfBPalO+vN9FmZKwbJYd20dO4MDnH2dE8tWcN+kaOnb0uyJTArajW9bcfTfMmEHfpNFktWzBN5/CwQf7XZQxiWnhSzNodHNnaxgqI+xkZym0ejV06ODGik2bBscck2fxtGlwzjlQu7ZrGLIOzqVHWI1DpvRThRmpD3Payim8cfww/vvZSZSzv74xcWHj16vY7+re/JB0HI0mv8RpZ/tdkSkJ29EtY959F154gSHczPpTe5E2AQ44wO+ijElMi175hkY3d2Zzhbrs9900axgqI+xkZymyZo3rMZSe7lqBWrTIs3jKFDj/fDj8cDf5dO3aPtVpisWaBxKAKoy5cDyXz3icr468hitnXkey/eWNiQurF6fzz5kXUEmTkf/7kNPOruR3SSYCbEe3bNBFi9nT5xrmcArTuz3Lp2Ntjj5j/LLolW84/KZObK5QlyrfpVGrlR11GhNTa9e6hqFdu1yXoJYt8yweNw569nQjzD77DGrU8KlOU2zhXK3MlGKqMOjK5fQY15s1B7el3cKXSC4Xar5TY0ysLVuqzG97PY33LGb7i2M49rwGfpdkjPHkbN/B1tPOZ9ue/Rl74Qe8P76CNQwZ45NFQ7+l4U2drWHIGL/kXv1v507XJahVqzyLx4yBiy+GNm1chyJrGCqdrHGoDMvJgTuv/ZPzRp0LlVNoOPdDkirb7NPGxIMFC2Bk26FcmDGarTcN5Ij+nfwuyRjj2fNPDgta9Kban+v44KIPeOH92jYU2xifLBr6LQ1v7MTW8odaw5AxsZSWBg0auOHVHTrAX3+5hqFjj82z2muvwRVXwGmnuR5D1ar5Uq2JANvVKaNycqDfdTl0e+MKjkhaQ9KUL5HDQo5gMMbE2HffwQNnzmbSrlvZ1b4LB7/4gN8lGWM8GRnwf60e5/JfP2Fq1xe5+f1TEetwa4wvAhuGKs+2hiFjYiYtDbp1c3ML9eoFKSnw1VfQunWe1QYPhltvdVcm+7//s6HXpZ31HCqDsrLgyiuh9huPcg6fkPTC80j70/wuyxiD2672PH0zb2dciBxWlyrjR0OSfRUbEw927ICHjp/CZSsfZuUJvej4SX9rGDLGJ4tfnZmnYeiQ1of6XZIxiSGwYQjcPCXZ2a7nUIAnnnANQ+efD+PHW8NQWWBHJGXMnj1w+eWw/e2J/JeB0KcP0v8mv8syxgBTp0K3Tlm8S09qld9G+Y//D6pX97ssYwzw++/Q66Q13Lu0F3/VO4aj0oZjLUPG+GPxqzOp368TW8vXtoYhY2IpuGEoV2amuz8tDVW4/37306sXvP8+VLSZS8oEG1ZWhuze7WaIXzJ+JYsr9YKmrWHoUNu5NSYOfPyxm6hv6AEPcOKWNBgxIt+YbWOMP9atg+5npDN67QVU3U8pP22c60JvjIm5xcNnUb9fJ7aVP4TKs6dbw5AxsdS3b/6GoVzp6Wjfvtx27joGD4ZrroFhwyA5ObYlmuixnkNlRGam69L3+fidzK51LhX3q+CuJ2j9+4zx3XvvwQUXwC31xnPVlkFw/fVu7KcxxndLlsApJyv3bbiBlrqA8u+NhkaN/C7LmIS0ePgs6l/fkW3lD6HSTOsxZExMqUKXLgUvTknhueYjGDwYbrkFhg+3hqGyxhqHyoD0dOjRAyZNUhYdeyUHbl0JY8dC/fp+l2ZMwhsxAi67DC45diWDfu8Dxx/vZu8zxvhu9mx3dZXeu4Zy6e5R8PDD0LWr32UZk1i8KyKtueMl6l/fke3la1FpZhq129TxuzJjEkdmpjtxOXQonHpqvg4GmpLCEydN5M5Jqdx3Hzz/vA1OKYuscaiU+/tvtx/7+ecw94KnaDh/HDzzDKSm+l2aMQnv5ZfhqqugW+ou3t51PlKhAnz4oQ3MNiYOTJ0KZ5wBZ6bM5In0W9zZ0oce8rssYxJL7vwm69fT8LmbSU+uSsWZ061hyJhY2rgR2reHUaNg4EB39ZRJk/4dXq0pKQw8biIPfJnK44/D449bw1BZZY1Dpdhff0GnTjBjBnx516ccN+5+10Xh1lv9Ls2YhPfMM9C/P5zTXRlf41qSflwG774L9er5XZoxCe/996F7dzixwSbezboQqVcPRtuVA42JqaCJbwU4uPwf1N650t+6jEkk330HbdrA0qVuSpKHH3bbwtRUmDiRnHr1ue+YiTwyI5Xnn4f77vO7YBNNthdUSv3xB5x1lsvzJy+sJnX4pdCiBbz2mjXlGuMjVfjvf+Huu+GSS2Bc6hCSx74Ljz3mQmuM8dWwYXDppXDy8XuYesDFJP+1w12D164caEzsFHBFpKTMjH+viGSMibK33nJjqytVglmz4Lzz8iz++/hUzmy0jkFzUnn1Vet/kAiscagUWrEC7midxtg5DZhx72Q6Dz/PtfCOH29XVzHGR9nZcOedrkfulVfCmBu/JfnuO1wXhXvu8bs8YxKaqusKf8MNbgTZ58feTblZM9xJlRYt/C7PmISiV15Z6BWR6Ns3pvUYk1CysuC229zO6qmnwvffwzHH5Fll61bo2NGNMBs1Cq67zp9STWzZpexLmXfegdFXp/FhZjdSSKf+E+dATg58+ik0bOh3ecYkrF9/daM6v/7aDScbfO8mktpc5CaGHzXKhqsY46OsLLjrLnjhBbj8chhx9ruU6/0C3Hwz9Orld3nGJJQtSzfzx/aDOIqfQ6+QkuKu5mCMibzt213X9i++gAED4H//g3J5mwS++srt027d6q5xdMEFPtVqYs6OVkqJjAzXYvtarzTG7XYNQ4DrqlCuHJQv72+BxiSwSZOgZUuYNw8+vSeNIRPqk9S5I+zY4cZvV6vmd4nGJKy1a12v+QUvpLGtagPeav8G5fpdA6ecAs8+6yLxHUMAACAASURBVHd5JsZEpJOIrBCRVSKSr0unOC96yxeJSOuAZetEZLGILBCRubGtvGxY/OpMslocy2F/L2dRp7vy93hPSYGJE+3CKsZEw9KlcMIJ7kzmG2+4q+cGNAxlZ7upEU4/HapUcVf0tIahxBJW45BtSP3144/Qti389FoaU8t1o1JOUDfcPXtsfHaCsmz6a/duN4ysWzeoUweWvZxGxxe7wc8/w6JFbnC2DVcxxheqbo7pli3hwIVpfF6hGwfuXE/Sdde6KwZ+8AFUqOB3mSaGRCQZeBnoDDQFLhWRpkGrdQaO9H6uA4YGLU9V1Vaq2iba9ZYlmqN8dcGLNO7Xnt1Jlfn5vVm0mPK0awjKbSCyhqGEZfuzMfDxx3Diie5S19Onu8vpBti4Ec48002N0KuXO+F57LG+VGp8VGTjkG1I/TVmjJtA/rffYPLBfamQZeOzjWPZ9NeaNW6Y9v/+BzfeCN8/nUa9G4Mm1xw82BptE5Tt6Pprxw63c3vFFXBl/TQmaDfK7fayqepy+uOP/hZp/HACsEpV16jqbuA9oEfQOj2AUerMBqqJSO1YF1qW7Ny4k1kNetJ+3C38UKsL1VbN5ehLWrmF3hWRqF/fGoYSlO3PRpkqPPoonHsuNG4Mc+fCSSflWWXKFHciZc4cGDnSzYZQtao/5Rp/hdNzyDakPkhPh2uucXMjtG4Niz7bROVTWhf8ABufnYgsmz4ZO9adTVm5Ej78EF6+MI0K53bJP7lmerr16ktAtqPrrxkzoFUrl9NRfdMYvKYbSRlB2fznH8tmYqoD/BJwe4N3X7jrKPCZiMwTEZueNQyrJixjc8MTaPvLh6R1eorjN4zngPpBQ61TU2HdOmsYSly2Pxstf/8NF18MDz3kDiq//hrq1v13cW4P+C5d4NBDXW+hPn18rNf4LpzGIduQxljuMLI334THbt/O9JPupfapjWDCBLczW7ly3gdYN9xEZdmMsYwM6NfPzePXpAksWAAX1PseunaFzMzQD7JefYnIdnR9sGcPPPggdOjgplD49lu44ssrEbsiktlLQtyn+7DOKaraGte4e5OInJbvBUSuE5G5IjJ3y5YtJau2lJs54D0O6XEC++/ZzqL/fUHqlP+QVM6mOzX52P5sNKxb5+bWGzfOza83alSeY8g1a6BdO9cD/oYb3PxCjRv7V66JD+F8Q0d9Qwq2Mc319ttuGNnfv+1kRe/HuP/1hiQ9MwjOO8+1Gn3yiZv91sZnG9vJjanly12j7auvwt13wzdPzqDB9R3dxH7JyQVPCm+9+hKR7ejG2OrVbif3scegd2+YPyuTtgtedZcpK4hlMxFtAA4LuF0X2BjuOqqa++9mYDyuITgPVR2uqm1UtU3NmjUjWHrpsfvv3XzV6hZOHnIpa6q2JGvODxx7u+2nmgLZsWakTZ/uDijXr4fJk+GOO0D2/go/+MD1gF+xwvWAf+WV/H0PTGIKp3Eo6htSb3lCb0zT0+Hqq+Ha3pk8dcjzrNLDOfKtB9108YsWuVk1jzjCrWzjs41jO7kxoOqOH9u0gU2/KXMe+4xBs9tT7vTTXNehQYPcLH5Tp9pVV0wua7iNEVU3P0KrVm4nd9ybOxhx1JNUPaaB6+ZXp46bXdOyaZzvgSNFpKGIVAB6AhOC1pkA9PbmBTsR+FNVfxORKiJSFUBEqgBnA0tiWXxp8Nv3G1hRuwPtF77IV8feSpNN06ndJrht3Jg87FizpNLSoEEDmDYNXn7ZzSxds6abRKhjx39Xy+0Bf/HFrgf8/Pl2NTKTVziNQ7YhjbJly+Dk4/dQ/s1X+b3qEfRffTvJxx0L330H48dD8+b5H2Tjs41lM+p27nQT2l59VQ63NZrAhrptOf6Bjq6bwuDB7hrZd9/tZu3LbbS1Xn3GGm5j4o8/3BDPvn3h7OYbWX/J3Zx3Sz247z43s+aXX7rt6MMPWzYNAKqaBfQHpgLLgbGqulRE+olIP2+1ycAaYBXwGnCjd38t4BsRWQjMASap6qcxfQNx7odnvqR822Np8PdiZt76Pu1/eJ7yKQX0qjVmL9ufLYm0NDftyPr1riGof3/o3Nlt/4466t/VAnvA33WXm5+vYUMf6zZxqVxRK6hqlojkbkiTgTdzN6Te8mG4DWkX3IY0HcgdxF8LGC+uG1s54B3bkOb19shspl//Lh9lPUwD1sAxJ8Pjo92kCcYUwrIZXfPnw6UXZ3Ps6g/5rdbj1Fq82G1Fhw9341YqVsz/oNwGor59XXcjO/hMVP/u6AK/4nZ0LwtaZwLQX0TeA9oSsKMLJKnqzoAd3UdiWHupMH26a7it+ttK5h//DC1/GIXMyYKLLoL//Cf/9Xctm8ajqpNx28bA+4YF/F+Bm0I8bg3QMuoFlkI5WTl83eUp2n3+IGsrNEbG/R8nd7XJS0x4bH+2BHIbhnLn1svKcpPu3XIL7L8/sLeHbf/+7tzI5Mmu7ciYUIpsHALbkEZD+i7lzXM+osO0B7mCpexp1gqenuTSKqFGGxiTn2Uz8lThlcF7+OHOd5gkT9BIV0L1xvDs29Czp9voFia3V59JWLajGz27d7uOQNOemsPrVQZxds54ZHFFNy77jjugUaOCH2zZNCbidqz9g5Un9qbD5ol8W/9SWs4ezn6H7Od3WaaUsf3ZYghuGMqVlQU9esDEiexsk8oNN8CYMW4TOHq0uyqZMQUJq3HIlEBaWt4zlaqsf/1zdg64n/6Zc9ly0NFkvzSW8hdfAEl2BQdjYiY4m8D2jZmM7TKSLgsHcRPryGrWEgZ+AOefb/k0+8R2dCNv5QplSPfPOO+nQTxJGlq+GnLvvTBgANSq5Xd5xiSc5WN+oMqVF9IqawNfXTiE096/CUmyE5zGxESvXvkbhnKlp/NPr74ct986Vq+GRx5xI66Tk2Nboil97GgnmgLHgHbrBi++yKYmHah/XUf2372FJXeOoOamJST3vMgOPI2JpeBsTp7M2gHPs7teI/otvIFK9WqhEz6h3OL5cOGFlk9jYil3Ys20NAB0TxZp179HRpPWDPmpEycduAKefRb5+Wd4/HFrGDImVgKyOePKN2h4+cmU0z2sGP417T/obw1DxsTC9u1ujNimTQWusqd8Ct23jCA93cX2wQetYciEx3oORUtwV7/0dLjlFspTncFHvsRFU6+hecMQc5YYY6IrRDa1a1caArMqpbJj8Cga33i6De80xg+B+ezalYwrruOv0RNITV/LzylH88cjb1C9f6/Qc34ZY6InIJvZZ5xFO81m3oFnUv+bdzimSWJOim9MTGVluXkvH3wQduyAG26As87K14MoMzmFznsmsl+3VBaMgBo1fKzZlDrWOBQNBY0BBaqWy6T/K01JtoYhY2KvgGwKsDupIseMfZD9uttEtcb4IjifGRlUHj6YdTRmVp/xnPP6OSSVs158xsRcUDaTNZvspHK0evc/JFvDkDHRN326m2R60SJ30aLBg6FFC7ds4sR/85kuKfRgIuc8l8qtt9p5TrPvbC8rGvr2LXAMaIWsDJKv6RtymTEmygrLZs4/7HezZdMYXxRyUuWoSj9zbp8DrGHIGD+kpaFduubLZnJOFsnn9fh3+KcxJgrWr4eLL3ZzY+7YAR98ANOm7W0YAjJPSmV0z4mspz7XHjKRJ2encttt1jBkisf2tCJtzx72nHQaWtDylBQ3Aa4xJrZUyTn/AsumMfGod+8CG26TM9Ndw64xJqa2Lt9CZqdzkcyM0CukWzaNiYr0dBg4EBo3dj2D/vtf+PFHNw+m1+qzcyc88ww0bAhXvJnKfy5ZxyvLU2nTxt/STelmjUMR9OcPq9lweDvKv/c2UzmbzKTKeVdISXEBT7VhK8bE0p5fN/PzceeS9PxzzOdYMsSyaUy8yBgzjsytO63h1pg4sWXpZqafcDeVmzagwu6/yJYCZrK1bBoTWaowdiw0aeIahHr0cI1CDz0Eld2+69at7ma9enD33dC8OXz5Jbz7LhxwgM/1m1LPGociYPPvygddR5J0XCuqbFjBoOPep/rsqVT6YpLbcIIdfBrjg4wMmNhvIjvqHcPB86fyTO3nWDlmLhU+s2wa47dNy7azoFkvKl9+AUszG/H0UW+QVTEl70qWT2NiZsvSzUw//i5Smjek3ff/Y0H9c1n7yTKSv/x87zYzl2XTmMhauNDl6ZJLoHp1N8/Qe++5ViBgwwa47TaoXx8efdStOmcOfP45nG7XUTERYo1DJbBhA9zXbzvfHHoxF03uy8812/Dbp4v4z9yLadsWl9qJE12KbQNqTMz8+Sf875FdjD2wH91e7c6OSofw3UtzufPX2+h5WRLJZ1o2jfHL8uUw+OxJ5DRrTrNlY3m/2X/RmbP5z4qrKDdlojXcGhNjmxdtYnqbO6jSvAHt5j7H/Ibns37yMk5ZN4ZG3Zrs3Z+1bBoTeVu3wo03QuvWsGQJDB0K8+ZB+/YA/PQTXHMNHH44DBniRpYtXQrjxsHxx/tcuylz7GplxbBmDQwaBGveSGNE9hUcIr+z5c5BNHvqDkgO6nqbmgrr1vlSpzGJZvNmdwGHWYPnMGzX5RzBKn7peRdHjHiUIysFXSHQsmlMzKjCt9/CS4//ydmf3sYtjODXA49h04hJXHLOsXtXzD0I7dvXDVexg09jombzok0s6/s0J/wwjHb8w6zDe1HnlQc4teNR+Ve2bBpTcmlpezPUrh0MG+bGiP31F9x0kxtKVr06AAsWwJNPwocfQvnycN11cOed0KCBv2/BlG3WOLQPli3zQvrObh6TBxia/SzZhx9FubEfU/O44/wuz5iE9csv8Oyz8ObwLO7IfJzP5VGyax1K0nvTOKxDB7/LMyZhZWfDxx+7STOrzv6MEUlXU1s2suuW+6jz1ENQsWL+B1nDrTFR9fuC3/jxqqc5Yf4wTmUPsxtdTt2h93PqWUcW/kDLpjHFF3hVzs6doXZtl6czzoAXXnCTBwHffANPPAFTpkDVqnDXXXDrrXDIIf6WbxKDNQ6FYf58ePxx132vVcXl/FSjF3U3z4d+/Uh69lmoUsXvEo1JSCtWuF58b78NjXQVCw68nEaZ38FlvUh+6SWoVs3vEo1JSBkZMGoU/O9/8NtPO3m16l1cxqvkHNmYpFGzqHLCCX6XaEzC2fTDRlZcNYgTFg7nFPYw64grqDfsfk494wi/SzOmbAtsGAL45x93mfr//hcefBBF+HSK64QwYwbUqAGPPeY6E9murIklm3OoEDNnQteubgjo558pH3Uaxjw5jro5v7hToUOHWsOQMT744Qe46CJ3MYf33lVGtXuNZRVb0WjPCjd53+jRtjU1xgfbtrmJMuvXh3794PSk6Wyq2YJL/x4Od95J0oL5YA1DxkRXWpobe5KWBsBvc3/lq5YDqHbc4Zyy8GXmHnkpv365gnY/jaC+NQwZE11vvQUdO+5tGMqlig4aRNrD02ndGrp0cR2JBg927Ub332+7sib2rOdQEFWYNs31FEpLcy23z9+7mZvmX0P5KZ+4cI8Y4boCGmNiasYM19X2009h//3hsQGbuePHa6k4dYLrljtyJNSt63eZxiSctWvh+efhjTfc/u95HdN5MeUe6o4fAkccAeNnwCmn+F2mMWVfQA+FnC5dWVy7I0evncLJZDP7qD7Uf/U+2nU43O8qjSm7cnLcZcQ+/hg++shdir4Akp5Ow0f7knH0Ot58E3r1ggoVYleqMcGscciTkwOTJ7tGodmz4dBD4bnn4IYGU6h0Q1/YscM15fbvD0nW4cqYWFF1466feMJNaFuzput2e3PDiVQZcLW7NNnzz8OAAZZNY2Js3jw3n9AHH7jrMVx2GTx0xrcc/siVsGoV3HyzC6z1sjUm+tLS0G7dEK+HQlJmBi3WfsSiw7pw4OiXaHdaQ58LNKaM+ucf17vg44/dz6ZNUK4cdOgAZ50Fr7/uxlsHyZAU1j80gqUP5r+mkTF+KH1HUkFdZfeVKvz6K3z2mWv8ufpqaNsWulVJo3n3BjRYm8awYbBmaQa3rR1ApfO7uKPR77+3g09jClPCbIK72lhaGrz0EtxwA5x2Gpx7QBpNuzag7k9pDBkC65bu4p51/ajSs7ubnW/uXDdTn2XTmNAikM3du91FGT780A0bu/RSuPrwNA5q04CdE9K4/XZYsyyTkTXv4vA+7SAry73eiy9aw5AxBSlhNrf/tI0FL0znqwuHsLBeN3JOP/PfhqFcArTcNp3DsteVuFxjEkY42dyxA955By6+2A016dIFxoyBdu3IeXsMa7/bzISbP+fJ2i/y+MmTyJCUPA/PrphCpS8m0n5gqjUMmfihqkX+AJ2AFcAq4J4QywV40Vu+CGgd7mND/Rx33HEa0rRpqikpquD+nTYt9HqezZtV09JUhwxRvf561VNPVa1WzT0896dWLdXbj52m/5Rzz5uTkqL62muqzZq5FW65RTUjo9DXMSaSgLkaRk40xtksMJeq+5zNLVtUp09Xffll1RtvVG3fXrVGjbzZrFZNtX+zaZoZmM2XX1Y98khVEdW77lLNzCzeL9mYYkiEbO7apfrDD6qjR6vef7/qeeepNm6sWq5c3nz2rDVNM5K8bFb2stm4sVt4/fWqf/1VzN+yMfuurGcz448MXTZ6ns64ZqSmHXeHfn/Q2fpbUu08ocwiKW9Ig3/q1y/+L9iYYgo3m3FzrKlaeDZ//ln1pZdUzzzz3w3jnpqH6LqO1+nYvpO172WZ2rq1auXKeeNXt67qXW32Hm+Gsz02JpoKymaRw8pEJBl4GTgL2AB8LyITVHVZwGqdgSO9n7bAUKBtmI8NT/As7+np7vbEifzZOpWlS2HJEveT+//Nm/c+vHp1d4XAnj3dv82auZ+aS7znzXLPK+npcO217gGffurmGDImDpWGbP7RymUz+Of33/c+vGpVl8UePfJms/aPaUj3oGzedBMcfLB7zfbt97lUY2KhNGTzz9apLF/uegMF/rtunduVBdfF/YgjoGlTOP9892+TJtBkUxqVL+oGOV42M7xs1qgBU6fC2Wfvc6nGxEK8ZzPn4wn8ktSATZ8vJmPOYiquXMzBmxdTf/dPNCEbgEwqsrZyU1Y1OIsfmxzDficdQ93Ox1Drjx/hnO75J70FSElx82UaE4fiJpcQOptduqA9L2X3vEVUXDwPgI0HNObzGncwcse5fLXlBHSq671+6KFuH/b66/fuzzZtCgccAJAKaROhb1+Xx9TUYpVoTDSFM+fQCcAqVV0DICLvAT2AwND1AEZ5rVCzRaSaiNQGGoTx2KIFBzVXejr/nN6J57mHpTQHoFIlaFsXLmwOh9WFw+q5f6tXB5GAx24BXloCTz3l+ssHy8y0GcFMvIv7bA4OyuYJdeGCJnDY2VD3MJfNgw4KyuYO4NVCsrlzp5skzJj4FffZDNxuli8HTQ6Fs+pCnePdnO5168Ahtd2yPD4uJJu7dkH58vtUpjExFtfZlLPOpD5QH8hB+KXc4fxW8xh+OeIiKrY5hlpnHkO904+gSaVQu++HwsSJ+Z87JcXdbweiJn75n0soOJuZmTByBD/RlFEM4mN68Fflo2nWDFo0g0sDGoGqVy/iNVJT3VkYY+JUOI1DdYBfAm5vwLXYFrVOnTAfC4CIXAdcB1CvXr28C/v2DX0mBKjIbgbyyN47MnGdCleFXD18GRnudS3AJn5FPZuF5hIsm8aEVrqymQX87P2UhGXTxL+4zqYAmVUOZPWQKTTo2oz6B1ehfuHvJ6/U1LwNRNYwZEoH/481ochs1j9wF90/upt7msGBBxb8ZowpzcJpHJIQ92mY64TzWHen6nBgOECbNm3yrjNiROiWXHDdEV55BU44IdTTFm7OHLjxRtciHMy64Jr4F/VsFppLsGwaE5pl05j4FN/ZTEmh0icf0iy1GNnMldtAZENXTOnh/7EmFJnNqh+OoF27UM9sTNkRTuPQBuCwgNt1gY1hrlMhjMcWLfhMSK6SnhFp1szNRG9dcE3pZNk0Jj5ZNo2JT2U3m8GvYT34TOnhfy4hNtk0Js6Fc+3n74EjRaShiFQAegITgtaZAPQW50TgT1X9LczHhic3sCneZQAjFdRoPa8x0WfZNCY+WTaNiU9lO5vGlE7xkUuwbJqEV2TjkKpmAf2BqcByYKyqLhWRfiLSz1ttMrAGN5vIa8CNhT222NXmBrZ+/cgGNVrPa0wUWTaNiU+WTWPiU0Jk05hSJq5yCZZNk9BENeSwTF+1adNG586d63cZxvhCROapahu/6whmuTSJzrJpTHyybBoTnyybxsSngrIZzrAyY4wxxhhjjDHGGFNGWeOQMcYYY4wxxhhjTAKzxiFjjDHGGGOMMcaYBBaXcw6JyBZgfSGr1AC2xqicolgtoVktoYVTS31VrRmLYvZFGLmE0ve7jhWrJbTSVotlMzKsltCsltAsm7FjtYRmtYRm2YwdqyU0qyW0YmczLhuHiiIic+NlcjOrJTSrJbR4qiUa4un9WS2hWS2hxVMt0RBP789qCc1qCS2eaomGeHp/VktoVkto8VRLNMTT+7NaQrNaQitJLTaszBhjjDHGGGOMMSaBWeOQMcYYY4wxxhhjTAIrrY1Dw/0uIIDVEprVElo81RIN8fT+rJbQrJbQ4qmWaIin92e1hGa1hBZPtURDPL0/qyU0qyW0eKolGuLp/VktoVktoRW7llI555AxxhhjjDHGGGOMiYzS2nPIGGOMMcYYY4wxxkRAXDcOiUgnEVkhIqtE5J4Qy0VEXvSWLxKR1j7W0surYZGIzBSRln7VErDe8SKSLSIX+lmLiHQQkQUislREvvKrFhE5QEQ+EZGFXi19o1THmyKyWUSWFLA8Zp/baLFsFq+WgPUsm3mXWzYjxLJZvFoC1rNs5l1u2YwQy2bxaglYz7KZd7llM0Ism8WrJWC9qGbTcllgLdHJpqrG5Q+QDKwGDgcqAAuBpkHrdAGmAAKcCHznYy0nA9W9/3f2s5aA9aYBk4ELffy9VAOWAfW82wf7WMt9wCDv/zWB7UCFKNRyGtAaWFLA8ph8bqP1Y9ksfi0B61k2865j2Yzd79qyadncl1osm7H7XVs2LZv7UotlM3a/a8umT9m0XBZaT1SyGc89h04AVqnqGlXdDbwH9AhapwcwSp3ZQDURqe1HLao6U1X/8G7OBupGoY6wavHcDPwfsDlKdYRby2XAOFX9GUBVo1VPOLUoUFVEBNgPF9isSBeiql97z12QWH1uo8WyWcxaPJZNy2a0WDaLWYvHsmnZjBbLZjFr8Vg2LZvRYtksZi2eaGfTclmAaGUznhuH6gC/BNze4N23r+vEqpZAV+Na6qKhyFpEpA5wHjAsSjWEXQtwFFBdRKaLyDwR6e1jLS8BTYCNwGLgFlXNiVI9hYnV5zZaLJvFrMWyWWAtls3IsGwWsxbLZoG1WDYjw7JZzFosmwXWYtmMDMtmMWuJUTYtl8VXrM9tuaiVU3IS4r7gS6uFs06sanEriqTiwnpqFOoIt5YXgP+oarZruIyacGopBxwHnAFUBmaJyGxVXelDLR2BBcDpQCPgcxGZoap/RbiWosTqcxstls3i12LZDF2LZTMyLJvFr8WyGboWy2ZkWDaLX4tlM3Qtls3IsGwWv5ZYZNNyWXzF+tzGc+PQBuCwgNt1ca1w+7pOrGpBRFoArwOdVXVbFOoIt5Y2wHteUGsAXUQkS1U/8qGWDcBWVd0F7BKRr4GWQKQDG04tfYGnVFWBVSKyFmgMzIlwLUWJ1ec2Wiybxa/FsmnZjCbLZvFrsWxaNqPJsln8Wiybls1osmwWv5ZYZNNyWXzF+9xqFCZIisQPruFqDdCQvZM+NQtapyt5J1qa42Mt9YBVwMl+/16C1h9J9CbvC+f30gT40ls3BVgCNPeplqHAQO//tYBfgRpR+t00oOAJwmLyufXzM2jZtGzuYy2Wzdj9ri2bls19qcWyGbvftWXTsrkvtVg2Y/e7tmz6lE3LZZE1RTybcdtzSFWzRKQ/MBU3O/ibqrpURPp5y4fhZkbvggtJOq61zq9aHgIOAl7xWlCzVLWNT7XERDi1qOpyEfkUWATkAK+rashL7kW7FuBRYKSILMYF5T+qujXStYjIu0AHoIaIbAAeBsoH1BGTz220WDZLVEtMWDZDs2xaNgupJSYsm6FZNi2bhdQSE5bN0Cybls1Caok6y2XBopVN8VqWjDHGGGOMMcYYY0wCiuerlRljjDHGGGOMMcaYKLPGIWOMMcYYY4wxxpgEZo1DxhhjjDHGGGOMMQnMGoeMMcYYY4wxxhhjEpg1DhljjDHGGGOMMcYkMGscMsYYY4wxxhhjjElg1jhUConItyJyrPf/BiKyLgqvMV1EOnj/ryUiy0WkYoSeN1NEvi5xkXFERM4Ukb9FJEdEzvS7HhMfRKSiiCwTkUO82x1EZHoUXmediDTw/t9CRGZG8HkzROTtSDxfvBCRq728qogc4Xc9JvYsm/HJspnYLJfxyXJpAolIUxGZG3B7oIgMjPBr5Dm+FZEBIvJUhJ5Xvc/zdSV9vngiIiO9758NJXmeMtk4JCKXichc7w//m4hMEZFTvWUDvQ/FRQHrl/Pua+BXzeESke7ATlWdH6vXVNXfgTQgUiHqr6qn5d4QkQNFZLyI7BKR9SJyWWEPFpHbRGSTiPwpIm8GNloV9VwicoaI/Cgi6SKSJiL1A5ZN8T4zuT+7RWRxwPKTRWSOiOwUkUW5nykAVf1CVfcDfi7h76bM8RoE/whuXPS+xFREzgm6/wXv/iu9211F5BsR2eH93V8TkaoxfAslcR3wtapuitULquoiYIf3XREJ3VX1itwb3oY1zcvQj1JIY6g4g0Rkm/fztIhIuM/lfZev9/L8kYgcGLDsYhGZ6T12eojXVu9xuXl+PXeZqr7h5TWhRSCbqSKy2MvmNu+7t04M30JJWDYtm3GppLkMWjZCStcBveXSchkXZG9DIbL0YQAAIABJREFU399eHieJyGEBy0eKO07Y6f0sEZEnReSAgHWuFJFsyXts8ZK37C7vMTtFZK2I3OXH+yymR4FnY/yaw4HLReTgCD1fNVUdnntDCjk+DCZRPNYMWK+9l8nHAu5LlUL2uVT1SqBz8X8lTplrHBKR24EXgCeAWkA94BWgR8Bq24FHRCQ59hWWWD8gImckRKRcOPd5xgDXR+J1Q3gZ2I37e/UChopIs1ArikhH4B7gDKABcDjw33CeS0RqAOOAB4EDgbnA+7kPVNXOqrpf7g8wE/jAe+yBwATgGaAa8DTwiYhUj8D7L7PENbi2AxQ4J8QqK4E+AeuXAy4CVgescwDwGHAo0ASoi/s7lAbXU/by+i4wHzgIuB/4UERqFrDudcC5QEugBdAtqK4Cn8vL7avAFbg8p+O+y3Ntx33XF3YmqWVApq/ZlzdZ1kUom8uAjqpaDZfPn4Ch0ak44iybls24E6Fc5i47FWgUjTqjyHJpuYwn3b3jgdrA78CQoOVPq2pVoCbQFzgR+FZEqgSsMyvw2EJV+3v3C9AbqA50AvqLSM9ovplIEJHaQCrwUYSeL6ycqmomMAX3O4uooo4PQ4jKsWZAPeWBwcB3Qa8bm30uVS0zP7iDyL+BiwpZZyBuI7AQ6OPdVw63IW5QzNcd6P1hRwM7gcXAUcC9wGbgF+DsgPX7Asu9ddcA1wcs+w8wGyjn3b4BWApUAioAGUDdgPUbAOsCbifhGk9WA9uAscCBAesqcDWuh8vXoe7z1p0OdAh43nK4DU39Ev6NpgPXBNyuggvYUQH3vQ08VcDj3wGeCLh9BrApnOfCbXRnBr12BtA4xOs0ALKBht7tbsDSoHVWAlcH3bcOONPvLMTLD/AQ8C3wHDAxaNlI3JmHTUD1gN/zFOAb4MoCnvN8YHEJahqJ22Gagvu++BY4BLfT9AfwI3BswPq5edqJ+2I+L2DZUODDgNuDgC9xG/163uerXMDyDsD0gNsVvd/Bz7gdj2FA5YB1N+C+EzZ5n+V89wV87hoEPG8d77UrlvDvl+fzjPte+weoGnDfDKBfAY+fCVwXcPtqYHY4z4Vr4H8nYFkjXL6rBr3GNYG/04D7FTiiiPdX5Dpl9SfS2fQ+y08Cy0pQk2Uz/N+VZbMM/kQql7h9tvm4BoYS/S4tl5bLfVmnrPyE+Ft2AVYG5eKxoMdUBX7DjZAAuBL4JszXexEYUsJ67wIWAbuAN3CNF1O8LH6B973hrf+Bl4k/cceDzbz7KwALgJu928m4zD/k3e4NfBH02gOBgQG3DwX+D9gCrAUGBK37Ie6Y+S/v8xjqvgYEHN96j+0FpJXw79rA+xwHfs/sy/Fh1I41A+6/B9cJId9nLGCdkPtceN95JfkdlbWeQyfhGlHGF7Ge4lr0HvZa5yKhO+7DUR23QZ6Ka6ipAzyCa83PtRm3Qd8f11D0vIi09pY9g/vQPSAiR+K+7C9X12J6JJCjqoWNJRyAO+vQHhfOP3AtnIHa43pgdCzivn+pahawCnc2I7fr6o5CfuoVUmOgo4BsVV0ZcN9CIGTPIe/+hUHr1hKRg8J4rjyPVdVduB2YUK/VG5ihqmu92+L9BBKgeQF1Gqc3rjF2DNBRRGoFLc/E9cjqGbD+qCKe8zRcg2lJXAw8ANTA7WzNAn7wbn+I2zHPtRp3JvcAXC+10d6ZE4A7gBZe1+F2uB25Puq+oY8B1njZKcgg3Oe2FXAE7vvioYDlh+DOPNRn77DOUPfloaq/AnuAowFE5J7C8lpIfcGaee9pZ8B9+5rXwDwW9lzBeV2Nt0Heh3q/FjcUcZyUgmHDMRaRbIpIPe8zlAHciduhKQnLpmUzkUVqm3kb7mTfogjVZbm0XCYsEUkBLsGdvC+Q97f5HPf535fnF+8xJd23vQA4C/c3745rGLoPl9Mk3DFirim448qDcVkeA6Cqu4HLcSNsmuAaKpKBx73HHQOsKOS9JAGf4D6LdXAn8W/1Rn7k6oH73qiW+7oF3BdsOd5xqPdaEwvJ6cSCagxhX44Po3msibghaFfh2g7yicI+Vz5lrXHoIGBrERsWAFR1Aq5FM1LdJmeo6lTvtT/AdTF8SlX3AO8BDUSkmvfak1R1tTpfAZ/hfZGoag7uwzIAtwPwtO6dX6garvW3MNcD96vqBlX9B9cae2FQF72BqrpLVTOKuC/YTq8GVPUdVa1WyE+4c+/sh2u1DvQnrvU9nPVz/181jOfal9fqjWuxzTUTOFRELhWR8iLSB3dWJqWAOhOe16W9PjBWVefhvhxDzSc1Cugtbpx2ewrpqioiZ+G61D9U0DphGq+q87xG1/FApqqOUtVsXPfPY3NXVNUPVHWjquao6vu4bpwneMvScRvR53BnPG4OaLwtNK/ezsC1wG2qut3bqXiCvTv9ADnAw6r6T0A2Q90XSmBenyosr+H8wjyRyOt+3nuPZF5DaY87K9MY2AhMLGRIQUKJZDZV9WfvM1QDd/D4YwnLs2xaNhNSpHIpbl6U6yn5djKQ5dJymYg+8g7E/8I1uoQzpcFGXGNkrhODGi1ODPGYgbhj8hElrHeIqv7uNXbOAL5T1fne8eB48ub0TVXdGXCs2NL7TkFVl+CmcxiPa4C4wss6FH0sejxQU1UfUdXdqroGeI28OZ2lqh953xEZhdwXbCeu0Tn3PXQrJKfdwvh95dqX7ETzWBNcD7IHVfXvUIVGYZ8rn7LWOLQNqLEPX2YP4MbsVipoBRFpJ3snjSqsRff3gP9n4BqpsgNug/vAICKdRWS2iGz3vnS64P7IAKjqOtwE0A3I2+vnD4r+kq8PjA84u7Ec12Ut8OzTLyEeF+q+YFWBfTljEo6/cT2oAu1PwV88wevn/n9nGM8V1mt5O2iH4FqwAVDVbbhW7dtxf+tOuC6aJZoRvozrA3ymqlu92+8QMFdCLlX9BteY+gCuG33IjYK3QX0HuFDzttgHrtMrIK9TCqktOK/Bt/+deFFEeovIgoBMNSdvXufghocKbhhnrqLyWhPXuDgv4Lk/9e7PtcXbGaeI+0KJ17z+raoaxnPt62vloapfezsmO4BbgIa43pEmwtn01t0OvAV8HGobbNnMw7Jp2QwlUrl8AXhEVYMPUPKxXOZhubRcBjvXOxCvCPQHvhLvSnqFqIOb3ynX7KBGizy9j0SkP66RoKvXUJOPiAwLyOl9hbx2WDkVkWQReUpEVovIX7ghaRCQU9z2vAEwWVV/Cri/qJzWx51MD+xpdx+ROw4t8nutGPYlO1E71hQ3KX5Vr1G9UEXtc5VEWWscmoXrcntuOCur6ue4oVI3FrLODN07cVRB3UDDJu7qE/+HGzNdy/vSmUzAkCUR6YIbIvcleVupf3KLC70azC9A56AvokpeK/K/byvE40LdF1h3OVwX3oXe7cAdilA/4Q4rWwmUEzeELldLCu5auZSALoXe/3/3Gm+Keq48jxU3YVyjEK/VBxgX3Gqrql+p6vGqeiBuwr+jgTlFv8XEIyKVcd3Q24vrorwJ1829pYi0DPGQ0bju5iGHlInIsbiedFep6pcFva6qjgnIa4ln7Pe6d76G2yk4yMvrEvLm9SbcjsNG4O6Ahy8CDi/kS3srbmPdLCCrB2jeK4Lsc1a9mg7FjRtf4d2+r7C8FvV8AZZ67ylwx2Bf8xqYx8KeKzivh+N+zyEbBsOg5B8amnAinc0g5XBd1IN3jCybe2uybOaX8NmMcC7PAJ4JeB6AWRLiSrCWy39rslzml/C5zKWq2ao6Dney/dSC1hOR/YAzcb12iiQiV+FdZEcLmTJEVfsF5PSJfas+pMtwJ7zPxPXEaZBbUsA6rwATccNbA9/zIgofqvgLsDboOLSqqnYJWKdYOcU1Vv47ZEvyX/kr8Kewxu5g4R4fQnSPNc8A2gR8d1+CG5L3cQF1F7jPVRJlqnHIO0vyEPCyiJwrIinihgB1FpGCxuTdT96NU7RVwH1ZbwGyRKQzcHbuQnGznL+BG+7WB+juNRahbojaF7iunwUZBjzubaARkZoi0qOQ9cN1Am5isPVeLYE7FKF+whpWpm4s5jjc2NYqInIK7guroKtVjAKuFpGm4q4U9gBel7wwnms80FxELhCRSrjPyiJV/bdLnreDdhH5u/khIsd6n6f9cY17G1R1ajjvMwGdi9uINsXNDdAK96U+g9BXGngR12X36+AFItIcd3bwZlX9JFoFF6AKboO1xaulLwHzTInIUbiut5fjGgzvFpFWAN6G/t/u9MHUDSF9DTfn2MHe89WRvOOyi6sDMC33LJSqPlFYXsN9Uq/H1gLcfG2VROQ83ISn/1fAQ0YBt3vv61DcwczIMJ9rDO77r523cX0EtyHdCf+e+aqE2zgmec9R3lvWTERaeevsB/wP+BXXkzLRRTKb54vI0SKSJO6KOc8B870zWtFm2cxbs2WzdItYLnEHbi0Dngfc/CNFzccZCZbLvDVbLssAcXrg5pXN9zsRkYoichxuiOcfhDE8TER64YZFnqVu6FUsVcXNHbYN1xsvT4OTiFwBHIebUHsA8Jb3uQA3p1Jr77MUyhzgLxH5j4hU9j5TzUXk+AjU3R43VxKQ/8pfQT/70thd5PFhwGtG81jzQfbOqdYKd1L8Ndz8xDHb5ypTjUMAqvocbujPA7iN0y+4Mxgh5zFR1W+JYe8P70t6AK4r7R+41tsJAasMBz5W1cleb5irgdfFTbgMey9TWZDB3vN9JiI7cZOntY1A6b1wDU/RcCNQGTdR97vADaq6FP6deOvfnkiq+ilu8q00YL3383A4z6WqW3CTtT2O+923Je8YWHA7aH96zx/sbtyZq19wl7U8r0TvumzrA4xQNzZ2U+4P8BLQS4LODKqbP+BLVQ115uAOXLfxNyS8IZ4Ro6rLcDtJs3Ddc4/BXbUhtzfdaGCQqi5U1+32PuBtcT0Eoei8/gfXe3G2uK69X+BNiFlC0cxrT6ANLkNP4Yb55R4ItJO8Z1VfxU1MuBh39ngSeSfnL/C5vNz2w+3wbsbtzAT28rwCdxZ5KG7OtgzcRhRc9+X3cfMErMGdFevmNbAnukhmsw6u4Tb3Kp05xOh70bIZkmWz9IpYLlV1c9BzgJvqoLD5diLCchmS5bL0+sT7+/yFO3bok3tM4bnbO9bajmvYmwec7DUgFOUx3Fy53wfs20brMxhsFO746VfcFQX/HermHW+9APRW1b9V9R3c5difB1DV34FpuAaRfNRNqdId17ixFnfc9DoBcwUVh9fQ0gU3lCqiijo+FNeTMLAnUlSONdXNARX43Z0B7Apo/InJPpeE3t8z8UxEvsH1opgv7moC01W1QYRfYzpukurp3hmar3CXKg1n3HZhz/sZbsjcXFVNLXml8UFEzsCdvakIdFHVUI1LJsF4O7zzcV2GfxORDrhcdYjw66wDOqjqOhE5BhiuqidF4HlX4BpCx6tqvrkvSivvbPbzuPnmmvpw1s74zLIZnyybic1yGZ8slyaQiDTFNdKcoKoqIgMBVHVgBF+jAQHHtyJyM3CYqpZotI+4kTUrcNPQ3KWqrxXxkFJDRN7A9UjarKpHFPd5En0W+lJJVQsc7xql19tMhCalU9Wzi16r9FE3D86+XMHCJAB1XdSbxvg1F+MaYCPxXJE4Ixt3VHUEJb8qiCnFLJvxybKZ2CyX8clyaQJ5PQQjMUxsX15zSISeZz2FXIiqNFPVq3EjjkrEGodKvx247n+RNpK9s9cbYyJjHSHms4qAF4j8VVaMSSTrsGwaE2/WYbk0Jt5Nj8JzRuv41hQhrGFlItIJN5dNMvC6qj4VtLwH8Chu7FsWcKu6S23mdt3ciZtoL0tV20TyDRiTyCybxsQny6Yx8cmyaUz8sVwaEx+KbBwSkWTcZdvOAjYA3wOXel3KctfZDzdhkopIC2Csqjb2lq0D2qjq1ui8BWMSk2XTmPhk2TQmPlk2jYk/lktj4kc4Vys7AVilqmtUdTfwHkEzlHuzmee2MuVextIYE12WTWPik2XTmPhk2TQm/lgujYkT4cw5VAd36e5cGwhxaXQROQ94EjgY6BqwSHGXVVfgVVUdHupFROQ64DqAKlWqHNe4ceOw3oAxZc28efO2qmrNMFaNejYtl8bsZdk0Jj5ZNo2JT2FmMybHmoFq1KihDRo0KGo1Y8qsgrIZTuOQhLgvX2utqo4HxovIabgxoWd6i05R1Y3e5dA/F5EfVfXrEI8fDgwHaNOmjc6dOzeM0owpe0Rkfbirhrgvotm0XBqzl2XTmPhk2TQmPoWZzZgcawY23NarVw/LpklkBWUznGFlG4DDAm7XBTYWtLIXxkYiUsO7vdH7dzMwHtd10BhTcpZNY+KTZdOY+GTZNCb+xCSXqjpcVduoapuaNcPpaGhM4gmnceh74EgRaSgiFYCewITAFUTkCBER7/+tgQrANhGpIiJVvfurAGcDSyL5BoxJYJZNY+KTZdOY+GTZNCb+WC6NiRNFNg6pahbQH5gKLMfNDr9URPqJSD9vtQuAJSKyAHgZuMSbNKwW8I2ILATmAJNU9dNovBFjEo1l05gISUuDBg3cvxFg2TQmQiybxsSnCGbTcmlMBJUwm0Veyt4PNkbblElpadC3L4wYAampBa4mIvNUtU0MKwuL5dKUSWlp0K0bpKdDSgpMnFhgPi2bxsSQZdOY+GTZNCY+RSCb4QwrM8aUVG5Y1693/0boLKgxpgQCN6Lg/rV8GuM/y6Yx8cmyaUx8ilA2rXHImGizDakx8Sc4l7ksn8b4y7JpTHyybBoTnyKYTWscMiaabENqTHzq2zd/LnOlp7vlxpjYs2waE58sm8bEpwhm0xqHjIkm25AaE59GjHDjsUNJSXHLjTGxZ9k0Jj6NGIFaNo2JPxHcblrjkDHRNGIEOZVsQ2pM3ElNZd1tg8l3SYYiJvAzxkRZairLL30k//2WTWP8lZrKovYD8t9v2TTGX6mp7O56bv77i5FNaxwyJopy2qcypdql+RfYhtQYX2X+tZt/nh3CDqmOVqrs7rRcGuO7P9b/SdWRL7Kx3GFoZcumMfFiw+wN1J8ylDUpzfb2ILJsGuO/mTMp9+F7TKYz2ZVKlk1rHDImit67dyFnbRrFxqM67O3uZxtSY3z3badHOfqfRax56C1k8iSoX99yaUwcWHTG7dTO3sCfr3+ATLJsGhMPcrKVjV2voTx7KD/xI2TiRMumMfHg77/ZdUFv1ms95t35HsmTS5bNclEo0RgDrFyym+bP9GZXhQOp/c0HsGSxm2NoxAjbkBrjo0VvfE/7WU8y88g+nDywu7tz3TpfazLGwMz7J9F+9Zt8fcq9nNanrbvTsmmM77664nVSt0/lm54vcWrqEcARlk1j4kDGzXdRedMaHmuUxtDH94cKqSXKpjUOGRMF2dmuZ0JfXcS2Vz9GatZwDUK2ITXGV+nbM0m5sQ+bk2vT/IsX/C7HGOPZunI7hz91LT9VOoYTpzzsdznGGM+66eto8+7tzD/wdE4ZfYPf5RhjPDp5CpVHDuO5pDu4ZVx7KlQo+XPasDJjomDMrd9zxa9PsrpdHw668hy/yzHGeGad9SBH7F7O5ifeYP961fwuxxgDqMLyM2/moJwt8NZbVKha0e+SjDFA9p4ctvfoiyIcMulNJNkOHY2JC9u2kdnrahbTnKyHH6NFi8g87f+zd9/RUVVvF8e/JwVI6ErvHUSR3msAEZSignSkKaJiV0AUC9hFsLwoIhIRpNhQCCBSgnTpRZDeQaRIDyHtvH9k/BljIqEkZ5LZn7VcMLdkNsp2Mk/OvaOGi1xnW9depOb/9eRMlgKU+kErE0S8xboPlhKy7l2W3tKfKgNbuI4jIh7LnvqWhgcns7L5UMp2rOo6joh4/NxxNNXOLmJL31EUrFPcdRwRAbCWi70fxv/0Cd6pNJGnhmS5bl9awyGR6yg6GtbeMZSb+A3/CeMxubUyQcQbnDt6gRue7sXhgBJUnf+O6zgi4vHH5mNUeL8/v2WtTt0Zz7mOIyIeu2bvoM73g1iT/w7qjO3jOo6IeNgpUwma+RWvBbzMC99UIeA63ihIwyGR62hS/6V0OzaSPbc9SK6OWpkg4i3WNBtEiZjdnB4VStb82VzHERHAxll2t3iI7PYsWaZOICAo0HUkEQFiLsUS0bEXl0wWis/9FONnXEcSEYBDh4h64GGWU5c8bw+kXLnr++U1HBK5TjYsu0DD8b04kbUEpb7VygQRb7HqjQWEbB3NkupPUGlAY9dxRMRj8UNTqHf0O1a1Hk7J1je7jiMiHovajeTWCyvYMeBD8lYu5DqOiED85WRd+hATEcXoWl/wyOPX/7PFNBwSuQ4uXYLf2g6iDLvJMiUUsmd3HUlEgNMHzlJoaB/2ZipHzXmvu44jIh6HVx+h8thH+DVHXep/97TrOCLise3bLTSc+wKrCt9N7fe7uo4jIh5xoz8iaOk8hmR+l9emlcEvFSY5Gg6JXAeTei+gy5+j2dPuCXK00coEEW+xsdlTFIw9ROSYCWTJHeQ6jogQfznZoVYPkIlL5Pzuc/wC/V1HEhEg6kI0sT16ct7koMz8MWB0OZmIV9i+ndinnmUOLan04YOUKJE6T5Oi4ZAxpqUxZrsxZpcxZnAS+9sZYzYZYzYYY9YYYxqk9FyR9G71/DM0n9KH33OWp9SUtF2ZoG6KJG/F0Nk03vUZy+oN5KbeddL0udVNkeQt6hlK7ZOzWXfvmxRtdp1vmHAZ6qZI8hbf8SY3X1zL3kFjuKFCPtdxRAQgJoaLHe/jbHQQk5t+Rt/7U29oe9nhkDHGHxgNtAIqAl2MMRUTHbYAqGytrQL0AcZdwbki6VZEBOxv/xRFOET2bydAUNqtTFA3RZJ3cueflHz9fnZmuYU6P76cps+tbookb//i/VSf9AQbcjeh/pQBafrc6qZI8n6duJ7Gi4exomRXarzRPk2fW0NbkeTFvvYGQZtW8WzWj3lrYqFUXdCXkpVDtYBd1to91tooYCrQLuEB1trz1lrreZgVsCk9VyQ9+7JLGB3OjudA50Fka1Y7rZ9e3RRJxtbmj3Fj3HH4fAKZsmdO66dXN0WSEBcTx4m2fTBY8oWFYvzT/O4G6qZIEi6evkTgAz350y8vFRd8mKbPraGtyH9YuxaGDWMyXbjt044USuX7w6fkVbkwcDDB40Oebf9gjLnbGLMNmEV8aVN8rkh6tHzmSVrPeIDDN1Si5OcvuYigbookYenT39HwwJesaPoCZTtVcxFB3RRJwqJOH1P9zEI293yXQvVKuIigbookYfntr1D+0mYOv/wpOUvekNZPr6GtSFIuXiSyYw9+j8vPT21H07lz6j9lSoZDSS1csv/aYO10a20F4C5g+JWcC2CM6edZJrjm+PHjKYgl4s7583Ciy6Pk4QS5Z0yAzGm+MgHSoJvqpaQ3f/x6nPKj+rMtuBr1woa4iqFuiiSye+4uan83kHV5b6fu+AdcxVA3RRLZ8MkvNFn1Fssq9KHa0DtdRNDQViQJsYOGkGXPbzyZK5QRn+VOk/vDp2Q4dAgomuBxEeBIcgdbaxcDpY0xea7kXGvtWGttDWttjbx586Yglog7k+/5hrYXpnCkz1CC61d1FSPVu6leSnpi4yy7WjxEDnuGTFMmEBAU6CqKuimSQMylWM516E2MCaTIj+Mwfs4+AUndFEngwomLZH+0J3/4F6by/JGuYmghgkhi4eH4f/ge/8cj9JhwG3nypM3TpmQ4tBooa4wpaYzJBHQGZiQ8wBhTxpj4WZYxphqQCTiZknNF0ptFXx3j7nkPcTB/dYqPec5lFHVTJIElj0yl/u/fsurOYZRqe4vLKOqmSAI/3/0eVc4v5bf+H5CvWhGXUdRNkQR+af48paO3c/yt8WQrnNNVDC1EEEnozBkudenJdsqxqdvbtG2bdk8dcLkDrLUxxpgBwFzAHxhvrd1ijOnv2T8GaA/cZ4yJBi4CnTzXhSZ5bir9WURS3elTlsieD5LTnCX7rAkQ6GxlgropksDh1UeoNOYRfs1eh3rfPeM0i7op8rft3/9G/TnPs7pQO2r/Xw+nWdRNkb+tfW8JTTa+x9JbH6bB081dRvnf4BU4TPzgtWvCA4wxZYDd1lqbaGh7+nLniqQ3MQMex/+PIzyTdxkT/y84TZ/b/H1vL+9Ro0YNu2bNGtcxRP5lbKNJ9FvSgwMD3qbYh8+mynMYY9Zaa2ukyhe/BuqleCsbZ1mVvw2VTizkxLwNFGteLlWeR90UuTJRETHsyFuPghf3wK9buLFi/lR5HnVT5MqcPXKeU8UrYwzkPbyRoLzZUuV5UtpNY8wdwHv8PXh9LeHQ1hgzCLgP+Gto+6y1dmly517u+dRN8VrTp8M99zCModSbN4zmqTS3Ta6bl105JCLx5n1+mHuXPMr+IvUo/t5TruOIiMfPvUJpcmIWSzu8R4NUGgyJyJVb0votmkWsZtUzX1ErlQZDInLl1jYbSOOYvfz28c8US6XB0JWw1s4GZifaNibB798C3krpuSLp0tGjRPXux2aqcfzBoak2GPovGg6JpMDJExb/B+8ni7lE1h8/B39/15FEBNi/9ADVJj7BxlyNqT/1UddxRMRjy+SNNAx/hZXFO1HnnXtdxxERj19enUfIto9ZUvMpGvZv6DqOiABYS0yfftiz53i+6ES+GeHm1iUpuSG1iM/79o7PaBr1IycHvk2mm8u6jiMiQFxMHMfb9MVgyTMzFOOvlzQRbxB5NoqAPvdx2u8GKiwY7TqOiHic2neGoi/1YU/mCtT66VXXcUTkL+PHEzBnJoPtm7wwuSLZHC3o03fSIpcxa/Q+uqx+kn0lQyjy+sOu44iIx6LOY6hxej6b7xtB4QYlXccREY+lLYdT/tImDg4dS67SN7qOIyIeG5s9Sf64I0SNnUDmXEGu44gIwN69xDz6BAsJIfDpx2jQwF0UXVYm8h/++D2OnE/0xvgZivyndebiAAAgAElEQVQ0Hvw0TxXxBnvm7ab2t8+yLm8L6ob2cx1HRDw2fbaaJiveYHnZntR7OQ0/f1dE/tPyIWE02RPKkoZDaHhfLddxRAQgNpbobj25GOnH62U/J+xVt+819U5XJBnWwozbR9MgZhFnXxpJQJkSriOJCBBzKZYz7XsTYwIpPOczjJ9xHUlEgAsnIwl+qCfH/AtSacF7ruOIiMfxbScp/dYD7Ai6lTqzX3QdR0TCw6FECXj4YQJXLOExPuStKcXIksVtLA2HRBLzlHVZ/y/otnkQeyq0otDQvq5TiYinm5saP0rVc0vY+uAH5K9exHUqEfF0c3udnpSJ/o1jr39G9qK5XKcSkfBwbIkS/N6wIzfEncB/4gQCs2V2nUrEt4WHQ+vWsH8/duxYFtOAEkN7UL2662C6rEzkn/4qa0QEdcf25pJfEMV/GgdGKxNEnErQzar7P2bbDfWoM7qH61QikrCb7GdzidZUGdjCdSoR8XTTRERwK/vZVL0Xt7av4jqViG9L8JoJYIBaZi31GiwCQlwmA7RySORvicrqTxxB/tH479ruOJiIj0vihbR8xHrMz4ucxhLxeUl085Y/FsRvFxF3EnUToNJvX6mbIi4l0UuALPYiAXe19op+ajgkAsmW1URHxW/3grKK+KTkuhl5Ud0UcSm5bl5UN0WcSq6bERHqpohLvXv/q5f/ExERv98xDYdEIF2UVcQnqZsi3kndFPFO6qaIdwoNhaCgpPcFB8fvd0zDIRGA0FBscHDS+7ykrCI+KTQU6+UvpCI+KTQUm0XdFPE6oaHEZU7mI4/UTRF3mjTBVq+BTbw9OBjCwiBE9xwS8Q4hIfxYf7hXl1XEJ4WEsCFPc3VTxMvYxk3YkqWquiniZaJqN2QfJdRNEW/z2WeYpUv4hH7EZPIsSvCyXmo4JAL88uMpbpk3ij+Di/y93M/Lyirii5YPCaPqwZlsrtAxvpOgbop4gfAen3HL6eX82vAhdVPEiyy+/TVKXdrGtnuHqpsi3mL7dmIffZwFphkL23+M/5wwKF7c63qp4ZD4vHNnLcc6PEQBjpJ51nSYNcsryyria45uOkaZN/uyI+hWKqz6Ir6T6qaIc7vm7KT25MdZf2Mzbgn/P3VTxEtsGLOSJkuHs6J0d276api6KeINLl0irlMXzkYHMTD/F4wZ64dpGgL79nldLwNcBxBxbUqbyfS7MI19D7xKiSY14jfu2+c0k4ivi4u17G1+P1XtGc5PXUCm7JnjX0DVTRGnoi5Ec7FDd6JMZgr/9DnG30/dFPECZw6fJ9ej3fkjoDCVfv6/+I3qpoh7L7yA38b19OQH3p5UiBtucB0oeVo5JD5tzpj9dFr8MPuL1KfEx4NdxxERj0XdPqXu8Zms6fAWpdre4jqOiHgsvv01KkWsYufTY8hXrYjrOCLisb7JkxSL2cPpDyaSrXBO13FEBGDePBgxgo94iHJPt6VZM9eB/luKhkPGmJbGmO3GmF3GmH+9gzbGdDPGbPL8s9wYUznBvn3GmM3GmA3GmDXXM7zItThyMJYcj96Hv5+l0IKJ4O/vOtIVUzclI9o5awe1pz3Jujy3UX/qo67jXBV1UzKi9R+toMmyV1lRpge13unoOs5VUTclI1r6zPc02TWOZfUHcfNDjVzHERGA48eJ7X4f2/wrMuGWEbz2mutAl3fZy8qMMf7AaOA24BCw2hgzw1q7NcFhe4HG1tpTxphWwFigdoL9IdbaE9cxt8g1iYuDOc1G0DdmMb+/8TnZypV0HemKqZuSEUVdiOZSx+5cMlkoOt9zyUo6o25KRnTm8HlyP96DowFFqLToQ9dxroq6KRnRkXVHqTDyAbYHV6XO3Fdcx7kqxpiWwPuAPzDOWvtmov3dgEGeh+eBh6y1Gz379gHngFggxlpbI61yiyTLWmzfvsSeOEV3/7lMmBpM5syuQ11eSr7rrgXsstbusdZGAVOBdgkPsNYut9ae8jxcCWidsXi1rwavo8fOoeyu1oGCg+5zHedqqZuS4SxpMZxbIlaz+9lPyFu5kOs4V0vdlAznr0tWznyYri9ZUTclQ4mLtRxs0Yes9jyZv/mSwKyZXEe6YgmGtq2AikAXY0zFRIf9NbS9FRhO/NA2oRBrbRUNhsRrfPwxZuZMno17i/tG3MrNN7sOlDIpGQ4VBg4meHzIsy05fYE5CR5b4CdjzFpjTL8rjyhyfW1dE0GVEd04lzkvpeaOAWNcR7pa6qZkKOtHL6fJ8tdYXrYnNd/q4DrOtVA3JUP53yUrDQZzc/+GruNcC3VTMpTwTh9T++Qc1nUZQYlWN7mOc7U0tJWM5ddfiXvqaeb6tWJ7i8d4NB3dISEln1aW1Dtnm+SBxoQQ/0LaIMHm+tbaI8aYfMA8Y8w2a+3iJM7tB/QDKFasWApiiVy5S5dgU6uBdLbbOPXFT5g8N7qOdC1SvZvqpaSV0wfPcePj3TkSUIxbF33gOs61Ujclwziy9nduGnk/24KrUXfuy67jXCt1UzKMHT/8Rr1vn2ZtvpbUm/Sw6zjXIqmhbe1kjoXkh7YW+MRam3hVEaBuShqJjCSucxdOxebgiZyhLPzcpKt1CClZOXQIKJrgcRHgSOKDjDG3AuOAdtbak39tt9Ye8fx6DJhO/HT4X6y1Y621Nay1NfLmzZvyP4HIFfiy22w6nxjN7nZPkrvjba7jXKtU76Z6KWllY5PHKRy7n7P/N5FshXK4jnOt1E3JEOJiLYda9CHIRhD03ZcEBKe/S1YSUTclQ4g8G0VM5+5EmGwUXxCK8UtH7z7/7WqGtoMSbK5vra1G/GVpjxhjkrwjt7opaWLQIPy2/Eq3mAm8MT4/BQu6DnRlUjIcWg2UNcaUNMZkAjoDMxIeYIwpBnwH9LDW7kiwPasxJvtfvwdaAL9er/AiV2LZ98e549s+HL7hFkpPfd11nOtB3ZQMYcmT39F4TyjLGz3HzQ82uPwJ3k/dlAwh/N6PqPXnj2zoNoLit1dwHed6UDclQ1h628tUjFzHvuc/Jc8tBVzHuVZpshBBJNXNmgUffMD7PE7R+1ty112uA125y15WZq2NMcYMAOYSfwf58dbaLcaY/p79Y4AXgRuBj0z8uqm/7hSfH5ju2RYATLbW/pgqfxKR/3D6lOV81we4wZwiZvZPkCWL60jXTN2UjODw6iPc/P4DbM1ag7o/vuQ6znWhbkpGsP3736g3/RnW5m9F3S8ech3nulA3JSNY+94Smq56k2U39aX+8HT47vPf/je0BQ4TP7TtmvCA/xraAn7W2nMJhrbD0iy5yF+OHiWuV2+2Bd7K2KJv8sso14GuTkruOYS1djYwO9G2MQl+fz9wfxLn7QEqX2NGkWv2dcvPeODiDxx4/F2K1b7VdZzrRt2U9CwuJo4jt/fmZnuRbNMnERAU6DrSdaNuSnoWeTaK2C7diDDZKLFgfHq/ZOUf1E1Jz07tO0O+Z3pwMLAUVRe95zrOdaGhraR7cXHQqxcxp87RyS4idEoWsmVzHerqpGg4JJKezRy5k66rHmdvyaaUHPmE6zgi4hHeYTTNTv3Esh4fU/+28q7jiIjHsuYv0SxyPWuHfk/1m9P9JSsiGYK1sKnJo9SPPcSucUsJzpdO330mQUNbSdc++ADmzuUxPqbT8IrUSscXNqbknkMi6daB3dEUHNidWP9MFF04Afz0V17EG2z7dgv1fhjImvx3Uu/zB13HERGPNSMXE7L6LZZVfIDqw9pd/gQRSRNLBkyj8f6JrGj6AhV61XEdR0QANmzADhpEWEA7Ntd9kMGDXQe6NnqnLBlWbCwsbPYaNWJXETHyEwJKFHEdSUSAi6cvYbt354Jfdkou/CxDXbIikp6d2neGAgN7cDCwNFXDR7qOIyIeB1ccotJH/dmSvTb1Zj3vOo6IAEREYLt04SQ3MiDzOCZ9aQhI59dlaTgkGdbUx1fQY/9wdtW7jwKPdXQdR0Q8ljd/kZsiN3Bg6DhurJjfdRwRIf6Slc2NB1Ag9jAXP52UoS5ZEUnPYqPjONaqJ4FEk/OHifhnyTj35xNJ1556CrZvp1PURIZ9lIeSJV0HunYaDkmGtGnZOeqM7s6J4GKUnv2h6zgi4rFmxCJC1r7Dspv7Ue3ltq7jiIjHkgHTaHRgEiuaDaVCz9qu44iIR/hd71H9zEI293mPIiFlXccREYDvv4dPPmEEz5KnYzN69HAd6PpI5wufRP7t4kXY1foJ2rGPc1MXYXLmcB1JRIA/95ym4OD7OJCpDNUW6ZIVEW+hS1ZEvNPWaZtpOPs5VhdqR51P+7qOIyIAhw9j+/ZlS+bqfHTjcNZ+DCaD3CFBK4ckw5ly73fcc3o8+zoPJlebhq7jiAjxl6xsafII+WOPcGncJILyZHUdSURIdMnKjEn4Z9bPDUW8QcSfkfj37MYZv9yUCf9U9+cT8QaxsdCjB1FnI2l/aTKfTczEDTe4DnX9aDgkGcrPU47QbtYDHMhXndITXnIdR0Q8ljw8hYYHJ7Pitpco3yMdf8anSAbzv0tW+r5PkSZlXMcREY8VTZ+n/KXNHB4eSu5yeV3HERGAESMgPJyHYj6k7TPlaNrUdaDrSz8ekgzj5PE4bK/eBJuLZJ07CTJlch1JRID9Sw9w65iH+DVHXerNfM51HBHx2Dp1Ew1nP8eqwndRZ2wf13FExOOX1xfQbONIllZ+mAZDWrmOIyIAa9ZgX3iBGZnvZX2F3qx81XWg608rhyRDsBam3zaaJlE/cWLwu2SpUsF1JBEBYqLiOHlnT/yJJffMibpkRcRLRPwZSUDPbpz2u4Fyi3TJioi3OLHjT4oO7cneTOWpsfAd13FEBOD8eWyXLhwPKEh/PuHLyYbMmV2Huv40HJIM4YfXt9Bt40B2V7iToq/1dx1HRDwWtRtJtbOL+PWB9yncqLTrOCLisaLpEMpF/crvr4WSq0we13FEBLBxlu0h/ckb9wcxE74kyw3BriOJ+LbwcChRAu69F3bvpkPkJIa8k5uKFV0HSx0aDkn6Fh5OdOHiVBrajsjA7JRY8FnGuV28SHrleSHd+/w4Gv04hFVF7qbOmN6uU4mIp5u/9R1Bs42jWFplAFUGt3SdSkQ83dzYegj1j3zNyjuGUbZzddepRHxbeDi0bg3798OPPzLZdCNry0YMGOA6WOrR+n5Jv8LDsa1bExgRQWng9BOv4l8ov+tUIr7trxfSiAiKv96P0yYX5cLH6pIVEdcSdLP8+Gc5HFiMmgvfcp1KRBJ0s/L+N9mT9Rbqfz/QdSoR35agl3+5O+47Wt3fB2NCHAZLXVo5JOmTp7AmQWFzjX49fruIuJHohdQPS66ACHId3Ow4mIiP+1c3oaA5RuYNv7jNJeLrEnXTACVid+O3dLHbXCK+LInBEEAwEdxwX+sM/X5TwyFJf5IpLBER8dszcGFFvFYyvfSLvqReiriUXDejItVNEZeS62bkRXVTxKXevf/9PvMvERHx+zMoDYck/fHhwop4LfVSxDupmyLeSd0U8U6hoZApU9L7goPj92dQGg5JuhP3WSjRJjDpnRm8sCJeKzQUG5TMp6qolyLuhIZig4KS3qduirgTGorNom6KeJ0CBbB+fsQlHpUEB0NYGIT4+D2HjDEtjTHbjTG7jDGDk9jfzRizyfPPcmNM5ZSeK3KlJk8PwthY4oz/P3f4QGETUzfFa4SEsK5o239v98Fegrop3sM2bsKmHA2wiXeom+qmOBVTrxHb/W9SN1EvxYucPw/t2xPhn51OTCE6k+cHnz7Sy8sOh4wx/sBooBVQEehijKmY6LC9QGNr7a3AcGDsFZwrkmK/zD5Jo9EdOZm1OOb76fFFBZ8pbELqpniT5c/PovqOqfxaorVP9xLUTfEu4T3GU/mPeWyu1kvdVDfFiyy67TUqXFjH1lZP+3Q31UvxGtbCAw9gt2+n7YWpBPXoSMCcMChe3Gd6mZKVQ7WAXdbaPdbaKGAq0C7hAdba5dbaU56HK4EiKT1XJKVOHIvj3D09KcAfZA37CtO2TXxRfaiwiaib4hX2Lz1AhTfuY0dQZcqu/8rXewnqpniJrVM3UXfyANbf2JxbVo5TN9VN8RKr3lxI0yUvs6J0d26e9Y6vd1O9FO8wejRMncrrQa9ytGJTPv4YTNMQ2LfPZ3oZkIJjCgMHEzw+BNT+j+P7AnOu8lyRJMXFwQ8NR9D30iwODvyQok1qxO8I8RTWN6mb4tyl89GcbtmZ3DaaoLCvyZwryNd7CeqmeIHTB8+R5b57OeeXi+JLJuEX6K9uqpviBY6sO0rxIV3Zl7k8VVZ8DMb4ejfVS3FvxQrsU0+x/MY2vBExiFVfQ9asrkOlvZQMh0wS2/51eSyAMSaE+MI2uIpz+wH9AIoVK5aCWOJLvnxoKT13DGFXtXsp8+YjruN4i1Tvpnopl7Ok0RCaX1jB6qenUrNpWddxvIW6KU7ZOMumeg9SP3oX20Yv5Oab8ruO5C3UTXEqOjKW35t25SZ7loiv5xOUN5vrSN5A7zXFrePHoWNH/sxalNYnJ/DxF35U9NGLE1NyWdkhoGiCx0WAI4kPMsbcCowD2llrT17JuQDW2rHW2hrW2hp58+ZNSXbxEStmHKfp2E4cz1aS0gvHxf+ERSANuqleyn9ZOmgmzdePYNmtD1FzRCfXcbyJuilOLew8lkaHprCi5TBufrix6zjeRN0Up35uNozqZ8LZ1G80Jdvc4jqOt9B7TXEnNha6diX2j+M0P/0NHe7PTY8erkO5k5Lh0GqgrDGmpDEmE9AZmJHwAGNMMeA7oIe1dseVnCvyX44djSOyYw/ymJNkn/M1JmcO15G8ibopzuz7eT83v92T7cFVqblkpOs43kbdFGd+nbie+l8/zrq8t1M/7DnXcbyNuinOrBw+j6bLh7OiXE/qfNLbdRxvol6KOy+/DPPn80Smj4i7tSoffOA6kFuXvazMWhtjjBkAzAX8gfHW2i3GmP6e/WOAF4EbgY9M/KqOGM9kNslzU+nPIhlMbCzMavAGvS/N5eALYyjaoIrrSF5F3RRXIs9Gce6OjtxALNnmfE2mHFlcR/Iq6qa48ue+s2Tt05FT/nkotWwixj8lPwP0HeqmuHJ49RFKv9SNvVluoury0a7jeBX1UpyZNQtefZUZefsyIbIPa76GoCDXodwy1iZ5WaZTNWrUsGvWrHEdQxyb2HcRXcc3Y2+tTpRZ+aXPXE5mjFlrra3hOkdi6qX8ZcGtT9Js83usGfwNNd5o7zpOmlE3xZvZOMuyop2pc+RbdnyyiIr9Glz+pAxC3RRvFhURw5YCzSh3bg0nZq+meCvfuZmJuilea+9eqF6dwwHFKXN8OROmBdGxo+tQaSe5bupHSuKVln77B83Hd+GPHGUpPe8TnxkMiXi7JU9Np9nm91ha7VGfGgyJeLuF935MgyNfsbL1az41GBLxdotDXqLqucX8OmCMTw2GRLxWZCR06EBUlKXh8W+5f4BvDYb+S0o+rUwkTf1xJBbbtSu5zBnsTz9hcmR3HUlEgD3z91BpVG+2ZqtJ7Z/fcR1HRDw2f76WBt89ydr8d1D/+2ddxxERjxUv/UjzVa+z/Ka+1PvQh+9yK+JNHnsM1q3jvuAZ3FijFCNGuA7kPbRySLxKbCz8WH84DaMWcvKV/yO4diXXkUQEuHj6EhfbdgRjyD13GoHZMruOJCLAn3vPkOP+jpz0z0eZ5V/oPkMiXuLA8kOUG96dnUGVqL78Q9dxRATg88/h008ZX+A5fgxsw1dfQWZ9S/s/+g5CvMqXvefTY98wdtW7jyIv6JMcRLzF8vrPcvPFtex+PpSC9Uq6jiMiQFys5bd6fSgUe4CzY6eRs9SNriOJCPH3Gfrz9s5kspfIMuNrMufy8bvciniDjRvhoYfYXrgp/Y4OY8IEKKlvaf9BwyHxGoun/c7tE7vxe86bKPPTR7rPkIiXWPzYNzTb+iFLaz5J9eF3uY4jIh4L7/mQ+ke/Y9Vdb1ChTz3XcUTEY3GjF6hyfhnbnhxL0eblXccRkdOnoX17IoJuoOHhKTzxdADt2rkO5X10zyHxCr8fjMG/Rxeym/MwPxyyZnUdSUSAXXN3U/nDvmzJXps6i950HUdEPDaMXUWjGc+wpmAb6n37tOs4IuKxbMgsmq99i2W3PEj9kV1cxxERa6FXL+z+/bQN/JkydfPxxhuuQ3knrRwS52JiYH6Dl6kf/TOnXh9DcA19koOIN7hwMpKou+4lzviTZ/40AoIzuY4kIsCJnae48eGOHAsoRLnln2P8tNJWxBvsX3KAm968j+3BVai57D3XcUQE4J134IcfeDvfCDYE12PaNAgMdB3KO2k4JM592eNHehx4jZ2N+lJ4sD7JQcRb/FL/KSpGrmffyxPIX6u46zgiQvx9hnY06E3+2CNc+GwaOUrc4DqSiACR56I53aozATaarGFfkSlHFteRRGTRInjuOVaX7MjgI48xaRIULeo6lPfScEicWjTpEHdO7c7B3JUo+6M+yUHEWyx6aBpNt3/M0rrPUPXFNq7jiIjHwjajqHfsB1Z3eJvy99V2HUdEPJY1eo7KF1aw49lxFAkp6zqOiBw5Ap07czp/OZruHceQIYaWLV2H8m6655A4c2hvNEG9OxPkd4msC7+GIH2Sg4g32DlrB9XH3M+vOepRd+HrruOIiMe6j1bSeM4gVhW5m3rTHncdR0Q8lg6cQbMN77Ks8sPUf7uj6zgiEh0NnToRe/Y8zexCqjfOziuvuA7l/TQcEidiYuDnhi/QLWYZh0dMpnAVfZKDiDc4f/wise3vJcpkJt/Cqfhn0UXZIt7g2LY/yfdYJ/4IKMJNy8frPkMiXmJv+D5ufqcn27JWo9bSka7jiAjA4MGwdCmDCk3mUExFNkyBAE0+LkuXlYkTkzqH0e3w2+xs1p/CT+uTHES8gbWwqv4TVLi0iYOvTSRfdV2ULeINYqPj2N2wJ/lif+fihK/IXjSX60giAkSejeJ86074mzhyzPmKwGyZXUcSkW++gZEj+ancAEb+3oUpU6BgQdeh0gcNhyTNLQzdT9tv7+PAjVUpGzbKdRwR8Vj04GSa7hzL0gaDqfJcK9dxRMRj4Z3vUvdEGGs6v0vZrjVdxxERj2UNBlEpYhW7nhtPoYalXccR8V3h4VCiBEyYAH368EfJ2rTe8S6vvAJNm7oOl35ocZWkqQO7osjxQCcy+cWQb9FXkEWf5CDiDbb/sI2an/ZjU66G1J0/3HUcEfFY+8EyQuY9x6piHaj75QDXcUTEY8lT02m2+T2WVX+M+q+1dx1HxHeFh0Pr1hARAb17ExucnfqHvyakRSaef951uPRFK4ckbYSHY4uXYFftbtSI/YVz740nyy1lXKcSkfBw4ooWI6hDKyL9gim0aAr+mfVzAxGnPD8B/TP0ewo+2YnDgSWouHyc7jMk4pqnm0dGfEmlUb3Zmq0mtRe/4zqViO9KOBgCsJaYC5eomn0XkyaBn6YdV0TvACT1eUprIiJoyn4O1bybIo92cJ1KRMLDsa1b4xcRQVFgz4NvUbpyYdepRHxbgm90c/ZpTzb8ODDlF7IVzuk6mYhvS9DNAs/eRwRB3DDvKwKCM7lOJuKbEg+GPDJziannW+P/axiEhDgKlz6laJZmjGlpjNlujNlljBmcxP4KxpgVxphLxphnEu3bZ4zZbIzZYIxZc72CSzqRRGmLbJkbv12umbopVy3B0BbAAKUnvqJuXifqplyVRK+Z/sTh7+9HmbxnHAfLONRNuSqJuulHHEGBMRS4uNdxMBEf1rv3vwZDf/G/FH+JmVyZyw6HjDH+wGigFVAR6GKMqZjosD+Bx4ARyXyZEGttFWttjWsJK+lMMtNcIiLit+tN6DVRN+WqqZupSt2Uq5JML/1jo9TL60TdlKuSXDejL6mb14mGtnJVQkOTv39tcHD8frkiKVk5VAvYZa3dY62NAqYC7RIeYK09Zq1dDUSnQkZJr/5jmvvXDcPkmqibcnXUzdSmbsqVUy/TgropV07dTFUa2spVK10agoKwJtH9+IKDIUyXlF2NlAyHCgMHEzw+5NmWUhb4yRiz1hjT70rCSfoW82ko0SYw6Z2a5l4P6qZclYujxhCX3P/+1c3rQd2UKxcais0SlPQ+9fJ6UTflyoWGEpdZ3UxFGtrKlTtzBu64AxsXx8tFPiOC4PjtGgxdk5QMh5L6aAx7Bc9R31pbjfhp8CPGmEZJPokx/Ywxa4wxa44fP34FX168kbUQ+tYxAm00cX7+/9yp0l4vqd5N9TLjiY2xrH50AhBHbGDmf+5UN68XdVOuWGSNBuzwK//vvyjq5fWkbsoVO1W6BofiCqqbqUdDW7kyUVHQvj12+3aGVvyOVw/35tc3w6B4cXXyGqVkOHQIKJrgcRHgSEqfwFp7xPPrMWA68dPhpI4ba62tYa2tkTdv3pR+efFS0576he4LerG3SEP8Zs+KfwEFvZBeX6neTfUy41nQeBiNDk9lRbu38J87R91MHeqmXBEbZ1lR9WHKR2xg212D1cvUo27KFYmOjGVb9W4Uit7P3v5vqZupQwsRJOWshf79YcECpjUfx2srmvL++1BrUAjs26dOXqOUDIdWA2WNMSWNMZmAzsCMlHxxY0xWY0z2v34PtAB+vdqwkj4sCD1Ak/facSZrIYqv/Q5uvz3+BVTT3OtN3ZQrEv7gVFosf5kVFXpTf/qz8V1UN1ODuilXZP6dowjZPY5ljYdw0/Q31MvUo25KilkLi+oMou6Jmazu8QGlPh6obqYOLUSQlHvtNQgNZW3rl+jyY08GDIABA1yHyjgCLneAtTbGGDMAmAv4A+OttVuMMf09+8cYYwoAa4AcQJwx5gnibyiWB5hu4m8SFQBMttb+mDp/FPEGW1aeI9/9bcjqH4n/z+H45csTvyPEM82V60bdlCux7qOV1B3bi025G1Fz7Rj46+Z96uZ1p27KlU/R0pkAACAASURBVFgyaCbNfnyGVcXaU2/B8PiN6mWqUDflSizsOo7bNr7LsuqPUv+Lh+M3qpup4X9DW+Aw8UPbrik50TOo9bPWnkswtB2WaknFrS+/hKFD+b15D+rMeYmWLWHUKNehMpbLDocArLWzgdmJto1J8PujxE95EzsLVL6WgJJ+/HEklqNNu9A4bgunJ88hT/WbXEfK8NRNSYl9P++nyIB2HAssTPHV3xIQnMl1pAxP3ZSU+HXyJqq83ZUdWatRecMXGP+ULOiWa6FuSkr88mY4jaY+xLp8t1N3+UjXcTI0DW0lRX7+Gfr04ULtECqvHkf5CoapUyEgRdMMSSn965TrIjISFlZ/li4XZ7F/8McU73Kb60giApw6cI5LLdqQm0tEzlxEztJ5XEcSEeDw2qPk6tGG8/45ybtiBplzB7uOJCLAjrAdlHuuPQeylKP8+mn4ZdLbpdSmoa38p23b4O67iSleioZ/fAuZMhEWBjlzug6W8ehHVHLNrIVJjT6hy9FR7LzzcYq/0d91JBHhrxtpdqV01FYOjPiaYrdrNZ+INzh//CInG91F7rgTREyZwY2VCrmOJCLA8e1/4n93G+L8/AleEEbWQnr3KeLUsWPxH1kfGEi3XLPZ+ntufvgBSpRwHSxj0nBIrtmXvefTa/Uj7Cp/B2V/eNd1HBHBcyPN2gOpeyKMNfd9SKWntJpPxBvExljWVe3DrRG/sP2FSZS+t5rrSCICRJ6LZn+teykSs4/jY7+nYL2SriOJ+LaICGjbFnv0KMNqzOSr1SUJDYW6dV0Hy7g0HJJrMmfUNlpP6MDvuW6i9C9TwN/fdSQRARZ0+ZTbNo1kWfXHqDPhIddxRMRjQeNhNDo8leVt3qDa8LtdxxERwMZZllcbQI2zC9k4YBwV+tZ3HUnEt8XFQY8esGoV37WfzMuza/Hyy9Cli+tgGZuGQ3LV1s07SbmnWxMXmJl8K2dicuZwHUlEgJWvL6TxtIdZl78ldZdrNZ+Itwh/cCotlr/MyvI9qfv9INdxRMRjXuv3aLprLMsaD6HWhz1cxxGRgQPhu+/Y2GsUHSbdRZcu8OKLrkNlfLrDmlyVA7uiuHTnPRThEBHfh5O5fAnXkUQE2D5zB+Wfb8/+LOUpv26qbqQp4iXWfbSSumN7sTlXQ2qs/QTjZ1xHEhFgyaAwms95mlXF2lNvwXDXcURk9Gh4913+6PQodac+Tt26MH48GL1spjqtHJIrdv6cZV2t/tSNXszxt0LJfYcu/BTxBse2/UngPa2J9Qsk28KZupGmiJfYt/gAhQfcxbHAwhRb8x0BWTO7jiQiwK+TN1Hl7S7syFqNyhu+wPjrrZGIU2Fh8NhjXGzehmqLRpE/P3z/PWTJ4jqYb9D/AeWKxMbCN7Xf4a5Toezq9hJFntWFnyLeIPJsFAdqd6BwzH5OjJ1Ogbq6kaaINzh14ByRLdqQhUiYGUbO0nlcRxIR4PDao+Tq0Ybz/jnJu2IGmXMHu44k4tvWroVOnYitXJWQo1M4F+HPzJmQL5/rYL5DwyG5IpPaT+e+3wazo3pnykx8yXUcEeGvG2k+Qo2z4Wx67DPdSFPES0RHxrKtelfKXNrCgXe+otjtN7mOJCLA+eMXOdnoLnLHnSBiygxurFTIdSQR33bgALRujc2bl955wli9NStffQW33OI6mG/RcEhS7PsX19Hhh+7sz1+Lckt04aeIt5h3xyia7h7HspAXqPl+d9dxRASwFhbVHkTdE2Gs6fEBlZ5u4TqSiACxMZZ1VftwS8Qqtg/9ktL3VnMdScS3nTkDd9wBFy/yTuNZTJxXgA8+gJYtXQfzPRoOSYos//owNYe34XyWPBRd8z0EBbmOJCLAkoEzaT73GVYV70C9ea+4jiMiHgu6fMptm95lefVHqfPFw67jiIjHgsbDaHR4KivbvkG1YXe5jiPi26KjoUMH2L6dsN7fMuiLmxkwAB55xHUw36SPsZHL2rXxAsFd2pLL7yxx85cRUKSA60giAmyetJGq73Rhe7bqVF4/QTfSFPESK98Ip/G0h1mf73bqLB/pOo6IeIQ/OJUWy19mRYVe1Pt+oOs4Ir7NWujfH+bPZ+uzodw9qhmtWsGoUa6D+S69k5D/dOpkHLsb3Eel2A2cHTuV7PVvdR1JRIBDa46Su2cbzvnnIp9upCniNbbP3EG5Ie05kKUc5dZPwy+Tfg4n4g3WfbSSumN7sTlXQ2qu/US3RxBxITwcSpSI//X112H8eE48/CL1xvaiQgWYOhUC9LLpjP7VS7Kio2FO9Rfoev479jw6ilJ973QdSUSAc8cucqpRO0rFneSPb5ZS8JaCriOJCHBs258E3tMa6+dP1oVhZC2U03UkEQH2/nyAwgPu4lhgYYqt+Y6A4EyuI4n4nvBwaN0aIiLibygUFUVkxx7U+fFlMmeGmTMhRw7XIX2bVg5JkqyFL2/7nK7732B7yIOUev9x15FEhPgbaa6v2pubL65mx4tfUqp9VdeRRASIPBfNwdodKByzn+Njp1OgbknXkUQEOHXgHJdatCELkTAzjJyl87iOJOJ7Eg6GAKKisH5+DNnSnUOHDd9/H7+gSNzScEj+ybPU7+d73qPrz/3YVaIZ5ed+qKW3Iq55urmuci8aHZnGynZvUvUV3UhTxLnwcGzxEmytcDfVz4az6dFxVOjbwHUqEd/mec2MmTufbdW7UiZqCwdGfE2x229ynUzE9yQeDHmYuDiGb7mb2c+GU7euo2zyD7qsTP6WoLiN9z/JiSxFKbXmawgMdJ1MxLcl6GZNvmBLsZbUm/6s61Qi4ummiYigGvv5tXJXan7Qw3UqEd+W4DXTtGpFXRvDyvs+os5Tt7lOJuKbevf+12DoL1mJoOnE3jB8X9pmkiSlaOWQMaalMWa7MWaXMWZwEvsrGGNWGGMuGWOeuZJzxUskmugaIA/H8du0wW0u+U/qpg9I4qctFY8vhkWL3GWSy1I3fUAS3bx55/fx28VrqZsZXKJe+tsYYv0CqNOrguNg8l/UywwuNBSyZElylw0Ojt8vXuGywyFjjD8wGmgFVAS6GGMqJjrsT+AxYMRVnCuuJbfULzIyfru+0fVK6qYPSK6bFyPUTS+mbvqA5LoZoW56M3Uzg0uml/5xMeqlF1MvfUBwMPj7/+s2JTY4GBMWBiEhjoJJYilZOVQL2GWt3WOtjQKmAu0SHmCtPWatXQ1EX+m54gX+Y6kfERHx+8UbqZsZnbqZXqmbGZ26mV6pmxmZepleqZcZ2dKl0Lw5FCjA9pcnE0EwADZIgyFvlJLhUGHgYILHhzzbUuJazpU0cvSVT4hN7q+Clvp5M3Uzgztw/yvY5Haqm95M3czgtt81UN1Mn9TNjCw0lNiAzEnvUy+9mXqZUS1cCLffDoULs/rdxdQc0Zl+hcKIKVwcM0uDIW+UkuFQUh9Tlez3RFd7rjGmnzFmjTFmzfHjx1P45eVa7d8eyW/938efOOICMv1zZ3AwaKLrzVK9m+qlO9t+2E6mF5/jjMlFXOZE12mrm95O3czA1o1ZRYH3n+OYf0FslqB/7lQ3vZ26mYEtnR9JbEwscYn/U6mX3k7vNTOiuXPhzjuhVClWj/iZpt0LUaAAvLUqhIBD+9RHL5WS4dAhoGiCx0WAIyn8+ik+11o71lpbw1pbI2/evCn88nIt9m+PZE/VewiJnMP+Fz7F76cf419AQS+k6UOqd1O9dGPbjB3kujsEfxPL2dnL8JszW91MX9TNDGrdJ6sp9VALzgTmwW/VL5jZs9TN9EXdzKCWvvAjNV6/m71ZbyVy8nT1Mn3Re82MJiwM2raFChVY9VY4Tbvkp2DB+Nt+Fda6Lq+WkuHQaqCsMaakMSYT0BmYkcKvfy3nSir632Do4hz2vfApxYffH//CGRYGxYvrhTR9UDczoG0zd5Lz7hACTAwXwxZSrGVFdTP9UTczoHWfrKZU/9s4F3gDQSvCyVutqLqZ/qibGdDSoXOp8dpd7M9akUJb5hHcpZ16mb6olxnJd9/B3XfDrbfyy+sLaNYpDwULxn/IrgZD3i/gcgdYa2OMMQOAuYA/MN5au8UY09+zf4wxpgCwBsgBxBljngAqWmvPJnVuav1hJGX+MRh6/lNKDL//750hIbBvn7NsknLqZsazPWwnOe9qQiDRRISFU6zVzX/vVDfTDXUz40k4GMq8fBF5qxf7e6e6mW6omxnP0qFzqfFqO/ZnrUjBX+eTvfgN8TvUy3RDvcxApk6F7t2hVi1WvjSH2zrkpFCh+BVDhQq5DicpYaxN6SWdaadGjRp2zZo1rmNkSPu3R7K36j00+Wsw9Or9lz9J0pQxZq21tobrHImpl6lre9hOcrTzDIZmLqTYHbe4jiSJqJu+ad3YNZR6sHn8YGhZOPlqFncdSRJRN33TX4OhA8E3UWDLAnKUuMF1JElE3fQhEyZAnz7QoAErng+jRfvsGgx5seS6mZLLyiSDOLBDgyERb7R91i6ytwshkGguzNBgSMRbrP90DSUfvI3zgbk1GBLxIste+ul/g6GCW+ZrMCTi0qefQu/e0LQpy4fO4bZ7NBhKrzQc8hEHdkSyp4oGQyLeZsfsXWRv24TMXOLCjIUUv1ODIRFvsH7cWkr0u40LgbnItGyRBkMiXmLpS/OoNuzvwVD2Eje6jiTiu0aPhn79oGVLlg2eSYu7gilSJP4eQxoMpT8aDvmAhIOhvUM0GBLxFjtm7yJrmxAyc4nzP2gwJOIt1n+2lhIPNCciICeZlmrFkIi3WPbyPKoPa8vB4PIaDIm4NnIkDBgA7dqx9Onp3N4uC0WKxK8YKljQdTi5GhoOZXCJB0MlX9NgSMQb7Jizm6xtQshCJOemL6B460quI4kIsP6zdRS//zYiAnISuGwR+WqVcB1JRIBlr8yn2ittORRcjgKbNRgScer11+Hpp+Hee1n6+Ne0bJeZokU1GErvNBzKwA7u1GBIxBvtmLObrK2bEGQvcm76Akq0vdV1JBEBNoxfR/H7m3MxIIcGQyJeZPmw+VR7uQ2HgsuRf/MCcpTK4zqSiG+yFl56CZ5/Hrp1Y3H/ybRsE0jRorBwoQZD6d1lP8pe0qeDOyPZXVmDIRFvs+PHPQS3DiHIXuTs9ws1GBLxEhvGr6NY3+ZcDMiuwZCIF1k2bAHVXmrD4aCyGgyJuGQtPPccvPUW9O7N4h6fckcb//+tGCpQwHVAuVYaDmVAB3dGstuzYmjPc59SSoMhEa+wc+4egu9sQrCN4KxWDIl4jQ2h6/83GApYosGQiLdYPnwBVV9qw6GgsuT/daEGQyKuWAtPPQXvvQf9+7O402ha3elH8eLxK4Y0GMoYdFlZBnNol2cwFOEZDL2uwZCIN9g5dw9BdyQYDLWr7DqSiAAbP19PsT5/D4by1ynpOpKIAMtfXUiVF9twOKiMVgyJuBAeDiVKwIIF8Mgj8YOhxx/n504faTCUQWnlUAZyaFckuyrHD4Z2P/cppTUYEvEKO3/aS9AdIQTbC5ydvlCDIREvseHzDRTr3ZzIgKwELA7XYEjESyx/dSFVhrbmSFBp8m1aQI7SeV1HEvEt4eHQujVEREDLlhATAwMH8nOrN7njTkPx4vGH5M/vOqhcT1o5lEFoMCTinXbN20tQqyYE2/Oc+VYrhkS8xcYJGyjWuxmRAVnx+3kR+euWch1JRIDlr4X/bzCUd+MCcpbRYEgkTSUcDEH8YCgwkA35b9dgKIPTcCgDOLxbgyERb7Rr3l6ytPQMhr6ZT8m7q7iOJCLAxi82UrSXZzC0KJwC9TQYEvEGK14Pp8oLd/J7UKn4wVDZfK4jifiWxIOhv0RHU/bpNnTMG67BUAam4VB65bkG9Pikuey81TMYGqzBkIhznm4eHjGFzC1DyGrPxQ+G7qnqOpmIb/N0c9dz4yjasymXAoLjB0P1S7tOJuLbPN3ccv8oKj9/J79nKUWejQs1GBJxoXfvfw+GPLISwbjY3hoMZWAaDqVHf0109+/nhh53/D0YekODIRGnEnSz4LPdyBV3ktPfLNBgSMS1BN0s/eYDWD8/zKJFGgyJuJagmxU/e4rTgfnIs0mDIRFn7k/+/aQNCsb/i9A0DCNpTcOh9CbRUj9/4ogLyETpFvoGV8SpRN30w5I1Uwwlc592HEzExyXqpgFyB56nQNQBt7lEfF0S3Szof4ych7a4zSXii6Ki4j+qfuhQKFcOsmT5x24bFIyZFQYhIY4CSlrQcCg9SeYaUL+YqPjt4eGOgon4uOS6GRWpboq4lFw3L6mbIk6Fh2OT6KaJvKhuiqS1AwegUSMYNQoGDIBNmwh/djYXCAY0GPIlGg6lJ/9xDSgREfH7RSTN2V7qpog3sr16qZsiXiiuZy+MuiniXlgYVKkCW7fCV18R9e6HPD4wM02HhzDwpjBiixTXYMiHaDiUTlyMsPwUfBc2uQOCgyFU14CKpLXTRyJYH1E++QPUTREnjm79k61/Fkz+AHVTxIk9Sw6z+1j25A9QN0VSX3Q0DBwIbdpA8eKwbh2H6t5LkybwwQfw+OMwakMI/gf3aTDkQ1I0HDLGtDTGbDfG7DLGDE5ivzHGfODZv8kYUy3Bvn3GmM3GmA3GmDXXM7yv2LP5AuFFutPit/c5VKg2NijonwcEB8dPfVVcn6NuurX1h50cLVmHKifmsbVWL2xw8D8PUDd9lrrp1tqxa4mqVJ2y59fxW8vH47uYkLrps9RNt5YOW0D2xlUpeGk/u7oOVTcFUC/T3KFD8R175x3o3x9WrGD+vjJUrQqbN8O0afDee5Apk+ugktYuOxwyxvgDo4FWQEWgizGmYqLDWgFlPf/0Az5OtD/EWlvFWlvj2iP7loUfbeNSlVq0PDWF7T1epejB5ZhZs/5+MdWLqM9SN91a+Oh0Ct9Vg/zRh9k2cg4VfwnFhIWpm6JuOmTjLD92GMfND9YnwC+WQ5OXcNOc9+K7qG76PHXTnZioOOY0foO6L7XgXOY8nJm/ijJfDlM3Rb1Ma3PmxF9GtnEjTJ5M3OiPGf5OFlq0gPz5YfVq6NjRdUhxJSUrh2oBu6y1e6y1UcBUoF2iY9oBX9h4K4Fcxpj/WMstlxMTA1Pu/oqaj9Qkv99xjk38ifJfPA9+fvEvmmFh8UsA9SLqy9RNByLPxzC38kCa/t89/J69PLGr11Hxydvjd6qbEk/ddODM7xGEl+xDy28fYFv+xuTYuY5SXWrH71Q3JZ666cAf207xS6G7aLV4COvKdKTwoVUUbnZT/E51U9TLtBETA0OGwB13QKFCsGYNJ1t0oXVrePFF6NoVfvkFKlRwHVRcSslwqDBwMMHjQ55tKT3GAj8ZY9YaY/pdbVBfcuxQFDNKPk6X7ztxLH8lgn9bR4Huzf95UEgI7NunF1Hfpm6msQOrjrKlYDNu3/QOv1R7iLJHl5CnevF/HqRuirqZ5raF7eJIiXo0PfA5K1u8SOVDs8lWIs8/D1I3Rd1Mc+vGb+DiLTWodXIOq7p/QM0dk8l8Y7Z/HqRu+jr1MrUdOQLNmsEbb8D998Mvv7D6bHmqVYMFC+Djj2HiRMia1XVQcS0gBceYJLYlvi/yfx1T31p7xBiTD5hnjNlmrV38ryeJL3M/gGLFiqUgVsa0evohTKeO3BO9gq23PU7FsLd1wackJ9W7qV7+bflbSyj1XEdusmdY/+QX1B7Zw3Uk8V7qZhoKf+IHqr7fE2v82PL2LOo8e4frSOK91M00Yi381CWURtMe5kzAjRyYuJha3eu6jiXeSe81U9O8edCtG1y4ABMnYrt1Z8wYeOIJKFgQli6FmjVdhxRvkZKVQ4eAogkeFwGOpPQYa+1fvx4DphO/dPBfrLVjrbU1rLU18ubNm7L0GYi18N3D8ylxT1UqxGxm31vTqPiT7gQm/ynVu+nrvQSIjbHMuW0ktQaHcClTdk7O/oWq/8/efYdHUa59HP/eCTVIFVCpERBBqoiC59hioaPYj6A0G/Lajr2co6jHgh57Q0SCWA5iAREFUYxgQ6WDKAhIVWnSCSXJ/f7xTHSz7CabZHdnk9yf68oFOzM7c2+yv52ZZ595xhqGTP4sm3Gwb3cWUzvcSdrTfdhwSDOyvp1LK2sYMvmzbMbBjo17md7kSrq+NZhldf5Oyo9zaWoNQyY8O9eMhexsd71Y165Qty7Mns3ucy/lsstg6FDXkWjOHGsYMnlF0jj0PXCUiBwpIhWAfwCTgpaZBPT3RpLvDGxX1d9EpIqIVAUQkSpAF2BxFOsvFXZuz2F82//Q58Uu7Kl6GDmzvif1NhsJzBTIshljm1fu4Kv6F9L905tZ0Pgc6q6eTcPubfwuyyQ+y2aMrfl+AwuP6EK3eY/wbburaPrbl9Q5PtXvskzis2zG2NIpK1nb6G+cuWoU35xxN21//Zhqzer6XZZJbJbLaPv9dzjrLHjgARgwAL79lp+kJSecAG++6SZPngyHHup3oSbRFHhZmapmici1wMdAMjBaVX8QkSHe/BHAR0APYDmwBxjkPf0wYIKI5G7rTVWdGvVXUYL99PUfbOhyGRfv/ogf2vej5cyXSKpqF3yaglk2Y2vBG4upOvA8/pa1km8v/C+d3roJJFSvZmPysmzG1qzHv6LxrRfRWv9g7nXpdHpmoN8lmRLCshlbn98ymXaPX4YILHroA068s5ffJZkSwHIZBRkZMGgQpKe7y1H69oUdO9zjgQMZPx4uvxwqVYJp0+DMMwtepSmbRDX4kk7/dezYUWfPnu13GTH38YOzafHvCzhcf2PVDU9x9JND7OTTICJzEvFWnGUll6rwycA3+PvYq9idXI1tI96i+RWn+F2WSQCWTX9lZynTej3DmR/fwm8VGsM779Kodzu/yzIJwLLpr317svnslHvpPudBllU5lhqfvkPdzk38LsskAMtmHGRkQK9esGcPlC/v7kp29NHw9tvsb96aW2+FZ56BE0+E8eOhQQO/CzaJIFw2IxmQ2kTZ/n3KhG4v0efzG9ha4XC2v/clR/e0Cz6N8duuLfv4uvNNdFn+AotrnUyDL9+ieUu7U6oxftuyaieLO19B9w3jmdPwHFrOGkNKvRp+l2VMmbdu3iZ+Pe0Suu+YzrdtLqfDl89Svlplv8sypmwIbBgCOHAAkpPh8cdZV6M1F50G33wDN9wAj9o9jkwEIhlzyETR+mW7md6gPxd/fg0rU0/n0NVzqWsNQ8b4bvlna1jZ4BS6LH+BWSfdwjG/TqeGNQwZ47uF45bwx1EncNKGd/j2vOF0WDXBGoaMSQCznpqFdOxAmx1fMWfoK3RaOMoahoyJl+CGoVzZ2WSfdyHXtspg0SLXW+gpu8eRiZA1DsVaRgakpkJGBt+MWcr2YzrTdfMbLL7oflqu+JDyh9tIYMb4IiCbM+6eRs0zOnDkvh9ZeO+7dP7iMZIqlve7QmPKJi+b+lkGn1w+jiaXnECNnD9YPmI6nd69DUmyy6+N8YWXzZxPP2NKz+fo8M9TyEmuwMYJX3Pc84P9rs6YsiM7Gy688OCGIU/yvj08nzmI2bPdYsZEyi4ri6WAFt2ss7rRNjuZ/ckprBs1ldaXd/G7OmPKrsBsntmVk3MO8Evl1lSZ+i5tT2nud3XGlF0B2cw5swtnaRY/1Pw79b4Yz9Gt6vldnTFlV0A29awudCebufV7c/SsV6nSoKbf1RlTNqjChAnw73/Dli1urNoQ4wfvS06h1sR06h/tQ42mRLOeQ7ES1NWvXPZ+KrOPSq88TyNrGDLGP8HZzDmASjKNxg3ncGsYMsY/QdlM1iyyk8rR8n/3UtMahozxT3A2ySY7uTzHjrnBGoaMiQdVmDoVjj8ezj/f9Rx66y345BNIScmz6IEKKVSYNpnKPdJ8KtaUZNY4FAsZGWjPg68BTSKHykMHu52sMSb+MjLQHj0PymayZlP+kgstm8b4JSODnFDZzMki6bw+lk1j/JKRQU73ENnMPoCcc7Zl05hYmzkTTjkFund3vYXS02HxYrjoIlaknsGjp05mN66BKLtSCuWnTkZOt4YhUzTWOBRlO7Zms7vXRUhm6GtA2bMHBg2Kb1HGGDb9sos93c9D9maGXsCyaYwv1i/6g8xu55Jk2TQmoSyf+SuZXc4haZ9l05i4+/576NoVTj0VVqyA55+HpUth4EB+/qUcAwe6O9bfm5HG6HMnk92gMckfTYY0axgyRWeNQ1GyfUsWEy54g99rt6bKns3kEGbAzJQU1+JrjImLTSt38tEpjyBNUknZt42ccB97lk1j4mrdgi1M6XA3VdumUnn/drIlOfSClk1j4mr5jPV8fPT1NDi1CRWydls2jYmnxYvh3HPhhBNgzhx47DFYvhyGDmXpLxW47DJo0cLdhez662HlSrjuvTSS166yhiFTbNY4VEzbNmcx4dyxbKp7DOe+eykVqpRnxSNvk/TpwdeAkpICk61F15h42LhiJx+d/DDS9Eh6fHEn6+qdwKpxs0j67FPLpjE+WjtvM1OOvYvq7VPpOu9hljXtzm/TFpE83fabxvjp54x1TGt+LQ1Oa8rpy15kQdvL2PrdcsumMfGwfDn06wdt28L06XDffa7l55Zb+HF1Cn37QsuW8N578M9/ullPPAFHHOF34aY0scahItq26QATz0nnj8NacO7EASRVrcKKx94jddt8mt5+AZxxhttp5u5MbSdqTFxs+HkHH530EMnNUunx5V2sq9eJ1eO/pf36j0i9uJPLoGXTmLhbM3czU9rfSc0OqXSd/whLm/VkwyeL6Lj8LY44q7Vl0xifLJu+lmlH/R+NTm9K2s8vsaBtf3bM/plOC16m9vFHWjaNiZaMDEhNzTtW19q1cNVVrjvQhAlw663wyy9wzz38sLYa//gHtGoFkyb9Neu//4XDD/ftVZhSzBqHCmnrhv2833sU2w47mj6TBqNVq7PiyfdpsnUuTW85F5ICfqW5O9PGjW0nakyM/b5sBx/+L/vLtAAAIABJREFU/UHKN0+lx1d3s7b+iax++zvar/+QxheekHdhy6YxcbN69iamtL2dWsel0nXBcH486mw2fLqYjj+P44gzW+Vd2LJpTNws/XQt05oNpfGZzUhbPpL57Qeyc87PdFowkkOPS827sGXTmOLJvevf6tXu33ffhRtvhGbNYMwYuOYaN7bQ8OEsXH8oF14IrVvDhx/C7bfDqlUwfDjUrev3CzGlWTm/Cygp/vhtH19cPob2Ux/mHF3NzzWPZ+V9z9L02h4gYcYXArfzXLUqbnUaU9b8vnQ7cwc+Q+dZT9KTrcxr0JtdT99D+/M65v9Ey6YxMbXqu438eMV/OWXR83QlkznNL6HhiH9xfFrL/J9o2TQmppZ+sobVQx7mtJWvcCQw79jBHPXKnXQ6tnH+T7RsGlM0uQ1DuXf927MHLrjAnUMOGgT33AONGzN/Ptz/f64DUdWqcPfd7hKyQw/1t3xTdljjUAG2rN/LV5eP5thpj3COrmVprc6s/M8IjhrSNf9GIWNMTP3203bmDXyaE799kh5sY17Ds9n9zD0c2+c4v0szpkxb9d1Gfrz8MU5Z/AIN2cvcoy+h0Uv/4vhTW/hdmjFl2k8fr2bN0Ic5beVo1yjU4XKaj76TTu0a+V2aMaVXcMNQoIoV4dJLmbO5MQ/cAO+/D9Wru7aiG26AWrXiX64p2+yyslxB14BuXreXD7o8y96GzTj74/9jd61G/PLSNI7e/DVNrulmDUPGxEtQNn9dso2POt1HpZap9Pj2XlY1OpW1E+dw7Jr3aWgNQ8bET1A2f5m1gSmtbqFup1S6LH6CJS3OY/OMJRz/0+scZg1DxsRPUDaXTFnNtCOvpkm3ozh1ZTrzjruCPQuW02nOi9S0hiFjYkMVFixwdx4L1TAEsHcvG3oOomNHmDEDhg1znfPuu88ahow/rOcQ5GnR1Z49mdViEKnzJ9Bbf2NJnVPY//BYWgxOswYhY+ItIJs5PXryXeMLabH0fXqwnbmN+7D72Xs4tvexfldpTNkTlM3ZdXvSes2HNGIfc1v2o/HIf3H8Sc39rtKYsicwm917MqfG6bTf8DFNSWJ+xytpPvoOOrVp6HeVxpROqvD99248oXffdWMIibgxaXNyDlp8NylcmZzOAw/Adde5XkPG+MkahzIy0F69EK9FVzIzOXHeC/xSoz2/PPk/jhl4qs8FGlNGZWSgPXshmS6bSXsz6bx0LMsOO4ndrzxLh57tfS7QmDIqRDaPX/MOSxt34dA3n+P4vx3lc4HGlFHB2dyXSccNH/LT0edwxDvPcULrBj4XaEwplJ0NX3/tGoPee8/dfaxcOTj9dLjtNjjnHFiyJE82AfaQwsTLJ/P6E2lUq+Zj/cYEiOiyMhHpJiJLRWS5iNwRYr6IyDPe/IUi0iHS5xZaqFsARkgV1sz/g68e+YKp57zI9/X7kH36mX82DAU6cv8yjmx8cAuvMYmktGQzJwd++XYjX9z/GVN7PMOcI3q5bGYenM3mO+dSP2Vrscs1JpZKSzazDig/z/iVGXdPY8pZjzO3bjdyQmRTgBabvqTOvnXFLteYWCot2dy/T/lx6moybvmQKacNZ27ts8g5/YyQ2Wy59hNqbPq52OUaEysJlUsoOJsHDsCnn7o7jNWvD6ecAiNGQPv2HHh5DIunb+D1yz7m9hVX0WPQYTTsn8bpmZPZTYp7evkUmDyZfqOsYcgkGFXN9wdIBlYATYAKwALgmKBlegBTcPugzsC3kT431M9xxx2nIX32mWpKiiq4fz/7LPRyqrplzS6dM+I7/bTfaJ3W5iadVb2Lrpd67rneTzaS5/FBP40bh12/MbECzNYCMqI+ZDNsLlULlc2Ny7frd898rZ9cNFI/OeZ6/b5qmm6kTp7sZZFk2TQJpzRnMydHdf2iLTrr0Rk6rc/z+mnza3ROlZN1CzUtmybhlfZsrpm9Qb/+z3T9uOfTOr3JFTqvcmfdTtU82TtAsmXTJJxIsplQ55qq4bO5d6/qBx+oDhqkWquWO5esnKLr/naBvnvh/7T/uTu0ZUvV5IAoli+v2ratat++qg8/rPrNQ59pdsPG+R4nGxMP4bIZyWVlJwDLVXUlgIiMA84BlgQscw4w1tvQLBGpISJHAKkRPDcyoW4B2KsX+8dPYGVmPTZlLGb/3MVUXrmYelsW0Sj7FzqgAGRSiTWHHMPa5meyulUbqv+9NQ27t6bqb8ugd+/Qg4SlpEB6eqHLNCaOEjqbe998jxU767L588VkzV/MIasWU2/rYhrmrKGO99TdUoU1VVuzotXZrGjTmponuWymrFpi2TQlWUJnc/erb7Niex3+mLmY7AWLqbZ6EQ22L6ae/kY976nbpTrrqrdmabuLSWrbmlqntKZht1ZU+nlR+LuuWDZN4kvobO4cNY4VWw9l6xeL0cWLqb5mMY12LqahbiJ3lKA/kg5lXc02/HDMAJLbt6b2qa1p0LUVFX6YZ9k0JVVi5BJCZ7NbN/Z3OomkOd9Tbs9O9pSvxoxqvRlb8Xzez+xK5teuN9CRR0KbNm786TZt3E/z5lC+fOAG0uDOVUUqzZh4iKRxqD6wNuDxOqBTBMvUj/C5BQt3C8A9eyjfqystgBZAFsmsqdicDQ06su7ogaSc0Jp6XVpz2IlNOLpc8sHrbdkAJk8+eN0prqsfaWmFLtWYOErobFbs041W3sP9lGd15ZasTz2JNS1bc0jn1tTv1obaHRrRMinE1a1NDrdsmpIsobNZ5cKetPUeZlKJVVVa8ctRXVh5TGuqnugaaGu2rk/1UDdhaJBm2TQlWUJns2rfs8kdTW8XVVhdtTU/tzibn1u3pvpJbWjUozW1mtalVqhs1rVsmhLL/1xC+Gzu30/5Lz5jCt15jmtZUO0Mjm5bkTZt4OnWrhGoVSuoWrVIWzUmoUTSOBTqFl0a4TKRPNetQOQq4CqARo2Cbqs5aFDYWwAKsK9qbdaPnU6js46mSZWKNAm5ZBhpQTtT24makiPm2cw3l1BwNqvV5rdxM2mY1oyjKpWnUMPUWjZNyZXQ2QTYV60OmyZ+Rf2Tm9Ay1Jcn+bFsmpIr8bNZvQ5bp37HYcc3olVyREOD/sWyaUom/881ocBj2rS6S+iwoAeHHWY3sDalVyR7nXVA4D0vGwC/RrhMJM8FQFVHqmpHVe1Yp06dvDPT090OLpSUFCq+P54mfdpSrkrFAl9MSLk708aNbSdqSpKYZzPfXELB2Zw4ntTuLUmuVD70MgWxbJqSqQRk8y0apB2FFLZhKJdl05RMiZ/NCW9xeOdUpLANQ7ksm6bk8f9cEwrMZuVx6Rx+uDUMmdItkj3P98BRInKkiFQA/gFMClpmEtDfG0m+M7BdVX+L8LkFy93RBQc2mt+IpKXBqlW2EzUliWXTmMRk2TQmMVk2jUk8/ucS4pNNYxJcgY1DqpoFXAt8DPwIjFfVH0RkiIgM8Rb7CFgJLAdeBobm99wiVRocWAuqKeMsm8YkJsumMYnJsmlM4kmYXIJl05R54gZ9TywdO3bU2bNnh56ZkeGuCU1Pt6CaUklE5qhqR7/rCJZvLsGyaUo9y6YxicmyaUxismwak5jCZTOSAakTS25XWWNMYrFsGpOYLJvGJCbLpjGJybJpyqgijnZnjDHGGGOMMcYYY0oDaxwyxhhjjDHGGGOMKcOsccgYY4wxxhhjjDGmDEvIAalFZBOwOp9FagOb41ROQayW0KyW0CKppbGq1olHMYURQS6h5P2u48VqCa2k1WLZjA6rJTSrJTTLZvxYLaFZLaFZNuPHagnNagmtyNlMyMahgojI7EQZ+d5qCc1qCS2RaomFRHp9VktoVktoiVRLLCTS67NaQrNaQkukWmIhkV6f1RKa1RJaItUSC4n0+qyW0KyW0IpTi11WZowxxhhjjDHGGFOGWeOQMcYYY4wxxhhjTBlWUhuHRvpdQACrJTSrJbREqiUWEun1WS2hWS2hJVItsZBIr89qCc1qCS2RaomFRHp9VktoVktoiVRLLCTS67NaQrNaQityLSVyzCFjjDHGGGOMMcYYEx0lteeQMcYYY4wxxhhjjImChG4cEpFuIrJURJaLyB0h5ouIPOPNXygiHXyspZ9Xw0IR+VpE2vlVS8Byx4tItohc4GctInKaiMwXkR9EZIZftYhIdRH5QEQWeLUMilEdo0Vko4gsDjM/bu/bWLFsFq2WgOUsm3nnWzajxLJZtFoClrNs5p1v2YwSy2bRaglYzrKZd75lM0osm0WrJWC5mGbTchm2lthkU1UT8gdIBlYATYAKwALgmKBlegBTAAE6A9/6WMvfgJre/7v7WUvAcp8BHwEX+Ph7qQEsARp5j+v6WMtdwHDv/3WAP4AKMajlFKADsDjM/Li8b2P1Y9ksei0By1k28y5j2Yzf79qyadksTC2Wzfj9ri2bls3C1GLZjN/v2rLpUzYtl/nWE5NsJnLPoROA5aq6UlX3A+OAc4KWOQcYq84soIaIHOFHLar6tapu9R7OAhrEoI6IavFcB7wLbIxRHZHW0hd4T1XXAKhqrOqJpBYFqoqIAIfgApsV7UJUdaa37nDi9b6NFctmEWvxWDYtm7Fi2SxiLR7LpmUzViybRazFY9m0bMaKZbOItXhinU3LZRixymYiNw7VB9YGPF7nTSvsMvGqJdDluJa6WCiwFhGpD5wLjIhRDRHXAjQHaorI5yIyR0T6+1jLc0BL4FdgEXCDqubEqJ78xOt9GyuWzSLWYtkMW4tlMzosm0WsxbIZthbLZnRYNotYi2UzbC2WzeiwbBaxljhl03JZdEV635aLWTnFJyGmBd9aLZJl4lWLW1AkDRfWk2JQR6S1PAXcrqrZruEyZiKppRxwHHAGUBn4RkRmqeoyH2rpCswHTgeaAp+IyBequiPKtRQkXu/bWLFsFr0Wy2boWiyb0WHZLHotls3QtVg2o8OyWfRaLJuha7FsRodls+i1xCOblsuiK9L7NpEbh9YBDQMeN8C1whV2mXjVgoi0BUYB3VV1SwzqiLSWjsA4L6i1gR4ikqWqE32oZR2wWVV3A7tFZCbQDoh2YCOpZRDwiKoqsFxEfgFaAN9FuZaCxOt9GyuWzaLXYtm0bMaSZbPotVg2LZuxZNksei2WTctmLFk2i15LPLJpuSy6or1vNQYDJEXjB9dwtRI4kr8GfWoVtExP8g609J2PtTQClgN/8/v3ErT8GGI3eF8kv5eWwHRv2RRgMdDap1peBIZ5/z8MWA/UjtHvJpXwA4TF5X3r53vQsmnZLGQtls34/a4tm5bNwtRi2Yzf79qyadksTC2Wzfj9ri2bPmXTcllgTVHPZsL2HFLVLBG5FvgYNzr4aFX9QUSGePNH4EZG74ELyR5ca51ftdwDHAq84LWgZqlqR59qiYtIalHVH0VkKrAQyAFGqWrIW+7FuhbgAWCMiCzCBeV2Vd0c7VpE5H/AaUBtEVkH3AuUD6gjLu/bWLFsFquWuLBshmbZtGzmU0tcWDZDs2xaNvOpJS4sm6FZNi2b+dQSc5bL8GKVTfFalowxxhhjjDHGGGNMGZTIdyszxhhjjDHGGGOMMTFmjUPGGGOMMcYYY4wxZZg1DhljjDHGGGOMMcaUYdY4ZIwxxhhjjDHGGFOGWeOQMcYYY4wxxhhjTBlmjUPGGGOMMcYYY4wxZZg1DpUyInKMiMwOeDxMRIZFeRupIrIq4PH1IvJIlNarIrJLRK4q7voSiYiMEZFMEVnndy0mvkSki4hMDHg8RkQGRnkbp4nI5wGPnxCRIdHchil9RGSViJzpdx2JRkS+EpFjvf/n2d9FcRufi8hp3v8PE5EfRaRitLdjTFlkGTYmMVk2E1+JbBzyDmgzvUaErSLyoYg0DJg/RkT2i8hO72exiDwsItUDlhkoItneOnJ/nvPm3SgiK0Vkh4j8KiJPikg5P15rETwA/DfO2xwJXCoidaO0vhqqOjL3gYicISI/icgeEckQkcbhnigitURkgojsFpHVItI3aH7YdYnIlKD3w34RWRRiG6d6jVj/CZiWJiKLRGSbiGzxaqifO19VBwLdi/4rKZ2Cshycw4He7/mJoOf08aaP8aXownsIKHbjaSE9BtwtIhWKuyIRaS8ic7zMzBGR9vksW1FERnufnb+LyE2RrktEWovIxyKyWUQ0xLoLynaKiLzgPX+7iMws7ms3ZY+I9AZ2quq8eG1TVTcAGUCxvxQRZ7i3H9oiIo+KiOSzfH77xHzXJe7APsN77k8S1NAoInVE5E1vv7hVRN4ImFdfRN4XkT9EZJ2UscZscScvWyXohEXc8auKyNlB05/ypg/0HvcUkS+93+3vIvKyiFQNsZ0xIpIlIvWCpg8TkQMB+90fReT8gPkVROQdbx+t4p1olQSW4cgyLCKNJO+x1y7vb31ziG2ke/OaBUwrlRmOQjbTJJ/zgaD1FSWbnUXkE+/3vklE3haRI6L6S4gRy2bJyGaJbBzy9FbVQ4AjgA3As0HzH1XVqkAdYBDQGfhKRKoELPONqh4S8HOtN/0DoIOqVgNaA+2A62P5YqLB+3BIAyYWtGyE6zuoQSzUNFXdC0wB+kdju0Hbqw28B/wbqAXMBt7K5ynPA/uBw4B+wIsi0iqSdalq98D3A/A18HZQPeWBp4Fvg7a7BOiqqjWAesDPwItFec1lUO8wOQRYAVwc9L7rDyyLb4lFIyLHA9VVdVaU1pccyTRV/Q34CTg7eF4ht1cBeB94HagJvAq8L+EbnYYBRwGNcZ9Ft4lItwjXdQAYD1weZt1hs+0Zict1S+/ffxby5RoDMAR4LRorinQf6nkDuDoKm70K6IM7bmkL9Aq33gj2rwWt63/APOBQ4G7gHRGpEzD/PeB33OdBXfJ+cfU68Asuzz2Bh0QkrdCvtgQSkVTgZEAJ/Rm9DBgQsHw54ELc/jBXdeA/uOONlkAD3JcCgdupApwPbMd9ZgZ7K+B450bgdRE5LGD+l8CluL9hSWIZjmBdqrom6Ji3DZADvBu0jZOApiE2X+oyHKVsFng+UMxs1sQd76TiPlt3AumFeJl+smxGsC7fs6mqJe4HWAWcGfC4B7As4PEY4D9Bz6kK/AZc6z0eCHwZwbYOBT4FXihmvbcCC4HdwCveH2wKLtSfAjUDln8btzPeDswEWnnTKwDzgeu8x8nAV8A93uP+wKdB2x4GDAt4XA/35trkvXGuD1r2He9NtQO4Isy0VGBV0Hb6ARnF/Lum4j6QywVMuwr4OuBxFSATaBHi+VVwJ4/NA6a9BjxShHWlAtnAkUHT7wAeDfUeC1imIvAwsCRo+mnAOr/zk0g/wVkOmjcQd3A6FejpTavlZeMxYEwxtqvAUNxOeyeux11T4BvvfT4eqOAtWxOY7GVmq/f/BgH1rMM1cAEcAiwH+nuP7wFGBW17DDAw4HEL4BPgD2ApcFHQsi8CH+E+O84MM+004POg7dwNpBfz79MFWA9IwLQ1QLcwy68HugQ8fgAYV5h1Ac0ADZpWULaP9v5u1fx+T5ekHy9/t+D2TdtxBy6VAub3wu1ztuEay9sGzFOgWdB79T/e/0/zcnEzsBG37x1UjDqH4faLr3t5XQQ0B+701r826H03CPjRW3YlcHXAvNuBWXj7GeAa4AegEm4fm4mXb29+KgH7O9yXanfgTga24D4ragUsq7gGzjW4/fdB07xlPwdOC1hvOWAP0LiYf9OvgasCHl8OzAqzbL77xPzW5f3+9wFVA+Z/AQzx/t/Fe38lh9juId7vpE7AtJHAa35nIh4/uP3CV8ATwOSgeWNwjWi/4x0X4nI4Bbc/HBhmnecBi4Km9feycQOwOESmXg+athH4W4h1rwt8rxbxNQ/DMpxQGQ6xrnsJOo73XtM83Mnrn5/5lNIME+VsEv58ICrZ9OZ1wPXGsWxaNiEK2SzJPYcAdykBcDHuzRiWqu7EnYCdHOF6+4rIDmAzrlXvpWKWej5wFi5wvXEfJncBtXFhCOyZNAX37XtdYC6uxRNV3Y/7Fud+EWmJC1Ay8KD3vDa4k8twrykJ1ytqAVAfOAO4UUS6Bix2Dq4xqEbudsNMC/Yj7veUu63JXpfKUD+Tw9UYQiuvXgBUdTfuQ6NViGWbA9mqGtirZEHAsoVZV3/gC1X9JeA1NQYGA/eHKtTrBrgNF/5bcI1IpvjG8levtH/gep/si8J6uwHH4XoV3ob78OwHNMT1GLzEWy4J961MY6AR7u/7HICq/oF7T7ws7rLKJ4H5qjrWe25BmayC+1x6E5f3S4AXgnrE9MVlvCruACTctGDBmVyYTyZfCLOOVsBC9fYunoWEyIyI1MQ1Pi8ImBycv4jWFUJB2e4ErAbuE3dZ2aLAbtgmXxfhsnAk7iBjIICIdABG477JOhS3D5wkkV+3fziud0N93EHP8957pKh64xoEa+IOiD7GZbM+7jM5cB+9EXfQXg13IPuk93rANSzvB/4lIkfhLvu8VF0P2KOAHFXNb2y463Hf9p2Ke79vxfVqC3QqrjdH1wKm/UlVs3ANy+3gz2OQcHndJiKNwtSXZz9H3pzku2yIfWJ+62oFrPSOrULN74z77HvV6zL/vYic6s2ToH9z/986TJ2lTX/csdQbQNeg3joAe4FJuP1d7vJjyd8puJOwQANwvbvGAS0CMpCHd3lDT9zJ25JIX0QRWIYTK8PB+uN69Ab6J+6Ee2HQ9NKa4ahkM4LzgWhmM1T2C8uyadn8U0luHJroBW8HrtHlsQKWB/gV901/rs5Bb4bOuTNU9U11l5U1B0bgLl0rjmdVdYOqrsd9u/atqs5T1X3ABODYgG2PVtWd3rxhQDvxxktS1cW4rsQTcB84l6lqtvfUGriW3HCOx7Uk3q+q+1V1JfAyf33IgbvUbqKq5qhqZj7Tgu3EnQjkvoZeqlojzE+vCH5fuQ7BfaMdaDvupLiwyxZmXf1x3xIEegb4t6ruClWoum6ANXANfv/CXdZjCjYxKIdXBs2fAJzmZSCSg+RIDVfVHar6A7AYmKaqK1V1O66B9lgAVd2iqu+q6h7vROhB3I4Ib/403Lcu03HdNwO7mBaUyV64b03SVTVLVefievZdELDM+6r6lZe/vflMC7bT235unW3zyeTQMOsobP5y54datjDrKmwdDXA7vu24A4prcSelLSNYd1n3jKr+6jV0fgDkjgN1JfCSqn6rqtmq+iquUbZzuBUFOQDcr6oHVPUjYBeuh1dRfaGqH3sHeW/jLhl/RFUP4A6wU0WkBoCqfqiqK9SZAUzD+2JIVXNwnyPX4w7yH9W/xj8oKK/g8n23qq4L2EdfENSdfZiq7g7aX4aaFuzPzHrHIOHyWkNV14RZR3BWtgOHiIQcF6Gw+8zAdUWSyS64sR4OBx7HXUZa2/sc/Qr4t4hU8k4szgdSwrymUsO7DKAxMF5V5+BOFvqGWHQs0N/b751KPsMFiMhZuJPNewKmNcJd2vumujE3phNwOYznIu84ejcuCw+p6raivrYIWIYTK8N/EpGTcVc0vBMwrSHud3UPQUpjhqOZzfzOB6KZTRFpi/v73FrIlxvMsmnZ/FNJbhzq4wWvIu5EYIaIHF7Ac+rjLt3INSvozXBQ7yNV/RnXIhvym3URGSF/DRZ1Vz7bDmxcygzx+BBvfcki8oiIrBDXc2mVt0ztgOVfxXWl+8irL9dW8j/RagzUCzwRx/VeCmwZXxvieaGmBavKwSGIhl241ulA1Qj9AVPQshGty9tBHE7eIPbGdZ/Pb7wj4M/eJLnjqZSUgcz91Ccohy8HzvQ+7D/E7WBrq+pX+a1M8g4sHupa7lyRZjJFRF4SNwjyDlxX1hqSd6yfkbjGiXRV3RIwPZJMdgrKZD/c+y9XcTJZ3AP9wuYvd36oZQuzrsLWkYlrjPiPuobvGbiT0i4RrLusCxxPZA9/NfI1Bm4Oem82xDW+RWKLd6AZat1/EpGTA/Ka37efwfncrH99MZJ7QJib2e4iMkvcYIzbcJee/7kPVdVVuPdHKnm/lSwor+B+LxMCfic/4i5BjtZ+NNqZrQbsUs3TYy/csrnLh8ts4LoiyeQqVX3FayAch/sd/N2b3w/XW20t7jLZN3CXL5V2A3BfRGz2Hr/JwSeGqOqXuBO0f+Eubwl50uN9qfkmcIHm7Vl5GfCjqs73Hr8B9BU3bmKu8d4+NwV3WXV/ESn0uByW4TxKUoYDDQDe1bxffj6Fa+APd2xf2jIc1Wx6y4Y6H4hKNsUNQDwFuEFVvwi1fctmHpbNCJXkxiEA1H2j+R7uzXNSuOVE5BDc2BwhA1SAcoQe8AlVHaJ/DRr1UBHWHawv7jKuM3E9cVK96YEtiS/gxj3p6jVk5FqI6+kUzlrgl6AT8aqq2iNgmVBv8FDTgrUkoHucHHznr8CfKRGsL9cP5L00pgrubxHqQ24ZUE5cV8Zc7QKWjXRdA4D3goJ4BtBR3F1BfsddynijiLwfpu5yuMuEgj8YTNGMxY1fUuBAdpp3YPFwl0EWxs24Hg+d1PUmPMWbnntXgWRcl9uxwDUScMcAIsvkjKBMHqKq1wS+pBDPK0omf8gnkyPCrOMHoG3QNxltCZE/Vd2KG1umXcDk4PxFtK4QCsp2cLdaU3xrgQeD3pspqvo/b/4e8n4TVdCXMyGp6hcBeY3kEsN8ibvs7V3c2BCHeV8ifUTAPlREegAn4r6xDex1/LObffCdZQKsBboH/V4qqesV/OfLCvG8fDPrnTg0w8usiPTLJ6+7JHy39zz7OfLmJN9lQ+wT81vXD0ATyXuHrOBMhn3NqrpaXQ/jOqraCXfp4nfhli8NRKQy7jLOUwOOJf6J6x3eLsRTXsftf0L2lhV3O+hJwGBVnR40uz/u75O7nSdwJ3Ah75rqndBNwV1eUiiW4T9rKmkZzn1OZdygysGXrZwBPBbwHgL4Rrw7hZamDEc7m0GCzweKnU1xw1x8CjygqmGPiy2bf9Zk2SxENksDcFQnAAAgAElEQVR845A45+Cuk/wxxPyKInIcrtvfViIY0V1ErhDvtuwicgxuUK7gHW+sVMV13d+CO/DO0+AkIpfhxkkZiOu296rX8AVu7JIOIlIpzLq/A3aIyO0iUllcL6XW4u6oVFyn4j68gIPv/BX0U5hbuk8AWovI+d7rugc3bslBl2ypu57zPdyYTFVE5O+4hrbXIl1XQBDHBK3+37iT/PbezyTcJXmDvOedJyJHi0iSuLu1PAHM8741MMU3A3f5aPBdCeOhKu6bk20iUgs3MFyg3B6Dg3E7zLHyV6+ijwi4BC2EyUBzEblMRMp7P8dLdC6HCs5kq3wyGe42l5/jGt6v9z5Lc+8k91mY5cfirjWvKSItcJcmjYlkXd5nee6ghYjrDlvRq72gbM/EDUZ4p4iU8+afhrtu3hTNy8AQEenk/W2qiLt9dm5jwHzct53J4u5Il9/7PJ4q4HoUbwKyRKQ7AT3IxN1B5BXczRUGAL29g1nUdaH/lPxfywjgQe/gHHG3az8nCnWfgOtps9qr5Y188nqIhu/2Pha4SdytbOvhTmDGhFm2oH1i2HWp66UyH7jXy+q5uMbedwPWXVNEBnjvkQtwvbe/AhCRliJSVdwt0y/F/Y2eKMLvrSTpg/sMPIa/jiVa4r60DHW312dw+72ZwTNEpDXuZg3XqeoHQfNOxJ2EnBCwndaE6QnhPacBbuyxHwKmVQw4nqzg/Z3D3rY5iizDcchwgHNxPSoygqY3x52w5r6HwDVQTIBSl+FoZjPs+UA0simuceUz4HlVDffFXqxYNstANkty49AHIrILN+bQg8AAdWOH5LpNRHbiLiMbC8zBjfS+O4J1/x1YJCK7cSd3H/HXCWCsjcUNrLoeN/jYn5e6iWvJfAp3J6Rdqvom7tZ4TwKou3b1M9xJ00HUdRHsjXsj/YIbbHsUAWMFFYX3pu/BwS2bxaaqm3DXSj6Ia9zrRMAYSSJyl+TtiTQUqIwbMO1/wDW574uC1uXpg7s8Lk8Q1Y0B9XvuD66xYHdA40993IFa7kj/ObhQm4J9IHlb7CcEL6DOdJ8a257Cvac24/I4NXeGuIbnm3CZzAaG477BuANA3RhC20WkU6gVq7s2uAvuffgr7hKf4bidb5GJyBG4g5yw41REQt0g+H1wB0fbcA1gfbzpud++BH7u3ou7Tn81rkHvMVWdGsm6cN2JM/nr5CSTvIN555ftA7jPvR64/L6M+5vYuF9FpKqzcY17z+E+L5fjDVbtuQG3P8m9FLJY77Vo8TJ1Pe4uJ1txvXEnBSwyEjdm10fqLgG9HBglIod681/CdfsP52lvfdO8Y4xZuH1JcfXDHRgX10u4saMW4cZS+5CAwUTF9SDsBxHtE/Ndl7dsR++5j+AubdrkrfsP3K2gb8Fl8g7gHP3rko2uuDvdbMXd3rhb7nNLsQG4S4/XBB1PPAf0k6DL0FX1D2+/F+pb8Ztxl7a8ErDvzP3sHIB7jy8K2s7TQC/vSw6Ai3OfC3yPa7i7L2AbS3Gfw/VxDe2ZuM/pmLIMxzXD4N4vY4PfZ6q6Mej9A+5yo9zLjEpThqOZzfzOB6KRzSuAJriG+V0By8WcZbNsZFNCv69NSSWup9OrwAmqqiIyDEBVh0VxG6m422aneo+vAxqq6m3FXG9j3MHIXuBWDRp7piQTkVdwPZI2qmqzgpY3pYeIdAGGqmof7/EYXH7GRHEbp+EG5DvNe/w4sEJVw92FzBgThoh8ieuRMS94fxfFbXyOy+zn4noqzwCO1fADzBtjImQZNiYxWTYTnw2WW8qo6hLcXcniuc2oXOrjdfcLd0lciaaql+Na0E0Zo+5uZtPivM2b47k9Y0oTVQ07fmGMtrcRdwmDMSYKLMPGJCbLZuKzxqHS7/MYrHMb7lIbY0zhTeSvuxBGyyrCX/dsjCm6WO3vxhD9zwFjzMEsw8YkJstmArLLyowpwcQNBPs0kAyMUtVHguafAzyAu+Y5C7hR3W04EZFVuGuis4EsVe0Yx9KNKdUsm8YkJsumMYnHcmlMYoioccgCa0ziEXdHrGW4Oyasww1ad4l3aWHuMofgBs5WEWkLjFfVFt68VUDHgAFCjTFRYNk0JjFZNo1JPJZLYxJHgXcr8wL7PNAdd/ebS7xBjwNNB9qpanvcHWhGBc1PU9X21jBkTFSdACxX1ZXq7vg0jqA71am7q11uC3AV3J20jDGxZdk0JjFZNo1JPJZLYxJEJGMO/RlYABHJDeyfrbmqGngLvWIHtnbt2pqamlqcVRhTYs2ZM2ezqtaJYNH6wNqAx+sIcctHETkXeBioC/QMmKW420Uq8JKqjsxvY5ZLU9ZZNo1JTImUTRG5CrgKoEqVKse1aNEi4tdhTGkTYTbjss+0bBrzl3DZjKRxKK4HuQCpqanMnj07gtKMKX1EZHWki4aYdlDDrKpOACaIyCm4yz/P9Gb9XVV/9W7z+ImI/KSqM4Nq+XNH2qhRI8ulKdMsm8YkpkTKpnecOxKgY8eOatk0ZVmE2Yx5Lr3nWzaN8YTLZoGXlVGIwHrXfvbBBTbX31W1A+6ytP/zAh2qwKtEZLaIzN60aVMEZRlT5q0DGgY8bgD8Gm5hb0fZVERqe49/9f7dCEzA9RIMfs5IVe2oqh3r1InkS1ljDJZNYxJVzLNpjCk0y6UxCSKSxqG4BNYOdI0ptO+Bo0TkSBGpAPwDmBS4gIg0ExHx/t8BqABsEZEqIlLVm14F6AIsjmv1xpRelk1jEpNl05jEY7k0JkFE0jhkgTUmGjIyIDXV/RsFqpoFXAt8DPyIu3PDDyIyRESGeIudDywWkfm4geUv9gb0Owz4UkQWAN8BH6rq1KgUZkxJY9k0JjFZNo0p9SyXxiSOSG9l3wN4Cncr+9Gq+mBuWFV1hIjcDvQHDgCZwK2q+qWINMH1FgI3vtGbqvpgQduz60BNqZORAb16wZ49kJICkydDWlrIRUVkTiLe2c9yaUoly6YxicmyaUziysiAQYMgPT1sLsGyaUyiCpfNSHoOoaofqWpzVW2a27ijqiNUdYT3/+Gq2sq7Xf2JqvqlN32lqrbzflpF0jBkTKkTeIAL7t9evaL2Tagxpogsm8YkJsumMYkrN5+rV1sujUk0xexxG1HjkDGmiIIPcHPZga4x/rJsGpOYLJvGJC5ruDUmcWVkcKBb8RpurXHImFgaNOjgA9xce/a4+caY+LNsGpOYLJvGJCZruDUmcWVkkN2jF+X3F6/h1hqHjIml9HQ3VkIoKSluvjEm/iybxiQmy6Yxickabo1JTBkZaM9eJO8tfsOtNQ4ZE0tpafDEExw07HsBg2saY2IsLY19d99/8HTLpjH+SktjdZ8bDp5u2TTGX+npHChvDbfGJJxBg5DM6DTcWuOQMbG0dy/6zDNsL3coe6jsptkBrjH+276d3Y88wxoakl3RsmlMoti9dB01x73A0vKt0Mreiahl0xjf/VA3jeHZNx88w/JpjK8W3JjOXiqGnlnIhltrHDImlv71L2TJEi7OeoOv7/oQGje2HagxCeDXf9xE9Z3rePfit0meYtk0JiGosuqsK0jOOcDOsRORDydbNo1JAAcOwD/7buAafYGspkf/demnNQwZ46udO2HQk23Zm5SCiuSdWYR8lotyfcaYXDNmoE88wcika6h6blfO+A/w4Cq/qzKmzNszfjL1po7mxVp3cfXoTpACrFrld1nGlHk/3PgyrdZ+zHunP8d5/2gGNLNsGpMAHn5IGbLwGmqU30XypJmwYYO7VCU93RqGjPHRrbfCrWuupVryTmTES3Djje5SsiI23FrjkDGxsGMHOmAga8s34ZHqj/HdixDcmGuM8cGWLewfeCU/05YOE+4JO+6tMSa+dsxfSeqzN/FNyhn0+OAav8sxxnjmzYOf7/8f9zABHnwUjjnG/VjDrTG+mjYNNr/0DpcwDu69H668Epo1K1bDrTUOGRMLN92ErlnDP/QLnh5VhTp1/C7IGAOw/rxrqZO5hRmDp3L9KWGuzzbGxFdODr92G0Q9TSJl3GgqpdioB8Ykgn374Ja+v/KOXsuB40+k/E03+V2SMQbYtg1uG7iRz5KvIafdcSTdcYebkZZWrIZb2/saE20ffACvvMKj3E7zAX/j7LP9LsgYA7DzlfHUnzmOlw67l6tfaOd3OcYYz+KrnqHFhpl82utp2vVu5Hc5xhjPfcOUG3+6mmrlMyn/+hhITva7JGMMcOMNyr9/G0qNpB0kvToGypePynqt55Ax0bRpE3rFFfxUsR0v1xnG3Kf9LsgYA8Dvv8PQoXzP8Zw8+XYqWqchYxLC1m9+oukrdzKjWi96vTPQ73KMMZ5vv4Xfh79KbybD8CeheXO/SzLGAJMmwb6x4zifd+H+h6F166it2xqHjIkWVRgyhOwt27g4+xNGjqlA9ep+F2WMQZX1va+m1v7dzL5+LNd0tF2fMQkhK4vNvQZQixTqvDeSChVtcD5jEkFmJtzWdx0fcANZJ55Mueuv97skYwywZQv86/Lf+CL5/8g5rhNJt9wS1fXbZWXGRMvrr8N773FX9gOcem1bzjjD74KMMQDbnx1L/dmTGNHwIa58vIXf5RhjPAsvfZSj/viOmRe/wDFnHOF3OcYYz913KXetvJwqFbMo91o6JNkpozGJ4P+GKg9tuZqq5TJJGvsqlIvuF5729akx0bB2LXrttcyu+HcmNbyZucP9LsgYA6Br1lLu5uv5Qk6h25Qbor0PNcYU0ebpC2jx1jA+qXURvV+/2O9yjDGemTNh11Oj6Mo0ePx5aNrU75KMMcD48VBh/Gv04gN46HE4+uiob8MOk40prpwcGDSIfXuy6Zv9Kq+9lmy3xzYmEajyW4/BVMvKZtld6Zzcyr75NCYR6L797DyvP1nUInXy89Zoa0yC2LUL7u63iilyE1mnnE65IUP8LskYA2zYAA9cvY6vk69HO5+E3HBDTLZjR8rGFNfzz8P06Vyf9QQX3tGUzp39LsgYA/DHwyOo98OnjGj2OAPvbxLXbYtINxFZKiLLReSOEPPPEZGFIjJfRGaLyEmRPteYkm7Rhfdz5I6FzBo0kqNOrB3XbVs2jQnv9ltzGLbucipVgnKvjo7b5WSWS2PCU4WrrlT+u/1KqlQ4gIxJj9mdA61xyJji+Okn9Lbb+LRCD75tcyX33hvfzdvO1JjQdPkKUv59C58md+HcKVfF9e67IpIMPA90B44BLhGRY4IWmw60U9X2wGBgVCGea0yJtWHSt7T64GE+OmwgvV8+O67btmwaE94nn4COGMEZfEa5p5+Axo3jsl3LpTH5e+01qPPBK3TVqSQ9OhyaNYvZtiJqHLITUGNCyMpC+/dnV04Kg3NG8drrEtfbY9vO1JgwsrP5vdtA9uaU57cHXqFps7jfAekEYLmqrlTV/cA44JzABVR1l6qq97AKoJE+15iSSvdksv+SAfwq9Wk59am4Ntp6LJvGhLB9O9zXfwX/lVvJPrMrXHFFPDdvuTQmjHXr4LFrV/N08k3oaWkwdGhMt1dg45CdgBoTxsMPI99/z+D9I7jm/iNo2zbuFdjO1JgQNv/rKY5Y8SUvtXqWS+9o4EcJ9YG1AY/XedPyEJFzReQn4EPcvjPi5xpTEi08+24a7lnKvOtGc2T76n6UYNk0JoSbbszhod8HUaFKeZLTR4HE9UsVy6UxIajClZfn8OzuwVSupEh67C/1jGTtdgJqTLA5c9D77+ftCn1Z1/lCbr3VlypsZ2pMkOxFS6g6/G4ml+tD348ujfPx7Z9CbVUPmqA6QVVbAH2ABwrzXBG5yuupO3vTpk3FKtaYePj1fzNoM/0pJjUYSu+nzvSrDMumMUEmT4aqY57hFL6g3LNPQYO4f6kS81yCZdOUPC+/DEdOG8FpOZ+R9Ph/ITU15tuMpHEoLiegFlhTYmRmopddxpbkutyQ9Bxjx+LXnVbsINeYQAcOsKnnAHZoVXY/PoKGjfxpGcLt6xoGPG4A/BpuYVWdCTQVkdqRPldVR6pqR1XtWKdOnehUbUyM5GzfCYMHsUqa0OGT4X412oJl05g8tmyBhwct4xG5k+wevWDAAD/KiHkuvedZNk2J8csv8Ow/V/J40q3oWV3gqqvist1IGofi0pprgTUlxt13Iz/+SN996dz1WE2OOsq3Suwg15gAm25+hMPXzmZ0xxe56LrD/Czle+AoETlSRCoA/wAmBS4gIs1E3CmyiHQAKgBbInmuMSXN4u63cvjeVfx0xxgatDjEz1Ism8YEuG5oNv/dPJByVSuTPGpkvC8ny2W5NCZATg4MHpjDi/sGUbFKOeSV+F3qGUl/h0KfgIpIoVtzjSkRMjLgyScZWW4oOad2ifWYYAX5c4cIrMftEPsGLiAizYAVqqpBO9NtBT3XmJIk6/t51Hzuft6p0JcBH1zgZ88EVDVLRK4FPgaSgdGq+oOIDPHmjwDOB/qLyAEgE7jYuzw75HN9eSHGRMHaUR/T9puXeK/pLZz74EkFPyGGLJvG/OWdd6D++Cc4kW/gxTfgiCN8qcNyaUxezz0HbWc+y0nMhKdHQ8OGBT8pSuSvoYLCLCBSDlgGnIE7ifwe6BsYvBAnoB/gGoKSC3puKB07dtTZs2cX+UUZExM7dqBt2rB+YwWOLz+f736oEpOsisgcVe0Y4bI9gKf4a4f4YODOVERuB/oDuTvTW1X1y3DPzW9blkuTsPbtY2OjjmRt3MJ3oxfTZ1CtmGymMNmMJ8umSVRZm7fxR73WbM2uRvUVczk8tVJMtmPZNKZwNmyA81os4bPtHSh/dg+SJrwbk54Jlk1jCmfZMrig7TK+O9Ceit1PRz74IK7ZLLDnkLXmGuO58UZ07Tou1C95ZERsGoYKS1U/Aj4KmjYi4P/DgeGRPteYkmjDNcM4bONihp/yIbfHqGHIGFN4P3a5gZYHfmf+gxPpEqOGIWNM4ajC0KuyeHr7AJKrH0LSSy/6dTmZMSZAdjYMHpDNqKyBVKhWCRkZ/0s9IxpG105ATZn3/vuQns6jSXdx2Nkn0r+/3wUZYwD2z/iG2umP8kblK7jivR5+l2OM8ax6aiJt5o3l7WPu4cK7Eq7jgDFl1htvwNGTHqUjs2HkeDjM1zH6jDGexx+HE2c9wQl8A8+9DvXqxb0Gf+6xZExJsnEjeuWVLKvcjmdS7mW+b+P1GWPy2LOHHecOYBcNOXTM4xx6qN8FGWMA9q/fRNVbr2ZhuWNJ++Ruv8sxxnjWr4cXr1nI5zKMnAsuIunCC/0uyRgDLF4Mb/xrCd8n/Rs9uw/S15+hYCO5W5kxZZcqDBlC9h/buSDzNZ4bWYG6df0uyhgD8NugO6m99WfGd0+n20XV/C7HGAOgys9nXsMhWdvY/N9XqV2vgt8VGWNwh7RXDz7AC7sHILVqkvTC836XZIwBDhyAwf2zSNeBlKtxCDJihG89EaznkDH5ee01mDCBu+VR2l/ahvPO87sgYwzA3ikZHDH+GUYfcj1DxqX5XY4xxrPyoXG0+uld3urwCBff0MbvcowxnldegY7THqQd82HUBKhd2++SjDHAww/DmfMepQPfwwh/L/W0nkPGBMvIgNRUGDcOve46Zlc+if8dcRPPPut3YcaUcbnZnDyZPRcPYhlHceS4h6lmnYaM8ZeXzf1vvM2h9/wfc8p3puu0W/yuyhjjWbUKxlw/l3/Jg2i/S6FPH79LMsYAc+fCxPsXcn/SMLjoIvD5Uk/rOWRMoIwM6NUL9uyBfv04IBW4KPtVRk1MpkYNv4szpgwLyGbOOedSPSeb9PO/4uaeKX5XZkzZFpDNcpf9g4pajj0jX6XGocl+V2aMAXJy4OqB+3hp3wCoUwd55mm/SzLGAPv2weWX7ec1GUBSrZrwvP+XelrPIWNyBTYMAeTkoNk5XH/2arp08bc0Y8q0oGwm5WSRQzJDB+/1uTBjyrjgbGoO5ZKUk5us97kwYwwAGRnsqp3KZTMG0ypnMeVGvwy1avldlTEmI4M9dVO5YcmVtM6aT9LIlxLiUk9rHDIGDm4Y8lRkPzd80svNN8bEX5hslieLyhdaNo3xTZhslss54KZbNo3xV0YGOT16UW3ravrxJtq1G/Ts6XdVxpiMDLJ79KLmjtUMYCyceWbCXOppjUPGAAwadNABbi7J3OPmG2PiL59ssseyaYxvLJvGJK6MDLRXL5L2uowKIDNnWKOtMX7LyEB79iI5IJt89VXCZNMah4wBSE+HlDBjl6SkuPnGmPizbBqTmCybxiQmr1efBDfeZmZarz5j/JSbzczEzaY1DhkDkJYGw4YdPD0lBSZPdvONMfGXloa+PAoNnm7ZNMZfaWnsuO8Jy6YxicZ69RmTmEpANq1xyBiAzZvRJ59kQ6VG7KGym2YHuMb4LzubDfe+wG5SOFDOsmlMotDde9h+31Ns5lByKlo2jUkUmS+kkymVQ8+0Xn3G+OaPx9P/Os8MliDZtMYhY1ThiivI2bSFrnvfZ+q1H0LjxnaAa0wC2HzrcA5f/iXPHvMSyVMtm8YkiiW9bqPhrp+YOWQcSVMsm8YkihvfT2OmnmS9+oxJIKowYEwaM+W0hM5mOb8LMMZ3I0fC++9zV7nHOaJbe859Bnh2ld9VGVPmZc2aTY2n7uW98hdz2dR+JDUUWLXK77KMKfPWv/wRrT5/nnca3cR5z5/pvmq0bBrju0mT4I+Rb9OVT6B/f3jnHXe5SgKdfBpTFo0cCcmTJ9KNKdC3L0ycmJDZtJ5Dpmz78Uf0n//k60O6kF79RtLTQcTvoowx7N7Ntp79+E0PJ+mlF2nQ0IJpTCI4sH4jlYcO4ofkNpz42YMk2ZGkMQnh99/h7oHrGZV8NTkdj4dRo9xJp/XqM8ZXS5fCIzf+zpjyV6IdOrjLxxI0m9ZzyJRd+/ZB377spgrn7xrDK28mcfjhfhdljAH4/dJbqPvHzzzaZTp3DKrpdznGGABVVpx+BalZ21n/309p1bSS3xUZY/BGSBicwxPbB1O14j6S3ngdypd3J53Wq88Y3xw4AJf2U0ZmD6Z68i7k9dehQoWEzaZ932PKrrvvhvnz6Zv5Cn2GHEHv3n4XVHgi0k1ElorIchG5I8T8fiKy0Pv5WkTaBcxbJSKLRGS+iMyOb+XGhLfnrQ84fOIIXq52C0PfTpxvUwrDsmlKoxV3vEyLZR/w3vGP0OXmNn6XUySWTVMajRgBqVNe4KycaSQ98Tg0b+53SYViuTSl1f33Q8c5IzjrwBTk0UehZUu/S8pXRD2HRKQb8DSQDIxS1UeC5vcDbvce7gKuUdUF3rxVwE4gG8hS1Y7RKd2YYvjkE3j8cV6tcg3LGpzNuMf9LqjwRCQZeB44C1gHfC8ik1R1ScBivwCnqupWEekOjAQ6BcxPU9XNcSvamIJs2EDWwMuZTzvaTHyAatX8LqjwLJumNNo1dxlHPPZPvqz0/+zdd3iN9//H8ecng4hdQm3a6tKpupeg9lZaeys1qhRVpbbq1tordu0ZarRSHapGW19FKWqVEntE9uf3xx1tfhoVJLlPcl6P68pF7sE7vfpyzv0+n1GB6qu7uF3ODVE2JSPatQvGv76TDT49sJWqYl55xe2SrotyKRnV+vUwb8hutvp2h/IVoWNHt0u6pmuOHEoU2CrAvUBDY8y9V1x2ObAPAINwAptYsLX2ITWGxCOcOIFt3pxD2e+hS9QHzJrlrAWWDj0G7LHW7rPWRgOzgVqJL7DWrrfWnk74dgNQOI1rFEk+azlapRX+kef59pWZPBWc2e2KbpSyKRlLTAzhlRpzyQaQ6fOp5MiVbgeeK5uSocTEQPOG0UyJbYJfzqyYyZPS4+KZyqVkOOfPQ4vGMczxb4J/jizOOkPpYJG+5FSowErGYS20bk18+ElqnJ9FnyGBlC7tdlE3rBBwKNH3hxOOXU1r4ItE31tgtTFmizGmXSrUJ3Jdzrw7lgI/r2BU0fdo/1kpt8u5GcqmZCg7Gw6kxInNrKo3nsdqF3S7nJuhbEqGMmAAVP95IA/G/YTvpAmk08UzlUvJcF57DZrsH8yD0ZvwGT8OCqaP187kTCtLKrCPX+VauHpgLTDOWnvlqCKRtDNuHCxdSp9MH5K77EN07+52QTclqY+GbJIXGhOMk81nEh1+2lp7xBiTD1hjjPnNWvvNFfe1A9oBFC1aNGWqFklC/I7fCHi7O2t8KlFzdSf8/d2u6KYom5JhnFj8HXcuGMrSPC2p/3k9t8u5WcqmZBjffQdfD13PN2YYtGgJdeq4XdKNSvVcJtyrbEqaWLAAdoRsYIIZAk2bwYsvul1SsiVn5NCNBLZXosNPW2tL40xL62iMee4q97Yzxmw2xmwODw9PRlki12nnTmy3bmzIUZHxWboybRr4+rpd1E05DBRJ9H1h4MiVFxljHgAmArWstScvH7fWHkn49TiwCGeU4P9jrR1vrS1jrS0TFBSUwuWLJIiOJrxSYy7EB/LXuyHceVe6GxJ/JWVTMoT4M+eIbdiUA6Y496wekd6btqBsSgZx7hy0b3yemb5Nne2wR4xwu6Sbkeq5TDivbEqqO3IEXm97gXmZm+BTtDB8+qnbJV2X5DSHFFhJ/6KioGFDIkxW6pybwrgJPhQpcu3bPNwmoKQxpoQxJhPwMrA08QXGmKLAQqCptXZ3ouNZjTHZL/8eqAj8mmaViyRy/NX+5D/8E+MfnUiTNwq4XU5KUDYlQ9hVsTNBkQf5X48ZlCyd3e1yUoKyKRlCly7w+sHXKRq/H5/p0yB7us6ncikZQnw8tGgB/c91o3D0Psy0aZAzp9tlXZfkTCv7O7DAnziBbZT4gv8KLOBjrT2fKLADU6p4kWTr0we2bqWxWUKl5gWoX9/tgm6etTbWGNMJWIWzk+Bka+12Y0z7hPNjgX5AHmC0cRYovLxjYH5gUcIxP2CWtXalCz+GeLmoL78h76R3mZGlDW2X106H62j+m7IpGcGhD+dyz+AGrCUAACAASURBVKZpfF6yHy+/+6Tb5aQIZVMygnnz4MzUxbRmEvTqDc88c+2bPJhyKRnFyJEQsGYprZgAPXvCc0lOmPJoxtokZ4j9/4uMqQp8wj+BHZI4sMaYiUA94EDCLbHW2jLGmNtwRgvBP4Edcq2/r0yZMnbz5s3X/9OIJGXNGqhYkenZO9A/aDQ//4xHb49tjNniiTv7KZeS4s6e5VSRBzh13p99C36hYt1sblf0n5RN8RZRew8TedcD7DUlKbz/O/IV8uz5ZMqmeIs//4RypY6x4eJ95LqvCObHDZApk9tlXZWyKd5i+3aoXPo427iPnPcUxPz4I2T23F13r5bN5Iwcwlq7AlhxxbGxiX7fBmiTxH37gAevu1qRlHLiBDRvzp857+HV8x+wepVnN4ZEvMnRuh0JOv8nk+p9Tw8PbwyJeI34eA6Wa06BuGjOjptBaQ9vDIl4i/h4aNHc8sn51uT0v4CZOcOjG0Mi3iIqCho3skykDTnNOczMMI9uDP2XZDWHRNKlhG3r48JPUjX2C97oH8iTGWNkvEi6d3785xRYO5PP8g6g47T/2gBTRNLSno4fU/LgWmY8P4Em7Uq6XY6IJPj0Uyjx1QSqsBzeGwH33ut2SSIC9O0Lj/5vIpVYBh9/DKVKuV3SDVNzSDKuhG3r+wZ8RNZHH6RPH7cLEhEAe+AgPp068IN5kmdWvEVgoNsViQjAuW+3UmTsW6zJWps6oa3dLkdEEmzbBhN6/s4W39exwRUwnTq5XZKIAGFhsOj9PWzzex2eL++sFp+OqTkkGVPCtvWbclVkZMxr/DID/PR/u4j74uI4VqkZWWPi2NZzOu0eVTBFPIGNuMTZ6o3x4xaCFk8ga7YMsDq8SAYQGQnNGsUyzTYlU/bMmClTwCc5G06LSGo6fRpaNo1lcUATMgf4QwbIZvquXiQpCdvWXzJZqXVmCiNH+3DbbW4XJSIAJ/t8xK271jHqrk9pPfR2t8sRkQS76vamyLntfN1iCg9VyOt2OSKS4O23ocavQ3kk9kd8xo6BQoXcLklEgI4docXRoTwU+SNmzBgoXNjtkm6aPrKVjOett2DrVhr6LOO5BgVo2tTtgkQEIHbTz+R4rw9L/erSaFULfH3drkhEAI5NX83dq0Ywr0BnGkys5HY5IpJg7Vr49sONrDcDoVFjeOklt0sSEWDWLPj9803M8BkIjRrByy+7XVKKUHNIMpbVq+Gjj5iZ81V+yl6d/40Fo5HxIu67dInT1RoTY/MSM2o8RYspmCKeIO7YCfzaNGenz708+tVwNW1FPMTp09C+6UVW+zfB5C8II0e6XZKIAAcPwhsdLrIhoAkmqCCMGuV2SSlG08ok4wgPh+bNOZLrXtqe/YDp0yF3breLEhGAv5r1JCh8J1ODp1KvXR63yxERAGvZU/4VskefZE//mRS/J4vbFYkIzoa7HTpAt6M9KBa7B59pUyFXLrfLEvF6cXHQrBkMiOhBkajfMVMzVjY1ckgyhsvb1p84ReXYVXTplYWyZd0uSkQALi38glvnj2Ri9q50WPiC2+WISIID/UO4a/tCpj/wPk3efsjtckQkwaxZcG7OCtozBrp3h+Bgt0sSEeCjjyBw3QraZtBsqjkkGcPYsbBsGf0CP8b/gQcYONDtgkQEgPBwopu0ZA/3cef8YRnpwxWRdO3Sr3vJO6gL32cKptpX3TQFW8RDHDgAb7c/wWb/Vti778cMHux2SSIC/PILfPxWONszt8LeeT9myBC3S0pxag5J+hYWBk2aYMPD2ZynEp9c7MKWmZApk9uFiQjWcrR6W265dJq1rVbzWsUAtysSEYDYWP6q0IRc1p/4kKncklerDIh4grg4aNbUMiKyHbf4nMbMWA0Beu0UcdulS9C4kWWSbzty2YRsZs7sdlkpTu8GJP0KC4Pq1eHIEYiJ4d2TbfnwYx/uvtvtwkS8XFgYFC/OhQ49KLBxCaMKDaPDmAfcrkpEErJ5qHIbShzbQGi1sTzbqIjbVYlIgg8+gBLfTqVm7CJnVMIDeu0U8QRvvgmP7wyhStTiDJ1NjRyS9OlyYygiAgADzPRtRuY7bwEy1txPkXQlUTazjvuQn8zDVF3dVaP5RNyWKJuFD0xlfdYK1J+vbbFFPEJYGFGNW/LrsaGM8+uCffp5zOuvu12ViISFcenlloQfH8Jk/9fg6bLQrZvbVaUajRyS9OeKxtBlAXERmBrVnfMikvaSaNo+4Pcbdx9b525dIt4uiWw+Efc9AT/o9VLEdWFh2GrVyXz0AFPimxLgH+fsgOTr63ZlIt4tIZtZjh9gOs3InMnC1Kngk3FbKBn3J5OMq2XLfzWG/hYR4ZwXkbR1laatX8wl57iatiLuuEo2fSKVTRHXJeTTXHLy6Us8PnGxsG+fy4WJeLmwMOwV2TQxMbB3r8uFpS41hyT9GTfu6h3bwEAICUnbekRETVsRT6VsinimqzRuiY5W41bETZebtl6YTTWHJP1ZsgTi44niihXiAwMhNBSCteaQSJoLCcFmyZL0OTVtRdwTEoK92m5HyqaIe9S4FfFMXpxNNYckfZk5E8aMYfqtPagX+AXxAYHOcS9tDBljKhtjdhlj9hhj3kzifGNjzP8SvtYbYx5M7r0i1+Xppzmdqzj2yuPKprIprrKlH+EkeYi/8oSyqWyKq6LGhnDJBCZ90ssat8qleJJzI0KI8NJsJqs5pMCKR9i+Hdq1Y0/B52j511BaTQ/GZ0UoFCvmrW9wfYFRQBXgXqChMebeKy77A3jeWvsAMAgYfx33iiTb8da9ueXoTmaU6IsN9PqmrbIpnsFa9pRrR+7Io6yt/rGTSVA2lU3xAJ0XBjPSdvj3CS/Lp3IpniQ+HhpPDGacaf/vk16QzWs2hxRY8Qjnz0O9ekT6Z+fZI7Pp3NWPunVxwrl/f4YO6X94DNhjrd1nrY0GZgO1El9grV1vrT2d8O0GoHBy7xVJrojPl5BvxkeEBHak0oaBmFDvbdomUDbFIxx4aywlf5rD9DsHU25JVyeTyqayKa6bORN+mLCNrn6joHRpb2/cKpfiMT78EA6GbqWzzygoU8brspmckUMKrLjLWmjTBvv779SNnk3xJwowfLjbRXmEQsChRN8fTjh2Na2BL27wXpEk2X1/YJs3ZzOPUHLph+TLh7c3bUHZFA9w/ust3PpuV9YGVKHGd72cfRyUzVTPpjGmnTFmszFmc3h4+E2WKxnRb79Bt3YXCM3SAL+8uWDFCm9v3KbJa6ayKdfy/fcw5M3zfJGtAb5Bt8Dy5V6XTb9kXJNU6B7/j+uvFdgk7zXGtAPaARQtWjQZZYnX+OwzmDuXT259l40xZfl5LmTK5HZRHsEkcexfS74AGGOCcbL5zPXcq1zKf4qK4nhwAzLHwOae82hfPvO17/EOyqa4yp45y8XqDThDPrIvnEaeIC0xmSDVs2mtHU/CCPoyZcok+WeL94qIgPr14dO4jhSN3oUJ/RLy53e+9u93uzy3pHouQdmU/3biBLzUwDI1sD0FIvZgQtdCvnzOlxdlMznvFm4ksL2u915r7XhrbRlrbZmgoKBklCVe4YcfoHt3fi5ak25/9WT6dChSxO2iPMZhIPF/jcLAkSsvMsY8AEwEallrT17Pvcql/JdjzXuQ/+BmRpYOod2wEm6X40mUTXGPtex9vhV5Lh7ku05zeLRKXrcr8iSpnk2R/9KpE5T5dQovRU3D9OsH5cq5XZInUC7FVfHx0LQpVD82iVoXZmEGDIDnn3e7LFckpzmkwIo7wsOhQQPO5S5K8MGp9OljqFLF7aI8yiagpDGmhDEmE/AysDTxBcaYosBCoKm1dvf13CvyXy5OmUf+OZ8xIdvrdFhdx5myIpcpm+KaA90/5Y7/LWRGqXd5+dOn3C7H0yib4pqpU2FDyA7G+Xd0pqf07et2SZ5CuRRXDR8Oh1duY6RPZ3jhBejd2+2SXJOcaWV/hw74Eyd0jRJfkJzAXu1ekSTFxUHjxsQfD6eS+YHSwbkYMMDtojyLtTbWGNMJWAX4ApOttduNcZbXt9aOBfoBeYDRxhiA2ITRBkne68oPIumO/X0Ppm1rfuRxHljxLnnyuF2RZ1E2xS1n12ykwMc9WJOlJrW/6YZJavy2F1M2xS3bt0O39hFsDmyAf7ZszorUvr5ul+URlEtx07ffwrA+F9iZvT6+WXPB9Olenc1rNocUWHHFwIGwZg398k9gv3mYn2d5dU6vylq7AlhxxbGxiX7fBmiT3HtFrikykvDg+vjG+rOt71zaPKsFwJKibEpasydPEVmrAacpSJ5lU8h9izpDSVE2Ja1dvAgNGsBndKb4pR2YxaugQAG3y/IoyqW44fhxePkly/RsHSh48XfMkoQ1wLxYckYOKbCStlauxA4axLriLRh2oDVfrYVbb3W7KBEBONawK/n//IXBT4TSZ4AWQhbxCNay97kWFL10hK+7fcdL5XO7XZGI4Gy4++qrUHrHDBoxGfr0caatiIir/l5nKDyEWrEznIEJXrAb2bUkqzkkkmYOHIDGjTlZ8H6q7h/F4KGGsmXdLkpEAM6Pm0X+xeMYl7Mnnb6opikrIh5if+cPuWPHMiY/OIKWHzzmdjkikiAkBH6c9hv/828PTzwL/fu7XZKIAEOHwp+rf2W5fycoXx7eesvtkjyCmkPiOaKioH59YqNiefbcAoKrBtKr17VvE5HUF7/jN/w6tuM78wxlVg4mVy63KxIRgDPLv6fwqDf5Ims96n3dWU1bEQ+xbRt0f/USW7I1wD8gC3z+Ofjp0UvEbWFh8F6/C+zMUR/fwJxaAywR/QslnqN7d9i0iY5BC4nIcwfTpqEdkEQ8QUQEJ8vVh7gs7Bk8mxZP+LtdkYgA8cdPEFvvJQ5SjALLJ5EzlzpDIp7g/HmoXx8+9enKbRe2wbwvoFAht8sS8XrHjkGjhpbp2V+l4PldmEVaZygxPXqLZ5g1C0aNYuHtbxBypg5z56IdkEQ8xF/1O5Hn2HbGPzeT5m/pza2IR4iP549nm5I9Kpwtb87joedzul2RiOCsM9S+PTyy+3OaXhoPvXpB5cpulyXi9eLioFEjqHlqCrXOTce88w6UK+d2WR5FI4fEfTt2QNu2HC7+DC/tHcqHI+Dxx90uSkQAzn02lVtXhDDqlrfpvKyipqyIeIg/2g/n9t0rmfTIaFoNLe12OSKSYMIE2DRrN9sytYMyT8GgQW6XJCI4Ufxr7XZWZeroNIXeftvtkjyOmkPirvPnoV49ogOy8+TBOdR+0Z/Ond0uSkQA4rb+SqauHVhnyvLMmv7kyOF2RSICcHrxOopOeJvQbC9T/6v2atqKeIhffoEenSP5KXsDMvlngtmzwV9TsUXc9uWX8MGAi+zKWR+/gBxaZ+gq1BwS91gLbdtid++mUe6vCLitIBMnoje5Ip7gwgVOVahPXHwODr8/i+dL6wVUxBPEHTlG/EsN2WvuoNiq8eTIqRdNEU9w7lzCOkN+3bj9/FZYtgyKFHG7LBGvd/QoNG4M03N2ouC532DBGrj1VrfL8khac0jcM2oUzJnDpNuGsPxiWebPh5xaMkHEfdZytE4Hbjmxm5AKs2jUvYDbFYkIQFwcB55tQmD0abb1ncf9T2V3uyIR4e/PO3lk71yaR4xxNlmpXt3tskS8XmwsNGwItc9Moc7ZKZi+fZ2t6yVJGjkk7tiwAbp1Y9edNWi3uycTJsKDD7pdlIgAnPlwEgW+nMFneQfQeVE5jeYT8RB/tB7Mbfu+ZMLjE2nT/wG3yxGRBGPGwOa5e9mRuQ089DgMG+Z2SSIC9O8Px9ft4MtMHaFsWejXz+2SPJqaQ5L2TpyABg2IyFOYJ3dPpWkzH1q1crsoEQGI3bKVwJ6d+MrnBcp91Yds2dyuSEQATs37imJTB7AkR1Marmmlpq2Ih9iyBXp1jeLnHA3I5OOrdYZEPMSqVfDJkIvsylUfv0zZnN2xtc7Qf1JzSNJWXBw0bow9fpwaWdZTsFRuRo/WOkMiHuHcOc5UrE+UzcOJETMo/4BeQEU8Qdzho9C4EbvM3dyxZgzZsutFU8QTnD0LDRrAiMw9uOPcT7B4MRQv7nZZIl7v8GFo0gSm5+5MwTM7YfVqKKBlEq5Faw5J2ggLc14sW7WC1at5r/BnbIwtzfz5kDWr28WJCNZytEZbcp3ax4yqn/NS53xuVyQiALGxHHymIZljLvDboPmUekwvmiKewFrnbW3p/QtpdeEz6NoVatVyuywRr/f3OkPnplHndAjm7behQgW3y0oX1ByS1BcW5izKd+AATJvGruIVeXNvG8aPh7vvdrs4ES+X0Lg93+Z1Cnwzl5H5B9N53nNuVyXi3S5/oBIWxr5m/SlxYB2znhlDnT73ul2ZiCQYORJ+WvgH0zO1gkcfheHD3S5JRIC+feHEdzsZYzrA88/DO++4XVK6oWllkrouN4YiIv4+VHj/t3xc82saNgx2sTARSZzPbJNHsMnncaqE9SQw0O3CRLxYolzaylW4LTqKBbla03hVM7crE5EEmzbBm92i+TnXS2S2wJw5kCmT22WJeL0VK2DEuxH8nrs+fn5Ztc7QddLIIUk9STSGALJyide+rO6cFxF3XJFPAzzs9z/u+mudu3WJeLMrcxkdRTyGR4e/qKatiIc4fTphnaEsb3LnmU2YyZOhRAm3yxLxeocOQdOmMOOWLhQ8swNmzICCBd0uK11Rc0hST8uW/2oMXWYiIpzzIpL2rtK49Yu+5BxX4/amGWMqG2N2GWP2GGPeTOL83caYH4wxUcaYN644t98Ys80Y84sxZnPaVS2uukoufbAUfb2ecplClE25GXZtGDGFitP04GDanP8YOnWCunXdLivdUy7lZsWuCcPvjuL0Pv8WdU9Nwrz1FlSs6HZZ6U6ymkMKrNyQkBDwu8rMxcBA57zcFGVTbsh/NG5R4/amGWN8gVFAFeBeoKEx5srFYk4BXYAPrvLHBFtrH7LWlkm9SsWjKJepTtmUmxIWRmzl6uS7dIAB8X2hZEn44Gr/m0hyKZdy08LCiK9anQLRB+geMwweeAD693e7qnTpms0hBVZu2B9/QGws8T5XNIgCAyE0FIK15tDNUDblhoWEYK+2NoIatynhMWCPtXaftTYamA38vy1srLXHrbWbgBg3ChQPFBLCVeeOKZcpRdmUGxMWRmyV6vjH/DMVm0OHYP16V8vKIJRLuXFhYcRUrk6m2ETZ/P13+PZbV8tKr5IzckiBleu3Zg288gonylSiCiuI9El4w6vGUEpSNuWGxAZkIybGEnflS4DymVIKAYcSfX844VhyWWC1MWaLMaZdilYmnis4mHNd+2KvPK5cpiRlU65fWBhxVavjF3XFyL7ISE3FThnKpdyYsDDiqlTHP/qKbF7SMgk3KjnNIQVWrs+vv8KLLxJ52z08vHsuR+59gbgloVCsmN7gpqxUz6Yxpp0xZrMxZnN4ePhNlCqewh48xMUKNfnTFuLrjvP+GamgB9CUZJI49q9n/v/wtLW2NM6owI7GmOf+9RcomxlO5OZf8Xl3KHvN7cQHZHEOKpcpTdmU6xbbtCW+kZrymYpSPZegbGZEMU1a4ntl0/YyZfOGJKc5pMBK8h05AlWrEheYjQqRy4kOyEFoKGStHgz79+sNbspK9Wxaa8dba8tYa8sEBQXdaJ3iKS5c4MSTNTARF1nUKpTyI+s6D55q3Ka0w0CRRN8XBo4k92Zr7ZGEX48Di3BGCV55jbKZgcT/dZxzz1fnXHw29k74Gp8Vy5XL1KFsynWJiICOWUOIJHPSF2jKZ0pI9VwmnFc2M5ATJ6AlIUQpmykqOc0hBVaS58IFqFEDe+oUbfKHsuV4EZYudd7fSqpIk2xKBhEXx18VGnPLkW188uRcuk4o5RwPVuM2FWwCShpjShhjMgEvA0uTc6MxJqsxJvvl3wMVgV9TrVJxX2Qkhx+tTbaI43zVZSmVWhdWLlOPsinJFh8PzZrB2t1F8A3wB3PFZ3Ia2ZdSlEu5LlFRziaBu8Nz45fJgI+WSUgpyWkOKbBybXFx0LAh9pdfeL/MXKZsfZhp0+Dxx90uLENTNiXZwtv05tYfl/JB4RF0X1P5X6+jknKstbFAJ2AVsBOYa63dboxpb4xpD2CMudUYcxjoBrxtjDlsjMkB5Ae+M8ZsBTYCy621K935SSTVWcsf5VtT9PAPTAmeRpNPtDdAalI25Xr07QtrFpxlQ74a+AdmgmnTNBU7FSiXcj2shfbtYfe3fxGWoya++fLCnDnKZgq5yj7j/7DWxhpjLgfWF5h8ObAJ58caY24FNgM5gHhjTFec3ZPyAouM02n3A2YpsBmQtdC1K4SGsqLaaHotr8qQIVC/vtuFZWzKpiTX2Y8mETTlfUICO9JkQyeyZnW7oozPWrsCWHHFsbGJfv8Xzmi/K50DHkzd6sRTHGg3mBLrZzGh+BDarHzxXwMTJOUpm5Ic06fD8KGx/FL4ZW75a4+z0UrZslCokLOOSUiIHj5TkHIpyfX++/D5lEh+L1yHrKdOwprv4OGHIU8eZTMFXLM5BAqsXMOIETByJDurdaf68g40bw69e7tdlHdQNuVaolZ9TdY32vOlT0UeDPuEQtezZLmIpJrjI+dQbGI/FmVvSt1NvcmUye2KRATgu++gTRuYXaQH9x1aCePGOY0h+GfKp4ikuUWL4M1elm+KtaHIgQ2wYIHTGAJlM4UkqzkkclWLFkG3bpwsW4/Sa97juedg/Ph/T8sWkbRnd/9OTM267LF3cmnaXEo/pn/yRTzBxbU/kqNLCzb4Pk2p7yeQJ69eNEU8wb59UKcOvJF7Ii8e+gS6dIF22mxZxG0//wxNmsCowsN45sBMGDLEWXhIUpSeFOTGbdwIjRsT+eBjPPzrdAoX9WHhQvTpp4gnOHWKk09Vx0b78l3PZbzSJKfbFYkIELvvIFFVanHGFiB6ziLuvP8qO62ISJo6exZq1IDHI9cxOLIDVKoEH37odlkiXu/IESebjbMspMPhPtC4saappBItSSo35o8/oEYN4vLdSoWLS7kQl4Xly53pniLispgY/nr2RbKf3M/Eqoto9+5tblckIgDnz3Ps8Rr4Rl9iS/9Qnqun3VlFPEFsLLz0EsTs2sdCn3qY22+H2bPBT5+ji7gpIgJq1oRip35m7MWm8MQTMHGipqmkEv2LJ9fv9GmoVg0bE0O7O1bw48Z8rFkDd97pdmEigrUcq/cqt+4IY8jd0+ix6Bm9fop4grg4/ni6MUVObGdy3eW0e+detysSkQSvvw7rV53jQIEaZIqMh2XLIFcut8sS8Wrx8dCsGRzZcpS9eWvikyWPs6RJQIDbpWVYag7J9YmOhnr1sHv28FHlNUxedjeTJ/+zTp+IuOvk2x+Tf9lERufuQ/vvmmqap4iH2P9SL0psW8aY+0bRbm4lt8sRkQSjRsHokXFsu60RuQ/sgtWroWRJt8sS8Xr9+sHyBZfYV7Q2WU6ehi+/h1tvdbusDE3NIUk+a6FtWwgLY2Wj6bwx63nefNPZNVBE3Hdx9jJyD32Dxf4vUv77gZrmKeIhjgyYQPEFHzIrT2earH8VX1+3KxIRgFWr4LXXYN7tb3Lv3uUwejSUK+d2WSJeb/p0GDLE8uPtrSiwd6MzYuhBbbSc2rTmkCTfoEEwbRq/NRpItc+bUK+es1C8iLgvdstWfJo05CceIdfiqdx1j/55F/EEZxauJaj/q6zNVJmnf/yI7NndrkhEAHbsgAYN4K2CU6i79wPo2BE6dHC7LBGv99130KYNTCoxhMf2zoZhw6B2bbfL8gp6epDkmT4d3nmHkzVa8MiitylTBqZNAx/9HyTivqNHOVe2BifjcrH7/SWUrRrodkUiAkT/uhvfBvXYbe4ix4rZFLtdA7ZFPEF4OFSvDs/7fseAv9pB+fLw8cdulyXi9fbtgzp1oN0t82n1R19o2hR69XK7LK+hR3u5tq+/htatiXy6HI9sHkeevIalSyFQz58i7rt0iWNP1CLzhZPMbbKMRm8UdLsiEQHsiZOceqoal+L8+WPEMsqUz+l2SSICREVB3brg/+d+FlAXU7w4zJsH/v5ulybi1c6edbasvy9qCyPONIOnnoIJE7QzWRrSR1jy33buhDp1iLu9JBXPLeDk+Ux8r7XARDxDfDxHKzUn/8HNDCuzkDenPOx2RSICEB3Nwcdf5NbzB5nZOoxWnUu4XZGI4Cyf2a4d/PLdeQ4VrYn/uRhnZ7Lcud0uTcSrxcbCSy/B+V1H+ClXTXxyBznrDGXO7HZpXkXNIbm648edLeszZ6Z94eV8vzYXy5bBAw+4XZiIABzv2J8C387j4wLv8VpYbS1yK+IJrGV/lQ4U3/c1o56cwasTnnK7IhFJMHw4TJ8Wz867mpBrzw744gu46y63yxLxet26wTerIjhQrBaZT5yFteshXz63y/I6mlYm/19YGBQv7rxY1qwJf/3FpxWWMfHL4nzyCVSt6naBIgJwdvRM8o0dxKwsrXhxwxtky+Z2RSICcPj1Dym+djKTC/Wl9drGGg0v4iEWLoTevWHxPW9x166lzhpDL7zgdlkiXm/UKPjsM8v6O1sSdHALzJql0Qgu0cgh+UdYmLM6X0SEM+EzLo5VHRbTdcyjdOoEnTu7XaCIAESFrSdLp1Z8Y57nzi/HUKSonj5FPMHJyUsoOKInoYENqLapPwEBblckIgBbtkCTJjDgjunU3DkcXnkFOnVyuywRr7d6Nbz2Gsy8cyAP7Z7rDO+rWdPtsryWRg6JI3FjCCAujng/f94fl4MqVbSBg4jrEkb12VmfE1mlNgdsUc5MWkCZpzK5XZmId0vIZtRn4wls24gtPo9S/Osp5C+gt1ginuDPP51nzUo5fqDvwTZQtix89pkWuRVx2Y4dUL8+vF5oLo1294fmzaFHD7fL8moaOST/bgwl8ImNYZmpTvyrofj5BbtU4+qIHQAAIABJREFUnIj8v4w2bowPgXzV9Vvat8zjdmUi3i1RNjN1ac9x8nJ2+hIefTSL25WJCHDxotMYynHmIHMDamOKFIH587UzmYjLwsOdl88n/TYx/FhzePppGDdOTVuX6WMtgZYt/9UYuiyLjSBrp5ZpXJCI/O2K5q3BEuATyys1jrhcmIiXSyKbefzOU6HQTpcLExGA+Hho1gx+//kCG/LXxD820tmZLI8+WBFxU1QU1K0L/PknS31q4VPgVu1M5iGS1RwyxlQ2xuwyxuwxxryZxPm7jTE/GGOijDFvXM+94gFCQq7+CUpgoHNePJKymcFdZVSff3wUpkZ157x4JGUzg7tKNv1iI53jyqbHUja9RFgYZ3MX5/TCr/jpvmbkPLAN5syBe+5xuzJJgnLpPezaMM7nKU7W775gc6GaZIo87zRtg4LcLk1IxrQyY4wvMAp4ATgMbDLGLLXW7kh02SmgC1D7Bu4Vt23ZAjExWF9fTFzcP8cDAyE0FII1pcwTKZte4D9G9RER4Zzfvz9NS5JrUza9gLKZLimbXiIsjJhK1ckdE8FqUxm/bbHO4pmVK7tdmSRBufQedq2TzbyxEawwNfD5I85pDN13n9ulSYLkjBx6DNhjrd1nrY0GZgO1El9grT1urd0ExFzvveKywYOhRw/i6zfgg/JfcJFA57gaQ+mBspnRTZ6M9dOovnRI2czoJk0i3ucqn68pm55M2czoEhpD/jFO89bPxoKfn7bF9mzKpRe43BjKFOtk08fGOTNXsmZ1uTJJLDnNoULAoUTfH044lhw3c6+kJmvh7behb1/imzSldeaZ9Fz9AvObh0KxYmoMpQ/KZgZ3YsE6TGwMsVcO8lTz1tMpmxlZfDwH35+NT3wsMcpmeqNsZmRXNIb+FhsLNWpouqfnUi4zuCsbQ3+LidFUbA+TnOZQUkuG22T++cm+1xjTzhiz2RizOTw8PJl/vNwQa+GNN2DIEOLbtKUlU5gyw4+BA6H5lGBnKLze2KYHqZ5N5dI9Jzr1J+/ogcwKaMXhSSudh07Qw2f6oGxmVPHxHKzWnqKrJjLx1j5ELl6lbKYvymYGdq5ey383hi67PN1TPJGeNTMwa+FM3Zb/bgxdpmx6lOQ0hw4DRRJ9XxhI7jY5yb7XWjveWlvGWlsmSAtSpZ74eOjUCT76iPhOnWkWMY5pM3wYNAj69nW7OLlOqZ5N5dIdJzr1J++oAXwe0JKHNk2geKvyzkOnRvWlF8pmRnS5MbRyAhNv7UPdXweRvVY5ZTN9UTYzqNGjodbpEKJ9ApK+QNM9PZmeNTMoa6FfP6h7NoQYn0xJX6RsepTkNIc2ASWNMSWMMZmAl4Glyfzzb+ZeSWlxcdC2LYweTXz3HjQ9OYKZswxDhjgzzCTdUTYzoBOdB/zdGHpw00TuvS/hn+lgjepLR5TNjCY+noPVO1B05QQm5X+Lur8O4pY8CR9YK5vpibKZAY0eDR07wkPP5cQ/iy+YKwaTaFSfp1MuMyBr4Z13nOVtXw4+jp+NAZ8rWg/Kpse55m5l1tpYY0wnYBXgC0y21m43xrRPOD/WGHMrsBnIAcQbY7oC91przyV1b2r9MPIfYmOheXOYNYv4t/vR+Pf+zJ5jGDYM3tSmj+mSspnxnOg8gLwj+/N5QIv/3xiSdEXZzGDi4zlUvQNFvxjP5Py9qbN98D+NIUlXlM2MZ8wYpzHU+bmtfPTrC5i8eWHYMGjTxpmuoodPj6dcZjyXG0ODBsHocvNpt64x5plnnIfO+vWVTU9mrfW4r0ceecRKCoqKsrZePWvBxg4eal96yVqwdvhwtwuTpACbrQfk8Mov5TJ1He80wFqwswJa2O3/i3W7HEmCsumF4uLsgaqvWAt2Uv7e9uSJeLcrkiQom95pzBjn/eyrZX+18XnzWlu4sLV79zon1661tlgx51dxjbLpnfr1c7I5svxCG+/nZ+3TT1t77pxzUtn0CFfL5jVHDkk6FxnpdGhDQ4n74GMa/tiVefPgvfegRw+3ixMRgPAugwga+Q5zAprz4MaJ3Hu/r9sliUh8PAdrdKToinFMzv8mtbcP0YghEQ8xdix06ADty/7GyJ3lMf7+sHYt3Habc8Hl6Z4ikqb694eBA+HT8kt4dV0DzKOPwooVkD27c4Gy6dHUHMrIIiKgTh1YvZq4z0bz8roOzJ8PH3wA3bu7XZyIQEJj6LN+zA1oxv0bJ6kxJOIJ/m4MjSUkXy9qbx+qxpCIhxg3zmkMtS37O6N3lXO2q1q7FkqWdLs0Ea/Wvz8MGACfVAil07r6mNKl4YsvIEcOt0uTZFJzKKO6cAFq1IB164idMJmXV7ZkwQL46CN4/XW3ixMRgPDXBv/dGLpv42Q1hkQ8gbUcrNnp78ZQrR3D1BgS8RDjxkH79tAqeB/jdpfDxMTA11/D3Xe7XZqIV7vcGProhS/osq4e5sEHYdUqyJnT7dLkOqg5lBGdPQtVqsDGjcROmUGDxY1YtAg+/hi6dnW7OBEBCO86hKBP+zIvoKkaQyKewloO1uxI0eVjmJKvpxpDIh5k/HinMdQi+AAT9wRjLkU4I4ZKlXK7NBGvNmCA8/VBxdV0XVcHU6oUrF4NuXK5XZpcJzWHMppTp6BSJdi6lZiZc2gwux6LF8OIEdCli9vFiQhA+OtDCRrxNvMCmlJqY4gaQyKe4HJjKHQMU/L1oOaOd9UYEvEQ48fDK69A83KHmLwvGHP+HHz1FTz4oNuliXi1gQOdUUPDK35Ft29qYe6+G9asgdy53S5NboCaQxlJeDhUqAC//UbMnIXUn1qdJUvg00+hc2e3ixMRSGgMfdKHeQFN1BgS8RSXp5IlNIZqbB+uxpCIh5gwwWkMNSl3hMkHymFOnYQvv4TSpd0uTcSrDRzobFk/rGIYPb6tgSlZ0slmnjxulyY3SM2hjOLoUShfHvbvJ3phKC+Oe4Fly2DkSOjY0e3iRATgeLdh5Pu7MTRFjSERT2AtB2t1pmjoaKYGvUGN7cPJk1eNIRFPMGECtGsHjcofY+qhcvgc+8uZrvLoo26XJuLVBg1yGkNDKn1Dr2+rY267zRnNlzev26XJTVBzKCM4dAjKlYOjR4le8gX1Pn2e0FAYNQpefdXt4kQE4Hj3d8n38VvMD2jMfZumcM99agyJuO5yY2jZKKYGdaf6jvfUGBLxEBMnOo2hl8qFM/1IOXwOH4KVK+HJJ90uTcSrDR4M/frBoMrf0/vbqpiiRZ3GUFCQ26XJTfJxuwC5QWFhULw4zJoFzz0Hx48THbqauiOcxtCYMWoMiXiK493fJd9HvVkQ0IhSm6aqMSTiCazlYO0uFF02imlB3ai+4301hkQ8xKRJ0LYt1C93klnhFfDZ/wcsXw7PPut2aSJebfBg6NsXBlT+gT7fVcYUKuQsDJ8/v9ulSQrQyKH0KCwMqleHiAho0gSyZiVqZRh1h5ZhxQpnm8927dwuUkQAjncf/ndj6N6NagyJeITLjaGlI5kW1I1qOz5QY0jEQ0yaBG3awIvlTzP75Av47N4FoaFQtqzbpYl4tSFDnMbQO5V/pO/3lTAFCjjPpQUKuF2apBCNHEpvEjeGAKzFxsbS7/XzrFjh7OagxpCIiy6P6gsL4/gb75HvozdZGNDQaQzdr368iGsuZ3PtWg7UeY2iS0cyPe/rVN2uxpCIp5g82RkxVLf8WeacqYTPju2weLGz4YqIuGboUHj7behXdTPv/FAJExTkjBgqWNDt0iQF6UklPbmyMZTAREbSb1N1nn8jlKptg10qTkQSZ9RWrES+2BgWZX6ZezZOU2NIxE2JshlfsRLF4mKZkbcrVXZ8SN4gNYZEPMHkyc6IoVrlzjPvQhV8/vcLLFgAlSu7XZqIVxs6FPr0gT5VfqL/+hcwt9zivK4WLux2aZLCNHIoPWnR4l+NocuyEkHVeS3Tth4R+ccVzVsTG0MsvpQe1VqNIRE3XZFNn7hYYvGjxvgaagyJeIiQEKcxVKPcRRZcqorP5o0wZw7UqOF2aSJebdgwpzHUu8ovDNpQAZMzp/O6WrSo26VJKlBzKL34/Xfw97/6+cBA55VVRNLeVUb1+RFHsS61nPMikvaums1YcjapoWyKeIAveoYR3Ko4vR/6goWxNfDZsN7ZcKVOHbdLE/FqM9uE0fCt4ox7fBJDNlbAZMvmTCUrVszt0iSVqDmUHnz+OZQuDadPw+DB2CyB//98YKCzUF+wppSJuKJly6uO6iMiwjkvImlP2RTxWHFxENIsjOfer05xDjB4a3V814XBtGnQoIHb5Yl4rago+KRWGLUnOdls+2MbjDHOByq33eZ2eZKK1BzyZJcuOatLN2oEDz4Iv/zCt8/1oX6WUC6S0CBSY0jEdfEDBmK5yvQUjeoTcU10tzeVTREPdOIEvPl4GA2mVycrCdOx4+MhUyYtcCviooMHoeuDYbRdmiibABcuOCclQ1NzyFPt3AmPPQYTJkDv3ti1YXwwpwjBwfC/PMH8NSHUGdKnxpCIq85PW8SlNp05R3ZifDL//5Nq3oq4w1qODx4PXV/jOHmJ8Qv4/+eVTRHX/PgjdLw3jP5b/nn4/Ft0tDMVVFM+RdLcqlXQ5f4wPtyVRDYjI5VNL5Cs5pAxprIxZpcxZo8x5s0kzhtjzKcJ5/9njCmd6Nx+Y8w2Y8wvxpjNKVl8hjV1KpQpA8eOwcqVnOk5lLov+dOjhzP9evNmuL1NMOzfrze2Xk7ZdFFsLEeb9yJ787rsiLuLpYO34bfmC+ehE/Tw6eWUTRdFRHCwfEvy9X2F73zLsu3zHfivXqFsCqBsuslaGD0ann0WPjzV8t8Pn5dpyqfXUS7dFR8PAwdClSow+lJLApVNr3XN5pAxxhcYBVQB7gUaGmPuveKyKkDJhK92wJgrzgdbax+y1pa5+ZIzsIsXnR3JWrRwRg398gs/56vEI48472M/+QTmzoUcOdwuVDyBsukee/QvjtxbgQLT3mN6tg7wzbc07VMUUy7YCatG9Xk1ZdM9sbv2cqTEUxQNm8qEAv247bcVVHg5r5NFZdPrKZvuuXgRmjaFjh2hYkXI/U7nq1+sKZ9eRbl018mTUK0avPMOtGwURb4K91/9YmUzw0vOyKHHgD3W2n3W2mhgNlDrimtqAdOsYwOQyxhTIIVrzdi2bXNGC02bBv36Ydd8ycQVBXnySWeE7TffwGuvgdGuu/IPZdMFkV9+x5nbS5Pr9428f/80qvwxmkefSTSdLFij+kTZdMPpqUuJLPUIAccPMrLKcpr9MYDit/v+c4GyKcqmK3btgscfdzYgGzzIsjT4I7L27+lshR2gKZ+iXLpl0yZnz6O1a2HGu4eZuOd5/L4IhZde+me07WXKpldITnOoEHAo0feHE44l9xoLrDbGbDHGtLvRQjMsa2HiRGek0OnT8OWXRPQaQMs2vrRtC889Bz/9BE8+6Xah4oGUzbRkLcff+hi/F8py4lJWprbfQLefm5I3r9uFiQdSNtNSbCwHm75F7ha1+D3+dr7+YAudVlQlc+Zr3ypeR9lMY/Pnw6OPOislrFkSQZ8djfF5ozvUrg2//gorNOVTlMu0Zi2MGwfPPOMMPPjfp1/T+KNHMNu3O6GdPdvJorLpdZLTHEpqrIq9jmuettaWxhkO2NEY81ySf4kx7Ywxm40xm8PDw5NRVgZw/jw0bgxt2zrp3LqV3YXL8cQTzgCi/v3hiy8gKMjtQsVDpXo2vTKXSTl/nsNPv0S+Yd1Y5V+Dgws202HMA/j6XvtW8UrKZhqxx45z8J5KFJ0xjLk52uC/8Xvqdi/hdlniuZTNNBITA927Q/36UKoUbF38B+X7PuU8dA4Z4jyAZs+uKZ8CetZMUxERzgom7dtDuWDL9lYfclfHCpA7N2zcCPXqORcqm14pOc2hw0CRRN8XBo4k9xpr7eVfjwOLcIYO/ou1dry1toy1tkyQN3RDfv7ZGcc3Zw4MHgwrVzLvm/yUKQNHjsDKlc7cTz18yn9I9Wx6XS6TELN1B8eKP0aBHxbwWZHh3P/7QsrXzel2WeLZlM00cPGrDZwqUZqgPesZ+fAkKh2cwH1lAq59o3gzZTMNHDkC5crBRx9B587wTd81FKxZBg4cgOXL4a23/v86CZry6e30rJlGfv8dnngCpk+HoW9dYEWOl8n6zhtQq5bTGLrnnv9/g7LpdZLTHNoElDTGlDDGZAJeBpZecc1SoFnCSvJPAGettUeNMVmNMdkBjDFZgYrArylYf/pzeauGJ55wWrdhYUT36EPX7r40aOB8uvLzz85ifSLXoGymslNj5hBT+jE4dYqRtb+i3e89KVpMC3/JNSmbqclajrw1Ev8Kz3H2Uibmv76ejltakVM9W7k2ZTOVff2189nnTz/BrJmWTwu/h3+NylCwoLPdbpUqbpconke5TAOLFjnL2/75J6ybsJveS57ALJgP777rjOTTjkcC+F3rAmttrDGmE7AK8AUmW2u3G2PaJ5wfC6wAqgJ7gAjg8h53+YFFxvl0wA+YZa1dmeI/hScLC3O2/AsJgYcfdqaQzZ/vvDhOncqhyCAaPA8bNkDXrjB8OGTK5HbRkh4om6koOprDjXpSeMEI1vs8zfFRc3nt1YJuVyXphLKZii5e5I8X2lLih89Zk7kaWRdMp2m13G5XJemEspl6rIX334fevaFkSQhbdoF73m8F8+ZBgwYwaRJky+Z2meKBlMvUFRvrDNZ7/31nidvQtksI6tYM/P1h1SqoUMHtEsWDGGuvnNLpvjJlytjNmze7XcbNCwuD6tWdEUIBAZArF4SHw7Bh0L07q9b40LixsxvZ5Mnw4otuFyyewBizxRO34swwubyG+EN/cuTZBhQ+sJ6pubvyaNh73Pugv9tliQdQNt0VvW0XJ56vR/7TO5lcfBA1vn+TWwsmZwC0ZHTKprvOnnXWMFm8OKEP1HsP2ZrWgR07nFEJb7yh7Xa9lLLprr/+cjYe++Yb6Ng+jk9yvoPf8CHOEKIFC5wdA8UrXS2b1xw5JDcocWMIIDLS2arh00+J69CJQQNh4EC47z5nINGdd7pbrojA+SVriWvQkFzRF/nkyTm0XtWA7NndrkpEwscuIEvHlvjHZ2ZS/VW0mlUBP72DEXHd1q3Oh5v798Mnn0CXkl9gghuBj4+zgOYLL7hdoohX+vZbp1l79izMGX2SBksaOyOFWreGkSOdgQsiV9BHbqnhysbQZdZie/bizcfDGDAAmjZ1ppOpMSTigrAwKF7c+dVa/nxtOIG1X+Bo9C0sfmsTr32vxpCIKxJnMyaGP+q9QVCHF/mNe9gy/ifazVVjSMQTTJ36zxKaX6+N57ULQzDVqzm7G23erMaQiAushQ8/dNaQzp4dtob8RIP3yjivqePHw8SJagzJVentVWpo3PjfjaEE5lIEnba05K4J+2ndWqNsRVyRuIFbrRp/FXyYQnvXsyTLS9y6dAJNKqgrJOKKRNm01apxLPsdlDi+jdl5OlJm3YeUKZXZ7QpFvF5kJLz2mvOcGRwMsyecJ1+P5s6Kt40awYQJEBjodpkiXufcOWep24ULoW5dmPHCVLK0aA958zpDiR5LciM3kb+pOZSSfvvN2X/+6NGrXhJhAokeG0KbNmlYl4j848qRfZcukX/vehYX7sjTWz4jKJ86tiKuuCKb5tIl8l/axtL73qLmj0P0rCniAfbvd6aRbdniLD49sPEu/GrUgd27nb3ru3bVJ58iLti2DerVg3374OPh0bz2R1dMhzEJHdzZkC+f2yVKOqBpZSnhjz+cNm2pUrB8OfTpA0uW/OtTk0jfQOKXhFKyXbBLhYp4uatM+TRArVMhBG3/2pWyRLzef2Szxr5PCPwxzJ26RORvoaHONvV79jhvc4c+sRS/px5zNltZswZef12NIZE0Zi2s6h1GjgeKc/+JML6f+yddFz2PGTsGevSA1avVGJJk08ihm/HnnzB4sDN308/PeVHs1QuCgrhwAUKbhFJzfHUCiSDGP5DMK0MJKKfGkIhrWrS4+pTPiAinybt/f5qWJCIomyIe7JtvYMAAiF8bxq/+LbGTJlHop2+dg4884sxh0a5HImnKWlixAkK7h/HBrupkJYL5EVUwrbM4+9fPm6etsOW6qTl0I44fh+HDYfRoiIuDtm2d0UKFCnH+PIx611kI7MSJYN54JJTBf7Yk86wQZ1ifiKS92FjCP5mJ34lYcl/tmsBACAlJy6pEJDKSw+9MIPvRi+S82jXKpogrvv7a6f98/TXUzR3GbP/q+MdEQMtKzvvfZs1g7FjIksXtUkW8hrXORJUBAyDb5jCWG2cgAoCJioLoaJg0SY0huSGaVnY9Tp+Gt9+G225z9uts2BB27YLRozmbrRCDBzsbrPTuDY8+CuvXw/ubg8l8dL8aQyJuiI3l+PtTOXbL3QT1aMH+S/lZ+tgg4rNcsXhJYKAzXl45FUkbkZEc6jWSk7lvp/B7Xfg1vhQrK36EVTZFXGWtM8uzbFkndr/9BvM7hjE/MqExBE5jyN8fmjdXY0gkjVgLS5c6z5g1akDJw2GszlSdQPvv3bHp1MkJssh1UnMoOc6fhyFDnKbQkCHOugg7dsDkyZzOVYL+/Z2mUN++8PTTsHGjM8zvySfdLlzES8XGcuz9aRy75R7y9WzB0QvZmVBtMUEHtlDzx7fxWR76z5pgevgUSTuRkRzsNYoTue+gyHud2RVzO1Obr6XUiXVUXvU6RtkUcYW1sHat0xQqV85ZX3rECNgfEka9ydUwl654AI2JcZ5Q9QAqkqqsddb4euQRqFXLGasweTLM9G+Of3TS07G5PB1b5DqpOXRZWJjT4Un8InfpkrPzwm23OSOGnnsOtm6F2bM5mfcu+vZ1bhkwwHkx3bLln46uiLggNpa/3p/OX7fcS/6ezTl6IRsTqy8m36GfaBtai8JFEhbKDA52HjqLFdPDp0haiIriQK/RnMh9B0Xf68TvMSWY3uIrSp1YR/MpweTKlXCdsimSpqyFr75y3uKWL+8sNv3pp86OR11aXSBzw7rO++Gk6AFUJNXEx8OiRc4i8LVrO9vUh4TAb7/G0jJ2AubChavfrOnYcoPUHIJ/dkk5cMD5dfVqGDMG7rgDund3Uvnjj7BkCeEFHqB3b6cpNHgwVKwIv/zyT3hFxAVxcRx9fwZHbynFrT2bcfxCIJNrLCL/4Z9os6wWBQslsXtKcLCzwK0ePkVST1QU+3uOJjzXHRR7ryO/x5ZgRsuvuPfENzQNKUfOXMqmiBusdTYYe/ZZqFDB2Xh35EjYuxc6t4siYMJncPvtcOYM+Pom/YfoAVQkxcXHO2u8P/ww1K0LFy7A1Knw205Li7yh+Jd5ENq1g7vvdjq5gZqOLSlHzaErt8+NiIDKleHVV50RQ+vWwapVHCv2GD16OE2h4cOdW7ZtcxaCf/BBV38CEe8VF8ef783kSO57KdCzKeEXAphScyH5//yJVktrU6CgttQVcUVUFH/0HEN4rjso/n5H9sYWY1arLyl14huaTL5KU0hEUp21zmegTz/tfMB54ACMGuWMGOrYPo6AudOch84uXeCee+D7750ukh5ARVJVfDzMnw8PPQT16kFkJEybBjt3/l979x4dZX3ncfz9IyEBBEQIYuRSLiJCgChQRU51C5Z7elC06kFFLtUqrbuyq+Kh67rosV2121p162UpeDgqHlu0Xlr0WEjVrheIILeCGhAxYovoqtsAgSTf/eM3kRCfTCaTeWaeZD6vc+aYyTzP5DNz5iN5fnme3w9mDysjd9IEfynnkSOwapXv5nXX+R7qcmxJkeweHGo4MFTHDPLzYckSPh58LgsXwoAB/gqzmTNh2zZYuRKGD89MbJGsEnTJZ00NFXc9zkcnFNF70eV8+vcOrJixipP2bmTOMxfQqzC7/9cmkhZB3ayqYtdND7Kv22AG3L2AXdX9WDn/JYo+fZVZvz6PrsdrUEgkE8zghRdg3DiYPBkqKvyiu+XlsOBao8MLv/N/7bzySuje3W9cWup3qLvcUwegIilXW3v0ZIPvfQ+qquDRR/30tlecs5vc2bP8nCVbt/rT+7Zt8wekTlMlSOpl71L277/vh2UbDgzVqaris/PnMeDwbqqr4fLLYfFiOPXU9MYUyWr1B3BLSuCZZ/jwrX20u+M2+vzfO2xtN4LSC1Yx+YHzmd1LA0IiadOwm08/TflL79P1/jsYeOhD1uWeTen8XzP9F9/hrC4aEBLJlLpBoSVL/AwJffv61efnzPF/B6W01C+z++ab/pfcJ5/0vx+3a/Bvat0B6Ny5/lIyHYCKtEhNjT9T6Pbb/XjPkCHw2GNwySWQ88VnsOgncN99vouLF8OiRdC1a/CT1V2OLdJC2TU4tH27v4hz1SrYuNF/zzn/L2cDlXTi4srlXD7X/5s5aFCas4pku4BLPmsnTqIvxrZ2w3l55m+Z9MAFXH6iBoVE0iqgmzZ5CqdglOWO5eXvL2XqzydypgaFRDLGzK+cu2QJrF8P/frBQw/5QaG8PKCszB9wvvQS9OkDS5f6s4Zy4xwa6ABUpMVqavyZQrfd5g9Nhw6Fxx+Hiy+GnOoquOd+vzr255/7wt52m++oSBq07cEhMz9b9KpVflBo+3b//bPPhrvv9qfkffABNr3kmCU6K+nEgyXPs/S+8fTvn5noIlmttBSbPh3XYIWUdhjVOXn0/e09FJ1/XobCiWSxtWuxkpKvddNhVOfmU/TMHYyZNiFD4USy25Ejfgn6DRv8PLVlZf7Kz4cf9uM+eXnAjh1+Bd5Vq6BHDz9nwrXXQocOmY4v0mZVVfnqrVvnK7djBwwbBk88ARddBDmu1t/58Y/9AOyUKX6S25EjMx1dskxCf3J3zk1xzr3jnCt3zt0c8Lhzzt0be3yzc25Uovs2W9AcB/XV1sLrr8MNN/jTfUaNgp/+FE46iar/vJ+3n69g2fdf45/33sDEHwykcNZ4JhwYaoxeAAAMeElEQVR8nkr8ddRVuZ34+8rn+ZfnNDAk0dequtmYI0f44n+2suOWx9gw8Sa29Z1MzYTvfO3gs05uzWG6Xj+/xXFFwtQmullVxad/3Mi2Gx9hwz8sZHvhBGrPm9h4N6ur6LhgXovjioSpLXTTzM8ZtHo13HUXXHGFn6+kc2c/H+ay2aU8vbE/v7+hlHffhauugry/7oH586GoCF58EW691a9Xv3ChBoYk4yLVS0i6m7W1fuaSZ5/1J/9ceqmv3HHH+YmmH7+6lD/u7M/aW0rZsiV2CdkrpXDmmXDZZdCtmz+bb/VqDQxJZphZ3BuQA+wEBgJ5wCZgWINtpgGrAQeMBd5MdN+g2+jRoy3Q2rVmnTqZgf/v2rX++0eOmK1ZY/bDH5qdfLIZWG1ue/vojGn2dMlSu2LqJzZokJlzflcw69DBbPRoszlzzH72M7N1d6616j7fOPqcIhkClFkTHbEMdLPRXpo13s0GDlV8Yu89tMbWz/q5rS+60sq7nG6HyPuqmIfIs03tTrc3uk2yI+3aHy1s/Vuc5xcJU1vuZuXOj23HL1+wNy+809YPmWW7jiuyI+R81btKOtqG3G/a6z2mqZsSOW25m59/bvbnP5s98IDZggVm55xj1q3bsdXr3dtsyhSzG280e/HmtVbTod7zPvWU2fXXm+XlmeXnmy1caLZvXwredZGmJdLNSB1rmiXczf37zUpLze691+yqq8zGjjXr3PnYbvbvb/bd75otXmy25l8bdHPZMrPp0/39vn3NVqwwq6lp+ZsukoDGupnIZWVnAuVmtgvAOfcEMAP4S71tZgArYj/oDedcN+dcIdA/gX0TEzTHwdSpHBo3gXZvrSf/y/1U5XTk1c5TWZFzIc9UT+fLjcfTbhMMHgxnnOH/sjJihL8NHAg5OfV/wHi4aXezY4lkUHS7WVLCvlv/iz1/68Dh9Zvo9N4mTt6/iV7VezklttvHnMT7nUeyY9hEbGQxx59bzIApQxjRv71fgCFoNUGtkCKtQ3S7Ob2Evy7+JXv+lk912SaO27mJPp9tpqBmH0Niu1W4PuzuWsy2kTNwpxfTfXwxgyafwhmFOcHPC+qmtBbR7WZJCbvve57XO4xnyxa+uu3Zc3S3Ll3877CXXHL099nhw/3iYsc876Gjz/vVqkbz5vmzhfr2bXZckZBFo5fQaDfLf/H1bu7de3S37t19H+fMOdrNoqJ680cHdXPePH9K0Z13+iXpO3ZMKrJIKiUyONQb+LDe/QrgrAS26Z3gvk1rZMl5V1VFh9LVrOE8fsUCNp84hcHFnRgxAu4b7ot52mnqmrRZ0e3mgQP0WjSXXsARcinPG8b2kyawYUgxHc8qpnBKMQPHnkhh+zjPXbcySt3z6+BTWo/odvPgAQpvuYpC4BD57MwvYnPf6Rw+rZjjxhXTe+pI+o/qTp94F52rm9J6RbebBw7QZ/4k2jGTAtePC3vANQVQcA70LICCntC1y9HVq9kduz0Xu79nj59fs7r66z8zP99fsqKBIYmmzPcS4naz/w8m8RYzKczpx/Du8I89oedgKCiAnj39GM9X3Xwvdnsqdj9eN2tr/TL1OliViEhkcChouZGGy3s1tk0i+/oncO5q4GqAfv36Hfvg3LmNLjnvgG/1Kmf09pmccELgJiJtVejdjNtLiNtNgMM9Cjn87m6Gds9jaKNbxaGlc6V1in43C07Gdn1AUZdcihrdKg51U1qnSHezPdVcwm+gY0fcAWBP7JaIgwcDV98F4NAh/3O10phEU+aPNSGxbuZ3xFUClfjB2UTE6+bBg+qmREoiE1JXAPX/1NAH2JvgNonsC4CZPWxmY8xsTM+ePY99cPly/5fJIJ060WHlcg0MSTYKvZtxewlNdjPvN4/RuXteky8krrqlc3XwKa1H9Lv55KN07NLCBUvVTWl9It9Nt3YNrrISmntbsybu87J8efBjIpmX+WNNUDdFSGxwaD0w2Dk3wDmXB1wKPNtgm2eB2bGZ5McCX5jZxwnu27S6v1A2LJZOZZfspm6KRJO6KRJNbbeb6ry0XpnvJaibIiQwOGRm1cCPgBeB7cCTZrbNOXeNc+6a2GZ/AHYB5cB/Awvi7ZtU0obFUqEky6mbItGkbopEU5vvpjovrVBkegnqpmQ9Z41dA5lBY8aMsbKysuAHS0s1x4G0ac65t8xsTKZzNBS3l6BuSpunbopEk7qZpucVaSZ1M03PK9JMjXWzhRMOZEDdHAciEi3qpkg0qZsi0RRWN9V5kZZRNyVLJTLnkIiIiIiIiIiItFEaHBIRERERERERyWIaHBIRERERERERyWKRnJDaOfcJ8EGcTQqA/WmK0xRlCaYswRLJ8g0z65mOMM2RQC+h9b3X6aIswVpbFnUzNZQlmLIEUzfTR1mCKUswdTN9lCWYsgRLupuRHBxqinOuLCoz3ytLMGUJFqUsYYjS61OWYMoSLEpZwhCl16cswZQlWJSyhCFKr09ZgilLsChlCUOUXp+yBFOWYC3JosvKRERERERERESymAaHRERERERERESyWGsdHHo40wHqUZZgyhIsSlnCEKXXpyzBlCVYlLKEIUqvT1mCKUuwKGUJQ5Ren7IEU5ZgUcoShii9PmUJpizBks7SKuccEhERERERERGR1GitZw6JiIiIiIiIiEgKRHpwyDk3xTn3jnOu3Dl3c8Djzjl3b+zxzc65URnMclksw2bn3GvOueJMZam33TedczXOuYsymcU5923n3NvOuW3OuZczlcU5d7xz7jnn3KZYlrkh5VjmnNvnnNvayONp+9yGRd1MLku97dTNYx9XN1NE3UwuS73t1M1jH1c3U0TdTC5Lve3UzWMfVzdTRN1MLku97ULtpnrZaJZwumlmkbwBOcBOYCCQB2wChjXYZhqwGnDAWODNDGYZB5wQ+3pqJrPU224t8Afgogy+L92AvwD9YvdPzGCWxcCdsa97Ap8BeSFkORcYBWxt5PG0fG7DuqmbyWept526eew26mb63mt1U91sThZ1M33vtbqpbjYni7qZvvda3cxQN9XLuHlC6WaUzxw6Eyg3s11mdhh4ApjRYJsZwArz3gC6OecKM5HFzF4zs/+N3X0D6BNCjoSyxFwHrAL2hZQj0SyzgKfMbA+AmYWVJ5EsBnRxzjmgM76w1akOYmavxJ67Men63IZF3UwyS4y6qW6GRd1MMkuMuqluhkXdTDJLjLqpboZF3UwyS0zY3VQvGxFWN6M8ONQb+LDe/YrY95q7Tbqy1DcfP1IXhiazOOd6AxcAD4aUIeEswKnACc65Pznn3nLOzc5glvuBocBeYAvwT2ZWG1KeeNL1uQ2LuplkFnWz0SzqZmqom0lmUTcbzaJupoa6mWQWdbPRLOpmaqibSWZJUzfVy+Ql9bnNDS1Oy7mA7zVcWi2RbdKVxW/o3Hh8Wb8VQo5Es9wDLDKzGj9wGZpEsuQCo4HzgI7A6865N8zs3QxkmQy8DUwABgEvOedeNbMvU5ylKen63IZF3Uw+i7oZnEXdTA11M/ks6mZwFnUzNdTN5LOom8FZ1M3UUDeTz5KObqqXyUvqcxvlwaEKoG+9+33wo3DN3SZdWXDOjQSWAlPN7NMQciSaZQzwRKyoBcA051y1mf0uA1kqgP1mVglUOudeAYqBVBc2kSxzgf8wMwPKnXPvA6cB61KcpSnp+tyGRd1MPou6qW6GSd1MPou6qW6GSd1MPou6qW6GSd1MPks6uqleJi+5z62FMEFSKm74gatdwACOTvpU1GCb6Rw70dK6DGbpB5QD4zL9vjTY/hHCm7wvkfdlKLAmtm0nYCswPENZHgD+PfZ1L+AjoCCk96Y/jU8QlpbPbSY/g+qmutnMLOpm+t5rdVPdbE4WdTN977W6qW42J4u6mb73Wt3MUDfVyyYzpbybkT1zyMyqnXM/Al7Ezw6+zMy2OeeuiT3+IH5m9Gn4khzAj9ZlKsu/AT2AX8VGUKvNbEyGsqRFIlnMbLtz7gVgM1ALLDWzwCX3ws4C3A484pzbgi/KIjPbn+oszrmVwLeBAudcBXAr0L5ejrR8bsOibrYoS1qom8HUTXUzTpa0UDeDqZvqZpwsaaFuBlM31c04WUKnXjYurG662MiSiIiIiIiIiIhkoSivViYiIiIiIiIiIiHT4JCIiIiIiIiISBbT4JCIiIiIiIiISBbT4JCIiIiIiIiISBbT4JCIiIiIiIiISBbT4JCIiIiIiIiISBbT4JCIiIiIiIiISBbT4JCIiIiIiIiISBb7fwHPMIzacbt4AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "yy = sol_exacte(tt)\n", "\n", "schemas = ['EE','AB2','AB3','AB4','AB5','N2','N3','N4','RK4', 'EI', 'CN', 'AM2', 'AM3', 'AM4', 'BDF2', 'BDF3', 'EM', 'heun', 'AM2AB1', 'AM3AB2']\n", "\n", "uu = { schemas[k] : eval(schemas[k])(phi,tt,y0) for k in range(len(schemas)) }\n", "\n", "err= { schemas[k] : max([abs(uu[schemas[k]][i]-yy[i]) for i in range(N+1)]) for k in range(len(schemas)) }\n", "\n", "# print(err)\n", "\n", "figure(1,figsize=(20,16))\n", "\n", "for k in range(len(schemas)):\n", " subplot(4,5,k+1)\n", " plot(tt,yy,'b-',tt,uu[schemas[k]],'r-D') \n", " title( f'{schemas[k]} - max(|err|)= {err[schemas[k]].round(5)}' )\n", " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Deuxième méthode : on crée autant de liste que de solutions approchée." ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "cell_style": "center", "colab": { "autoexec": { "startup": false, "wait_interval": 0 } }, "colab_type": "code", "id": "ySox-VsNGt8p", "scrolled": true, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "yy = sol_exacte(tt)\n", "\n", "uu_ep = EE(phi,tt,y0)\n", "uu_AB2 = AB2(phi,tt,y0)\n", "uu_AB3 = AB3(phi,tt,y0)\n", "uu_AB4 = AB4(phi,tt,y0)\n", "uu_AB5 = AB5(phi,tt,y0)\n", "uu_N2 = N2(phi,tt,y0)\n", "uu_N3 = N3(phi,tt,y0)\n", "uu_N4 = N4(phi,tt,y0)\n", "uu_RK4 = RK4(phi,tt,y0)\n", "\n", "uu_er = EI(phi,tt,y0)\n", "uu_CN = CN(phi,tt,y0)\n", "uu_AM2 = AM2(phi,tt,y0)\n", "uu_AM3 = AM3(phi,tt,y0)\n", "uu_AM4 = AM4(phi,tt,y0)\n", "uu_BDF2 = BDF2(phi,tt,y0)\n", "uu_BDF3 = BDF3(phi,tt,y0)\n", "\n", "uu_em = EM(phi,tt,y0)\n", "uu_heun = heun(phi,tt,y0)\n", "uu_AM2AB1 = AM2AB1(phi,tt,y0)\n", "uu_AM3AB2 = AM3AB2(phi,tt,y0)" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "4HPS2hE6G54k", "slideshow": { "slide_type": "slide" } }, "source": [ "On compare les graphes des solutions exacte et approchées et on affiche le maximum de l'erreur:" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "cell_style": "center", "colab": { "autoexec": { "startup": false, "wait_interval": 0 }, "base_uri": "https://localhost:8080/", "height": 3818, "output_extras": [ { "item_id": 1 }, { "item_id": 2 }, { "item_id": 3 }, { "item_id": 4 }, { "item_id": 5 }, { "item_id": 6 }, { "item_id": 7 }, { "item_id": 8 }, { "item_id": 9 }, { "item_id": 10 }, { "item_id": 11 } ] }, "colab_type": "code", "executionInfo": { "elapsed": 2188, "status": "ok", "timestamp": 1520423878951, "user": { "displayName": "Gloria Faccanoni", "photoUrl": "//lh4.googleusercontent.com/-gY6sCpFtBJo/AAAAAAAAAAI/AAAAAAAABdo/a_W4-RMG5X0/s50-c-k-no/photo.jpg", "userId": "116371262733782746288" }, "user_tz": -60 }, "id": "oz1tVYNtG4-3", "outputId": "9b89f5ec-83c5-4797-e057-8d6c20560051", "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAOVCAYAAADzyICFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZzNZf/H8dc1i7GnxVJU2rRrc+vu7q5oVSbql0KIIUuyZIk2oiKksu8MWaLNTULq7rSX0CKJkogklCVmzJiZ6/fHdeZ2OjPDjDlzvmfmvJ+Px3lwzvd7zvkc5j3fcz7n+l6XsdYiIiIiIiIiIiLRKcbrAkRERERERERExDtqDomIiIiIiIiIRDE1h0REREREREREopiaQyIiIiIiIiIiUUzNIRERERERERGRKKbmkIiIiIiIiIhIFFNzSEREREREREQkiqk5JPlmjEkwxqw1xlTzX69njHm/CJ5nkzGmpv/vtY0xn4b6OUQilXImEpmUTZHIpGyKRCZls/gpkc0hY8z7xpjdxpiEoNunG2PSjTH7jTF/GWNWGWOuC9h+sjFmoTFmmzHGZv+QHePzH/Q/T/blTf+2esaYrKBt+40xVxXmNYdJB+BDa+32cD2htXY1sMcYc3tB72ucocaYP/yXYcYYc4T9bzDGrDPGpBhjfMaY0wO2PWyMWeP/ufnZGPNw0H2fNsZ8a4zJMMYMKGitkrtCZLmhMeZjY8weY8x2Y8xkY0yF8L+CYxLNOcvzsYwxp+Xye9MaY3od04uWQilENuv7f1fu8f8fzzfGVA//KzgmyqayGfGONZtB+yb7/w/PDk/VhaZsKpsRrxDHzdw+O7YO/ys4JspmMctmiWsOGdfQuQawQKNcdhlmrS0PHAeMB94wxsT6t2UBS4G7QlBKF2tt+YBL4A/otqBt5a21n4XgOYtaR2BmKB7IGBOXn9v8Zvufu6A6AHcAlwC1gcS8HscYcxLwBtAPOAFYCcwL3AW4DzgeaAB0McY0C9i+AegDvHUMdUouCpnl44BngFOA84EawHNFXHKoRHPO8nwsa+0vgb8zgYtxv7NfP4aapRAKmc21wC3W2kq4fP7o36c4UDaVzYhWyGxmP8a/gbOKttKQUzaVzYgWgmwGf3acUdQ1h4iyWdyyaa0tURegP/AJ8AKwKGjbdOCZgOtlcSE9JWi/OP/tNY+xhveB+/PYVg/YGsLXOx0YBywB9vtfezVgBLAbWAdcFrD/I8BPwF+4N+l3BmwbD7wWcH0o8F9cY+Q0IBWIC3ot7wdcTwCGA78AvwMTgDKBrxvoC2zH/aLIcZt/302B//ZAdf9zJxTw3+ZToEPA9XbA53ns2wH4NOB6Of9znpfH/qOA0bncPgsY4HUOSsIlFFkO2P5/wLeFqEU5y/vfJmQ5K+BjPQn4vP45jcZLqLLp/1l+FlhbiFqUzbz/bZTNKLsUNpu4979f4T7IWODsQtSibOb9b6NsRtmlMNlEnx2VzTBeStzIIdzojtn+yy3GmKq57eTvxt4H/Iz7YTwqY8w444bC53ZZHaoXcAzuAZ4ATgLSgM+AL/3XX8P9Isr2E65zfRwwEJhljDnZv60XUNsY08YYcw3uh7i1dT+1FwMbrbUZR6hjKFALuBQ4GxfM/gHbq+E6q6fjApXXbX9jrf0VOAScC2CMeeQI/w97Au56IfBNwPVv/Lfl5m/7WmsP4P6tcuzvHxJ4DfBdHo8loRHKLF9L4f+/lLOiz1lBHus+oLh8c1bSFCqb/uHUe3BvonoDwwpZj7KpbIpT2ONmD9wpIKF6T6tsKpviFDabVYwxvxs3tcWLxphyhaxH2VQ2c+d1dyqUF+DfuB+Ek/zX1wE9ArZPBw4Ce/x/HgRa5PI4oRg5lOJ/nuzL0/5t9XDDxvYEXcod43NNByYHXO8KfB9w/WJgzxHu/zXQOOB6XeBPYDPQPOD2FgR1Owno/uI6xAeAswK2XwX8HLBvOlA66P5/u81/+6bgf3vgV+DaAv7bZBIw8gc4x///anLZdyowJOi2T4A2uew7EBfwHN1oNHIoJJdQZdm/7024b0JqFaIe5Szv1xaynOX3sXBvUvYD5b3+WY22S4izeQLu279/FqIeZTPv16ZsRtGlsNkETsWdIn+c/7ql8COHlM3cX5uyGUWXEGSzGnABbjqYM4APgYmFqEfZzPu1RX02S9rIodbAMmvtLv/1Of7bAg23bq6DMkAd4DljzK1FUEs3a22lgEu/gG3bgrZVsq7b+DfGmBYBk1QtOcJzBXaWU3O5Xj7gMe8zxnwd0Cm9CNclBsBa+wWwERfYVwIeZzdwpAl9K+OGQa4KeOyl/tuz7bTWHgy6X2635aYC7pdmQewHKgZcrwjst/4kHmXf7P3/CrzBGNMF191taK1NK2A9kn8hybIx5p/++zax1v6Q2xMpZ3/jdc7y+1itgdettfsLWKsUXsiOs9baP3HflC3IYy4BZfMwZVOOprDZHAE8Za3de7QnUjb/RtmUoylUNq212621a621Wdban3FznDbJ7YmUzb9RNo9BiWkOGWPK4IbIXWfc6kTbccNjLzHGXBK8v3XW4Dp8DfP5HBNMzpnFsy8hP8XIWjvbHp6sqtANLONmUJ8MdAFO9P8SWoMLc/Y+D+LO/9yG++WTbTVwZm5v4P124X6ZXBjQ8DrOukm2/veScrlfbrcF130KUApY77/+2BH+HwKD9R1uErBsl5D3qUV/29c/XPOswP2NMW1x593eYK3derS65diEKsvGmMuAhUBba+1/83o+5ex/NUVCzo76WP6fj7uJlOG3UaSIjrNxQBVyvsFSNg/XpGzKEYUomzfgPpBm3x/gM2PMvbncX9lE2ZSjK6LjpiUgG0H3VzZRNgujxDSHcLOBZ+KG3V3qv5wPfIQb6ZGDMeY83FC/wAZAadwPOECC/zoA1tpO1uZYZSz7ktc5hJGkHC5QOwGMMUm47i/+67VwKzy1BFoBfYwxlwL4myE/4oYO5mCtzcL98njRGFPF/3jVjTG3hKDuesB71j9Sx1o7+Aj/D4G/UF4CevrrOAV3Xuz0PJ5jPnCRMeYu//95f2C1tXad/7W0AAYDN1lrNwbf2RgT779fDBBnjCltglYAkXwrdJaNMRfhvn3oaq19Mww1B1LOjjFn+XysO3HfBPkK/YqloEKRzf8zxpxrjIkxxlTGzWvwlXWjiIqasqlsllSheA9cC/fhJfv+ALfjfjaKmrKpbJZUoThu1jNurj5jjDkVGAIsCEPtoGxGXTZLUnOoNZBs3dJw27MvwBigRUDXso+/S3gAWAYkAxMDHicVNwwM3DmhqcdYz5igruSqgG2n5NK1vOsYnyffrLVrgedxk479jjun9BP431KAs4Ch1tpvrLU/Ao8BM40x2c2yibjg56Uv7nz1z40x+4B38U8EVkgtcLPXF9RE4E3gW1yX+y0C/q+NMd/5mz5Ya3cCdwGDcMMgrwQCl6p/BjgRWBHwfxZY02Tcz0pz4HH/34/0byV5C0WWe+GGpU4N+P8KywTiylmhcnbEx/JrDbxkba5DfKVohSKb1XGN279w/89ZuDdHRU7ZVDZLsEJn01q7I+i+ALustcf6PjjflE1lswQLxXHzclw2DuBWwFoDdAtH8cpm9GXTRFAtEuH8Qf8Kd1rVb8aYerjJl+uF+Hk2AfWstZuMMRcDk6y1V4XyOUQilXImEpmUTZHIpGyKRCZls/jJ6xxAkRz8Q/MuCPNzfoubuV4kKihnIpFJ2RSJTMqmSGRSNouffJ1WZoxpYIxZb4zZYIx5JJftjY0xq42byXylMebfAds2GWO+zd4WyuLFc5vI+zzMwhhBwWeXj0rKZlTYhHJW7CibUWETymaxo2xGhU0om8WKchk1NqFsRrSjnlZm3KS6PwA3AVuBFUBz/zmI2fuUBw5Ya60xpjbwirX2PP+2TUAde3j5PhEJAWVTJDIpmyKRSdkUiTzKpUjkyM/IobrABmvtRmttOjAXaBy4g7V2f8BEStmzmotI0VI2RSKTsikSmZRNkcijXIpEiPzMOVQd2BJwfStuNu6/McbcCTwLVAEaBmyywDJjjAUmWmsnHe0JTzrpJFuzZs18lCZS8qxatWqXtbZyPnYNazaVS4l2yqZIZFI2RSJTPrOpz5oiYZZXNvPTHDK53JajW2utnQ/MN8ZcCzwN3OjfdLW1dpsxpgrwjjFmnbX2wxxPYkwHoAPAaaedxsqVOmVUopMxZnN+d83ltpBmU7kUOUzZFIlMyqZIZMpnNvVZUyTM8spmfk4r2wqcGnC9BrAtr539YTzLGHOS//o2/587gPm4oYO53W+StbaOtbZO5cr5+fJHJOoVeTaVS5FjomyKRCZlUyTy6LOmSITIT3NoBXCOMeYMY0wpoBmwMHAHY8zZxhjj//vlQCngD2NMOWNMBf/t5YCbgTWhfAEiUUzZFIlMyqZIZFI2RSKPcikSIY56Wpm1NsMY0wV4G4gFpllrvzPGdPJvnwDcBdxnjDkEpAJN/bPJV8UN/8t+rjnW2qVF9FpEooqyKRKZlE2RyKRsikQe5VIkchx1KXsv1KlTx+o8UIlWxphV1to6XtcRTLmUEsvng6QkSE6G+vXz3E3ZFIlMyqZIZFI2RSJTXtnMz2llIiIiJZPPB4mJsHmz+9Pn87oiEcnm80HNmsqlSKRRNkUiUyGzqeaQSJgcOAAbNnhdhYj8T3ZjKCXFXU9JUYNIJFL4fGQ1VONWJOL4fGTdpmyKRJwQZFPNIZEweeQRuPRS+P13rysRkRyNoWxqEIl4z+fDJiYSk6rGrUhE8fmwDROJOahsikSUEGVTzSGRMHjvPRgzBu6/H6pW9boaESEpKWdjKFtKitsuIuHnb9waNW5FIkt2NlOVTZGI4v9CJRTZVHNIpIjt2+c+Z9aqBYMHe12NiACQnIwtUyb3bWXLusmpRST81LgViUzKpkhkSkrK+YVKtgJmU80hkSLWqxds3QozZrjPnCISAerVY1uVS8mxXmfZsrBo0RFXLRORopMxOZlUk8fBUo1bEc+kjE0m1ehLFZFI88fwZFIpnfvGAmZTzSGRIrR4MUyZAg8/DP/8p9fViEi2X4fOovrmz1ha8wFsdtdWjSERzw3+rD6v2rtyblA+RTzVY0E9vrUX6ksVkQhiLbSdfi0bOSsk2VRzSKSI7N4N7dvDhRfCwIFeVyMi2Q5t+pUKT3RjedzVXP7JaMyiRXD66XpzK+Kxr76Ct55aRQszB26++fBwW334FPHU229D5uSp1GUlpls3ZVMkQsyYAWe9NZIL+Q7zyCOFzqaaQyJFpFs32LEDXnoJEhJwk4HVrKkJ+0S8ZC2bbu5AXGYau19Ipuopse7AuWmT3tyKeCgtDe5vlcYM0xpTtSrMneve2KpxK+KpPXugf+vNjIjpSeZ19eHFF5VNkQiwZQuM6vIDz8Y8jk283U1uW8hsxhVBnSJRb/58mDULBgyAyy/n78tmJybqYCrikc0Dp3POj4t56YqR3Nf1HK/LERG/gQOhyXcDOI/vYNpiOP74w41bEfHMQ92yGPx7O8qUtcROnwYxMcqmiMeshfZtMxmbmkRchTKYSRPBmEJnUyOHREJs507o2NE1hR57jL83hkBLfop4JG3DFk54+iE+K3UtiUu7eF2OiPgtXw7vD/mcvmYYtGsHt97qdUkiAixYAGVmTuQG/kvsi8+7EfAi4rmJE+GCd0dyVdanxI4ZBSefHJLH1cghkRCyFh54APbuhffeg/iPgxpD2TSCSCS8rGXzze05JSuT1HHJnHCSvhsRiQSpqdChVSqvx7aBatXh+ee9LklEgF27YFC7jbwf8zBZ199MTPv2XpckIsDGjTCx53o+j3kcm9gI06JFyB5bzSGREJo7F15/HYYMgYsuAmom5WwMZUtJgaQkDcsVCYOfHp9KrZ/fZtZVY2nZ7kyvyxERv8cfh/t+fIKzWQ/J78Bxx3ldkogAXTpn8dyfbUkoF0vMtCnulBUR8VRWFrRrk8mEdP/pZBMmhDSb+upUJER++w0efNAtWd+7t//G5OTDs8YHK1vWbReRIpW6bjNVh/bkk4TrabS4k9fliIjfhx/Cihc/pgcvQqdOcOONXpckIsC8eVDl1TFcZz8gdtQIOPVUr0sSEWDUKLj8oxFcmfkZsWNHh+x0smxqDomEgLVu2fqDB92SgrGx/g3160OfPjnvoKU/RcLDWn65uR02y2KmTaViJR32RCLB/v3wwH0HmBXXxq2s8txzXpckIsD27TC8448Mi3mErFtvgzZtvC5JRID162Fa3/UMjnkC26gR3HtvyJ9D75JFQmD6dHjrLXj2WahVK2DDH3/AuHFw9tmHRxCpMSQSNj/0msi5W/7LonrP8697a3pdjoj49ekDnTY/yukZPxEzPRnKl/e6JJGoZy080CGTUfvaEF8+gZgpk3U6mUgEyMiApPsymZKVRHzF0J9Olk1zDokU0i+/QPfucN110LVr0Mbu3eHPP2HZMvdnUpI7lUyNIZEit//bn6k+ojcfl7mJRm9qIk2RSPHOO/D9eB/jGA3dukG9el6XJCLASy/BmW+O4Co+hbEz4ZRTvC5JRHCDa6/6YgR1+QzGzAr56WTZ8jVyyBjTwBiz3hizwRjzSC7bGxtjVhtjvjbGrDTG/Du/9xUpzqx1q+5mZbmeT0xgot58E2bPdrNtXnKJawht2hTSxpCyKZKHrCx+vaUtmTaG0rOmUK58eL/5VDZFcrd3L3Rt8xcz49uSddbZMHhwWJ9f2RTJ3datMKbLOgabx7GNGkMIV0A6GuVSJG/ffguz+6/n2ZgnsI0bF8npZNmO2hwyxsQCY4FbgQuA5saYC4J2+y9wibX2UqAtMKUA9xUptiZMgHffdSvvnnFGwIbdu6FjR6hdGx57rEieW9kUydvaLuM497f3WdbgRer832lhfW5lUyRvPXrAQ9v6UD1jMzEzpkO5cmF7bmVTJHfWQvukDMaltCauUnnMpIlhO51MuRTJW3q6O50smSTijitbZKeTZcvPyKG6wAZr7UZrbTowF2gcuIO1dr+11vqvlgNsfu8rUlz99JNblezmm6FDh6CNPXvCjh1uOFGpUkVVgrIpkou9qzZQc0JfPirfgMQ32npRgrIpkotFi2BL8jt0YgKmZ0+4+upwl6BsiuRi0iS45N3h/CPrC2LHj4WqVcP59MqlSB4GDYJ6X7/IPzI+I2bMaKhWrUifLz/NoerAloDrW/23/Y0x5k5jzDrgLVxHN9/39d+/g3+Y4MqdO3fmp3YRz2RmuumD4uNh6tSgBu6SJW6G6r594fLLi7KMsGRTpFjJyuK329qSbuM5bt5kSpfxZCLNIs+mjplS3PzxB/Rst5eX4tthzz0Pnn7aizKUTZEgGzfC1B5reMo8iW3SBO65J9wl6LOmSC5WrYLXnlnH4Jgn4I47oHnzIn/O/DSHcntnbXPcYO18a+15wB1A9hE/X/f133+StbaOtbZO5cqV81GWiHdGjoSPPnJ/1qgRsGHvXjeM6IILoH//oi6jyLOpA6kUN6vbj+a8HR/hazyS2rfVOPodikaRZ1PHTCluunSBR3f2pFrmr5gZ06FMGS/KUDZFAmRlQfs2h5iY1obYE47DjBvnxepk+qwpEuTgQWjTKpOXYpOIO64cjB8flmzmpzm0FTg14HoNYFteO1trPwTOMsacVND7ihQH69a5aYQaNYL77gva+PDDsG2bO50sIaGoSynybOpAKsXJn5//wNnTHuXDiokkvhIczrDScVMkwGuvwd65i0my0zB9+sCVV3pVirIpEmD0aPjXR0O4LGsVsRPHgzfv9ZRLkSBPPgkNvn+BKw59HpbTybLlpzm0AjjHGHOGMaYU0AxYGLiDMeZsY1wryxhzOVAK+CM/9xUpTjIyoHVrN3/mxOC5+t59FyZPhl69oG7dcJSjbIr42YxMdjRM4iClqTJ/IvGlPDmdLJuyKeL3++/wSMfdTI9vj73wQhgwwMtylE0Rv/XrYU6fr3nSPIVt3hzuusurUpRLkQCffgqLnvuewbH9wnY6Wba4o+1grc0wxnQB3gZigWnW2u+MMZ382ycAdwH3GWMOAalAU/+kYbnet4hei0iRGzYMvvgC5s0LauD+9Rfcfz/UqgUDB4alFmVT5LCvWo/g8j8/ZVGzWSRef4qntSibIo610KkTDNzTncrmd8yMheEYVXuEepRNEXBzZ95/XzpTMttgKp+EGT3as1qUS5HDUlKgbetMXo5PIq5c+E4ny2YOT/weOerUqWNXrlzpdRkif7N6NdSpA3fe6ZpDf/Pggy68H38M//pXoZ7HGLPKWlunUA9SBJRLiVQ7PlxHxesuZfnxt/LvHW8QG1c0B1FlU6RgZs2CV1stYAF3uHn4iujLE2VTpGCGDoW0R/rTn6dhwQI3V0IRUDZFCqZ7dyg16jmeow/MmVNko4byyuZRRw6JCKSnu/mFjj8exo4N2vj++zBuHDz0UKEbQyJSMPZQBrsbtSaG8tRYNKHIGkMiUjC//gr9O+9iZXwH7IWXYh5/3OuSRARYswbmP7GKT8xgbKv7MEXUGBKRgvH5YNmo71kd2w8a3QnNmoW9BjWHRPLhmWfgm2/clysnnRSw4cABaNcOzjoLBg3yrD6RaLWi2fPU3fsFS9vMpcG/qnpdjojgTie7/34YmtKF42N2Y6Yvg1KlvC5LJOodOgTtWqYx3baGqlUxI0d6XZKI4J+hJCmT10snEVc2/KeTZVNzSOQoVq6EwYPdyKEcX648/jhs3OhGD5Ut60V5IlHr12Xfcckb/fmgchNunnKP1+WIiN/UqVB+6avczTwY8DRcconXJYkI7v3sHd8M4Hy+g2mLoVIlr0sSEaB3b2jyy/NcapfDtDlQ1ZsvPNUcEjmCgwddU6haNcjx5conn8CoUW6+oeuu86Q+kWiVlXaI/U1ak0BFzlg8lphYnU4mEgk2bYJB3XfwVXxnbO0rMH37el2SiABffgnLnl7OR2YYtG0Ht97qdUkiAixdCh9O+p7Vsf09O50sm5pDIkfQvz98/70L7d++XElNhbZt4fTTYcgQz+oTiVbL7xrGVX+t4r8dX+GGOlW8LkdEgKwsaJtkGZneieNi9mFmzID4eK/LEol6aWnQvmUqc00bOKU6vPCC1yWJCLB7N3Rsl8GbpdsQV668Z6eTZVNzSCQPn3wCw4dDhw5wyy1BG/v3hx9+gHffhfLlPalPJOr4fJCUxPb7n+CKtwbywclNuX783V5XJSJ+Y8dC1ffn0oj57ouTCy/0uiQRAZ58Epp/349zWAfT34GKFb0uSURwq5Pd+9vz1LZfQPLLnp1Olk3NIZFcHDgAbdq4gUHDhwdtXL7cfePSoQPccIMX5YlEH58PEhMhJYUq/Tqwl+M4d9kYL79cEZEAP/4IL/b5jW/iH8Re8U9M795elyQiPh9p9yaRsr0XPXkBOnWCG2/0uioRwS10tHLmWqbF9ofG/wdNm3pdkppDIrl59FHYsMF9Hq1QIWDDwYOQlATVq8Nzz3lWn0hUCWgMAcRgqRiXSuzOb4H63tYmImS+66N8wyRezjiF8qVSMdOnQ2ys12WJRDefD9swkYTUFEbQHapU0XtXkQix9z8+Lr+rDYsSyhJbvgKMG+fp6WTZYrwuQCTSvPcejB7thvnVqxe08amn3CREkydrSK5IOAQ1hrLFZqS5230+jwoTEQB8PrJuS+Tk9M1cmfUZJikJzj3X66pEopv/2GlSD3+pErN3D6xY4XFhImLf85HQJJFTs37hzLR1mM6dPT+dLJuaQyIBdu92q5PVquWW+/ybVatg2DA3cijHJEQiUiSSknI0hv4nJcVtFxFv+BtD8YcCMjpjhpq2Il7K40sV0vSliojnfD4yb02kdGZAPp9/PmJyqeaQiJ+18MAD8PvvMHs2lC0bsDE93X0IrVpVKzyIhFNyclAYA5Qt67aLSPj5T1mJORj0ATQlRR9ARbykL1VEIpP/C5W49Mg9bqo5JOI3Zw7MmwcDB0KdOkEbBw2Cb7+FiROD1rQXkSJVvz4/3Pc0Nvj2smVh0SKorzmHRDyRlPS/U1Zy0AdQEc/YackcjNWXKiKRxrZJyvmFSrYIOW6qOSQCbN4MnTvD1VdD375BG7/+2p1j1rKl6+qKSNjs3ryXcpNHsD22BrZMGXejGkMinlvROZlUSue+UR9ARTzz0pb6PJv5cM4NOnaKeGrOTcmkkpD7xgg5bqo5JFEvM9PNM2QtzJwZtMDKoUOui3viiTBypGc1ikQja+Hb67pSNXMbe6a+jnnrLTj9dL25FfHYH39Akxev5vf4GhrVJxJBNm6EZzpvo2fcaGytcw+flq1cinhq1SroOv0KDpauhA1elSyC8qnmkES94cPhww9hzBg444ygjUOHupFD48fDCSd4Up9ItPqo26tcu3kmn17fj/Nb13UHzU2bIuLgKRKtrIUOHeCBHQOpeWgDZuBAfQAViQAZGdC6VRYT0pOoEH8Q8+ZCl0d9qSLiqZQUaNECJiZ0pVL6TszIkRF73FRzSKLal19Cv35w993QqpX/Rp8PataEadPc0vVNm8Kdd3pZpkjU2bJ8GxeN7cTa8nW5+q3HvC5HRPxmzIDtb3xCHzvEjazt318fQEUiwNChcOmnY7khYxkxLzzvlt7Vlyoinnv4Yai9/hXuTnkJ88QT0LVrxB4389UcMsY0MMasN8ZsMMY8ksv2FsaY1f7Lp8aYSwK2bTLGfGuM+doYszKUxYsURnYXt3JlmDABjOHw8p+bN0P79q6bO3q016WKRJXMDMu2W9tS2qZS4T8ziS0d73VJBabjppREGzfCY1328WrpVpiapx8+3boYfQBVNqUkWrEC5j25ludj+0DDhtCxo9clFYhyKSXV4sWwYNxWppfuBHXrwhNPuA0RetyMO9oOxphYYCxwE7AVWGGMWWitXRuw28/Addba3caYW4FJwJUB2+tba3eFsG6RQuvbF9atg3fe8Z8xlt0Yyl7+MysLUlNhzZqIC242Y0wDYCQQC0yx1g4J2t4CyJ5iez/wgLX2G/+2TcBfQCaQYa0NXqNNxBPv3jWeW3a/zfLW47jyhlpel1NgOm5KSZSR4UbYDk3vwRsaywUAACAASURBVMmZmzEzP4QKFbwuq0CUTSmJDhyApBbpvBzTkrjjKsDUqf5vPIsH5VJKqh07oG2bLBaUa00Z0mHWLIiP7C888zNyqC6wwVq70VqbDswFGgfuYK391Fq723/1c6BGaMsUCa0lS9wcQz16wI03krMxlC093d3u83lS55EEHExvBS4AmhtjLgjaLftgWht4GncwDVTfWnupGkMSKda8vp5rFvbmq2oNqDutk9flHCsdN6XEGTIEKn/6H1odmobp29ct71n8KJtS4vTuDS1/fJKLD31FzNQpULWq1yUVlHIpJY617iSU1n++yJUH3sOMGAHnnON1WUeVn+ZQdWBLwPWt/tvy0g5YEnDdAsuMMauMMR0KXqJIaO3cCW3bwkUXuRXqATdvQnBjKFtKitseeXQwlRIlZe8hslq2Is2UoeZ/p2Fiis83n0F03JQS5YsvYPyT23kpoT1cfjkMGOB1ScdK2ZQSZdEiWDPhI/owFO6/Hxo18rqkY6FcSokzZQpsWvgNg3gM7rgD2rXzuqR8OeppZUBu785zrFwKYIypjwvsvwNuvtpau80YUwV4xxizzlr7YS737QB0ADjttNPyUZZIwWWvsvLnn/D221C6tH9DcnLuI4fAzTuUnBzWOvMpt4PplXnsC3kfTC0w0VobPKpIuZSw8t04iIYHV/Dtk69x8QUne11OYRT5cVPZlHA5cABatrDMLNWWCux3w+JLlfK6rGOlbEqJ8fvv0K3NPj6Kb4U59Ux48UWvSzpW+qwpJcqPP8Ij3VNZWa4FsRVOgMmTi82pnvkZObQVODXgeg1gW/BOxpjawBSgsbX2j+zbrbXb/H/uAObjRjvkYK2dZK2tY62tU7ly5fy/ApECmDYN/vMfePZZqF07YEP9+vDccznvEGHLCwY5loNp34Cbr7bWXo47Le1BY8y1OR5MuZQw+eSF5dyy8hlWXnAfFw+4y+tyCqvIj5vKpoRLr15ww4aJXH9wCWbYMDj/fK9LKgxlU0oEa91AoYG7u3FK5hbMrJlQvrzXZR0rfdaUEuPQIWjZEgZlPcoZB77DTJ8OJ53kdVn5lp/m0ArgHGPMGcaYUkAzYGHgDsaY04A3gFbW2h8Cbi9njKmQ/XfgZmBNqIoXKYgNG6B7d7j+enjooaCNBw7AiBFQpQqUKeNui+zGEITpYCpS1Hb8fIBqfVqxI746F/tGeV1OKOi4KSXCm2/CexN/YGR8L7jpJnjwQa9LKixlU0qESZMgYdFrtMqa4ZbGvuoqr0sqDOVSSoxnnoHjvlhGp7SRbsn6W27xuqQCOeppZdbaDGNMF+Bt3IpI06y13xljOvm3TwD6AycC44wbMpW98lFVYL7/tjhgjrV2aZG8EpEjyMhwXdz4eJgxA2KC26J9+rju0Xvvua9jkpLcqWSR2xiCgIMp8CvuYHpv4A5HOpgCMdbavwIOpk+FrXIRP2thZf2HaZC5gU2TfSRUOc7rkgpNx00pCX7/HTq2PcSysi2JT0hwx8QcB8/iRdmUkmD9ehj20Da+iu+IvfQfrjlUjCmXUlJ89hmMf3oX68u0gTMugKFDvS6pwPIz5xDW2sXA4qDbJgT8/X7g/lzutxG4pJA1ihTaoEGwfDnMmwc1gqdkXroUxo2Dnj2hXj1326ZNYa6w4HQwlZJgSbcl3LZ5PKvq9+aKpOu8LidkdNyU4sxaN3dm592DuChzBUx/BaofaX7Y4kPZlOLs0CFo1SKLyRlJlI8/iCkGS2Pnh3Ipxd1ff7n5+WaU6UilQ7tg9uLDZ6MUI/lqDokUZ59/Dk8/Da1awT33BG384w+3dNmFF7oOUjGjg6kUZxs+38XlY9qysfzFXPbWM16XIyJ+EyfCzreW81jMM+7geffdXpckIsBTT8GVq8ZyPctg9HioVcvrkkQEN2VJ/U3J3GrfcPPYXnqp1yUdEzWHpETbv9+dTlajBoweHbTRWnjgAdi1CxYvDli6TESK2qF0yy+3duRq/iRm/tvElEnwuiQRwZ2y0q/Hfr4u2xJzUvVcDp4i4oVPP4X5g9byZWwfaNAQOnb0uiQRAd54A96f9hNr47vBv+u7s1GKKTWHpETr2RM2boT334fjgqcymTMHXn3VLV1WTLu7IsXVgiYzabLnDb5tNZSLb6x99DuISJHLXmXlOduLU1J/wrzky+XgKSLh9tdfkNQindfjWxJXoTxMmVJslsYWKcl++w0eaJ/BO+VaUirPyW2LDzWHpMRasAAmT4ZHHoFrgxdp37LFrbpy9dXw8MOe1CcSrVa8uomb3+zC+qrXcHFyL6/LERG/p56CqisX0YZJ7th4XcmZB0ykOOveHZI2PclFfAVT/wPVqnldkkjUy17DqOu+QdTO+BzmzoVTTz36HSOYmkNSIm3fDvffD5ddBgMHBm3MyoI2bdwSZjNmQGysFyWKRKW9f2aS1ao1xkD1d19S/kQixCefwORBO1hfuh3Uqu0m6xMRz73+OvyY/BFTGOre3DZu7HVJIgKMHQt73v6cx2L8k9s2bep1SYWm5pCUONa6Oab374fZs6FUqaAdRo1yS9ZPngxnneVJjSLRasnNL9Is7UM2PJ7M2RfV9LocEQH27YNWLS0zy7SnYsYemPUuJGgeMBGvbdsGvdrv49NSrTCnngkvvuh1SSICrF0LA3v/xTdlW2Iq5za5bfGk5pCUOOPHw5IlMGYMnH9+0Ma1a915Zrff7tbpFZGwefu51dy56nHWnncnFzzd2utyRMSve3e4YfM0brIL4fnn4eKLvS5JJOplD3R/Zl83TrZbMDM/hvLlvS5LJOqlp0OLFjDCPMTJB3/GzHy/xMzPp+aQlCjffw+9ekGDBtC5c9DG9HQ302aFCm7UkCbyEwmbrT+lUePRluyPP55z/jtR+ROJEK+9Bh9O/4m18d3hmuvderwi4rkxY6DiO6/RkhnQrx9cdZXXJYkI0L8/nPH1G7RgGjz2GFxzjdclhYyaQ1JiZPd+ypeH5ORcPns+9RR89RXMnw9Vq3pSo0g0ysqCT67vR9PMb/l13CJOPKWy1yWJCPDrr9C5QwbvlmvlVlmZPr1Yr7IiUlJ89x28+PA2vonviL30H5h+/bwuSUSADz6AmUO3sT6hPVxcBwYM8LqkkFJzSEqMAQPgyy9d7yfHIg6ffeaWrE9Kgjvu8KI8kaj1WtcPuPuX4Xx/bUfO79DQ63JEBNe0TUqCB/cPofahz2DOnGK/yopISZCWBi3vzWKaTaJC3EHMrFkQH+91WSJRb88eaN0qi3ll21DOpkIJzKaaQ1IifPQRDBniFnHI0fvZv9/NIH/aaTBihCf1iUSrNZ/s5cpx97G93Fmct2i41+WIiN/o0fDnOyvpFzMQmjWD5s29LklEcGeQ/Xv1WOqzDEaNh1q1vC5JRIAuXeDOraP5t33HTXJ77rlelxRyag5Jsbd3r+v9nJnXIg69e8PGjfD++1CxYrjLE4laBw/CT4ndSWQrf732CaaCJtIUiQRr1sCAPil8W64l5vhqMG6c1yWJCODzwVvPreWr2D7QoCF07Oh1SSICvPwyfD17DV/H9YUGiSU2m2oOSbHXtSts3Qof57aIw1tvwcSJ8PDDcO21ntQnEnV8PkhKwlcticZ7ZrCheT/ObvBPr6sSEdwpKy1awPDYPtQ4sB4WvAvHH+91WSJRb/duaNcqnTcTWhJfvjxMmaLFG0QiwC+/QPdOaXxStgWx5Y+DqVNLbDY166AUa/PmwcyZbgjuP4M/e+7a5Zarv/hiePppT+oTiTo+HyQmwubNNFg+gN8r1eLsGZpIUyQi+HwcqFKTW1YPpV3qWOjRA264weuqRMTnI6NGTQb92oYL077CTJ2SywSaIhJuWf/1UapWTSYcaMU5Kasx06ZBlSpel1VkNHJIiq0tW6BTJ7jySnj88aCN1rrhfrt3w7JlkJDgSY0iUSW7MZSSAoABqhz8xQ3rq1/f29pEop3PR+atiZyQlsJQHoGaNWHwYK+rEhGfj4wGiVROT6EZm+G226BxY6+rEhH/cbPaoRT+j83QqBE0LNkLq2jkkBRLhw5B06aQmekmio8LbnPOnAlvvOFGDNWu7UmNIlElqDGUzRw86G73+TwqTETw+bANE4lNO9y4Zft2t5KniHjH5yPrtkTi0gOy6fPpmCniNZ+PzNsSiT8U8L72nXdKfDbVHJJi6bHH3HvaKVPg7LODNm7e7KaTv+Ya6NXLk/pEok5SUo7G0P+kpLjtIhJ+Ph82MRGTGpRPNW5FvOVv2sYcDMpmaqqyKeKl7C9UojCb+WoOGWMaGGPWG2M2GGMeyWV7C2PMav/lU2PMJfm9r0hBvfkmDB8OnTvDPfcEbczKgtat3WllM2ZAbKwnNYaLsikRIzmZzIQyuW8rWxaSk8Nbj8eUTYkYSUkYNW7/R9mUiJGUlLNpmy3KsqlcSiSxbaI3m0dtDhljYoGxwK3ABUBzY8wFQbv9DFxnra0NPA1MKsB9RfJt82bX+7n8cnj++Vx2ePFF+OADGDUKzjgj7PWFk7IpkWTnhfX4zP4TG7yhbFlYtCiq5hxSNiWSrHwwmRTUuAVlUyLLsubJpFI6941RlE3lUiLN3FuiN5v5GTlUF9hgrd1orU0H5gJ/myXNWvuptXa3/+rnQI383lckv9LT3UihzEx45RUoHZzZNWvc+WaNG0ObNl6UGG7KpkSErCyYVX8q/0738ccd7dyBE6KyMeSnbEpE2LYNbnuuPivLXafGraNsSkRYuxZajKzL3oQqyqZyKRHk44+h09R/sL9M5ajMZn6aQ9WBLQHXt/pvy0s7YMkx3lckT337whdfwLRpcNZZQRvT0qBlS6hUCSZNAmM8qTHMlE2JCJO7fUuntV3Zev5NnPT6JHfgPP30En8APQJlUzyXkQHNm0OjvTO59sBSTMuWatwqmxIBDhyAu++GUVldqJq+BTN8eLRnU7mUiLBzp1vwKLlcF046uBXz/PNRl838NIdy+5Sdo5EGYIypjwts32O4bwdjzEpjzMqdO3fmoyyJJvPnw4gR0LUr3HVXLjsMGADffAOTJ0OVKuEuzytFnk3lUo7mg8UHuHbsPaSVrkT192ZCTIw7cG7aVOIPoEegbIrnnnwSdnz4PRPoBNdd54bBq3GrbIrnHnwQ6qx9ieZp0zFPPOEWT4nubOqzpnguKwtatYIGO17i//6agenXD3r2jLpsBi8AnputwKkB12sA24J3MsbUBqYAt1pr/yjIfQGstZPwnz9ap06dXEMt0WnjRjfv1z/+Ac89F7TR53Nfje7YAe3aQaNGntTokSLPpnIpR7J9O/x2VxeuYT1pr72LqVbV65IihbIpnlq6FF4cnMIPx99DXFw5mDMH4uION26jl7IpnkpOhuUzvueb+AfgX9e5Li5Eezb1WVM89+yz8PPb63kzoTNcfR307+82RFk28zNyaAVwjjHmDGNMKaAZsDBwB2PMacAbQCtr7Q8Fua/IkaSluXmGjIF58yAhIWCjzwcNG8Lvv7vrd97pSY0eUjbFM5mZkHz9SzQ7OJ1dnfpRpuH1XpcUSZRN8czWre4s65nHd6fG7jUwcyaccorXZUUKZVM8s2YN9Oqcylvl7iG+kr9pW8JX1c0n5VI89f77MKjfQZZVuoe4CmVg9uyozeZRRw5ZazOMMV2At4FYYJq19jtjTCf/9glAf+BEYJxxc71kWGvr5HXfInotUgL17g2rVrnTyv62+JjPB4mJkJrqrlvrukhRMuQPlE3x1rhu6+j2/QNsP/c6qo3p73U5EUXZFK8cOgTNmkHj/bO5K22KW6Thllu8LitiKJvilf373TxDI013zjywBl5fqqatn3IpXvr9d3cSyuSKvTh9z2p46y2oHr3TVhlrI29UXZ06dezKlSu9LkM89uqrrt/Towe88ELAhuzGUEpKzjuVgMnCjDGrrLV1vK4jmHIp2d59M5Uqja7kjITfqPDT11FzEFU2JdL17Qv/GbaeNQlXEF/3cnjvPXc6WQmnbEoksxbuuw+yZr/MbHsvPPooDB7sdVlhoWxKJMvMhAYN4KQPXuflQ03c/F/Dh3tdVljklc2S/45BiqUNG9wUQldeCUOGBG1MSsq9MQTu9qSkqDo3VCScfv0Vfr2nBzfyLQfnLomaxpBIpFu0CEYNS+XHE+4h3pQ+PM+QiHhq6lRYPusHvi3VAf5xNTz1lNcliQgwaBBsePdnFpVpB5fVjZqm7ZHkZ84hkbA6eNANvY2Lc/MMlSoVtMPEiXkvVV+2rJvtT0RCLiMDJt84j9YHJ/LH/X0pfUcDr0sSEeCXX6B1a5h54kPU+HO1m2eoRg2vyxKJeqtXQ+8uB1lS/h5KlS8FL7+spq1IBHjvPXjmyUO8c1Jz91lz7txcPnRGH/12kojTowd8/TW8+aZbOTCHhQvdGN2EBDdjdbYScEqZSCQb0WUDPde1Z+c5/6LyuKe9LkdEgPR0aNoUGqXMpcnBSe7csltv9boskaj311/uy84Rsb04a/837j3qqace/Y4iUqS2b4d774XxJzzO2buWu7lM/ja5bfTSyCGJKC+/DBMmwMMPu2mFcpg3D8aNc+eELlniGkKgxpBIEVu6II36E5sSmxBH5Xdfhvh4r0sSEdz0Jbs+/5FJtId//QueVuNWxGvWQocOcMmPr9EmZZxbYaVhQ6/LEol6mZmuMXTVniW0+/M56NQJmjTxuqyIoZFDEjHWr3cH0n/9y50DmsMPP8D998NVV8Gzz7oPp4sWuTmGkpPVGBIpIr/8Apub9qEBX5I2cwGcdprXJYkIsGABjH3hIBtOvJt4W8oNi1fjVsRzEyfCF3N/4ruEdnDZPzWXiUiEGDgQ1vt+5acK98G5tYNWPRI1hyQipKa6lckSEvJ4b5ua6sbmJiS40UPZO9Svr8mnRYpQejqMu2k+Q9JGsbvNQxx/dyOvSxIR4OefoU0bmHlST2rs0ikrIpHiq6+gT/c0VlZsSkJMjBsWr6atiOeWLYPBT2fybbWWlN6X4j5TlinjdVkRRc0hiQjdurlJ+xYvzuO9bffuR9lBRIrCsM6b6PtDW/48qw4nTBzqdTkiwuF5hhqnvcLde8a7c7F1yoqI5/budd9lvhjfh1r7VsH8+VCzptdliUS9bdugZUsYWfkZzt/+PkyfDued53VZEUfNIfHcrFkwZQo88kgec2jOmgWTJx9hBxEpCgtfP8SNU5tRulQWZZbltnSgiHjh4YfhzxUbmFzGf6p1rudii0g4WetmP6j9839olzXKfbF5xx1elyUS9TIyoFkzuPyvD+ic/hS0auWW+JQc1BwST33/PXTsCNdck8ccmkfdQUSKws8/w6Z7H6MRyzmU/AqceabXJYkI8MYbMGFUGhsqNyU+I07zDIlEiLFjYcVrm1hXJgkurAPDhnldkogA/fvD9x/tZPPx92JOO9stbiS5UnNIPJOS4uYZKlfOnY4dF/zTeOCAG5tbrpx785tjBxEpCmlpMPLmtxiRPpx9LR6g4r13e12SiAAbN0LbtjCzSm9O3fElLFyoCeJFIsDKldC3RzqrKjUjISvLzWWi0bYinluyBIY8m8U3NVpTducfMO8tKF/e67Iilj5ti2e6dIHvvoOlS6F69Tx2WLsW3n4bTjkl7PWJRKtBD2zliQ2t2VvzEo6bolUcRCJBWpr7QqXxode4Z+8Y6NkTbr/d67JEot6ePS6bL5R5jPP2LIdXX9VoW5EIsGWLO4PsuZNf4OKtS9zwvksv9bqsiKbmkHhixgy3+vwTT8DNN+eyQ3KymyisXz+46aZwlycStV6bm8GNyfdSIf4gCW+/AqVLe12SiAC9esGfqzYypWw7qFsXnn3W65JEop61bjTfxZsX0THreejcGZo08boskah36JCbZ+jilOX03Pso3HUXPPCA12VFPDWHJOy++85ls149GDAglx3WrIEHH3TL1D/5ZJirE4leGzbAz60H0ISPyJg8C2rV8rokEQFeeQUmj03jx6pNiU+L0SkrIhFi1ChYMX8LP5RtDbUuheef97okEcENQPju0z1srdwMU7a6W/3IGK/LinhqDklY7d/vphGqWBHmzIHY2ILuICJF4eBBGN7gHcalD2b/PW0p37qF1yWJCPDjj24FpJeq9eG07Su1NLZIhPjiC3i09yFWntCc0unprour0bYinlu0CIYNs6w6837K/7IVFn4ElSp5XVaxoOaQhI21brTtunXwzjtw8sm57NCpE/zwA7z7LlSr5kmdItGof4ftDPypJQdOO58KyaO9LkdEcE3be+6BO+x8mm7X0tgikeLPP102h5ftzwV/fuJWVjnnHK/LEol6v/ziVqkfVGMCl298HYYOhX/+0+uyig01hyRspk2DmTPdqWQ33JDLDlOmwOzZ8NRT7pQyESl6Ph8H7m5Dsz9O5Pi4vyi1+D0oW9brqkQEeOgh2PP1z0wp1xb+8Q8tjS0SAayFpCS4aOtSOmcOgfbt3eQmIuKp9HRo2hTOPfgNj+zvAQ0aQO/eXpdVrMR4XYBEh9Wr3eJjN9zgzgHN4euvoWtXNzv144+HvT6RqOTzkXVbIuX++IXL+YrYbl3gwgu9rkpEfD4OVK7JTxOX8UG1ppSKs5pnSCQS+HzsO7EmpRa+wiulW8HFF8PIkV5XJSI+H/tPqsnxny9maaWmxJx4Arz0EsSo3VEQ+frXMsY0MMasN8ZsMMY8ksv284wxnxlj0owxvYO2bTLGfGuM+doYszJUhUvxsXevm0aoUiU3MCjHNEL79rkdTjwRZs1SiAtA2ZRj5vNhGyYSczDlfzfFThgLPp+HRZUcyqYcs+ym7a7NLKEhp21f4YbennGG15WVCMqmHDOfj8xbEzlu92bm0ZwymfvdPENlynhdWbGnXEqh+Hxk3JrICX9t5k3TiIrb1rsPnZUre11ZsXPU08qMMbHAWOAmYCuwwhiz0Fq7NmC3P4FuQF4nwte31u4qbLFS/GRkuOF9Gze6aYSqVg3awVo3HPfnn92HUoU435RNOWY+HzYxEZOa8vfbU1IgMdHN5KdTO4+ZsinHLKhpG0cGxMXB8cd7XFjJoGzKMfM3bWPTXDZjyIKsLPjtNzjvPI+LK96USykUn4/M2xKJ82cz1mZCfLzHRRVf+RmiURfYYK3daK1NB+YCjQN3sNbusNauAA4VQY1SjPXoAW+/DePGwXXX5bLD+PHuW5dnnoFrrgl7fcWcsinHJikJk5KS+7aUFDeZghSGsikFl1fTNiPDNW01qi8UlE0puFxG2gJughNlMxSUSzk2Ph9ZDROJDc7moUPK5jHKT3OoOrAl4PpW/235ZYFlxphVxpgOee1kjOlgjFlpjFm5c+fOAjy8RKqxY2HMGOjZ0w0OymHVKtc9uu026NMn7PWVAGHJppQ8S++ZxiGCz+/0K1sWkpPDW1DJU+TZ1DGz5LFq2oaDsikFZtsk5WzaZlM2Q0GfNeWYZLVOIkbZDKn8NIdMLrfZAjzH1dbay4FbgQeNMdfmtpO1dpK1to61tk5lnVpU7L39tltxNzExj8VV9uxx8wxVrarJwo5dkWdTB9KS58MP4b/Pf008mdi4oGG3ZcvqlLLQKPJs6phZ8sy9OZkD5LFSoJq2oaJsSoGNuSKZFPKYV0jZDAV91pQCy8qCp87QcTPU8vOJfCtwasD1GsC2/D6BtXab/88dwHzc0EEpwdauhXvucYsezZmTywTU1kLbtrBli1t95cQTPamzBCjybOpAWrJs2ABjGy5mSNbDpDdqglm65PCy9WoMhZKOm1Ig8+fDvZPr8/Wpt+fcqGyGkrIpBTJ+PPSafzW7Tzon50ZlM1SUSymwJ5+EgR/W4/dzc+kFKpvHLD/NoRXAOcaYM4wxpYBmwML8PLgxppwxpkL234GbgTXHWqxEvp073WihMmVg4UKoUCGXnUaNcu+Ehw6Fq64Ke40liLIp+bZ7N3S76XsmH2hOxvm1KTVnOtxwgzt4nn66DqKhpWxKvn35JbRs6b4BvXrLPGjcWE3boqNsSr698w507WJZVOMBqu9aDY89pmwWDeVSCmT2bDdd7Wt1hnLm+qVw333KZogcdbUya22GMaYL8DYQC0yz1n5njOnk3z7BGFMNWAlUBLKMMQ8BFwAnAfONMdnPNcdau7RoXop4LS0N/u//YNs2+OAD93kzh+XLoXdv9+a3R4+w11iSKJuSX4cOQbs7/mDUptspfUIZSi1dAOXKuY3168OmTZ7WV9Iom5Jf27bB7bfDreU/4omtHeHGG+G11+Cjj9xcCcnJeoMbQsqm5Nf337vZD4ZWeZ6bt06Dfv3gqadcRpXNkFIupSA++cSdgNL/gte4a+Wj0Lw5TJ8ObdoomyFgrC3IKZ3hUadOHbty5Uqvy5ACsNblccYMePllaNYsaAefz3V109NdR/fLL7U0bx6MMaustXW8riOYclk8WQudOxyiyZQG1Iv7mNgP39eIvWOkbEoopaTAtddC6tqf+aZ0XeIqnwCff65j4zFQNiWUdu2CK6+Eq/9YyIx9d2CaNIG5czU/5jFQNiWUNm2CunXhmoQveG3XdZjLLoP33oPSpb0urdjJK5tHHTkkkh9Dh7rG0IABeTSGEhPdO2Fw69rrza9IWIwcCRdNeYgbeA+mzlBjSCQCZGW570t+XLWPLafdTtxfmW4YvI6NIp7KHgV/wpZvSI67F3PFFW5UghpDIp7at899nKya9gvzbCPMySfDggVqDIWYftNJob3xBjzqH9XXv3/QxuDGELjTyny+sNYoEo0WLYIfeoznQcZhez/sPo2KiOf69YP5r2fy1fnNqbhtvTuV7JxcJrwVkbCxFjp2hB8+2s77FW8n9oRKbgLNsnmshiQiYZGR4QYfbFu3j09PTCTu0EH3JleL5YScmkNSKKtWuYk0r7wSpk4FE7gYZW6NIXDXExPVIBIpQqtXw/i732MUXclo0BAz5FmvSxIRYOZMnciT4gAAIABJREFUGDwYllzUhzO/XwyjR8P113tdlkjUGzYM5s1IZWX1OyiX+ge8+SacfLLXZYlEvV69YNmSDL4+vxkVflnrvlC54AKvyyqR1BySY/brr9CokWva/uc/boWyv0lKytkYypaS4raLSMht3w4PNviJWWl3Y2udS9y8ORAb63VZIlHv44/h/vth2LlTuXnNC9C1K3Tq5HVZIlFv/nx49BHLu6e1o8avy2HWLLjsMq/LEol648e7ha59l/bgtDVL3A033uh1WSWWmkNyTA4ccI2hffvcFyvVquWy0/DhQUOJApQt62aTF5GQSk2FexP3MWn77VSoCPGLF0LFil6XJRL1Nm6EO++EJpU/oPfGB+Dmm+GFF7wuSyTqffmlGwU/ofrTXP3Ly/Dssy6sIuKpd95x36GMv2A013w9xg0hat/e67JKNE1ILQWWPZHmV1+5U7Fr185lpwMHYMgQSEhw1w8ePLytbFl3nqiWGRQJqawsSLovk16rmnNu7I/EzF8GZ53ldVkiUW/vXrdkfY30jbyUcRfmzDNh3jyI09swES9t2+ay2brMK3T49Un3BrdvX6/LEol669bB3XdDhxqL6bjuIWjc2K2AJEVK70qkwJ54wk1C/cILbuqgHDIz4d57XfdowQIoV+7w3ENqDIkUmYED4YrXHqEhi2HMeOVMJAJkZEDTprB9/V4217id2H1Z7jhYqZLXpYlEtZQUNwr+nN1fMCarNVx9NUyalPeodxEJi1273EfHy2JXM2ZXU8wll8Ds2ZoiIQzUHJICmTHDjbbt0AEeeiiPnXr1ckOKRo8+3D1atMjNMZScrA+sIkVg9mzY9NQMZjAc2/lBjOYxEYkIPXrAu29n8PNFzSi/7gdYtgzOPtvrskSiWvYo+B2rtvDx8Y35f/buOzyqsmng8G/ozYLSFIXYsFcQUV+VYkFAsXdRLNh57fVVsXdFBRUbCPphBxVQapCqUpQOigiKIIIoCKElme+POQvLsptswjayc19XLtg9zzk7SXZyzs55Srkd6tnEQ6Ee7865tFi3Ds46C/J/W8xXNdtRruoONodJ9erpDi0reHHIxW30aBvm2bIldOsW48bKyy/Diy9a5ejGGzc936IFzJ+fqlCdyyrjxsHrl49jqHSisHkrynV9Id0hOeeA7t3tfDnyiDvYffJX0KOH3yBxLgPcfz98+clqftn1dKr8uxoGDPNlsZ1LM1Vbo2Hi6Dx+2/N0Ki9Zbh9A69dPd2hZw4tDLi6hiTT32MNWD6xYMUqjAQOsKNS+vU1G7ZxLuvnz4YbTfmWonkn5nAaU+/jDGAnqnEulIUPgv/+Flw5+gxMmd7UHnTqlOyznsl6fPvDE44VMangJtX+batevBx6Y7rCcy3rPPAPv9Cpk+v6XsvPsSTY9ia8amFJeHHLFWrHCRocVBtMk1KwZpdHkyTapwhFH+JhQ51Jk5Uo4t81qev9zOjWrraX8wJGw007pDsu5rDdzpk2keVnDkdw463po3dpvmjiXAcaMgauugncb3sfhC/pD165w6qnpDsu5rNevH9x9N/Tb/z4OmBVMbnvaaekOK+t4ccgVKT8fzjsPfvrJlhPcZ58ojX77zapHtWr5mFDnUiQ/Hy44r5C7Z1/GQTIN+XAA7L9/usNyLustXWqnxP0rzuX15Wcj++wD77/vK5M5l2ahXvA313yHixY8CddcA507pzss57Le5MlwySXwcM7btJ/1pI0tizm5rUsmv1JxRbr5Zusa/8Yb0Lx5lAYrV0LbtrZ0/dixUK9eqkN0LivdeiscNfghzuYTePY5v/PpXAYITaS56vcVzNjlNMr/i9002WGHdIfmXFYL9YJvsm4MT669Glq1snkyfWUy59Jq0SLrINSuei73/XYNnHwyvPSS52aaeHHIxdStm02mefvt1gV3Cxs2WL/5WbNg0CA46KCUx+hcNureHf54+UNe4mFbBfCWW9IdknNZT9U6Iowfk89vh55P1RlzYdgw2GuvdIfmXFbLz7eZD/J/nMdnNc5E9tgDPvrI5+dzLs3y8uD006HuP3N4r/xZSKNG8KHPnZlOXhxyUX31lc2defrp8OSTURqo2mpkQ4bAm2/CSSelPEbnstHgwfBO50mMLnc52uxY5NVX/e6KcxngqafgnXfgm6NuY5dvB1uX2xNOSHdYzmW9W26B8YNXMH+X06i0tqCICTSdc6lSWAgdOsCCScuYX68tFQorwcCB3tM2zbw45LYwc6bdYTn44CLmln7mGXj9dbjnHrjyypTH6Fw2mjkTbjpnMaPLt6divdpIv0+hcuV0h+Vc1vv0UzsdvnFkD4769iX7NBq1y61zLpW6d4dXu+UzPecCai780W5qRp1A0zmXSvffD198so6f9ziT6osWwsiRkJOT7rCyXrl4GolIaxGZIyJzReTuKNv3E5HxIrJORG4vyb4us4Qm0qxWzaZJqFEjSqOPPoK77rIK0qOPpjxGt4nnZvb4p18uOxzSkAFrWlK7wt+U++JzqFMn3WG5GDw3s8ecHrk0PjuHrg2e48rvb7T5v555Jt1huRg8N7NEbi5r6ubQr3Mun+5xG/vN/wpeeQVatEh3ZC4Kz8sskpvLqlo5jHt8BCP3vprdfhlj3W6bNUt3ZI44eg6JSHmgO3ASsBCYICKfq+rMsGbLgc7AGaXY12WI1avhjDNg8WL4+mvYffcojcaPh0svhWOOgV69oFxc9UWXBJ6b2WPtl7lUPqcdOxbm2RN3PwSHHpreoFxMnpvZ44++uex+bTuqkUfnX29HGjaEvn1jdLl16ea5mSVycyls046qa/MYJK2p9Mt668139dXpjsxF4XmZRXJzKTi1HTXW5TFEWlNx7gZ45BHrcOAyQjyf7JsCc1V1nqquB94H2oc3UNU/VXUCsKGk+7rMsHq1LTr2zTfQpw80bRql0c8/2yREu+0Gn30GVaqkPE63Gc/NLLD2y1xo146qocIQ2OQmubnpC8oVx3MzC/zRN5ftL7bCEIAALFlia/K6TOW5WdYFhaFyay0vK+l6K9a2aZPmwFwRPC+zQVAYKr/OcrOibrDcPOaYNAfmwsVTHKoP/Bb2eGHwXDy2Zl+XIqHC0OjR8O67cM45URotX26NCgttZbJatVIep9uC52YZFyoMVQkvDIEt79CunReIMpfnZhm3sTCkEbm5dq3nZmbz3CzLIgpDGxUUQPv2npeZy/OyrIsoDG1UUGDr2HtuZox4ikPRlsHROI8f974i0klEJorIxKVLl8Z5eLe1Vq+269hQYejCC6M0WrcOzjoLfvkF+veHRo1SHqeLKum56XmZPnl58M9ZHbcsDIU36NgxtUG5eHlulmELFkD+pR23LAyFeG5mMs/NMmz9xR23LAyFeF5mMv+sWcatvbDjloWhEM/NjBJPcWghED77zG7AojiPH/e+qvq6qjZR1Sa1a9eO8/Bua6xebcXaUaNsKFnUwpCqjdH++mvo2ROOOy7lcbqYkp6bnpfpkZdnufnq2o6xr46qVbOcdJnIc7OMWrAAmjeHG6q8iZaLMa+Q52Ym89wso6ZOhfNW92QNMaY88LzMZP5ZswwbNQrO/Kcna8Vzc1sQT3FoArCPiOwhIpWAC4DP4zz+1uzrkij04fPrr6F3b7joohgNH3rIKkePPFJEI5cmnptlUCg3a4z4nAfLP4oceCBUrbp5o2rVYMAAX3Ulc3lulkGhwtDKvwt4q3kfpLAAKlbcvJHnZqbz3CyDpk2DVq1gUdW9qFhrhy0beF5mOs/LMmrUKFvAs+KutalUvRJIREcvz82MU2xxSFXzgRuBwcAs4ENVnSEi14rItQAiUk9EFgK3Av8TkYUisn2sfZP1zbj4hKYrCRWGLr44RsPeva04dPnlcN99qQzRxcFzs+wJFYYqjfiKTyucS7kjDoexY2HgQDuBgp9ItwGem2XPr79ayq34u5DZJ3Si1sDe8PDDMHiw5+Y2xHOz7Jk2DVq2hAYVFjGmSisqbFgLr73mebkN8bwsm0aPtnngj687h36rTqTc9jXss6XnZmZT1Yz7aty4sbrkWL1atUUL1XLlVPv0idJgxAjVhg1Vn39etWJF1ZYtVdetS3WYWQ2YqBmQh5FfnpfJtXq1pVsrhumGilVUDz9cdfnyTQ1CuTliRNpizHaem9lpwQLVPfZQ3WH7Ql1y1jWqoHr//ZsaeG6mnedmdpo2TbVWLdWD6y7RdXvup1qjhuq4cbbR8zIjeG5mp1GjVKtXVz1pz7maX29X1Tp1VGfNso2emxkhVm5WSGtlyqVUqFfCyJFWuL3kkogGubYyEnl5cOut0KABfPIJVKqUjnCdyxqh3NwwYjQjKp1OhX33gSFDoGbNTY1atID589MWo3PZ6NdfbSjZ8r+UOafcRJ2PesDdd1uv2hDPTedSbvp0S726Ff5iwg4nUunXBfDVV3D00dbA89K5tBg92oaSNa33K4PWtqT8+rX24XO//ayB52ZGi2fOIVcG5OXB6adb/afYwlDI0qXw/fcpjdO5bBMqDK0ZMZ7hVdpQYc8GMGwY1KqV7tCcy2q//WbXsMv/Uma3uZW6H3WH226Dxx/fct4E51zKTJ9uQ8lqVfiHibVOofL8H+Hzz+H449MdmnNZbcwYKwwdUW8RQwpaUmHVChg6FA4+ON2huTh5cSgLhApDI0bAO+/EWRgCWLPGns/NTVmszmWTUGFo5YiJjKzamoq71YPhw6FOnXSH5lxW++036zG0bKky6/S7qPd+V+jcGZ55xgtDzqXRjBlWGNqh3L9MrncqVeZMtV7uJ56Y7tCcy2qhwtCh9ZYwQlpRYdkSm5fviCPSHZorAS8OlXF5edC+vRWGevWCSy+N0qhjxy0LQ+EH6NgxmSE6l5VChaHlI35gTPWTqVR3J0vUXXdNd2jOZbXwwtDMc+5nl3efgeuug65dvTDkXBrNmGG9+bYrn8eUBu2oOm0CfPABtG2b7tCcy2pjx1ph6IC6fzGy0klUWPQrDBoERx2V7tBcCXlxqAxbs8YKQ8OHW2GoQ4cYDZ9+OvYFb7Vq0LNnskJ0LiuFevP9OWI647c7ico71bDC0O67pzs057LawoX24XPZMphxwcPU7/kYXHUVdOvmhSHn0mjmTOsxVL38Wqbu2Z5qk8bAu+/CmWemOzTnstrYsdC6Nexb9x/GVDuZivOCYZ7HHZfu0FwpeHGojFqzxj58Dh9utZ2YhaF582xyzSpVoHLlzbf5EoPOJVyoMLRw+By+2+FEqtSoaIWhPfZId2jOZbWFC63H0NKlMP2ix9ntjS5w+eXQoweU88sl59Jl5ky7FK1Sbj3T9j2H6uOGwdtvwwUXpDs057LauHFWGNqn3r+M2741FWdPg379oFWrdIfmSsmvdsqg8B5DPXvCZZfFaDhzplV1V6yAr7+GL7+0ghB4Yci5JAgVhuYP/5nJNVtStbJaYWjvvdMdmnNZLbwwNK3DM+z+2n02Qd+bb3phyLk0ChWGKpfbwPSDL6DG1wOtYBvz4tY5lwrjxsEpp8Be9VYzfue2VJo6ET780MaXuW2WX/GUMaHC0LDgpkrMc+fkyXDCCVBYaIWhI4+0s++AAdCwoReGnEuwUGFo7vAF/LBzS6qVW2cV3NDSns65tAgNJfvzT5hy+Qs06Han9Ujo2RPKl093eM5lrdBQsgpSwPQjOrDd0H7w4ovQqVO6Q3Muq4V6DOXUXcO39dpTecJYeO89OOOMdIfmtlKFdAfgEmfNGsvJYcPgrbesN3xUY8bY5H01a1rj8F4LLVrA/PkpiNa57BEqDM0ZvpCZtVtQY8NK6zF00EHpDs25rPb773baW7IEplzdjZznb4Wzz4Y+faCCXyI5ly6zZllhqByFzDjmKrbv9z489ZStGuicS5vx460wtHuddUxoeA6Vc4NVj84/P92huQTwnkNlRKgwNHSoFYZiLjA2ZAicfDLUqwejR/twFueSLFQYmjl8MTPqtmS7tctsac/DD093aM5ltd9/t6FkS5bAD9f1YI/nb7Kut337emHIuTSaNcuKtoIyo/n17NivF3TpAnfeme7QnMtq48fbULLd6m5g4t4XUGXEIHjttSImt3XbGi8OlQFr19piDUOH2vQIMQtD/frZ2tmNGllhyFdGci6pQoWhacP/ZOaurdh+1SL46ito2jTdoTmX1cJ7DE2+6W32fPpaaNPGlsWuWDHd4TmXtWbPDmY1UGXGybdQ84MetnDKAw+kOzTnsto331hhaJc6BUw84FKqDu4PL73kwzzLGC8ObePWrrUeQ0OGWGHoiitiNOzTB849Fxo3htxcqFMnpXE6l21ChaEfhv/F7N1PZMe/58PAgXDMMekOzbmsFioM/fEHTPpvb/Z+4irrUfvJJ1uu2umcS5nZs603H6pMP/0edurzItx8Mzz+OIikOzznstY33wQDT+oUMvnwK6j2+Qfw9NNw003pDs0lmBeHtmGhwtDgwcUUhl55xbr7NW9uVaSaNVMZpnNZJ1QYmjT8H+bknEzNP3+Ezz+3SeCdc2mzaJEVhhYvhom3/h/7PN7RJjbp3x+qVEl3eM5lrY09hoBp5z5MrTefgmuvheef98KQc2n07bfWY6hObWVys+uo/nFvePhhuOOOdIfmksCLQ9uo0FCyYgtDTz4JN9xgw8kGDIAaNVIap3PZZu2XuazcOYcqwwfw416t2fn3afDpp3DiiekOzbmstllh6K6PaPTIpXDccVa4rVo13eE5l7XmzLHcLCyEKRc9Re3uXWxVle7dvTDkXBp9+631GKpdS/m++c3UeO91uOce+N//0h2aSxKfcXEb9NdfNiH88OHwxhtw5ZVRGqnCfffBE0/AhRfCO+/4PArOJdmK/rlUPrsd9Qrz+ELaI79ghaE2bdIdmnNZbdYsePykXIYu6ohecQUNuzxsQzwHDIBq1dIdnnNZ69tv4elTc/luRUeqn9+OnV7obtetb74J5fwetnPpMngwvHxWLjPXd2THA5pR/e0P4JZb4LHHvGhbhnlxaBszYQKcc47NldCzZ4zl6gsLbanP7t3h6qvh1VehfPlUh+pcVpn1Si4Nb2xHFc0DQLQQKlaC7bdPc2TOZbcPP4Rel+Xy8dp2VCMP3noQ9t8fBg3y3rTOpYmqXZ7265zLZ4XtqKZ50Le79ebr3duvW51Lk8JCeOQR+LpLLgOlHVU1DwYssPkSnnvOC0NlnJfktxGq0KMH/Oc/9njMmBiFofx8G2PWvTvcdpvt5CdY55JGFfrfnEuDG4KL23Dr10O7djYJvHMupdavt7lsXz0/l0/WB4WhkPnzYeLEtMXmXDZbvRouuQQ+uiGXLzTi3Dlpkq2o65xLub/+grZtYWSXXL4sHxSGQoYNg5Ej0xabS424ikMi0lpE5ojIXBG5O8p2EZGXgu1TReSIsG3zRWSaiPwgIn4lVgp5eXDZZTYvX4sWMHkyHHlklIbr1sEFF9gQsocfhmee8epuGee5mV6hC9zDXuxIdfKiN8rLg44dUxuYSzvPzfQKrUg25cVcBldoR9XCiPxcs8YLt1nKczO95syBo46Cxf+Xy+CK7agSmZt5eZ6bWcjzMv0mTIAjjoCCYbkMqdiOygWem9mo2OKQiJQHugOnAgcAF4rIARHNTgX2Cb46Aa9GbG+hqoepapOtDzm7/PQTNGsG774LXbrYStg77xylYV4etG9vS/G+8ALcf78Xhso4z830mj0bmjaF99+HBa2uRGM1rFbNxoC6rOG5mV4jRsDhh8OUKTBg58uolO+FW2c8N9Pr44+hSRNYsgQG1upApQ2em87zMt0iR6cMqHkpFT03s1Y8PYeaAnNVdZ6qrgfeB9pHtGkP9FbzDbCjiOyS4FizTr9+dhL9/Xf48kt48MEYI8RWrIDWrW2Z+jfftH70Lht4bqbJRx9Z771lfxby08UPcsLwB5D99ttyxaNq1WzC29D6vC5beG6mQWGhrcFw0klQqxb88NFPVN++iKkVvXCbjTw302DDBrj1Vjj3XDjwQJjWaxJVy2+IvYPnZrbxvEyT8NEpLVvC1K7DqbR+VewdPDfLvHiKQ/WB38IeLwyei7eNAkNEZJKIdCptoNkkPx/uvBPOOgv23deGkZ1ySkSj3FzIyYH+/aFVKxg/Hvr2jbF0mSujPDdTbMMGW6jhvPOg2f4rmH/YGezZ52G7i/L999a1L7TykReGspnnZor9/TeccQbce699AJ1036fsfUETWLkSnnpqyxXJPD+zledmii1aZGn2wgtw4w3KmMveoN7Zx0KlSjY/puem87xMi/DRKQ89WMjA455gh3NOhvr1oVcvz80sFc9qZdHGJkWOoCiqzbGqukhE6gBDRWS2qo7a4kUsmTsBNGjQII6wyqbFi23aoFGj4Lrr7GRauXJEo9xcG/OZl2cVpAoVrEjUtm1aYnZpk/Tc9Lzc5PffrSg0bhw8duls7vn2DOT7n6FbN7j+ehvG2aKFnTg7drQ7K34CzVaemyn0ww9w9tnw66/w8gv53LDwHuSSZ23c50cfQYMG1tUvdN70C9xs5rmZQiNHwvnnw6pV8EHPPM77+ga4vhecfDK895518dt/f89N5581U6xfP1vYqEIFGPrh37TqfRl88QVceCG8/rqt5NmggedmFoqn59BCYPewx7sBi+Jto6qhf/8E+mFdB7egqq+rahNVbVK7du34oi9jRo2yicAmTLBVPF95pZjCENhA0XLltqzuumyQ9Nz0vDTDh9scJlOnwqg7v+De/k2Rv5fbhhtu2Hx+rxYtbCUkP4FmM8/NFHn7bTj6aFuPYfyni7mxXyvkuWetYDtqlF3cwqbCbcOGfoGb3Tw3U0DVOuy1agU1a8IPH8/lvK7HWG+EBx6AQYOsMASemw78s2bK5OfDHXdsGp0yrff3tLqzMXz1Fbz8shVta9Swxp6bWSme4tAEYB8R2UNEKgEXAJ9HtPkc6BDMJN8MWKGqi0WkuohsByAi1YGTgekJjL9MUIXnnrOxntttB99+C5deGqVhZGEoZN06nz0+O3luJllhITz2mN3krFOrkHmXP8xxT58OjRrZcrvHH5/uEF1m8txMsjVr4KqrbCT1McfAtO6jaNIpuLvSp48NV4m8u+KFW+e5mXT//ANnngl33209+r7v8hn7XNjEuvYNHAgPPbTlBJqem9nO8zIFFi+2gu2zz9rolLFXvs2uZx8N69fD11/DjTduuZiR52bWKXZYmarmi8iNwGCgPPC2qs4QkWuD7a8Bg4A2wFwgDwhNY14X6Cf2RqsA/J+qfpXw72IbtmIFXHEFfPqpnUx79oQddojR+LLLtiwMhYRmj58/P1mhugzjuZlcf/9tRdqBA+GKc1bSY00HKnT7DDp0gNde23LyaecCnpvJNW8enHOOTfN17z3KIzWfp9zZd8Gee9rCDAcfnO4QXYby3EyuKVOsILRgAXR9Np/OS+9HLnwSGje2pcpyctIdostAnpfJN2qUDfFcsQLee3MNF42/Ca59y6pFfftClvakcluKZ84hVHUQlpThz70W9n8Fboiy3zzg0K2MscyaNs1OovPmWRX31luLWH3+q69iF4bAZ4/PUp6byTFpkn34/P136HP/j1z8UXvkp5/gxRfhppuKSFTnjOdmcgwYsKln7aD3V3Lqhx3t7spZZ9k5cPvt0xugy3iem8nRq5f1RqhZE8Z8soSjul5oPdqvuQa6doUqVdIdostgnpfJERqdcvfddv8k9+157HdfcHflvvui9+RzWS2eYWUuCd59F446Cv79F0aMgNtui/F5899/bX3BU0+FunWtx4LPHu9cUqjCG2/AscdCQQFMe3Igl7x4JLJsGQwbBp07e2HIuTQoKLDr2NNOgz32gKn/N51T728Cn31md1c+/tgLQ86lwdq10KmTdV4/+miY3mMsR117uK2i26uXXbd6Yci5lFuxwm503nEHtG8PPzw6gP0uagy//GKTTz/6qBeG3Bbi6jnkEmfdOlsK+9VX4bjj4IMPYJddYjQeNcqmkp8/3zL74YftBNuokc8e71yC5eXZHLbvvAOnnFTIJ40fp/rtD8Bhh9myDg0bpjtE57LSn3/CRRfZ/O9XXgmvHPselc7pZMWgESN87i/n0uSXX+zD5+TJcPddyqO1X6T8WXfY+fLLL+FQ79DhXDqEj0557ukCbvnnQeT8x2x1lY8/tm5EzkXhPYdSaMECKwi9+ircfrtd6EYtDK1ZY2PMmje3lchGj4ann95058Vnj3cuoebOtTuevXvDo3f9y5c1zqX6k/fDxRfD2LFeGHIuTcaPt1U8x46Fnq+t481K11PpikugSRPrFu+FIefSYtAgm0ro559hQN9/eWLe+ZS//RZo2xYmTvTCkHNpEj46ZfSnS7l18CnI44/ZKg7jxnlhyBXJi0MpMniwXeDOng2ffALPPAMVK0ZpOGGCNXzhBRu8PWWKjXGJ5LPHO5cQ/fvbBe7ChTDyzbnc90Uz5PPP4PnnrVrkE087l3Kq8NJLVvupXBkmfPIrl78V3F254w67u1KvXrrDdC7rFBTYavRt20KDBjD1/Zm07XKkXdw+9ZT1tN1xx3SH6VzWWbfOesBfeikceSRMf2M8R19/uN1deestmzfBh3i6YviwsiQrLIRHHrH5vg480M6djRpFabh+vTV84gnrTjRkCJx0UsrjdS5b5OfDvfdaobZJExhww5fUveUiG389eLCt4OCcS7lVq+wG5wcf2BxD73UYzHYdLrbz5Cef2OTTzrmUW7bMhngOHWqzHvRo3pdK51wNNWpYwbZ583SH6FxWWrAAzj3X+hjccbvyRP1ulD/zVqvgjhtnw8mci4P3HEoSVZu/9j//gS5d4JJL4JtvYhSGpk2z/n+PPmoNp03zwpBzSaJqUyHceGAu1z+TwwunjWD86U9Q94q2Nnxs4kQvDDmXBvn5NufXNY1yefKDHN69Yjj9Gz/Mdud4UELXAAAgAElEQVSdajdNJk70wpBzabB2LXTrBtfum8sbQ3MYePMQ3q5+E5Uuv8g+dE6e7IUh59Lg33+tX8FNB+Xy8cQcxtw7iKcXXkT5WzrbYkYTJ3phyJWI9xxKMFW7o/LQQ1aorV8f3n7b7rBsschRQYF1W3jgAVv7s39/m07eOZdwqjZHwkMPQfUJuQyUdlQjj5sHnQxfFMAFF1i328jVAJ1zSZWfb3MkPPoo7P5zLoOkHVXJI6fXydb99pJLbMWj6tXTHapzWWXtWhuJ8uST0GhRLoPKWW42fOlUy81bb7WNUedJcM4ly8qV8PLLNgPCIctz+bJcO6poHg2eaGcNHn8c7rrL5q51rgT8HZMgqjYS5dhj4ZRT4NdfoXt3m6ivY8cohaEff7RuRffcA6efDtOne2HIuSRQtRU7mza1Rf72+jWXIZXaUU3zrEFBgV3YXn21F4acS6ENG6BnT9h3XztPtpRchlZuR9VQbhYWQqVKttELQ86lzJo18OKLNm9t585wbq1chlVuR9XCiNxs184LQ86l0MqVdiMlJwf+9z/otE8uw6q0o0ooN1UtN5s188KQKxV/12wlVfjqK1vpqHVrm9T21Vdt9aPrr7eJNDdTWGil3sMOs9mp33sPPvoIatdOS/zOlVWq8NlnNp/Q6afD8uUw8I5c/m9lWyquz9u88YYNNrlJbm56gnUui2zYYJ309t0XrrjC5q4d80guPX5vS4V1Ebm5fr3npnMpsmYNdO1qRaGbb7apEL5/PpeuP7ahfLTcbNfOc9O5FFixwqamzcmB+++3zgizXsnliSltKL82IjfXrfPcdKXmxaFSCg1RadbMhnQuXmy93n/6Ca69NqwolJtrmZyba7OFnXSS3YZp3hxmzLCZ/bboVuScK63CQlss5Ygj4Iwz7ITasyfMnrqeNm+ejaxZE33HvDzroeCcS4r16+HNN+0D51VXwU47Wa++ibn/cuyzZ3puOpcmeXm2SO4ee8Att8D++8PIkTDy42Uc9mB7G18Wa0fPTeeS5p9/bDqEnBybheS442waoS9eXch+d5zmuekSzotDJaQKAwfa/NFt28KSJfD661YUuuaaiJ5CublWuV2wwLoV7b8/fPedDeAeOBB23TVt34dzZU1hoS1kdPjhNmft6tU2ue3sWcrl1T+i4qEHwN9/x+5mW62aVZGccwm1fr2dJxs1stGbtWvDgAEwYdwG2v32KrLP3lbFLV8++gE8N51LitWr4bnnrKfQrbfaqrpffw0jBq7hhPFPwl572fKBFWJMUeq56VxS/POPLWiUk2P/nnACTJoEn/VeQeNP7oV99rGTq+emSzAvDsUpct6SpUutxvPjj3axW6lSxA6hwlBe0NVv/Xrr5tejh90y9d5CziVEYaGNzDz0UDjnHLuJ0qcPzJwJHfYYTYXjjobzzrMT5Zdf2ozxkXMLVatmn1ZbtEjPN+FcGbR+vZ3y9tnHbp7UrWs9br/9Rmm7oT9yyME2/nq//eDbbz03nUuR1avh2WetKHT77XDQQTBqFAwfUsDxv7xjldx77rFPpDNmwJAhnpvOpcDff1sPoYYNrcdQy5bw/ffQ/8P1HDH2Zdh7b1ue7OyzrWeC56ZLMC8OFUMVPv9807wlf/1lcyX8+KPVeLYoCoF9AG3delNhKKSw0CpJPgbUua1WUAAffACHHGK1n/x8m8Jr5ky4pMlsKpxzBhx/vE0E1rOnnV1bt7Yz7YABm06mfhJ1LqHWrbNh1nvvbcOsd93VTovffAOn1vwGOeF4OPNMu0ny+ec2fqVpU8tBz03nkmbVKnj6aRs+dscddlNlzBgYNgyOWzsUGje25XV32cXy8vPPrde756ZzSbV8uc0llJNjcwudeCL88AN8+oly2NyPrVtf58520Ttpki3x2bCh56ZLOC8OxRCazLZxY1tEbMUKW5J+zhybQHOLxRkKC63oc8UVNt5s/froB/YxoM5tlYIC6NsXDj7YVp9XtcfTp8NFLf+g/I3X2W3QESNsKc8ff7SL3fAhK6GTacOGfhJ1LkHWrYNXXrGi0HXXwW672Sqe48ZB673nIueda6s3/PSTVY+mTbPJpsN70npuOpdwq1bBU09ZUeiuu2z49dix1ung2BpTbJndk0+2pZD69rVK7gknbH4Qz03nEu6vv2zVsZwcW4Xs5JNhyhSbJuHQVWPhmGPg3HOhShXrejtsmE2qGc5z0yVQjIGK2auw0IpCDz9sFdu99oJeveDii2MM65w928awvPuurV+/3XbWO2HECLtSjuRjQJ0rlYICeP99O3nOnm03UT74wIaSlctbBY8+B888Y3l3ww12ti1qFcAWLWD+/JTF71xZtXat9ah94gn4/XdbReXtt+3Op/y1DG5+xJbxrFgRHnzQxrHUqBH7gJ6bziXEv/9C9+42hOyvv+zy9IEHrEbLwoVw+f+gd29bMvD552MssxvGc9O5hFi2zFLu5ZdtmOc551jPoYMPxnoinHWPra6yyy62kkPkTc5InpsuQbw4FCgo2FQUmjLF5kh45x1bTGyLotCyZfYptXdvmDDBJrg95RS7LXP66VYAipxzCLyrn3OlkJ9vNzIffdQ6AR18sM0xdNZZUK4wH954yz5wLllid1cef9y6LjjnkmrNmk1FoUWL4D//sfNmy5Yga9fAUy/axlWrbBx2ly52oeucS6qVKzcVhZYvt1V1H3zQFlNhxQq49ylbnkzVirX33AM1a6Y7bOfKvKVLrSjUrZsVhc47z4pCBx4I/Pkn3PCQTdZXtaqNL7vlFqhePd1huyySlcWhJUusN3v414wZdqHbqJF1BLrggoii0Lp1Vtjp08dWGsvPh8MOs2UeLroI6tXb/EVCXfxCBSIvDDlXJFVYvHjL3Jw1y3omHHqodbM94wwoJ8EM8XfdZd2I/vMf6N8fmjVL97fhXJmjaotuRubmnDl2KjzuODs1tmgBUlgAvd+1nnsLF9qwsaeesnlLnHMJVVAA8+ZtmZtz51pP+LZtradQ06bYdAcv97C7oMuWWZf4xx6zoSjOuYTKz7cR1JG5OW+ejaQ+/3wrCh1wAPY58dHn7Vy5Zo2t4PDgg1CnTrq/DZeNVLXYL6A1MAeYC9wdZbsALwXbpwJHxLtvtK/GjRtrTCNGqDZsaP8WY9Uq1W+/VX3zTdX//le1ZUvV2rVV7VLXvurUUW3VSrXb2SN0Va2Gmj807LiFharjxqlee61qzZq2wy67qN5+u+qUKcW+fknjdU5VFZioceSJpjg3i8xL1RK911eutNTq0UP1xhtVTzhBdaedNs/NevVUTzpJtfs5I3R17YZaMCw47rffqh5/vDXad1/V/v0tV51LsmzIzb/+Uh05UvXll1U7dVI9+mjV7bbbPDdzclRPO031jYtG6Jq6DbVweHDcIUNUDz3UGh15pB3IuRTIhtxcskR12DDV559X7dhRtUkT1apVN+WliOree6ueeabq25eO0LX1guMWFqp+9JFtBLsYnjSpBD9d50ov3tzMqM+aqnHnZmGh6sKFql9+qfr006qXXqp62GGqlStvys3y5VX331/1vPNUe3ccoet2DY6bn28fUnfd1Rqeeabq7Nkl/hk7VxqxcjOeZC0P/AzsCVQCpgAHRLRpA3wZJG4z4Nt49432FTNhR4xQrVbNwq5WbWPC5udbLn30keoDD1hu7bWXnShDiVmtml2rXnGF6gsv2Al2yZIYx333XdWHHtp0Iq1aVfXii1UHD7YXcy6JSnAiTWluFlu0jZKb69erTp+u2rev6r332gfKnJzNP2jWqKHarJnq1VervvSSam6u6tKlUY5bpYpq8+a6sar76quqGzYk9GfvXFHKUm6uWaM6ebLqO+/Y/Y5TTtl0fRr6qlnT6rA33KD62muqY8eqrlgR5bhVqtgnVVDdYw9L+IKCxP7wnStCWcrN1atVv/tO9a23VG++2W5g1qmzeW6GbmzefLO1++47uyG6xXErV1Y94AD7/0EHqQ4a5DdTXErFk5sZ9VlTNWZurlhh58HXXrPz4vHHb+o7EPqqX1+1dWvVO+5Q7d1b9fvv7Xy7xXErV950Qdysmero0Yn9wTtXjFi5Gc+wsqbAXFWdByAi7wPtgZlhbdoDvYMX+kZEdhSRXYCcOPaNT+QcPnl5rD+xDS/s+jRf/dmYdcHiYOUEdt8dzt8T9mpuE0rvtZctpVsucm22ucAHk+DOO23cSnBcLrnE/t+yJdx3H5x9tk007VxmyejcfLau5WZ+gT1dvhw0aACX7gV7ngx77Wm5Wa9elNz8EegbkZtr19rSuh062GBtz0mXuTI6N5+q9TRDljWmoNCerlTRVko55mDY64xN581atTZfSAyA6dgyupG5OXGiLVH2wgtFT2jrXHpldG4+sZPlpgbNqlS2FcZaHrkpL/fcC3aKnB5oA/aRODI3162DmTNtXqEnnyx6Qlvn0icz8hJi5uajOzzNsL8bb2xWrRrstye0PT4sN/eE7bePOF4eMJnoublggQ0fe/DBKCdb59IjnuJQfeC3sMcLgaPiaFM/zn2LF21yZ6BS4VruWtiZu8KfVODX4GtkiV9pk6pVbc4EnyPIZa6Mzs17F3fm3vAnC4H5wdfwEr/SJh9/bKs2eG66zJXRuXn/n525P/zJDcBPwdfWeOcdmxTec9NlrozOzQeXdebB8CfXAbODr63xyivQpo3npstU6c9LKDI3H/67Mw+HP5mH3SyZXqpXMqq2yu4JJ3huuowRT3EoWilT42wTz752AJFOQCeABg0abL6xY8ctEnUzderYbJgldemlNjN8NGvW2Ov6soAucyU9N4vMS0hPbubleW66TOe56Vxm8tx0LvOk/7MmeG46R3zFoYXA7mGPdwMWxdmmUhz7AqCqrwOvAzRp0mTzpO7ZM2olF7B+fe+/X7qK6/vvF33cnj1LfkznUifpuVlkXoLnpnPReW46l5k8N53LPOn/rAmem84BkTN9RDMB2EdE9hCRSsAFwOcRbT4HOohpBqxQ1cVx7lu80LLw1apt/vzWLg+frOM6lxqem85lJs9N5zKT56ZzmSf9eQmem84RR3FIVfOBG4HBwCzgQ1WdISLXisi1QbNBwDxsiuc3gOuL2rdUkUYmVqISKlnHdS7JPDedy0yem85lJs9N5zJPxuQleG66rCc26XtmadKkiU6cODH6xtxcG5vZs2diEypZx3WuhERkkqo2SXcckYrMS/DcdGWe52aKjutcCXlupui4zpWQ52aKjutcCcXKzXjmHMosLVokZ9KuZB3XuWzhuelcZvLcdC4zeW46l5k8N12WimfOIeecc84555xzzjlXRnlxyDnnnHPOOeeccy6LZeScQyKyFFhQRJNawLIUhVMcjyU6jyW6eGJpqKq1UxFMScSRl7Dt/axTxWOJbluLxXMzMTyW6DyW6Dw3U8djic5jic5zM3U8lug8luhKnZsZWRwqjohMzJTJzTyW6DyW6DIplmTIpO/PY4nOY4kuk2JJhkz6/jyW6DyW6DIplmTIpO/PY4nOY4kuk2JJhkz6/jyW6DyW6LYmFh9W5pxzzjnnnHPOOZfFvDjknHPOOeecc845l8W21eLQ6+kOIIzHEp3HEl0mxZIMmfT9eSzReSzRZVIsyZBJ35/HEp3HEl0mxZIMmfT9eSzReSzRZVIsyZBJ35/HEp3HEl2pY9km5xxyzjnnnHPOOeecc4mxrfYccs4555xzzjnnnHMJkNHFIRFpLSJzRGSuiNwdZbuIyEvB9qkickQaY7k4iGGqiIwTkUPTFUtYuyNFpEBEzklnLCLSXER+EJEZIvJ1umIRkR1E5AsRmRLE0jFJcbwtIn+KyPQY21P2vk0Wz83SxRLWznNz8+2emwniuVm6WMLaeW5uvt1zM0E8N0sXS1g7z83Nt3tuJojnZuliCWuX1Nz0vIwZS3JyU1Uz8gsoD/wM7AlUAqYAB0S0aQN8CQjQDPg2jbEcA9QM/n9qOmMJazcCGASck8afy47ATKBB8LhOGmO5F3gq+H9tYDlQKQmxHA8cAUyPsT0l79tkfXlulj6WsHaem5u38dxM3c/ac9NzsySxeG6m7mftuem5WZJYPDdT97P23ExTbnpeFhlPUnIzk3sONQXmquo8VV0PvA+0j2jTHuit5htgRxHZJR2xqOo4Vf07ePgNsFsS4ogrlsBNwCfAn0mKI95YLgI+VdVfAVQ1WfHEE4sC24mIADWwhM1PdCCqOio4diypet8mi+dmKWMJeG56biaL52YpYwl4bnpuJovnZiljCXhuem4mi+dmKWMJJDs3PS9jSFZuZnJxqD7wW9jjhcFzJW2TqljCXYlV6pKh2FhEpD5wJvBakmKIOxagEVBTREaKyCQR6ZDGWLoB+wOLgGnAf1W1MEnxFCVV79tk8dwsZSyemzFj8dxMDM/NUsbiuRkzFs/NxPDcLGUsnpsxY/HcTAzPzVLGkqLc9LwsvVK9byskLZytJ1Gei1xaLZ42qYrFGoq0wJL1P0mII95YugJ3qWqBFS6TJp5YKgCNgVZAVWC8iHyjqj+mIZZTgB+AlsBewFARGa2qKxMcS3FS9b5NFs/N0sfiuRk9Fs/NxPDcLH0snpvRY/HcTAzPzdLH4rkZPRbPzcTw3Cx9LKnITc/L0ivV+zaTi0MLgd3DHu+GVeFK2iZVsSAihwBvAqeq6l9JiCPeWJoA7weJWgtoIyL5qto/DbEsBJap6mpgtYiMAg4FEp2w8cTSEXhSVRWYKyK/APsB3yU4luKk6n2bLJ6bpY/Fc9NzM5k8N0sfi+em52YyeW6WPhbPTc/NZPLcLH0sqchNz8vSK937VpMwQVIivrDC1TxgDzZN+nRgRJu2bD7R0ndpjKUBMBc4Jt0/l4j2vUje5H3x/Fz2B4YHbasB04GD0hTLq0CX4P91gd+BWkn62eQQe4KwlLxv0/ke9Nz03CxhLJ6bqftZe256bpYkFs/N1P2sPTc9N0sSi+dm6n7Wnptpyk3Py2JjSnhuZmzPIVXNF5EbgcHY7OBvq+oMEbk22P4aNjN6GyxJ8rBqXbpieQDYGXglqKDmq2qTNMWSEvHEoqqzROQrYCpQCLypqlGX3Et2LMAjQC8RmYYlyl2quizRsYhIX6A5UEtEFgIPAhXD4kjJ+zZZPDe3KpaU8NyMznPTc7OIWFLCczM6z03PzSJiSQnPzeg8Nz03i4gl6TwvY0tWbkpQWXLOOeecc84555xzWSiTVytzzjnnnHPOOeecc0nmxSHnnHPOOeecc865LObFIeecc84555xzzrks5sUh55xzzjnnnHPOuSzmxSHnnHPOOeecc865LObFIeecc84555xzzrks5sUh55xzzjnnnHPOuSzmxaEsIiJPiMjNYY/ni0hOgl+ji4h0CXv8nYgcmMjXcK6s8dx0LjN5bjqX+UTkGhHpGvZ4pIg0T/BrXC4ivcIefyoirRP5Gs5lMxGpLCIzRaRe8Li5iIxMwutsPI+LyCEiMi7Rr7Et8+JQmODNskREqoc9d1XojSkidUSkr4gsEpEVIjJWRI5KW8AlICK1gQ5AjxS/9LPAw6XZUURaichsEckTkVwRaVhE251EpJ+IrBaRBSJyUdi2SiLycfD71cgLBhFpERx/hYjML02sLrmKy83gca6ILBWRlSIyRUTapyXYEvLcjJ2bQZsjRGSUiKwK3gP/LU3MLjniyc2w508Ifs+PpjTIUsry3GwmIkNFZHnwd/UjEdklbHtlEXkt+N0vF5EvRKR+aWJ2iRHk4prgb+UfItJLRGqEbe8VnnsicqCILBaR2yKOs4+IrBWRd1MZf2mJSCXgf8AzKX7pJ4HHSrOjiBwmIpOCPJ0kIocV0bayiLwdXNv8ISK3luRYInJLsN+K4DiVSxOz25JYEfLvyJ9pkGsqIqdHPN81eP7ysOcuCv7+rhaR/iKyUynjWBvkfujri2BbcxFZWMpvMdU6AaNU9Y9UvaCqTgX+EZHTSrqvmKdE5K/g62kRkSLaxzw/SzGfRYM8Hx1sXygiD5Q03nh5cWhLFYBYHz5qABOAxsBOwDvAwPCTbwa7HBikqmu29kAiUiGe5wKfAy3CLyrjfI1awKfA/djPeiLwQRG7dAfWA3WBi4FXZfM7r2OAS4Bof3BWA28Dd5QkRpdyReUmwbZdVHV77ATzbknfd2lyOZ6bUXMzeK2vsA/nOwN7A0NKEq9LieJyExGpCLwIfJuSiBLjcrI3N2sCrwM5QEPgX6Bn2L7/BY4GDgF2Bf4BXi5JvC4pTlPVGsBhwOHAPdEaBQWEXOAxVX0uYnN37Fp3W9EemK2qv2/tgYIPe+WKew5AVb8DtheRJiV8jUrAZ8C7WJ69A3wWPB9NF2AfLA9bAHdK0GOpuGOJyCnA3UArLJf3BB4qSbwuOrGeJ8cBCpwepcmPwGVh7SsA5wI/hz13IHZ9cyn2dzgPeKWUId2oqjXCvkpc7MgA1wB9EnGgEp5z3wteu6Q6AWcAh2LnwnaxjhPH+bm4z6L/B4wK9j0BuC6y+JgoXhza0jPA7SKyY+QGVZ2nqs+r6mJVLVDV14FKwL6leaFQNVdE7hSRP4M7OGeISBsR+VHsbty9Ye2bish4EfknaNst7ARwjIgsE5Hdg8eHBu32C3Y/Ffi6mHjaicgPwX7jROSQsG3zReQuEZkKrBaRCtGei/IzWwtMAk4u4Y/nLGCGqn4UHKMLcGjY9xMed3XgbOB+VV2lqmOwi+tLgxjWq2rX4PmCKDF+p6p9gHkljNGlVszcBKv+q2p+6CFQEdi9NC/kuVmklOUmcCswWFXfU9V1qvqvqs4qYbwu+YrMzcBtWGFv9ta8kOdmkRKZm18Gx1mpqnlAN+DYsEPsgeXmkuC13gd8KFyGCO68D8aKRJsRkabAMOBeVe0Wse0CrNA3fGteX0RyxHpIdBSR38R6V1wrIkeKyNQgX7qFtd9LREaI3X1fJiLvhf6eBNuWi8gRweNdgzbNg93jydNmQX7+I9azuHnYtpEi8piIjMU+nO8Z7bkYhx4JtC3hj6c5VlDvGpzXXgIEaBmjfQfgEVX9Ozj/vYEVruM51mXAW6o6Q1X/Bh4J29dtnQ7AN0AvwopAYb4AjhWRmsHj1sBUNr8RdjHwhaqOUtVVWOHgLBHZLmlRl5BYL6hXRORLsR5JY0WknlgvqL/FesIcHtb+bhH5WUT+FRsidmbYtldF5OOwx0+JyHAxDYC9KOIGklgvumdF5FexXquviUjVYFvo2uAuEfkD6BntuRiHHgm0kpL3qrsMeE5VFwbF6eeInV9Fnp/j+CyaA7wX1B9+xm6sJuWc68WhLU3E3iS3F9dQ7M5LJWDuVrxePaAKUB94APujfwnWO+k44AERCZ2UCoBbgFrYHbtWwPUAqjoOqz6/EyRKH+B/qhq6ED8YmFPE93IEVrG8BrtD3wP4PCJRLsROgjuGfQiP9lykWVhVFRFpEJycY32FurUfCEwJHUBVV2PV9miJ0AgoUNUfw56bEqOt23YVm5siMkBE1mInl5HBPqXluZn+3GwGLA8u6v8UG7rSIM59XeoUmZtiXaevoJRDpaLw3Ex9bh4PzAh7/Bb2wWdXEamGfcj5Msa+LsVEZDesaBJ5fdoU6415i6q+GbHP9liO3kbiHIX1ejkf6ArcB5yIvc/OE5ETQi8PPIH1Qtsfu7HTBSD4IHQX8F7wXusJ9FLVkcG+xeVpfWAg8Ch21/124BOxYaMhl2K9ALYDFhTxXKSNeRq8VlF5enfQ7EBgqqpq2HGmEiX3gsLCroTlNZvnaXHHOjDKvnVFZOcY34+LXwesx8l7wCkiUjdi+1qs4H5BWPveEW0i/2b/jPXmbAQQFGVivZ+mJv5biuk8bOhmLWAdMB6YHDz+GHg+rO3P2Hl4B6yXWngv/tuAQ8Tm7zoOuBK4LHj/HgzMK+KcCPAU9rM5DOtJHroGCKmH5XhDLHdjPbeZoLCzgaCzR1DgipnLYbtGy69Y59CSnJ+j6Qp0EJGKIrIvdj0zLM59S8SLQ9E9ANwUceLYTHAS7QM8pKortuK1NmDdejdgd95qAS8Gd8hnYBdjhwCo6iRV/UZV81V1PnYhekLYsbpgyfgdsAjrGhyyI9YtPJargR6q+m1QlXwH+wPQLKzNS6r6W0QX+2jPRfo3eH1U9VdV3bGIr/8L9qkBRP5cV2An6Uglaeu2bUXmpqq2w37vbbC72oVb8Vqem+nPzd2wOzP/BRoAvwB949zXpVZRufkSQQ+VBL2W52YKc1OsN9QDbN7d/UfgV+B3YCX2gT5RxT9Xev1F5F/gN+BP4MGI7c2w33O0Qt4jWC+T3xIYzyOqulZVh2DDJvqq6p/Bh7HR2NA3VHWuqg4Ner8sxT5sbsxTVX0D+Am78bMLVmQKKS5PL8GGhw5S1UJVHYoVtNuEteml1rsmP/i7Euu5SBvzNIizqDx9MmhW0jwNbY/WtrhjRW4P/d+vj7eCiPwHKzZ8qKqTsA/5F0Vp2hv7QL8D9n7uH7G9yN+fql5fxPvpkIj9XoooYjyyld9muH7BuXQt0A9Yq6q9VbUAGxq1seeQWs+YRUGufYDlbdNgWx6Wj89jQyFvUtXQfEhF5rGICHbOvUVVl6vqv8DjbCq+ARQCDwZ/R9YU8Vw04efcJ4vK5bB9ouVXjSDWSFt7PTwAOAdYg/XAfktVkzL814tDUajqdOyXcHe07cEdxi+Ab1T1iVjHkc0nBot1t/uvILnAfuEAS8K2ryE4OYhIo6BnxB8ishJLilphcW/AujcehHVzC7+T8DdFvwEbArdFVEZ3x+5YhES7YIjnImI7rJtySawCto94bnui/+EoSVu3DSsuN4M2G1T1S+xOTtTxuJ6bG2V6bq7BLkomBBclDwHHBBdaLoPEyk2xSR63Cy4Si+W5uVFG5KaI7I0VEv6rqqPDNr2K9d7aGaiOzaXgPYfS7wxV3Q4bbrQfYejThpEAACAASURBVO/1QGg+oaGyabhLqCf8icAL8byIiMwIy9PjimgamZex8rSOiLwvIr8HefpulNjfwPL0ZVVdF/Z8PHl6bkSe/gcrMoVkcp6GtkdrW9yxIreH/u/Xx1vnMmCIqi4LHv8fUYaWqQ3XrY31uhkQpTiRyM8vnSOKGPcXt4OIXByWx0X9/Y4rj4NjdpBNQ63/wXI2/Jz7HTZ0SoAPw45TXB7XBqoBk8KO/VXwfMjS4FqRYp6LJhG5vD2wKuI6IlbbUPtif9dik5R/hd2AqYJdZ5wiIteXMN64eHEotgexCuVmq2+IdRfvj90tK3LyKt18YrBfExDTq1i1cB+1SXfvxZIrFFv9IO6ewHOyedf2qQTdFGP4DbsTG/6HpZqqht+lj/Zmj/ZcpP0JutKJdY9fVcTXxcE+M9i8q251bCzqjC2ObncwK4jIPmHPHRqjrdv2Rc3NKCpg75kteG5ulOm5OTXi+wj9P+ZqEC6touVmK6BJUJz5AxtecrOIfBbtAJ6bG6U9N8WGAw7Den9EThJ6KNazYnnwQf1loKnYpJsuzVT1a6zo+WzEpgJsCOCvwOCgFzxYMSkH+DXI09uBs0VkcozjHxiWp6OjtSmhJ7C8OCTI00vYPE9rYMMq3gK6yOYrOsWTp30i8rR6WE8eSECeBnEWlaehudBmYENrws9jhxAlT9XmCVpMWF6zeZ4Wd6wZUfZdoqp/xfG9uSiCDgLnASeEndduweaPOTTKLu9iw6kih5TBln+z9wQqY3+fEZtTJ9b7aas/46jN5xjK41O39njBOeMN4EZg56CXzXQ2z+UbsO9xEXBn2O5Tsfm+Yk0avQwrRB0Ylsc7qE3Av/FbirJfsXksIrti08TMCR7fW1Quh+0aLb9i/V5Kcn6OtCc2DLy3Wk/GhViv6TbF7FcqXhyKQVXnYl3lOoeeE1tt5WPszdlBt27ISmlsh3XfXiU2gdV1YbEJdiHwFjaGczHWRThkEJt3pY/0BnCtiBwlprqItJWtnBQtuNBuDAyFjd3jaxTx9V6waz/gIBE5W0SqYF3ap+qmuSA2Uhu3+SnwcBD3sdjqFRsvZsUmMasSPKwkIlVCJ1MRKRdsq2gPpYrEXjXCpVmM3NxPRE4Vkapi43EvwebIKHKSygTy3ExCbmIf2M8UW8KzIjZZ4xhVLendHZcC0XIT+52F5gg4DJuD4Q2gY4rC8twsRW6KFc1GAN1V9bUoYU4gGC4R5Ob1wKKwO+ku/boCJ0nE0uZBb7lzsQ9bg4IPKa9jH1RCefoaNk/PKSmKdTvszvo/wXsvcsWeF4FJqnpVEFf4e7K4PH0XOE1EThGR8sE5prnYvExb6wTCeswVk6ePB81GYkW6zsH578bg+RExXqM38D8RqRn8Dbsa+7sVz7F6A1eKyAFiPcX+F7avK50zsJ/5AWzKl/2xYZIdorR/CTgJW2kq0nvYe/O4IA8fBj5VGzKFql5bxPspE+dVrY4VY5YCiEhHrOcQweNG2Nxfl2Bzet0Z+vsUFDw2DkGLFHzmfgN4QUTqBMerL7Yi39ZqDowIbnSgqo8Xlcth+/UGbg3i2BUrAvaK8RpFnp+L+Sz6Y/DcRUG7etiNtilRXmereXGoaA9jb/SQY7Bl6k7GTmDxdKlNpNuxMa3/YgkS3k2/M7YM4v2qqtiFd8ew2HoDbSSY1T2Sqk7ETjjdsK59c0nMiganAyNVdVFJdlIbc3428FgQz1GEjSsNqrrhXSCvB6piY+z7AtepzT0RMgcr6tXHVvBYg3U1BisirMEuMBoE//flsjNbZG4KNnfIn9hJ6b/A+aoa9a5nEnhuBhKZm6o6AuvpMTDYf2+ij+t3mWOz3FSbB+iP0Bf2+12tqstTFI/nZqCEuXkVdrfyQYl+x/R2bMLVn7C/uW2AM3EZI3g/9MYKtJHb1mOr56zFpknQiDxdhc0rsjRF4T4EHIHNwTEQK1wCICLtsZWerg2euhU4Qjb1mPsC2C/4cLYFtTmU2mPnkqVYT6I72MrPQCJyJPa37LuS7Bf87M/ACgn/YJP1nxE8HxrqE36OfBCb02YBdsPrGVX9Kp5jBe2eBnKD/Rew5TxUrmQuA3oGRfvwnOkGXCwRPV/UelcOD84xRGybgb2v38P+Dm9HsGBCKXSTzXu4TCrlcUpNVWdiK3aNx4aeHQyMBQh+Lu8CT6nqFFX9CcvJPrKpx24PghUzY7gLO89+Izb8dBilXDE8wsVsXnCOVw/s7880rIfUwOA5YOPw24uh+PMzRXwWVdWV2N/rW4J9fwhe77FSxFwsifJedWWUiDwO/KmqXYPH84HmapN0Juo1ugCoapfg8bfAlWrzUTjnovDcdC4zeW46l/lEpBNwgKreHDweCXTRTSuaJeI1Lsdy//Lg8SfYpLCDEvUazmWzoEj0PdBKVReLSHMsj5sn+HXmE5zHReRg4HVVPTqRr7EtizWuz5VBqnpv8a0S/ppHpfo1ndvWeG46l5k8N53LfKr6ehpe8+xUv6ZzZVkwrOuAFL/mNGxZeBfw4lB260rJZ2YvzsgEH8+5bOS56Vxm8tzcxolIa2wOm/LAm7r5xMShYUyPYEsg5wM3q606FLrj/C8250i+qjZJYegufr2A+Qk+5g8kPvedc7HNJzlzZCXjPF5m+LAy55xzzjlX5olIeWxyz5OAhdjE2hcGc2WE2tTA5pJRETkE+FBV9wu2zQea+MTbzjnnyiKfkNo555xzzmWDpsBcVZ0XTNr7PjZZ8Uaquips8tjQ6jvOOedcmZeRw8pq1aqlOTk56Q7DubSYNGnSMlWtne44InleumznuelcZipBbtbHVqsKWYitGrMZETkTeAKoA7QN26TAEBFRoEdxc914brps5+dN5zJTrNzMyOJQTk4OEydOTHcYzqWFiCxIdwzReF66bOe56VxmKkFuSpTnoi0x3Q/oJyLHY/MPnRhsOlZVF4lIHWCoiMxW1VERsXQCOgE0aNDAc9NlNT9vOpeZYuVmXMPKRKS1iMwRkbkicneU7e1FZKqI/CAiE0XkP2Hb5ovItNC20n8LzjnnnHPOldpCYPewx7sBi2I1Dgo/e4lIreDxouDfP4F+2DC1yH1eV9Umqtqkdu2M6zDhnHPOxVRscSiYvK87cCq2vNyFIhK5zNxw4FBVPQy4AngzYnsLVT3MV3VwzjnnnHNpMgHYR0T2EJFKwAXA5+ENRGRvEZHg/0cAlYC/RKS6iGwXPF8dOBmYntLonXPOuSSKZ1jZxsn7AEQkNHnfxpUdVHVVWHufvM8555xzzmUUVc0XkRuBwdhS9m+r6gwRuTbY/hpwNtBBRDYAa4Dzg5XL6mJDzcCun/9PVb9KyzfinHPOJUE8w8qiTd5XP7KRiJwpIrOBgVjvoZDQ5H2TgnHYzmWn3FzIybF/E8SHfDqXAEnITedcAiQhN1V1kKo2UtW9VPWx4LnXgsIQqvqUqh4Y9Hg/WlXHBM/PU9VDg68DQ/s6l5USnJt+PetcgmxlbsZTHIp78j5V3Q84A5u8L+RYVT0CG5Z2QzC535YvItIpSPaJS5cujSMs57YhubnQrh0sWGD/JuBk6kM+nUuAJOSmcy4BPDedy0wJzk2/nnUuQRKQm/EUh5I+eV+w3Sfwc2VTKFHz8uxxXl6iLnQ3DvlU1fVAaMjnRqq6SlVDxVwf8ulcuOTlpnNua3huOpeZkpObfj3r3NZKUG7GUxzyyfucK63IRA1JzMnUh3w6V1rJzU3nXGl5bjqXmZKXm34969zWSGBuFlscUtV8IDR53yzgw9DkfaEJ/LDJ+6aLyA9Yt8Dzg+puXWCMiEwBvgMG+uR9Lqt07Lhloobk5dn20kv6kE8f7unKrOTmpnOutDw3nctMyctNn8LEua2RwNyMp+eQT97nXGn17AnVqkXfVq2abS+9pA/59OGersxKbm4650rLc9O5zNSzJwUVKkfftnW56VOYOLc1evaECjEWoS9hbsZVHHLOlVKLFv/P3p3H+VS2cRz/3IPBkAiprC0UlUqKFjItD6JFyS5GWUKSkq2yZy2RfSfZS9YoNdnLUlTIkihrRLaxzHI/f9wz4zdjMJiZ85uZ7/v18jJzFnN5Hqdzfte57uuCAQPO3x4UBPPmuf1XTks+Ra5UcDCMjt/PkqS6NjV5ReRKBQfDzJnnb0+ia1NErsyhG+7ieERWouIX+lz9tannWZGrERkJERHnJ4iu4NpUckgkuc2aBdmzY7Nmdd8n0QOulnyKXKXlyyFDBkjia1OTV0Su0v797vfM0VUKSgyJeMpGWbY91ZyshLGny6hz1X1JcG3qeVbkKhw8CPXrQ/HiMGfOVV+bF6g/EpEksWQJLFwIffsyY0dpHh4VQtDEcVyXRA+41toFwIJ424b7fN0H6JPAeTuAe5IkCJHUaP9+GDPGrcOuU8f9Pm5cUn34jJ28AmCMiZm8sinmAGvtCZ/jNXlFxNeIEe5Bd/BgaNQoKa9NEbkCq1pP4+E9M/m+Yi8qdH4Fyt+SpPdNPc+KXAFroWFDOHIEFi2CkiVdQugqrk0lh0SSi7XQoQPcdBO/PtaS+u9m5elndvLFC14HJiJ8/DGEh8M770DRorBzZ1L+6QlNXikT/yBjTDWgF3A9UMVnV8zkFQuMsNaOTMrgRPzahg3w449uSfbjjyf1tSkil+nA+n0UH9yc37KV4dEv33Ybg4N1bYp4bdAgWLDAvUgpWdJtu8prU8vKRJLL3LmwahXhHTtT99Ws5MoFI0eCSWgmg4iknP/+g6FDoUYNKFqUzz+Hjh1driiJaJKgyJUaMcItJ3v5Za8jEUn3bJRlV8UmZLGnCJoxgYxZVFcg4hd+/tm94Hz2WWjePHZz//6wZs2V/7FKDokkh8hI92mzaFE6bQ/h119h7FjQcAQRPzBkCBw/Du3bs3s3NG4M336bpD9BkwRFrsSJEzBpEtSsCddd53U0IuneiiYTePCfeax+vhe3VL7d63BEBODkSahdG/LkcS0SoisPvvkG2raFiROv/I9WckgkOUyeDBs38lvtHvQfmInXXoOnn/Y6KBEhLMwtKatShai776FBAzh71n0ezZQpyX6KJq+IXIkpU1zitmlTryMRSff2/vg3d495g/XXPka5Ga28DkdEYrzxBmzd6h5e8+QB4NAhaNDAtevr2/fK/2jVBooktTNn4P33iSh5H1XGVqdoUVfiJyJ+YPRodwft2JGPPoLvvnObihZNuh9hrY0wxsRMXskAjI2ZvBK9fzhu8srLxphw4BTRk1eMMfmAWdF5o4zAZE1ekXRjxAi46y546CGvIxFJ12yUZd/TjbidSK77ciwBGVVPIOIXpk1z1UKdOsU2nLYWmjRxj7cLFpwbwnsllBwSSWojR8LOnfSvMJy9mwJYufLcVEER8dDZs9CvH5Qvz89ZH6ZjR3jhBTcMKalp8orIZVq3zv365BM15xPx2LK6wyl/eDFLaw+jfIVbvA5HRMA1mm7SxL1A6dw5dvOYMTBrlitGuPfeq/sRSg6JJKUTJ6BHDw6UqECH7/9Ht27wwANeByUigCu/3b2b04NHU7eu6wGmJvEifmLECPe6s1692E3W6voUSWl/fb+DUlPbsu66pyg3SUs8RfxCRATUqeO+njw5thfC1q1uldkTT8Cbb179j1FySCQpffwx/PMP9cJmU7asoUMHrwMSEcA1ie/TB+67j7cW/Y/Nm13jvty5vQ5MRDh2zD3s1q4NOXPGbm7XDo4ccXmjAK1qEUl2URFRHHmuIdeSgRsXjMEEKDsr4he6doVVq2DqVChSBHBTduvWhSxZYMKEpLlP6lYrklT+/Rfbrx8r8jzHKluWSZMgo9KvIv7hiy9g61bWVezI0GGGNm3gySe9DkpEAPjsMzd9xacR9cKFbhVoxoxJmxgyxlQyxmwxxmw3xrRPYP9zxphfjDHrjTFrjTGPJvZckdRuafWB3HNsGb++OoibyhS89Akikvy+/x569nR9EGrWjN3cpQusXeuq4PPnT5ofpY+uIkmld284fpwmticfj4Jbb/U6IBEB3NqUDz4g4rbbqTK6GiVLwgcfeB2UiADu+hwxwjVKiF6HvW8fvPyy60390UdJ96OMMRmAIcBTwG5gjTFmjrV2k89h3wJzohvElwSmA3ck8lyRVGvHgt8pM7sjP+Z7hkdGvOx1OCICrst03bpQrBgMGhS7eelS6NXL5YtefDHpfpwqh0SSwu7dRA36hEnmZW579k5eecXrgEQk1qJFsH49n2Rtx9ETGZg8GTJn9jooEQFg9WrYsMFVDRlDZKRrO3TihBvKcjVTVxLwILDdWrvDWnsWmAo853uAtfaEtdZGf5sNsIk9VyS1ijgdQViNBpwyQdz89UgtJxPxB9bCK6+4BNGUKZAtGwD//Qf167tChIEDk/ZHqnJIJAlEvt+VqPAoBl7XhQWj1EBTxK988AHHcxWk3a91+XAQ3Hmn1wGJSKwRI9wDb3SjzT594LvvYPRoKFEiyX9afuBvn+93A2XiH2SMqQb0Aq4HqlzOuSKp0fLn+lHh5GpWtprKwyVv8DocEQEYNgzmzIEBA+C++2I3t2gBe/bAihWQPXvS/khVDolcrS1bYPw4htrX6DK+CNdf73VAIhJr+XJYtozOx9vyRKVAWrb0OiARifXff665Zt26kCMHK1bA+++7vtSNGiXLT0zo1Y09b4O1s6y1dwDPA90v51xjTJPoXkVrDx48eFXBiqSErZ//ysNfd2ZVgZd4eGDNS58gIsnv11+hTRt4+mk3jizaZ5+5+Q1dukCZZHg9kajkkJr3iVzYP83e45TNwt/1O1G1qtfRiIivyJ69OJwxLzOvfYVx41TVJ+JXPv0UTp2Cpk05fNglhQoXhuHDk+1a3Q34dtktAOy90MHW2qXArcaYPIk911o70lpb2lpbOm/evEkTtUgyOXviLFH1X+aoyUWxxUO9DkdEAMLCoFYtyJUL34fXnTuheXN49FGSbSL2JZNDPg34KgMlgNrGmPiFvt8C91hr7wUaAaMv41yRVOv4knVc//0MxudqQ5ehKhkS8Svr15Nh4QL6R7RmyLggblClvIj/iGlEXbo09r5SvPIK7N/v+gzlyJFsP3UNUNQYc7MxJhCoBczxPcAYc5sx7kncGFMKCAT+Tcy5IqnNyio9uePUena0H0nu2/N4HY6IgKsY2rzZvUCJXpISEeH68YHbnCFD8vzoxFQOqXmfyAXsrN2RQ+Sm7Iy3knzNZ2Koqk/kwg607sUxruF0SHOeecbraEQkjpUrYeNGaNqUoUPhyy/d0M/SpZPvR1prI4CWwCJgMzDdWrvRGNPMGNMs+rAXgd+MMetxLzhrWifBc5MvWpHktWniWh5d2pPlt9SnzAfefjzT86xItC++cC9O2raFJ5+M3dy7t+sxNHQoFCmSfD8+MQ2p1bxPJAHfdw6lwr6vWfS/D6n4xLUp/vM1klfkwv5bvZW8S2Yw+rp29Bic0+twRCS+ESPgmmv4pUQt2gS7tgqtWyf/j7XWLgAWxNs23OfrPkCfxJ4rkhqd/u80gU0acDDgBu5anMTjji6TnmdFov31l5tO9sAD0L177ObVq12Podq1XYu+5JSYyqFkb94HauAnqcue3ZbsPTtwILAAj89s7lUYquoTSYC1sLZmX86QmbJTWxMU5HVEIhLHv//C9OmcrVWfGo2ykycPjB8PARqTIpIifqjYmdvObGJP19HkvDmX1+HoeVYkZt1YZKQbWx8YCMCJE26YZ/78rmoouSXmNpzszfuiz1MDP0kVoqJgVNXZlI78ETp3IdM1WbwKJaHKvPzxDzLGVDPG/A7Mx/UES/S5IqnR9I92U37nRDY99Aoln8rndTgiEt/EiXDmDN0PNGXrVjd9RY9+Iinj1xErKb+6H0vvaELpdyt5HQ7oeVYEevaEZcvc+Ppbb43d/MYb8OefMGkS5EyBQvjEJIfUvE/Ex5BBkby0oRNH8t1OvncaeBmKRvKKxLN9Oxzs8CEBxnLvpLZehyMi8UU3oj54W1l6zCnJe+9BhQpeByWSPpz85yTXvN6APRkLc9+3/b0OJ4ZWqUj6tmwZdOsGL78cZ93Y55/D2LHQvj2UK5cyoVwyOaTmfSLnbNoEG96ZxJ1sIufgnpAxMW27ko1G8or4CA+HljUPEhI+kjMv1iXDLYU9i0XNNUUuYOlS2LKFd/9qSrly8N57Xgckkn6sfaoDRcK3c6jPWK656Rqvw4mhVSqSfh054hJCt9wCgwfHbt6zBxo3dkMaunRJuXAS9clWzftE4OxZaFj7DJ9Hvk/4PaXJ9OILXocUW5kH7MFV5tXxPcAYcxvwR3QDP9+qvv8uda5IatOjBzzy0yCCzClMt3aexaHmmiIXFjl0BGEZrmV+thqs+szrdywi6cfPH4Xy2C+fsOSeVjzWJtjrcHzpeVbSn9BQCAmBQoVg3z5YtQqucQnbqCho0ADOnHHLrjNlSrmwdEsWSaTOneGhX4ZTkL+g/xgwCVWyphxrbYQxJqYyLwMwNqaqL3r/cFxV38vGmHDgFNFVfUCC53ryFxFJAitWwMDux9gTOBhTtRoUL+5lOLENMgGMMTENMmMTPNbaEz7HJ9hc80LniqRaBw9iZ85kbNRrDB0fRMGClz5FRK7esd3HyPtOCH9mKsoDi3t5HU4cep6VdCc0FKpWhbAw2LULmjZ1JULRBgyAb7+FUaOgWLGUDU3JIZFEWLYMhvQ+zu4sPeGRJ+DJJ70OCVBVnwjAsWNuwEP7nMPJduQ/6NDB65ASapBZJv5BxphqQC/geqDK5ZwrkhptbDueO6PCCavXlGef9ToakXQgujrhz6i7uCvybzYNWcbNefxvhKeeZyXd8E0Mxfj0U6hZE4KDWb8eOnaE5593U+1TmoaGilzCsWNQvz50zTWAHKcPwgcfeB2SiPho2RIO7DpNG/MRPPVUnLcvHlGzeJF4dv8VRZZPR/JztkdpM7qE1+GIpH0xH0J37eKev+fz6x0vcXfTh72OSiT9SigxBO77qlU5/VUodepA7tyuasiLRSpKDolcQqtWEPbXIV4/0x9eeAEefNDrkEQk2tSp7oXL9MrjCDx8wL1u8Z6axYv4iIiA/lVCuTVqOzd2aUrmzF5HJJLGJfAh9J5dc912EfFGSMj5iaEYYWGcrBnC5s0wYQLkyZOyocVQckjkIj7/3F2gsx7sRcbTJ13HWxHxC3/9Bc2awSNlIqiyqS+ULQuPPeZ1WODTXNMYE4hrkDnH9wBjzG3GuHdC8ZprXvJckdSme3d4+LcRnMl+HTe0rO51OCJp2wWqE8wpV52gBJGIR8aNg8DABHdFZA6i+vFxvPmmK4L3inoOiVzAvn2uP1iVu//i4fVDXNt4b5vciki0yEh4+WX3++cvTcW8vRMGDfK8UTyouaaIr9BQGNltP3+bWWRs0gqyZPE6JJG07RLVCYSEwM6dKRqSiAAFCkBAgPsVFRW72WYNokbmeRy+Pdjz7iVKDokkwFpo1MjdQycV64rZYqFLF6/DEpFo/frBkiUwbkwU+T7sBXffDVWqXPrEFKLmmiJw8KBrFt82zzgyHoqAJk28Dkkk7Rs3jqinqxBw+tT5+4KCXPWCiKSs06ehRg13DY4fH/tB0wYF0fHueSxYH8y6yd6/P9GyMpEEDB0KCxfC6Ld/J+es8dCiBRQq5HVYIgKsWwfvvQfVq0ODXHNg0yZo3969iRERv2AtNGwIhw9F0SLzKKhQAW6/3euwRNK8qHKPsT3jHedPMggKgnnzIDjYi7BE0re334b162HiRDeZbN48KFyY2Y3n0fvHYPr1gzvv9DpIJYdEzvP779C2LVSqBLU3vetupt6PxhYR4ORJqFMH8uWDEcMtpncvuOUW9zZGRPzGxx/DggUw7dVvyLznT7dOW0SS3dIXP6bYiZ/59X9vu2dYUGJIxEszZ8KQIfDWW+eq3IOD2bRgJ7VHBFOpkpu86w+UHBLxcfo01Krl7qGftlqD+fxzl+nVNCARv/DWW7Btm3vxct3672D1anjnHcioVdIi/mLtWmjXDp5/Hp7ZN8KNXalWzeuwRNK8rTN/4aE5Hfjhxue5+6u+sdUJSgyJeGTHDnjlFShTBt+GQmfOQN26kD27W+npBy0zAfUcEomjfXvItSGUlXlDCHo3t3ugbdPG67BEBJg9G0aMcJV9jz8OPPEB3HijaxYvIn7h2DH3kuWGG2Bsj72Ye+a4rK7m14skq9P/ncbUq8t/AddRNHQUJsC4hJCaT4t44+xZt4QsIACmTo0zqezdd90qszlz3P3SXyg5JBJt/nzYMDCURRmrEngwDA7ucr2GrrnG69BE0r2//3a9++67z43F5scf4bvvoH9/77v3iQjg+gw1beo+iy5ZArm+GONGCjZu7HVoImneD090pMKZ31jb/StK357H63BEpF07V0o7axYUKRK7eeFC9/j62mvwzDPehZcQLSsTwY2tH1UnlAWmKoERPuM/x41zc3hFxDMREa7P0NmzMG1adAFCr16QK5emH4n4kXHj3MvRrl3hkbKRMGoUPPkk3Hab16HFMsZUMsZsMcZsN8a0T2B/XWPML9G/Vhpj7vHZt9MY86sxZr0xZm3KRi5yYT/1XUyFnwaw5O6WlH63ktfhiMjs2a75XqtWbo11tL174eWX3ZDdDz/0ML4LUHJI0r2oKOhfJZTPjlUlqw2LuzMsDKpWVYJIxEPdusHy5TBsGBQtCvz2m7vptmqlyj4RP7F5s2uo+cQTbok2Cxe6kj8/akRtjMkADAEqAyWA2saYEvEO+xN4zFpbEugOjIy3P9hae6+1tnSyByySCEf+OMyNHRrwR2BxHviuj9fhiMiuXW5c5/33Q9++sZsjI6F+fTdcZdo0yJrVuxAvRMkhSff69YPXfw4hG2EJHxAWBiEhKRuUiAAuL9ujh2srVK9e9MY+fSBbNnj9dU9jExHn1CnXViF7E4Yb2QAAIABJREFUdvj0U8iQAdcgLF8+eO45r8Pz9SCw3Vq7w1p7FpgKxAnQWrvSWnsk+tsfgAIpHKNIotkoy++PNSV31EHOjp1EUJ4gr0MSSd/Cw13jvchIn3J3p3dv1xHhk0+geHEPY7wIJYckXVu92jUEG19+HDZTpoQPCgpytfIikqIOHnSTHIoVg8GDcZmi/Plh8mRXjZA7t9chigjw5pvw669uiuCNN+IqhubPd43CLnRv9UZ+4G+f73dHb7uQV4CvfL63wNfGmHXGGK1pFc+taPYpD+2ZycqK3Shet5TX4YhIp07www8wejTcemvs5uXL4f33XZsEf645SFRySOuzJS06dgxq14abboJ3Km7AhIdHv+70ERSk8Z8iHoiKctVChw+7HibZ14S6JZ5797qdZcp4HaKIAJMmuSKhdu2gUkyrk9GjXXdq/2tEndCwYJvggcYE45JD7Xw2P2KtLYVbltbCGFM+gfOaGGPWGmPWHjx4MCliFknQ30v/pOSolmzIUY5yc9p6HY6ILFjglqQ0awY1asRuPnzYfea8+WbXIsFfxtYn5JLJIa3PlrSqRQs3UeX7Zz4kqNOb8OKL8NVXLiEESgyJeGjAAHc5fvgh3HskOjEU5rP0MyREvcBEPLZxoyviK1/eLf8EXAf50aOhYkX3JOxfdgMFfb4vAOyNf5AxpiQwGnjOWvtvzHZr7d7o3/8BZuGWqcVhrR1prS1trS2dN2/eJA5fxIk8G8mRqvWxGHLPn0iGwAyXPklEks/u3a7TdMmS7iE2mrXukfXAAfeyM0cOD2NMhMRUDml9tqQ5n37q3nYufKIfNw95G156CaZMgaeecgmhwoVTRWJIVX2SFq1Z4xraVqsGzYsnkBgCNYsX8diJE+7WmT27e+DNmDF6x/z5rsLPjxpR+1gDFDXG3GyMCQRqAXN8DzDGFAK+AOpba7f6bM9mjLkm5mvgf8BvKRa5iI9lVftQ8vgKfms2hAKPFvE6nKum51lJ1SIiXGnQ6dMwfTpkyRK7a/BgmDPH9aUunQrKZDJe+pAE12dfrJ7/QuuzLTDCWhu/qkgkRW3fDs2bw/AivXnqmw6ui+akSeeebIODXUmRn/Op6nsKd12uMcbMsdZu8jkspqrviDGmMq6qz/f6DbbWHkqxoEUu4ehR18fvpptgzBgw94WcnxiKEdMsPhVcryJpibUu97NlCyxeHN1nKMaIEe4CrlrVs/guxFobYYxpCSwCMgBjrbUbjTHNovcPB94HcgNDjav9j4iufM8HzIrelhGYbK1d6MFfQ9K5TRPX8sg3nVlZsCYPD6nrdThXTc+zkup16eKaCk2aBLffHrv555/h7bfd7fCNN7wL73IkJjl0JeuzH/XZ/Ii1dq8x5nrgG2PM79bapQmc2wRoAlCoUKFEhCVy+c6edYnddyI+oOnOTu6biRN9XnmmKrFVfQDGmJiqvtibqbV2pc/xquoTvxbzgXPXLliyBHLltG7S0aBBCZ+gZvEinhgxwvWF79EjXoHtzp1uhP277/rtfdVauwBYEG/bcJ+vXwVeTeC8HcA98beLpKST/5wk66t1OZjhBkosGYYJ8OPmJYmn51lJvb75Bj74wA1gqHsuWXv8uKs/yJvXPar6c58hX4lZVpbs67Oj92uNtiS7d9+FSmu7897pTu4CTr2JIdDUFUljxoxxUz+7dYNHSp1yVUGDBkHZspA1a9yD1RNMxBPr1rk3oJUrQ4cO8XaOGuWegF89L7ciIklg3eNtuTl8Kwf6TCDnzbm8Diep6HlWUqd9+6BePShRws2n99GiBfzxB3z2GeTJ41F8VyAxySGtz5Y04euvIWu/rnTnfahfHyZMSM2JIdDUFUlDNm6EVq3gySehfZ2/oFw5d4127gwrVrg+JqmoWbz6J0hadOQIVK8O+fK53n0Bvk+R4eEwdiw8/TSoAlwkya3pMp/yG4fx/f1vcd9bj3sdTlJK9ufZ6HP1TCtJJzLSFRocP+76DMU8o+IeXz/91I2uf+wxD2O8ApdMDllrI4CY9dmbgekx67Nj1mgTd32278NsPmC5MWYDsBqYr/XZ4oV/Dlh+faEzXelCRL2Grr4v/tj61EdTVyRNOHXKld5ecw1MaxZKwAP3w7ZtMHu2W8cdEOASQamkWbymfEpaZC00bAh79rjn4Ny5fXaGhro+Q/v3+2sjapFU7eDGfyjSrRFbs9zNQ9/19DqcpKZVKpL69Ojh7n1DhrjKoWhbtrjeto895laspDaJKpvQ+mxJzaIiLd898h5vnezJ4WqNuG7CqHivO1Ot2Ko+YA+uqq+O7wEXq+oDAqy1x32q+rqlWOQiPt58EzZutGxu8jHX1WwLRYvCl1/GaeoHpJpm8ah/gqRB/fu7iSsDB7qVnrFCfSYKGhNnSouIXD0bZdnxZGPusUc5MmkxmXNk9jqkpKbnWUldQkOha1e3EqVhw9jNp09DjRquiOizz1JnHUKa+IQsckHWsrZSJ2r90ZOND7/KdTPTTGJIVX2SJsyYARNHhPFT8XrcMbINPPss/Pjj+Ymh1EX9EyRNWbbM9Rd66SV4/XWfHb6JIXDlRc8957aLSJJY1nA0ZfbP4cfne1Psxbu9DifJ6XlWUpV//nHLyYoVg6FD43Safvtt+OUXGD8e8l/sqc+PpeqGKyIXZS37Q9rz4OK+LCzclIpLh6aZxFAMVfVJavbnn9C90Z+sD6pG0d9/gZ49oX37tHCdJvuUT034lJRy4IBb9nnLLTB6tM9zcPzEUIywMLfdz5d/iqQGO7/Zxv2ftmbddU9SbkYrr8NJNnqelVQhKspVCx054iZzZs8eu2vWLLfCrE0bqFLFwxivUqp/AhdJkLWcfaMtN0zoy4Rsr/HAmqGYDPrnLuIvwsNhQOWv+f5kaW7NuAszfz507JgWEkOgfmCSRkRGQp067jl45kzIkSN6h7UuYxQ/MRQjLMxNGxSRKxYeFs6JavU4azJz06LxBGRME/dHkdSrTx834WjgQChZMnbzrl1ukn3p0tCrl4fxJQH9V0bSHmvhrbcI/ORDBtOSQnOGkDuv/qmL+A1r+eapPgzYUpmAgvnJ8NNaNxc77dCUT0kTunaF775zb0NLlsS9NZ05E0qVgoMH45TTxxEU5AY/iMgVW1G5B3edXM3vrUdwY+lUukZFJLULDYUiRWDQIHjvPfdipHHj2N3h4VC7tnuZMnUqBAZ6F2pS0CdmSVusdd1tBwxgIK3Y33EQwY9f4OFVRFLeiRPsL1+Dp5e056dbXyLnplVw661eR5Wk1D9B0oJFi9wwloYNodHLETBpEtx1l2s8FBbmmiosWhRnfC/gvteSMpGr8uvIVZRb2oPlt7zMQx+95HU4IulTzPLpXbugdWvIlw9GjozzYqRzZ1i1ym1OC4+z6jkkaYe10KoVDB7M4MA3mVbqQ5Z0UWJIxG9s30541efJu2Uz/W/oR4tf3oKgtHmNqn+CpGZ//+36bd5X4gzDS0+E23vDjh1w993u1Wj16ufGsMybd673kBJDIlft+N7j5GhRj70ZC1FyySdehyOSPiU0cOHwYVi3LvYe98030Ls3vPIK1KrlYaxJSJVDkrrFlPp9+y20bAmDBzP5xrfolPlDJk8xZMrkdYAiAsD8+djSpQnbsZ9nAxfx9LdvkzWNJoZEUrOzZ6F+9VOEnPiEH/69jcwtm0Du3DB7Nqxf70rqfefzBge7hFDhwkoMiSSB9RVaUyBiJ4cHTCRHgRyXPkFEktaFBi6cPu22h4Zy4IDrTX3HHW7FWVqhyiFJvXwv3EqVICKCpQ+9Q91VvZk61VCkiNcBiqRToaGuGe24cfDYY24KWefOHLjhXsoe/YL3RhehRAmvgxSR8xw/zqKnhzF19UfcwAEoVh4mjIGnnrpwfyFwCaGdO1MsTJE0J/q+ualsCOW2jeX7hztSoWU5r6MSSZ9CQi46cME2DOHlO3Zy9CgsXnz+6urUTJVDkjrFz+hGRBCVISNdVlUkJMRQs6a34YmkW77rs6tUgXLl4P33+ed/dbntwAoerl2ERo28DlIknYqptg0Njbv9yBHo1o2zNxXmmeXtOFLoHliyxP363/8unhgSkavjc98sPq0LOzMX4+FFnb2OSiT9GjcOsmZNeF9QEFMrjosdWnbXXSkbWnJTckhSnwuU+gVERjDfPMOQ6qEXOFFEklX8a/PUKVi5klOvtKT0xonkK5KV4cP1OVPEE76J2+iyeA4ehI4d3ZKwzp35+nR5GpZYza3bFkH58l5HLJL2xbtvGqAQfxG4ZoW3cYmkZw89BIUKnb89KIiNfeZRf2wwL70UZ2hZmqHkkKQ+Fyn1y2rDyNo8JIUDEpELrs8GzPix3L7ve6ZNgxxqnyCS8uJfn2FhriKoQAHo3ZuIik/zUrENNMjxJV0XPJDqR/GKpAoXetl55lxfExHxQKtWsGULdO16bs1YUBDHp8yjSv9gChY8b2hZmqHkkKQ+lyj1Y9y4lI1HRC6atM0SGcbMHCGULp3CMYnIhRO3EREQGQnjxtHs2qnM3FqSSZNcEZGIpIBL9DUhRC87RVLc6NEwahR06ADvvx87cMHOnUfIxGD27HFDO3Pm9DrQ5KHkkKQ+wcGuj0k8ViN0RbwzbtwFO/KdzhBEjplK2op44mIfQCMjOfFWZ8aMcavLKldO2dBE0rVx47BZ9LJTxG+sWQMtWrghDN27u23RAxeGbwnm88/hgw+gTBlvw0xOSg5J6rNsGXz9NRE16nDKuA+jNmsQRokhEe8EB8OMGefV2IYRxOkZ8zCP69oU8cRFErdRWYKofnwcFSq46vn0wBhTyRizxRiz3RjTPoH9dY0xv0T/WmmMuSex54pcDvtYBX7Peh82/g697BRJeQcPwosvwo03wuTJkCFD7K5ffoE333TDsd96y8MYU4CSQ5K6hIdD8+bYwoV5LeMoqth5nLq+MGa+bqIinvvhB7AWMmcG4CRBbP1oHjmr6doU8UxwsPugGRD3kc9mDaJhnnlsuC6YKVMgY0aP4ktBxpgMwBCgMlACqG2MKRHvsD+Bx6y1JYHuwMjLOFck0Za88DHFj6xkw8OvxelrosSQSAqLiIBatVyC6IsvIE+e2F0nT0LNmpArF0yYcN6tNM1J4389SXMGDYLffmNR5YGMnhxE+c7BZD2wUzdREa/t2gX9+kGtWix84yt2Upjp9edx75u6NkU8FxkJUVGQKRPglmF3LzOPz/a6xNANN3gcX8p5ENhurd1hrT0LTAWe8z3AWrvSWnsk+tsfgAKJPVcksX4b/QOPzH6HH258nnuWDYnta6LEkIgHOnaE776DYcOgVKnYzdZC8+auN/WkSXD99R7GmEISlRxSCa74hd27oUsXjjxalefGPEulSq5PmIj4gXbtwBh+rdeH5wcG88rjO6k/Vg+4Ip6LinLXZ6FCMHcuFC7Ml6/Mo/P3wfTsCRUqeB1gisoP/O3z/e7obRfyCvDVFZ4rkqAjfxwmZ7Oa7M9YgDtWjMUEmNi+JkoMiaSwGTPcy83XXoOGDePsGjYMJk50nzefeMKb8FLaJZNDKsEVv9GmDTYigqp/DOLGmwyTJqX90r5LUeJW/MLy5TBtGmEt2vJMi0Jcf72b5JAelqmI+L1p0+Cnn6BHD6hYkdXTd1JzeDBVq8I773gdXIpLaPDweS1fAIwxwbjkULvLOdcY08QYs9YYs/bgwYNXHKikTVERUWx7uAHXR+7j+Ojp5Lw5l9ch+QU9z4onNm1yQxvKloWPP46za+VKeOMNePrp9FWMkJiP1irBFe99/TXMmMH4mzqx7vDNfP455M7tdVDeUuJW/EJUFLRujc2fn5rr3mH/frdcO29erwMTEc6cgU6d4J57oG5dDh+GGjXgppvSR++EBOwGCvp8XwDYG/8gY0xJYDTwnLX238s511o70lpb2lpbOq/+QyjxLH3uQx78Zx6rXvyQEg0e8Docv6DnWfHE0aNQrRpkywYzZ0JgYOyuffugenW30jO9FSMk5q+qElzx1unT0KIFh64rSrMdbRkyBO6/3+ug/IISt+K9CRNg3Tqml+rDvNBsDB0KpUt7HZSIADBiBPz5J/TuTURUALVqwd69MH06XHed18F5Yg1Q1BhzszEmEKgFzPE9wBhTCPgCqG+t3Xo554pczC/DVvDogg6syl+d8tNbeh2OP9HzrKSsqCho0AD++MMtK8t/Lj1x9iy89JLLHX3xhWtEnZ4kpuj/SkpwH72Cc5sATQAKFSqUiLAk3ejXD7ZvpzZfU/+VzLzyitcB+Y2Ekq9lLnL8pRK3FztX5HzHj0PHjvxbrCy15tahaVNo1MjroEQEgGPHoHt3ePxxqFiRd96Cb76B0aPhwQe9Ds4b1toIY0xLYBGQARhrrd1ojGkWvX848D6QGxhqjAGIiK4ESvBcT/4ikur8u+UQeVvWZE/GIpRYOdr1GZIYep6VlNW7N8yeDQMGQPnycXa9/TasWOGm2Zcs6VF8HkpMcuhyS3ArX24JLrgyXKJLBEuXLp1gAknSoR07iOr5AV9mqsHhu59i7mCvA/IryZ64VdJWLuqDD2D/fl48OpsyZQwDB3odkP8wxlQCBuI+RI621vaOt78u53qZnABes9ZuSMy5IonSty8cOgR9+jB+gmHAAGjVinT/gsVauwBYEG/bcJ+vXwVeTey5IpcSFRHFjkfrUzLqIDsmrqJwoWu9DsnfqBBBUs7XX8O770Lt2q6pkI9PP4VPPoE333S706PELCtTCa54w1oim7/OqfCMvBf0ETNnQpYsXgflV9Q7QbyzYwf2o4+YnaM+m7I/yMyZkDmz10H5B/VPEM/t2wcffQQ1a7IqvDRNm7pJKx9+6HVgIunP0ip9eODQQn6s9THF65a69AnpT7I/z4KeaQU3EbB2bbjrLhg1Csy53OLPP0OTJm6CZ9++nkXouUsmh6y1EUBMGe1mYHpMCW5MGS5xS3DXG2PWXuzcZPh7SBpkv5xNhkULeD+qK/2n5Ofmm72OyO8ocSuesW3bciYyI6+f6MX06VCgwKXPSUfUP0G81aULRESwr2VPXnjBXZ/TpmmCoEhK2/DJUsp9/S4rC9ak3GfNLn1C+qTnWUl+p07BCy9AZKRrJpQtW+yuw4fdrty5da9M1F9dJbiS4k6e5MSrb/And3Ptu69TubLXAfkf9U4Qz3z/PeaLL+hBd978KD8VKngdkN9R/wTxzu+/w5gxRDRpzjOtb+XECVi8WBM+RVLawY3/kK91Lf7KdCt3rRypPkMXoOdZSXbWQrNmrjxo3jy47bbYXZGRUKeOG9awdClcf72HcfqBdJwXE3+2t3kPbjr8FxPLLKNv10xeh+O3lLiVFBcZybFXWnOYwvxV/S26t/Y6IL+kfmDinY4dsVmz8vqBd/npJ/jyS7jzTq+DEklfoiKi+Kt8PUpEHeG/yV+Ro0AOr0Pya3qelWQ1bBhMnOiqaqtUibOrc2dYtAhGjoQyehWXqJ5DIinqyMrN5Jn4ITOyNaTD/EcJ0L9SEb9xqM8YcuzYwOCCfRk2Pqvvcm05R/3AxBsrV8KsWSx/6B2Gf3E93bvDs896HZRI+rO00gfcf/gb1tQbxB017/E6HJH0a+VKaN3aJYXeey/Ori+/hJ494dVXoXFjj+LzM/rYLX4lMsKys2oLTpKNYrP6qAxexI+c2n+UgM7vsjJDOZp9+5Lvcm2JS/0TJOVZC+3acTpnPip/04aaNaFjR6+DEkl/fv4olHLfdmZ5kbqUm5BgsYuIpIT9+6F6dShUyI0i86k42LIFXn4ZHnjATSgTR8vKxK98Xn0KNY6EsqLeMB55Kp0v+hTxI9bC9090p2LEISI//pjbiqpk6ELUP0E8MXcuLF9OhyzDKHZfNsaORZV9Iins4G8HuKltHXYGFuPeVcPVZ0jEK+HhUKMGHD0KCxdCrlyxu44fh2rV3BTszz/XNGxfSg6J3/hq6lHKzX6LP/M8wCPjVdsn4k+mdNtG9U2DWH9vCOXe0CjeS1H/BElRERFEtm3PrkzFmH7NK6z6EoKCvA5KJH2JPBvJ3+XrcEfUUY5O+YbsN2T3OiSR9KttW1i2DCZPhpIlYzdbCyEhrnJo8WIoWPAif0Y6pOSQ+IU//oBdDd6nIgcI/3IuZMjgdUgiEm3lSsjR9S0iMmbh3vk9vQ5HROKJHDuBDFs30yHDTKZ9kQn1KBdJecv+150KR75jWchYyr1wl9fhiKRfkyfDwIGu11Dt2nF29evnqoX694fgYI/i82PqOSSeCwuDjk+vp/HZwZyo9xqZHyntdUgiEm3/fhj0zDdUtXOhUycCbrrB65BExFdYGCfavM8qyvLUsBd49NFLnyIiSeunvospv6Qby25twKNjQrwORyT9CQ2FIkVg9GjXYbp8eejbN84hixdDhw5utVmbNt6E6e9UOSSeshaaN4ui9dbXiLg2NzkG9fA6JBGJFh4OtapHMPTIm5wpcAtBHTS3XsTfrGswkPtP7uXHalNo3Vj9TURS2oH1+yjYvi47Mhen1Moh6vUlktJCQ6FqVVdx0KQJXHcdTJ8OmTLFHrJzJ9SqBcWLw5gx6sl3IUoOiadGjICMn47lIX6AQRPiNAsTEW+9/TbcuWIEJdgIg76AzJm9DklEfKxd9C9FZ/ZmVe6qtJhW3utwRNKdiNMR7KtQm6L2BEenh5Lteo3xFElRvokhcJUHJ0/Cpk2QLx8Ap07Biy+6l56zZkF2tQO7IC0rE8+sXg3dWh3io0ztsOXKQf36XockItEmTYJPBx2mb5b33aLs55/3OiQR8bFnD6x7oSfZOUHx2b19X5CKSApZ/mQX7j26hJ+bDOe2Z0t4HY5I+hI/MRTj9Gm3PTQUa+G11+Cnn9yzbdGi3oSaWig5JJ44dAiqV4cPM3fgmqijmKFDVd8n4ifWr3dVuSPzdyXo7H/w8ce6PkX8yKlT0PzpnTQMG8Kxag3J+cidXockku6s7bmI8is+YGmxV3h0hF5wiqS4kJDzE0MxwsIgJIThw2HCBHj/fXjmmZQNLzVSckhSXGSkaxxfZP8P1D4xGvPmm3CXpjqI+IPDh+GFF+DBazbz4v4hmMaN44wAFRFvWQuNG0P1X94jY2AAuQZ19TokkfQjuuntv8OmU+S9evyR+U5KrxjkdVQi6dO4cRdueRAUxG9vjeONN+Dpp6Fz55QNLbVSzyFJcZ07Q+jiCA4UfA2i8utqFfETkZFQty7s3g0/3d8GczobdOvmdVgi4qN/f/jts/V8aj7DvPkOFCjgdUgi6YPPEpZczWtzhkCOfTGDoDxBXkcmkj7lzQsZMrjqdmvPbQ8K4vDEefzv9WAKFnTLyQJUEpMo+p9JUtTcudCzJ3xadii5/17vlquoK5iIX+jaFRYuhC+bLCDnDwtdDe7113sdlohEW7AA2rWD8fnaQ86c0L691yGJpA/xepsEEEVgxihuybrP48BE0ql9+6BKFbj2WpgyBYKik7RBQUR8OY/nPg7mv/9cA2rNO0o8JYckxfzxh+s5/b+791Fr03tQsaJrHS8inpszB7p3h8YNw6m8uI3r2Pf6616HJSLRfv/dLclufMu33HtgEaZTJ5cgkstijKlkjNlijNlujDkvu2aMucMYs8oYc8YY83a8fTuNMb8aY9YbY9amXNTiqQs0vc0QcTa26a2IpKCTJ10DoX//hXnzoGZN93vhwjBvHm/NC2b5chg9Wp0RLpeWlUmKCAtzeaCAAPj85rcxW07DJ5+oya2IH9i61SVuS5eGIXcOxYzf4rJFgYFehyYiwH//wXPPQZbAKD7J+g4UKgQtWngdVqpjjMkADAGeAnYDa4wxc6y1m3wOOwy0Ai40ojHYWnsoeSMVv5KIprfs3JmiIYmkW5GRUKcO/PwzzJ4NpUq57cHBsHMnkybBoEHQurU7TC5PoiqH9JZFrkbMCMFffoGv3gkl+5zJrhReswRFPHfiBFSr5vJAs0YdIlPPLvDUU+5tqIh4LjISatWCP/+EJS2mE/jbT9CjB2TJ4nVoqdGDwHZr7Q5r7VlgKvCc7wHW2n+stWuAcC8CFD80bhw2S9aE9wUFuaa4IpIy3nrLvcAcNOi8Z9WYabuPPQZ9+3oUXyp3yeSQz1uWykAJoLYxpkS8w2LesvS/wB8TbK2911pb+mqCldSpXz/4a2Ioh3MUpszQBnDzzeqTkESUuJWrYS00auSWq0ydCgVGdYbjx2HAAFX1ifiJdu1g0SIYNvAsd3zaydXI63XolcoP/O3z/e7obYllga+NMeuMMU0SOsAY08QYs9YYs/bgwYNXEar4i1P3lGUnhbHxdwQFuaUswcFehJWm6HlWEmXQIBg4EN5887zq2Zhpu9ddB9OmQaZMHsWYyiWmckhvWeSKTZ8OX7ULZWGGquQ8+hf8/bebwZv1Am9gJNGUuJWr1aULzJgBvXrBE/l+g+HDoVkzuPNOr0MTEWDiRPjwQ/cM/Er4cNixA/r0cdNZ5EoklPU+7zP/RTxirS2Fu++2MMaUP+8Ps3aktba0tbZ03rx5rzRO8RM2yvLzfY0ofHoLm2t1i9P0VomhpKHnWUmUOXPcWrFq1VzlgY8zZ6B6dTdtd+ZMyJfPoxjTgMQkh5L9LYukTStWwJh6oSwIqErmSJ+12j16qHlf0lDiVq7YmDFuSn1ICLR927q3MNde60aWiYjnVq925fHBwTCg6zHXMT442A1zkCu1Gyjo830BYG9iT7bW7o3+/R9gFu4+LGnYkie68fBfU1lSuTclprwXp+mtEkNJRs+zcnHr1rmJDKVLu7n0Pi9IoqLcs2xoqFvhWbash3GmAYlJDiX7WxZQGW5as20b9K0cypcRVckaFa+JX1iYpjskDSVu5Yp89RU0beo+Y46sHYq5IR8sXuxKiXLn9jq8NEEl8nI19uyB55+Hm25yFbiZPu4Hhw65Jgpa8nk11gBFjTE3G2MCgVrAnMScaIwZX79nAAAgAElEQVTJZoy5JuZr4H/Ab8kWqXhu5etTqPB9F5bdFkKFeW3dxuimt0oMJSk9z8qF7drlPjfmzQtz556r3ovWsaObZN+rF9St61GMaUhippUl2VsWY0zMW5alCRw3EhgJULp06ctJPomfOXgQKleG0JMhZLWa7pCMkiJxu9cYcz3wjTHmd2ttnGsz+ibbBKBQoUJXHqn4jXXr4KWXXNuSL14PJePz0eN5jYHixb0OL03QRCS5GocPu8TtiROu11Ce8H3w0UduVG9prZi4GtbaCGNMS2ARkAEYa63daIxpFr1/uDHmBmAtkAOIMsa0xi11yQPMMi45lxGYbK1d6MXfQ5Lfb6N/oNTgENbnKE+Zn4djApSUTUbJ/jwLeqZNlY4ehSpV4NQp+Pbb89aLDRniVlq/9prrzydXLzGVQ3rLIol26pQbt7tnD5zoNcjNrk+IpjskhWQvj1fvhLRl5053j82dG77pGEpQjarnxvNa60oVVNGXFFQiL1ckprB22zY3offuu3FLPc+edUuy5apZaxdYa4tZa2+11vaM3jbcWjs8+uv91toC1toc1tqc0V8fi76e74n+dWfMuZL27F6xi3xNnuNAxgIUXP05gdkDvQ4prUuR5Z56pk1lwsNdI6EtW+CLL6BE3DZUs2dDq1bwzDOuT7WKapPGJZND1toIIOYty2Zgesxblpg3LcaYG4wxu4E2wLvGmN3GmBxAPmC5MWYDsBqYr7csaVdUFLz8MvzwA8zq/wfFx77jrtTAeDdVNfFLKkrcSqIdPgyVKrmmfUu7hpK7gU9iKIaWfCYVTUSSyxYe7qr6fvzRlcgHB+MeikePdo3ib7vN6xBF0rzje48T9uQzBNozRHw5j9y35/E6pPRAz7MSl7Xuvrd4sbsHPv54nN0//HCuBdGUKZAxMWuhJFES9T+ltXYBsCDetuE+X+/HZXnjOwbcczUBSurRrp3rED+l5QoqdXneZYu++w4iI90HzrAwJYaSkMrjJbFOn4Znn4U//3T32cL1Q85PDMXQks+kkOwl8lqKnbZERUGjRrBgAYwYAS/kCoUiIVCokJvu+d57XocokuZFno1k8321KXV6Ext6fcX9Ve7wOqR0Qc+zcp5evWDsWHfva9Agzq5t21y10E03uRZE2bJ5FGMapTybJImhQ6F/fxj35GfUHNnITXKYPx+KFnUHzJvnPnCOG6fEUBJS4lYuJSoK6td30wOnTYNypU5CsWKuwV9CtOQzKaRIrz5JG6yFt992A1h69IAmRUPPvVDZtQsaNoTrr/c6TJE0b9lDbanwz3yW1BrGY+2f8jqcdEXPsxJryhTo1Ml1l443Qfeff1xfW4CFC3VrTA6J6TkkclHz5sHrLS2Ti3Wh4eJ6mIcecvV+MYkh0HQHEY+8/bar6PvwQ6hx50Z44AFXPtSgwXkTH1TZl2RUIi+J1rcvDBjgeid0fMgnMRRj2jQt9RRJZkvrjaTCTwNYck8rHpvSzOtwRNKn5cvdC5Hy5WHMmDiNhE6edLfHvXtdxZBWWicPJYfkqqxbBy/XOM28XPWovbWr+8D59ddw3XVehyaS7n38sfvQ+cYb8OZ1E1xi6N9/4ZtvYPx4lwiKSRApMZRk1KtPEmvMGGjf3vVOGPBsKOaZBHqBnTqlXmAiyeinft/y0GctWJOnMo/88KHX4YikT9u2ualGRYrArFmQOXPsrogId59ct84VFpUt612YaZ2WlckV27ULGjx9kEVR1Xjg8Ar44AP3lKt28SKemzkT2rSBWs+G8dHRlpiQcVChAkyeDDfe6A4KDtaSz2SiEnm5lC+/hCZN3Nj68eMhoJh6gYmktB1fbeGWdtXZmfl2iv00lYxZ9NFIJMUdOgRPP+2mXC9YEKfIwFpXWTt3Lgwe7PJHknz0X0C5Iv/9By2f/J25h6pQONNemD7djVkREc8tXw716kGtezYzaftLBGze5Jr6de4MGTLEPThmyaeIpJilS6FWLVfM9/nnEHhor2s+rV5gIinm8LZ/CXiuKuFkIsvXc7m2YA6vQxJJf06fdhmfv/92FbK33hpnd58+MGyYG3zUooVHMaYjWlYml+3sWegR/C2fbi9L/hwnCFjyvRJDIn7i99/dZLLXc03is20PEPDPAde1r1u38xNDIpLiNmxwk1ZuuQXmz40i22cjoUQJWLMGXn1VvcBEUsDZE2fZ9WB1bgz/i31Dv6Rg+Zu9Dkkk/YmKcj2GVq6ETz+Fhx6Ks3vSJOjQAerUcQtUJPkpOSSXxVqYVGE0vdZXwuYvQODPP0KZMl6HJSLA/v3wfMVTDDrVmH7762NKlYL16+F///M6NBEBduxwy8hy5IBvh/xO7hcrQNOmUKoU/PILjBqlXmAiycxGWX68vzn3/fc9a5qNpWSzh70OSST9CA11fYVCQ+Hdd93QhT59zis0+PZbaNTIdUQYO9atOJPkp2VlknhRUaws155Gq/qx/baK3LZ2Glx7rddRiQhw4gS89sRWZvz9EnfbX9yrlm7dIKP+My/iD/bvj87Tnj3LTzX6kLdSD8iWzT31Nmx4rl+feoGJJKslz31Eha1j+P7Rd6kwrK7X4YikH6E+EzkrVXLLUZo0gbZt4xz266/wwgtQrNh5vaklmelTgyROWBi7ytfjkXWz+O721wj+dRBk0j8fEX8QEQGDH53KxE2NyZwjM0xdAJUrex2WiEQ7etRdkgV3r2J+/sYEfbIRataEgQMhX77zT1AvMJFk8WOnOZSf15aVBV6ifGhXr8MRST98E0PgEkMBAa5iyGeY0e7d7n6ZPTt89RXkzOlRvOmUCrTk0vbt41ipxyi47kuGFP2YRzcMwSgxJOIX7KnTLL/7NdpvqM3JW0sS+NvPSgyJ+JHTp6FWleO8uuF1vjv7CEHhx1xl0NSpCSeGRCRZbJm2njs/qMPvQfdz78/jCcioj0EiKSJ+YihGVJRrRh0aCpx7kXLsmEsMFSzoQazpnP6rKBe3YQPh9z1IwJbNvF5oNnVXv0FgZo2qF/EL27dz4JaHqPD7cJY91JYbNn+vO6mIH4mIgA8rzGXkihI0Zwjm9ddh40aoUsXr0ETSlQPr95G97rMcy5CL3CvmEJQn6NIniUjSCAk5PzEUIywMQkI4exaqVXODVWbNgpIlUzZEcZQckrh8m4TNn0/UI49y6JDl+dzLabfsGZX2iXjF99oEmDGDs3eXInD/Lj56fC6PrugLmTJ5GqKInGP37Wd9sRp0+vFZst6YE7NypVtGds01Xocmkq6cOnyKQ48+x7WRhzn+2Vzy3Xuj1yGJpC/jxkGWLAnvCwoiasw4GjVyj7hjx8ITT6RseHKOkkNyTkzJ365dULEi9pln2BJVjHKBq+n79b0UKuR1gCLplO+1WbUqPP881KjBT6fvpOWj62n5VVXf5doi4iVrYfRoTt9SnLv+nMPiCj3Is3MdlC3rdWQi6Uf0C5Woxd/y870NKX5yLRs7fMbtNe/1OjKR9CdvXggM5LyH1eiJnJ0WB/PZZ9CzJ9Sv702I4ig5JE78taDh4UTZAN461Z2BM26iVClvwxNJt+Jfm2FhMHs2X2SoTou7ljB8fiECA70NUSRd863q27YNHn8cGjfmx9P30LPGLzzxXSd0kYqkIJ8XKrZiZR7+ezpLn+5DmQ+e8zoykfTnt9/cfTF7dpgwwSWEIDYxNOz3YHr3hqZN3aBd8ZaSQ3LBJmEZiGR24EtUCQr1KDCRdO5CDfyASlELWPjeCnLk8CAuEXHiVdxy552cXf0zjRnJ4Grf0WVyMVX1+RljTCVjzBZjzHZjTPsE9t9hjFlljDljjHn7cs4VPxDvvpkhKpxIk4HH2tzvcWAi6dDGjS4xlDGjuzbr13cDGQoXhnnzmHM8mJYt3SU7ePD5hUWS8pQckos2Cct01jUJExEPXOTaDLJh5H1H16aIZxKquI2Mot7p0fwR3JhJkwPIkMHbECUuY0wGYAhQGSgB1DbGlIh32GGgFdD/Cs4VL13oZaeNxDz7zLmefSKS/DZtipsYKlbMbQ8Ohp07+TEomFq14P773fDOjBqE7RcSlRzSW5Y0bty4C5e8BwW5/eKXdG2mcZdo4KdrU8QjF/gQGhAVyQTbgLltQi946YqnHgS2W2t3WGvPAlOBOGuNrLX/WGvXAOGXe654LBETkUQkBWze7BJDAQHufnn77XF2b9/ubqE33ghz50K2bB7FKee5ZHJIb1nSgegRZNbE++cQvRaU4GAPgpJL0bWZDpQtC/nzY+Nv17Up4q2LfAjNasPI1lIfQv1UfuBvn+93R29L7nMlJYwbR1SmzAnv0wsVv6aXnWnI77+fez5NIDH0zz9QqZKb3fDVV5AvnwcxygUlpnJIb1nSsn//hRdeIOya66lppnMqIG6TMH349Gu6NtMya6F5c/jjD6aV/ICT6NpMTfSgm8YNG3bh5gj6EOrPEvo/7bz8+9Wca4xpYoxZa4xZe/DgwcsKTq7O+l8COBMOUfH/r9J906/pZWcasmVL3MTQHXfE2b1nDzz2GOzd6yqGYlaaif9ITHJIb1nSqogIqFWLyD37ePzIF+wu8yKRX55rEqabqN/TtZmWjRoF48czrdh71P6lA3Ob6NpMLfSgm8ZZ6xokWIsNjFeloA+h/m43UNDn+wLA3qQ811o70lpb2lpbOm/evFccqFye9QOXULT10+zJfCvHxsw4byKSrkm/ppedaUFMYigqCr77DooXj7N7504oXx5274aFC+Ghh7wJUy4uMcmhZH/LAnrT4olOnWDxYppGDCXzow+waBFkf8Y1CdNNNFXQG9C0as0a7OuvszZ3Reps7cwnn0CtEbo2UxE96KZlw4bBxIkcadWZerm/IkxVfanJGqCoMeZmY0wgUAuYkwLnSjKKSQztDyzMtWu/I2ejF+NMRNI16fdS5GWnnmmT0dat7jqLiHCJoRJx32lt2+YSQ4cPw+LF7mvxT4lJDiX7WxbQm5YUN3069O3LMF5j5+ONWLAArrnG66DkMukNaFp06BBRL7zIAXMjlf79jFFjMtCypddByWVSVV9atWoVtG7NsXJPc+e091l4JphdQ/QhNLWw1kYALYFFwGZgurV2ozGmmTGmGYAx5gZjzG6gDfCuMWa3MSbHhc715m8iMTZ8sjQ2MZRjXSh574puYBKsFyqpSIoUIuiZNpls2xY3MXTnnXF2//YblCsHp065lWZlyngUpyRKYobGxb4pAfbg3pTUSeSffzXnSnL59VfC64ewmof5quLHzJ0FWbN6HZRcAV2baU1kJOEv1SZqzz88Z5bzyeTc1K7tdVByBVKkqg9oAlCoUKHERyZXbv9+qF6d03kLUnLDJAKuCWDZd1C8RPD/2bvzOBvL/4/jr4/dSFEkJUvUV1mT9sS0KZRWKWVpVWlfv/VrX31bpSItJKKNkkiLUQqJkiUpa0lCEpmxjLl+f1z35MxxZpyZOduY9/PxOA/OubfPmTnvue/7Otd93XD10mRXJ1Fyzo0DxoW9NjDk/yvxX5hEtawkz/f9v6DhdR1YWaEuVb+ZuL1hSEqahHREkDhYuNA3DG3Z4lt+mjbNM/nbb+GUU/xNsTMydrjSTFLQThuHnHPZZpb7TUlZ4NXcb1mC6QPNbB9gBrA7kGNmNwCHOOfWR1o2Xm9GovDXX6xLP4vMLXvwcvt3ePv9ClTM58YOktqUzV3PxlvvpcqkT+ld9iX++05rzjwz2RVJESWkVx8wCKB169bRNjxJUW3dCl26sO3PvzieaVSoW53PP/EdhkQk8b5/bjINr+vAHxX2p+o3GezdfJ9klyRFpy87S6JFi3zD0KZNERuGpkyB006D6tXhs8+gYcMk1SmFEk3PIX3LsqvYto1FR3Vj/z9/4fH0zxn0QW3Kl092UVIcyuauY+2QMez59MMMLnspZ314Ge3bJ7siKQYd6O5qbrsNJk+mV5lhZLdozpcfwd57J7sokdLp++cm0/Da09QwtIvQl50l0KJF0K6dv1Zs4kRo1izP5IkT4YwzoHZt3zCkDs4lR1SNQ1LyOQeT0+/l+J/G88rhA7n/46Mpp9++SEpY8cVCdru0O9+WOYyG457j+FOSXZEUhw50dzEjRsAzz9Cfa1l2XDcyxsAeeyS7KJHSafYLX9Lw2tNYVaEOu309UQ1Duwh92VmCLF7sewxlZvpWoObN80wePx7OPhsOOMAPPl27dpLqlCJR80Ap4BwMP3c0F01+mM8PvIyeU66grH7zIilh0ZxMNp90DpVcWezddzj+lErJLkliQAe6uwY3ew5be1zGdI5lUqcn+OgtjdEnkiyzX/iSA645lVUV6lDl6wxqtdRZp0hCLVniG4Y2bvRdglq0yDN51Cjo2tVfYfbxx1CjRpLqlCKL5m5lUoI5B317zqfzqO4s3vtI2nz/HGXLRRrvVEQS7Yd5ju+OvJLGW+ew9tnhHHpW/WSXJCKBnLXrWHP82fy5dXfeOvdt3hxdQQ1DIkkye8BXNLjmNDUMiSRL7t3/NmzwXYJatswzefhw6NIFWrf2HYrUMFQyqXFoF5aTA7dc/jdnDT0TKqfRYMY7lKms0adFUsGsWTDkyAGcmzWMNdfcR6M+pya7JBEJbN2cw6zm3an291LePu9tnnmzti7FFkmS2QO+osHVp7Km/L5qGBJJpIwMqF/fX17drh2sX+8bhg49NM9sL70EF18Mxx/vewxVq5aUaiUGdKizi8rJgd5X5NDplYtpVGYxZcZ/hu0f8QoGEUmwr7+G/ztpGh9uvIGNbTuw97P/l+ySRCSQlQXvtnyYi377gAkdn+XaN4/D1OFWJClCG4YqT1PDkEjCZGRAp05+bKFu3SAtDT7/HFq1yjNbv35www3+zmTvvqtLr0s69RzaBWVnQ8+eUPuVBzmDDyjzzNNY2+OTXZaI4PerXU9YxetZ52L716HK6GFQRn+KRVLBunVwz+HjufCne/npiG60/6CPGoZEkmTOi1PyNAzt02rfZJckUjqENgyBH6dk2zbfcyjEI4/4hqGzz4bRo9UwtCvQGckuZutWuOgiWPv6WO7nPujRA+tzTbLLEhFgwgTodGo2I+hKrfJ/Uv79d6F69WSXJSLAH39At6MX89953VhftxkHZQxCLUMiyTHnxSnU630qa8rXVsOQSCKFNwzl2rTJv56RgXNw113+0a0bvPkmVNTIJbsEXVa2C9myxY8QP3f0T8yp1A0OaQUDBujgViQFvP++H6hvwB7/x1GrM2Dw4B2u2RaR5Fi6FE4/MZNhS86h6m6O8hNH+S70IpJwcwZNpV7vU/mz/D5UnjZJDUMiidSr144NQ7kyM3G9enHjmUvp1w8uuwwGDoSyZRNbosSPeg7tIjZt8l36Phm9gWm1zqTibhX8/QTVv08k6UaOhHPOgevrjuaS1X3hyiv9tZ8iknRz58KxxzjuXH4VLdwsyo8cBg0bJrsskVJpzqCp1LuyPX+W34dKU9RjSCShnIMOHfKfnJbGU00H068fXH89DBqkhqFdjRqHdgGZmdC5M3z4oWP2oT3Zc81P8NZbUK9esksTKfUGD4YLL4TzD/2Jvn/0gMMP96P3iUjSTZvm767SfeMALtgyFO69Fzp2THZZIqVLcEekxTc/R70r27O2fC0qTcmgduv9kl2ZSOmxaZP/4nLAADjuuB06GLi0NB45eiy3fJjOnXfC00/r4pRdkRqHSrh//vHHsZ98AjPOeYwG342Cxx+H9PRklyZS6j3/PFxyCXRK38jrG8/GKlSAd97RhdkiKWDCBDjxRDgpbQqPZF7vvy29555klyVSuuSOb7JsGQ2eupbMslWpOGWSGoZEEmnFCmjbFoYOhfvu83dP+fDDfy+vdmlp3HfYWP7vs3QefhgeflgNQ7sqNQ6VYOvXw6mnwuTJ8NmtH3HYqLt8F4Ubbkh2aSKl3uOPQ58+cMbpjtE1LqfMjz/AiBFQt26ySxMp9d58E04/HY6qv5IR2edidevCMN05UCShwga+NWDv8n9Re8NPya1LpDT5+mto3RrmzfNDktx7r98XpqfD2LHk1K3Hnc3G8sDkdJ5+Gu68M9kFSzzpKKiE+usvOPlkn+cPnllE+qALoHlzeOklNeWKJJFzcP/9cNttcP75MCq9P2XfGgEPPeRDKyJJNXAgXHABHHP4Vibs0YWy69f5e/DqzoEiiZPPHZHKbMr6945IIhJnr73mr62uVAmmToWzzsoz+Z/D0zmp4VL6Tk/nxRfV/6A0UONQCbRgAdzcKoO3ptdn8n/Hcdqgs3wL7+jRuruKSBJt2wa33OJ75PbsCcOv/oqyt93suyjccUeyyxMp1ZzzXeGvuspfQfbJobdRbupk/6VK8+bJLk+kVHE9exZ4RyR69UpoPSKlSnY23HijP1g97jj45hto1izPLGvWQPv2/gqzoUPhiiuSU6oklm5lX8K88QYMuzSDdzZ1Io1M6j1yBuTkwEcfQYMGyS5PpNT67Td/VecXX/jLyfr9dyVlWp/nB4YfOlSXq4gkUXY23HorPPMMXHQRDD5lBOW6PwPXXgvduiW7PJFSZfW8Vfy1di8O4pfIM6Sl+bs5iEjsrV3ru7Z/+ilcdx08+SSUy9sk8Pnn/ph2zRp/j6NzzklSrZJwOlspIbKyfIvtS90yGLXFNwwBvqtCuXJQvnxyCxQpxT78EFq0gJkz4aM7Mug/ph5lTmsP69b567erVUt2iSKl1pIlvtf8rGcy+LNqfV5r+wrlel8Gxx4LTzyR7PIkwczsVDNbYGYLzWyHLp3mPRtMn21mrUKmLTWzOWY2y8xmJLbyXcOcF6eQ3fxQ9v9nPrNPvXXHHu9paTB2rG6sIhIP8+bBEUf4bzJfecXfPTekYWjbNj80wgknQJUq/o6eahgqXaJqHNKONLl+/BGOPBJ+fimDCeU6USknrBvu1q26PruUUjaTa8sWfxlZp06w337ww/MZtH+2E/zyC8ye7S/O1uUqIknhnB9jukUL2PP7DD6p0Ik9NyyjzBWX+zsGvv02VKiQ7DIlgcysLPA8cBpwCHCBmR0SNttpwIHB4wpgQNj0dOdcS+dc63jXuytxOY7Pz3mWxr3bsqVMZX4ZOZXm4//nG4JyG4jUMFRq6Xg2Ad5/H446yt/qetIkfzvdECtWwEkn+aERunXzX3geemhSKpUk2mnjkHakyTV8uB9A/vffYdzevaiQreuzxVM2k2vxYn+Z9pNPwtVXwzf/y6Du1WGDa/brp0bbUkoHusm1bp0/uL34YuhZL4MxrhPltgTZdM7n9Mcfk1ukJMMRwELn3GLn3BZgJNA5bJ7OwFDnTQOqmVntRBe6K9mwYgNT63el7ajr+bZWB6otnMF/zm/pJwZ3RKJePTUMlVI6no0z5+DBB+HMM6FxY5gxA44+Os8s48f7L1KmT4chQ/xoCFWrJqdcSa5oeg5pR5oEmZlw2WV+bIRWrWD2xyupfGyr/BfQ9dmlkbKZJG+95b9N+ekneOcdeP7cDCqc2WHHwTUzM9WrrxTSgW5yTZ4MLVv6nA7tlUG/xZ0okxWWzc2blc3SaT/g15Dny4PXop3HAR+b2Uwz0/CsUVg45gdWNTiCI399h4xTH+Pw5aPZo17Ypdbp6bB0qRqGSi8dz8bLP/9Aly5wzz3+pPKLL6BOnX8n5/aA79AB9t3X9xbq0SOJ9UrSRdM4pB1pguVeRvbqq/DQTWuZdPR/qX1cQxgzxh/MVq6cdwF1wy2tlM0Ey8qC3r39OH4HHwyzZsE5db+Bjh1h06bIC6lXX2mkA90k2LoV7r4b2rXzQyh89RVc/FlPTHdEku0swmuuEPMc65xrhW/cvcbMjt9hA2ZXmNkMM5uxevXq4lVbwk25biT7dD6C3beuZfaTn5I+/nbKlNNwp7IDHc/Gw9Klfmy9UaP8+HpDh+Y5h1y8GNq08T3gr7rKjy/UuHHyypXUEM1f6LjvSEE701yvv+4vI/vn9w0s6P4Qd73cgDKP94WzzvKtRh984Ee/1fXZooPchJo/3zfavvgi3HYbfPnoZOpf2d4P7Fe2bP6DwqtXX2mkA90EW7TIH+Q+9BB07w7fTd3EkbNe9Lcpy4+yWRotB/YPeV4HWBHtPM653H9XAaPxDcF5OOcGOedaO+da16xZM4allxxb/tnC5y2v55j+F7C4aguyp3/LoTfpOFXypXPNWJs0yZ9QLlsG48bBzTeDbf8Rvv227wG/YIHvAf/CCzv2PZDSKZrGobjvSIPppXpnmpkJl14Kl3ffxGP7PM1CdwAHvna3Hy5+9mw/qmajRn5mXZ8tng5yE8A5f/7YujWs/N0x/aGP6TutLeVOON53Herb14/iN2GC7roiudRwmyDO+fERWrb0B7mjXl3H4IMepWqz+r6b3377+dE1lU3xvgEONLMGZlYB6AqMCZtnDNA9GBfsKOBv59zvZlbFzKoCmFkV4BRgbiKLLwl+/2Y5C2q3o+33z/L5oTdw8MpJ1G4d3jYukofONYsrIwPq14eJE+H55/3I0jVr+kGE2rf/d7bcHvBduvge8N99p7uRSV7RNA5pRxpnP/wAxxy+lfKvvsgfVRvRZ9FNlD3sUPj6axg9Gpo23XEhXZ8tymbcbdjgB7S99JIcbmw4huV1juTw/2vvuyn06+fvkX3bbX7UvtxGW/XqEzXcJsRff/lLPHv1glOarmDZ+bdx1vV14c47/cian33m96P33qtsCgDOuWygDzABmA+85ZybZ2a9zax3MNs4YDGwEHgJuDp4vRbwpZl9D0wHPnTOfZTQN5Divn38M8ofeSj1/5nDlBvepO23T1M+LZ9etSLb6Xi2ODIy/LAjy5b5hqA+feC00/z+76CD/p0ttAf8rbf68fkaNEhi3ZKSyu1sBudctpnl7kjLAq/m7kiD6QPxO9IO+B1pJpB7EX8tYLT5bmzlgDe0I83r9SHbmHTlCN7Lvpf6LIZmx8DDw/ygCSIFUDbj67WVLQUAACAASURBVLvv4IIu2zh00Tv8Xuthas2Z4/eigwb561YqVtxxodwGol69fHcjnXyWVv8e6AK/4Q90LwybZwzQx8xGAkcScqALlHHObQg50H0ggbWXCJMm+Ybbqr//xHeHP06Lb4di07PhvPPg9tt3vP+usikB59w4/L4x9LWBIf93wDURllsMtIh7gSVQTnYOX3R4jDaf3M2SCo2xUe9yTEcNXiLR0fFsMeQ2DOWOrZed7Qfdu/562H13YHsP2z59/Hcj48b5tiORSHbaOATakcZD5kbHq2e8R7uJd3Mx89japCX870OfVot0tYHIjpTN2HMOXui3lW9veYMP7REaup+gemN44nXo2tXvdAuS26tPSi0d6MbPli2+I9DEx6bzcpW+nJIzGptT0V+XffPN0LBh/gsrmyIxt27JX/x0VHfarRrLV/UuoMW0Qey2z27JLktKGB3PFkF4w1Cu7Gzo3BnGjmVD63SuugqGD/e7wGHD/F3JRPITVeOQFENGRt5vKp1j2cufsOG6u+izaQar9/oP2557i/JdzoEyuoODSMKEZxNYu2ITb3UYQofv+3INS8lu0gLuexvOPlv5lELRgW7s/bTA0f/0jznr5748SgaufDXsv/+F666DWrWSXZ5IqTN/+LdU6XkuLbOX8/m5/Tn+zWuwMvqCUyQhunXbsWEoV2Ymm7v14rDdlrJoETzwgL/iumzZxJYoJY/OduIp9BrQTp3g2WdZeXA76l3Rnt23rGbuLYOpuXIuZbuepxNPkUQKz+a4cSy57mm21G1I7++volLdWrgxH1Buzndw7rnKp0gi5Q6smZEBgNuaTcaVI8k6uBX9fz6Vo/dcAE88gf3yCzz8sBqGRBIlJJuTe75Cg4uOoZzbyoJBX9D27T5qGBJJhLVr/TViK1fmO8vW8mmcvnowmZk+tnffrYYhiY56DsVLeFe/zEy4/nrKU51+Bz7HeRMuo2mDCGOWiEh8Rcim69iRBsDUSums6zeUxlefoMs7RZIhNJ8dO5J18RWsHzaG9Mwl/JL2H/564BWq9+kWecwvEYmfkGxuO/Fk2rhtzNzzJOp9+QbNDi6dg+KLJFR2th/38u67Yd06uOoqOPnkHXoQbSqbxmlbx7Jbp3RmDYYaNZJYs5Q4ahyKh/yuAQWqlttEnxcOoawahkQSL59sGrClTEWavXU3u52ugWpFkiI8n1lZVB7Uj6U0ZmqP0Zzx8hmUKadefCIJF5bNsm4b28qUo+WI2ymrhiGR+Js0yQ8yPXu2v2lRv37QvLmfNnbsv/nMtDQ6M5Yznkrnhhv0PacUno6y4qFXr3yvAa2QnUXZy3pFnCYicVZQNnM2s9u1yqZIUhTwpcpBlX7hzB57qGFIJBkyMnAdOu6QzbI52ZQ9q/O/l3+KSBwsWwZduvixMdetg7ffhokTtzcMAZuOTmdY17Esox6X7zOWR6elc+ONahiSotGRVqxt3crWo4/H5Tc9Lc0PgCsiieUcOWefo2yKpKLu3fNtuC27KdM37IpIQq2Zv5pNp56JbcqKPEOmsikSF5mZcN990Lix7xl0//3w449+HMyg1WfDBnj8cWjQAC5+NZ3bz1/KC/PTad06uaVLyabGoRj6+9tFLD+gDeVHvs4ETmFTmcp5Z0hL8wFP12UrIom09bdV/HLYmZR5+im+41CyTNkUSRVZw0exac0GNdyKpIjV81Yx6YjbqHxIfSpsWc82y2ckW2VTJLacg7fegoMP9g1CnTv7RqF77oHK/th1zRr/tG5duO02aNoUPvsMRoyAPfZIcv1S4qlxKAZW/eF4u+MQyhzWkirLF9D3sDepPm0ClT790O84QSefIkmQlQVje49lXd1m7P3dBB6v/RQ/DZ9BhY+VTZFkW/nDWmY16Ubli85h3qaG/O+gV8iumJZ3JuVTJGFWz1vFpMNvJa1pA9p88ySz6p3Jkg9+oOxnn2zfZ+ZSNkVi6/vvfZ7OPx+qV/fjDI0c6VuBgOXL4cYboV49ePBBP+v06fDJJ3CC7qMiMaLGoWJYvhzu7L2WL/ftwnnjevFLzdb8/tFsbp/RhSOPxKd27FifYu1ARRLm77/hyQc28taeven04umsq7QPXz83g1t+u5GuF5ah7EnKpkiyzJ8P/U75kJwmTWnyw1u82eR+3JRp3L7gEsqNH6uGW5EEWzV7JZNa30yVpvVpM+MpvmtwNsvG/cCxS4fTsNPB249nlU2R2FuzBq6+Glq1grlzYcAAmDkT2rYF4Oef4bLL4IADoH9/f2XZvHkwahQcfniSa5ddju5WVgSLF0PfvrD4lQwGb7uYfewPVt/SlyaP3Qxlw7repqfD0qVJqVOktFm1yt/AYWq/6QzceBGNWMivXW+l0eAHObBS2B0ClU2RhHEOvvoKnnv4b0756EauZzC/7dmMlYM/5PwzDt0+Y+5JaK9e/nIVnXyKxM2q2Sv5odf/OOLbgbRhM1MP6MZ+L/wfx7U/aMeZlU2R4svI2J6hNm1g4EB/jdj69XDNNf5SsurVAZg1Cx59FN55B8qXhyuugFtugfr1k/sWZNemxqFC+OGHIKRvbOEh+z8GbHuCbQccRLm33qfmYYcluzyRUuvXX+GJJ+DVQdncvOlhPrEH2VZrX8qMnMj+7doluzyRUmvbNnj/fT9oZtVpHzO4zKXUthVsvP5O9nvsHqhYcceF1HArEld/zPqdHy/5H0d8N5Dj2Mq0hhdRZ8BdHHfygQUvqGyKFF3oXTlPOw1q1/Z5OvFEeOYZP3gQ8OWX8MgjMH48VK0Kt94KN9wA++yT3PKldFDjUBS++w4efth332tZcT4/1+hGnVXfQe/elHniCahSJdklipRKCxb4Xnyvvw4N3UJm7XkRDTd9DRd2o+xzz0G1askuUaRUysqCoUPhySfh95838GLVW7mQF8k5sDFlhk6lyhFHJLtEkVJn5bcrWHBJX474fhDHspWpjS6m7sC7OO7ERskuTWTXFtowBLB5s79N/f33w9134zA+Gu87IUyeDDVqwEMP+c5EOpSVRNKYQwWYMgU6dvSXgH7yseO9Uwcy0w6jTs6v/qvQAQPUMCSSBN9+C+ed52/mMHKEY2ibl/ihYksabl3gB+8bNkx7U5Ek+PNPP1BmvXrQuzecUGYSK2s254J/BsEtt1Bm1neghiGR+MrI8NeeZGQA8PuM3/i8xXVUO+wAjv3+eWYceAG/fbaANj8Ppp4ahkTi67XXoH377Q1DuZzD9e1Lxr2TaNUKOnTwHYn69fPtRnfdpUNZSTz1HArjHEyc6HsKZWT4ltun/7uKa767jPLjP/DhHjzYdwUUkYSaPNl3tf3oI9h9d3joulXc/OPlVJwwxnfLHTIE6tRJdpkipc6SJfD00/DKK/7496z2mTybdgd1RveHRo1g9GQ49thklymy6wvpoZDToSNzarfnP0vGcwzbmHZQD+q9eCdt2h2Q7CpFdl05Of42Yu+/D++9529Fnw/LzKTBg73I+s9SXn0VunWDChUSV6pIODUOBXJyYNw43yg0bRrsuy889RRcVX88la7qBevW+abcPn2gjDpciSSKc/6660ce8QPa1qzpu91e22AsVa671N+a7Omn4brrlE2RBJs5048n9Pbb/n4MF14I95z4FQc80BMWLoRrr/WBVS9bkfjLyMB16oQFPRTKbMqi+ZL3mL1/B/Yc9hxtjm+Q5AJFdlGbN/veBe+/7x8rV0K5ctCuHZx8Mrz8sr/eOkyWpbHsnsHMu3vHexqJJEPJO5MK6ypbWM7Bb7/Bxx/7xp9LL4Ujj4ROVTJoenp96i/JYOBAWDwvixuXXEelszv4s9FvvtHJp0hBiplN8Hcby8iA556Dq66C44+HM/fI4JCO9anzcwb9+8PSeRu5Y2lvqnQ93Y/ON2OGH6lP2RSJLAbZ3LLF35ThnXf8ZWMXXACXHpDBXq3rs2FMBjfdBIt/2MSQmrdyQI82kJ3tt/fss2oYEslPMbO59uc/mfXMJD4/tz/f1+1Ezgkn/dswlMuAFn9OYv9tS4tdrkipEU02162DN96ALl38pSYdOsDw4dCmDTmvD2fJ16sYc+0nPFr7WR4+5kOyLC3P4tsqplHp07G0vS9dDUOSOpxzO30ApwILgIXAHRGmG/BsMH020CraZSM9DjvsMBfRxInOpaU5B/7fiRMjzxdYtcq5jAzn+vd37sornTvuOOeqVfOL5z5q1XLupkMnus3l/Hpz0tKce+kl55o08TNcf71zWVkFbkckloAZLoqcuARnM99cOlfobK5e7dykSc49/7xzV1/tXNu2ztWokTeb1ao516fJRLcpNJvPP+/cgQc6Z+bcrbc6t2lT0X7IIkVQGrK5caNz337r3LBhzt11l3NnneVc48bOlSuXN59da010WWWCbFYOstm4sZ945ZXOrV9fxJ+ySOHt6tnM+ivL/TBsppt82RCXcdjN7pu9TnG/l6mdJ5TZlMkb0vBHvXpF/wGLFFG02UyZc03nCs7mL78499xzzp100r87xq0193FL21/h3uo1zvW6cJNr1cq5ypXzxq9OHedubb39fDOa/bFIPOWXzZ1eVmZmZYHngZOB5cA3ZjbGOfdDyGynAQcGjyOBAcCRUS4bnfBR3jMz/fOxY/m7VTrz5sHcuf6R+/9Vq7YvXr26v0Ng167+3yZN/KPm3GC92X69lpkJl1/uF/joIz/GkEgKKgnZ/Kulz2b4448/ti9etarPYufOebNZ+8cM7PSwbF5zDey9t99m27aFLlUkEUpCNv9ulc78+b43UOi/S5f6Q1nwXdwbNYJDDoGzz/b/HnwwHLwyg8rndYKcIJtZQTZr1IAJE+CUUwpdqkgipHo2c94fw69l6rPykzlkTZ9DxZ/msPeqOdTb8jMHsw2ATVRkSeVDWFj/ZH48uBm7Hd2MOqc1o9ZfP8IZp+846C1AWpofL1MkBaVMLiFyNjt0wHW9gC0zZ1NxzkwAVuzRmE9q3MyQdWfy+eojcBN87/V99/XHsFdeuf149pBDYI89ANIhYyz06uXzmJ5epBJF4imaMYeOABY65xYDmNlIoDMQGrrOwNCgFWqamVUzs9pA/SiW3bnwoObKzGTzCafyNHcwj6YAVKoER9aBc5vC/nVg/7r+3+rVwSxk2dXAc3Phscd8f/lwmzZpRDBJdSmfzX5h2TyiDpxzMOx/CtTZ32dzr73CsrkOeLGAbG7Y4AcJE0ldKZ/N0P1m+XJw8L5wch3Y73A/pnud/WCf2n5aHu8XkM2NG6F8+UKVKZJgKZ1NO/kk6gH1gByMX8sdwO81m/Fro/Oo2LoZtU5qRt0TGnFwpUiH7/vC2LE7rjstzb+uE1FJXcnPJeSfzU2bYMhgfuYQhtKX9+nM+sr/oUkTaN4ELghpBKpefSfbSE/338KIpKhoGof2A34Neb4c32K7s3n2i3JZAMzsCuAKgLp16+ad2KtX5G9CgIps4T4e2P7CJnynwoURZ49eVpbfrgIsqSvu2Swwl6BsikRWsrKZDfwSPIpD2ZTUl9LZNGBTlT1Z1H889Ts2od7eVahX8PvJKz09bwORGoakZEj+uSbsNJv19tzI6e/dxh1NYM89838zIiVZNI1DFuE1F+U80SzrX3RuEDAIoHXr1nnnGTw4cksu+O4IL7wARxwRabUFmz4drr7atwiHUxdcSX1xz2aBuQRlUyQyZVMkNaV2NtPSqPTBOzRJL0I2c+U2EOnSFSk5kn+uCTvNZtV3BtOmTaQ1i+w6omkcWg7sH/K8DrAiynkqRLHszoV/E5KruN+INGniR6JXF1wpmZRNkdSkbIqkpl03m+HbUA8+KTmSn0tITDZFUlw0937+BjjQzBqYWQWgKzAmbJ4xQHfzjgL+ds79HuWy0ckNbFpwG8BYBTVe6xWJP2VTJDUpmyKpadfOpkjJlBq5BGVTSr2dNg4557KBPsAEYD7wlnNunpn1NrPewWzjgMX40UReAq4uaNkiV5sb2Hr1YhvUeK1XJI6UTZHUpGyKpKZSkU2REialcgnKppRq5lzEyzKTqnXr1m7GjBnJLkMkKcxspnOudbLrCKdcSmmnbIqkJmVTJDUpmyKpKb9sRnNZmYiIiIiIiIiI7KLUOCQiIiIiIiIiUoqpcUhEREREREREpBRLyTGHzGw1sKyAWWoAaxJUzs6olshUS2TR1FLPOVczEcUURhS5hJL3s04U1RJZSatF2YwN1RKZaolM2Uwc1RKZaolM2Uwc1RKZaomsyNlMycahnTGzGakyuJlqiUy1RJZKtcRDKr0/1RKZaokslWqJh1R6f6olMtUSWSrVEg+p9P5US2SqJbJUqiUeUun9qZbIVEtkxalFl5WJiIiIiIiIiJRiahwSERERERERESnFSmrj0KBkFxBCtUSmWiJLpVriIZXen2qJTLVElkq1xEMqvT/VEplqiSyVaomHVHp/qiUy1RJZKtUSD6n0/lRLZKolsiLXUiLHHBIRERERERERkdgoqT2HREREREREREQkBlK6ccjMTjWzBWa20MzuiDDdzOzZYPpsM2uVxFq6BTXMNrMpZtYiWbWEzHe4mW0zs3OTWYuZtTOzWWY2z8w+T1YtZraHmX1gZt8HtfSKUx2vmtkqM5ubz/SEfW7jRdksWi0h8ymbeacrmzGibBatlpD5lM2805XNGFE2i1ZLyHzKZt7pymaMKJtFqyVkvrhmU7nMt5b4ZNM5l5IPoCywCDgAqAB8DxwSNk8HYDxgwFHA10ms5RigevD/05JZS8h8E4FxwLlJ/LlUA34A6gbP905iLXcCfYP/1wTWAhXiUMvxQCtgbj7TE/K5jddD2Sx6LSHzKZt551E2E/ezVjaVzcLUomwm7metbCqbhalF2Uzcz1rZTFI2lcsC64lLNlO559ARwELn3GLn3BZgJNA5bJ7OwFDnTQOqmVntZNTinJvinPsreDoNqBOHOqKqJXAt8C6wKk51RFvLhcAo59wvAM65eNUTTS0OqGpmBuyGD2x2rAtxzn0RrDs/ifrcxouyWcRaAsqmshkvymYRawkom8pmvCibRawloGwqm/GibBaxlkC8s6lc5iNe2UzlxqH9gF9Dni8PXivsPImqJdSl+Ja6eNhpLWa2H3AWMDBONURdC3AQUN3MJpnZTDPrnsRangMOBlYAc4DrnXM5caqnIIn63MaLslnEWpTNfGtRNmND2SxiLcpmvrUom7GhbBaxFmUz31qUzdhQNotYS4KyqVwWXZE+t+XiVk7xWYTXwm+tFs08iarFz2iWjg/rcXGoI9pangFud85t8w2XcRNNLeWAw4ATgcrAVDOb5pz7KQm1tAdmAScADYFPzGyyc259jGvZmUR9buNF2Sx6Lcpm5FqUzdhQNotei7IZuRZlMzaUzaLXomxGrkXZjA1ls+i1JCKbymXRFelzm8qNQ8uB/UOe18G3whV2nkTVgpk1B14GTnPO/RmHOqKtpTUwMghqDaCDmWU7595LQi3LgTXOuY3ARjP7AmgBxDqw0dTSC3jMOeeAhWa2BGgMTI9xLTuTqM9tvCibRa9F2VQ240nZLHotyqayGU/KZtFrUTaVzXhSNoteSyKyqVwWXdE+ty4OAyTF4oFvuFoMNGD7oE9NwubpSN6BlqYnsZa6wELgmGT/XMLmH0L8Bu+L5udyMPBZMG8aMBdomqRaBgD3Bf+vBfwG1IjTz6Y++Q8QlpDPbTI/g8qmslnIWpTNxP2slU1lszC1KJuJ+1krm8pmYWpRNhP3s1Y2k5RN5XKnNcU8mynbc8g5l21mfYAJ+NHBX3XOzTOz3sH0gfiR0TvgQ5KJb61LVi33AHsBLwQtqNnOudZJqiUhoqnFOTffzD4CZgM5wMvOuYi33It3LcCDwBAzm4MPyu3OuTWxrsXMRgDtgBpmthy4FygfUkdCPrfxomwWq5aEUDYjUzaVzQJqSQhlMzJlU9ksoJaEUDYjUzaVzQJqiTvlMn/xyqYFLUsiIiIiIiIiIlIKpfLdykREREREREREJM7UOCQiIiIiIiIiUoqpcUhEREREREREpBRT45CIiIiIiIiISCmmxiERERERERERkVJMjUMiIiIiIiIiIqWYGoek0MxshJmdGfLcxWEbQ8ysZ/D/imb2o5ntHevtiKSi4DP/g5ntEzxvZ2aT4rCdpWZWP/h/czObEuttiOxKlE2R1KRsiqQ+MzvEzGaEPL/PzO6L8Tbqm9nSkOfXmdljsdzGrmyXaRwys0lm9peZVQx7fYiZOTM7I+z1Z4LXewbPa5vZGDNbEbxevxi1tDezL8xsg5mtNrPPc7dvZj2D9d8atsxyM2tX1G0mipk1B1oA7ydqm865zcCrwO1FWd7MLjSzZWa20czeM7M9C5i3vpllmFlm0CB1UrTrMrMuZjYlWHZSUWqV7WKQ6Y5m9qWZrTOzlWb2kplVTeBbKI4rgC+ccysTtUHn3GxgnZmdXthlzetrZn8Gj/+ZmRUw/4lBvjKDvNWLdl07y6jEXwyymW5mc4Js/mlmo81svwS+heJQNpXNlFXcbIZNGxxMaxTnsmNF2VQ2U4L5BsQsM/snyOOHZrZ/yPQhZrbF/HniBjOba2aPmtkeIfP0NLNtwTpyH88F024NltlgZkss7JwyxT0IPJHgbQ4CLrIidDIwsz2DY5SN5s//LtzJ/DeaP+f428xeDf1bXNC6zKxb2O86M/j7e1hhay6uXaJxyHxDThvAAWdEmOUnoEfI/OWA84BFIfPkAB8B5xSzlnOBt4GhQB2gFnAPELrjWAvcbma7F2dbSXIlMNw5V+zeQsHvYaevBd4AeoQf8ESxjSbAi8DF+N9FJvBCAYuMAL4D9gLuAt4xs5pRrmst8Ayg1uliilGm9wAeAvYFDsbn8fG4FBx7VwKvx2JFhczZ8GDbhXUFcCa+4bg50Cm/9ZhZDWAUcDewJzADeLMQ68o3oxJ/McrmD0B751w1fD5/BgbEp+KYUzaVzZQUo2zmTjsOaBiPOuNI2VQ2U8npzrndgNrAH0D/sOn/c85VBWoCvYCjgK/MrErIPFOdc7uFPPoErxvQHagOnAr0MbOu8XwzsWBmtYF04L0YrS+qnDrnNgHj8T+zwnoe2II/7+sGDAjOByPV0x64AzgRqA8cANwfzbqcc8NDf9fA1cBi4Nsi1Fw8zrkS/8A3vnwFPAWMDZs2BN9CuRKoHrzWCf8h+RLoGTZ/OfyOtX4R6jDgF+DWAubpGWz3A+DekNeXA+2K+P57Bu//aWAd/sN0TPD6r8AqoEfI/B3xO4n1wfT7QqadHyy/e/D8tOBnVzN4vhg4Lmz7Luz5JcB84C9gAlAvdF7gGvzJwJICXhsS4XfzM9C2kD+bR4A3Qp43xAezaoR5DwI2h04DJgO9C7Mu4DJgUrJzUZIfscx0yHJnA3OKUdMQfGPgeOCfoL598A2CfwE/AoeGzH8H/qB7A/5k+KyQaQOAd0Ke9wU+w/8NqQtkAeVCprcL/UwBFYOfwS/4g46BQOWQeZfje9qtxB8s7/BaMO9SQv7WAfsF265YyJ/NFOCKkOeXAtPymfcKYErI8yrBNhvvbF07y6ge8X/EOpvBZ/lR4Idi1KRs5v+zUTZLySNW2cQfB3+Hb2RwQKNi1KRs5v+zUTZ30UfwGTkp5HkH4KeQ50OAh8KWqQr8DvQJnvcEvoxye88C/YtZ763AbGAj8Aq+AWN8kMVPCf5uBPO/HWTib+ALoEnwegVgFnBt8LxskPl7gufdgU/Dtn0fec9D9wXeBVYDS4DrwuZ9BxiGP4e9LJ/X6gNLw7bTDcgo5M+lCv4876CQ114HHstn/jeAR0KenwisLOK6MghpJ0jkY5foOYT/sA0PHu3NrFbY9E3AGKBryPxDC7MBM3vBfBf4SI/ZwWz/AfbHf0h35m7gRivgEqdCOhIf6r3wH86RwOFAI+Ai4Dkz2y2YdyP+Z1AN31B0lQVjCDnn3gSmAs+a2V74PxCXOedWB63ZDYAF+RURrOdO/Il4TfwOaETYbGcG9R6yk9fCzcd/K4KZHVfA72Nd8K0XQBPg+9wVOOcWEYQzwvqbAIudcxtCXvs+eL2w65LiiUemjwfmFbOuLsD/ATXwB1tT8a36NfC5fypk3kX4b3H3wH9zMCz41gTgZqB50G24Df5Arofze4Rm+M9hdgF19MV/7lriM74f/sQg1z74bxfr4Q8q83stD+fcb8BW/N8yzOyOgnIWsmiebJA3N+HCc7QR/7OKmDN2zGBBGZX4i0k2zaxu8BnKAm4B/lfMupRNZbO0i9V+80b85VmzI0wrCmVT2Sy1zCwN/8X7tILmC34/n+A//4VZvwXLFPf49hzgZHxGTsc3DN2Jz2kZ4LqQeccDBwJ747M8HMA5twV/zvmAmR2Mb+wtCzwcLNeMgs8hy+A7T3yPz+eJwA1Bj5xcnfF/N6rlbjef18L9ew4ZbGtsATkdG8x2ELDNOfdTyHqizmnw/1rB+XTU6zJ/yejxFLKtIlZKfONQ0AhQD3jLOTcT/8cy0vWAQ4Hu5q/nbEshu7Q55652zlXL59E8mG2v4N/fo1jfLOBjijiOTgRLnHODnXPb8F1N9wcecM5tds59jG/EaBRse5Jzbo5zLifY+Y/A/0xyXQOcAEwCPnDO5YakWvBv6A4m3JXAo865+cFO+hGgpYVcGx1MX+ucy9rJa+E25NbgnPuygN9HNefcl8Eyu+FbtkP9jW+hD7ezeQuzLimieGTazE7Gd6e/J795ojTaOTfT+S6qo4FNzrmhIbk7NHdG59zbzrkVQc7exPd8OyKYlonfgT6F/7bjWufc8mDRahSQseBA4HLgxiAzG/A5C+1SnIP/xmFzSKYivRZJaM4eKyhnIcuEZ+NvYLeg1nCFzVnoupTBJIplNp1zvwSfoRr4E8cfi1mesqlsllqxyqb5cVGupPj7ylDKprJZGr0XNAauxze6RDOswQp8Y2Suo8IaLY6KsMx9v5FLFAAAIABJREFU+PP5wcWst79z7o+gsXMy8LVz7jvnx30dTd6cvuqc2xBMuw9oEfxNwTk3Fz+kw2j8Fz8XB1mHneQU36mhpnPuAefcFufcYuAl8uZ0qnPuveBvRFYBr4XbgG90zn0PnQrIaadgtsJmJ1IOCeYvzLq6A5Odc0vy2U5clfjGIfwJ38fOuTXB8zcIuaY6V9BYUBN/EDp2J3/ki+rP4N/aBc613T34Xjv75DdD8O3qvwNUFbCuP0L+nwXgnAt/bbdgnUeaH5hutZn9DfTGH6ATLLcO32WwKfBkyDpyv/EoaIdSD+gX8g3JWnyX39DBRn+NsFyk18JVDakhWv8A4WM77U7kP047m7cw65Kii2mmg53pG8C5Lm+Lfeg8oQPBjS+gtvBMRcxYsM7uZjYrJAtNyZuz6fjLNA14K2Q9f1FwxmoCacDMkHV/FLyea3VwIM5OXoskFjnbHfjHOd83difz5s6fX85C16UMJlfM97fOubXAa8D7Fnn8AGVzO2VT8hOrbD6D/2Ix/CRmB8pmHsqmhDszaAysCPQBPi/ofC+wH/68Kde0sEaLPL2PzKwPviGhY9BQswMzGxiS0zsL2HZUOTWzsmb2mJktMrP1+EvSICSn+H16fWCcc+7nkNd3ltN6wL5hPe3uxF/ilqs455A7/bsWprDZiZRDgvkLs67u+J9hUpToxiEzq4zvrtrW/MjgK/HdYVuYWYsIiwzDd0stdDetsHCFP3K78i3Af0CjGtTaOfcjfoC5fMMafLsaOkBVLLyB71q8v3NuD/x116F3NWiJHzdoBP461txacruxFnQZ1a/AlWF/zCo750Jv9RlpxxfptXAHE3TXM7M2Bfw+/jHf5Rh8N8vQboQH4P9QR2okmAccYHnvaNWC7V01C7MuKYJYZ9rMDsV/1i9xzn2W33Zd3oHgTovB+6iH/7ajD7BXcIAwl7w5uwb/+VkB3Bay+Gz85zC/wS/X4HfUTUIytkfY34ciZczM9sVfM74geH5nQTkLWTRPNsibm3DhOaqCH78rYs7YMYMFZVTiJM7723L47uk73KRB2fy3JmVTIopxNk8EHg9ZD8BUi3CHHmXz35qUTcmXc26bc24UsA04Lr/5zA/9cRK+185OmdklBIMfu+096CJtv3dITh8pXPURXYi/jOskfE+c+rklhczzAjAWf3lr6Huezc7PIZeEnUNWdc51CJmn2OeQAGY2voCc5jZ2/wSUM7MDQ9YTdU6D///hnPsz2nWZ2bH4cZeiGaImLkp04xB+nJpt+HFqWgaPg/HBijQi+bP4rn1fRFqZmVXC73QAKgbPgR3CFf7IHWncATcBd5tZLzPb3czKmB8fZ1A+7+F+/Cj11fKZHg9VgbXOuU1mdgQhXY+D9zwM32DVC9jPzK4OWXYceS9BCzcQ+K8Fo6+b2R5mdl5xCzZ/m+M9Ca7Zdc5NLuD3sZtzLveP63Dg9KAxqQrwADDK5b32mmCdP+EHUrvXzCqZ2Vn4ARnfjWZdQWt6JfyJTplgHeWL+95LmZhl2sya4r8ZvNY590G8Cs5HFfzOanVQSy/8N6C5tR2E73Z7Ef7ud7cFjbIEO/l/u9KHc87l4A+gn7bgtpxmtp/lvSa7qNoBE3O/gXLOPVJQzkKWGwrcFNSxL/7EY0g+2xgNNDWzc4K83APMDhrLC1xXFBmV+IllNs82s/8E+8ea+MtEvgt6EcWbsqls7mpieSx8EP6EJXc94McfGR3bkiNSNpXNXY55nfF3FpsfYXpF87crfw/fs2anl4eZWTf8ZZEnO3/pVSJVxY8d9ie+N16eBiczuxg4DD+g9nXAa7Z9zNtPgFah59dhpgPrzex2M6scnFc1NbPDY1B3W/xYSQA4504rIKenBfNsxHfieMDMqgQNN53J/66IQ4FLzewQM6uO76E5pJDr6gG8G+k8NVFKeuNQD2Cw871rVuY+gOeAbuHfIDh/nfFnQSNOJFn4bl/gxz8o9KVnzrl38AOPXYL/ZuMP/M7s/XzmX4L/YFSJND1OrsZ/ODfgdzChXXMfBZY75wYEO7qLgIdCWjoH4X+2ka6Jxjk3Gj/o30jz3Q3n4u94VlwXAq+5fLpN5sc5Nw9/2dxw/F3bquLfP/Bvj7CBIYt0BVrj/0A/hr8UaXU068IfrGTh76jRJvj/S4WpV2Ka6ZvxXcZfCfk2ICHflDnnfsBfkjkV/zegGf6ODbm32RwG9HXOfe98l9s7gdfNLLdx+kX85yk/twMLgWlBzj4lGAyzmLrhG3gL60X8IIJz8Jn/MHgNADObFxzMEOTpHPwAhX/hB6LvGu26KCCjElexzOZ++IbbDfjfcw5wVpzrz61L2VQ2dzUxy6ZzblXYOgDWuPgMxRC+bWVT2dyVfGC+p9h6/O+tR3Aekeu24DxsLb5RYSZwTNCIsDMP4ce5/Sbk+LYon8GiGAosA37D31Hw30vdzKwu/tLU7s65f5xzbwAz8HfTzh3uZCK+UWQHzo9NdDq+YXoJvsffy4SMFVQUQWNUB4p2qdbVQGX8ed8I4Krc36NtH/qlblD/R/iba2Tgf0bLgHujWVdInV2KWGfMWP7tJCKRmdkb+EEP3wueO+dcxMaiYmxjCP4WpEOCHf/3wPHOuVWx3I5IKgo+89/huwv/bmbt8Lf6bBfj7SwF2jnnlppZM2CQc+7oWG5DZFeibIqkJmVTJPWZ2SH4xo8jnHPOzO4DcM7dF8Nt1MefQ9YPnl+LH0rltgIWk0B+1+aK5Ms5F+kOGPHc3magcSK3KZJMwWf+kARvcw6gA1yRAiibIqlJ2RRJfUEPwVhcJlaYbfZP5PZKOjUOSSzcH4d1vsf2EfBFSrul5D8WQXE8Q+HvsCIi2y1F2RRJRUtRNkVS3aQ4rHMdPqdSBFFdVmZmpwL9gLLAy865x8KmdwYexI8bkA3c4PztMnO7X27AD5aX7ZxrHcs3IFKaKZsiqUnZFElNyqZI6lEuRVLDThuHzKws/vZrJwPLgW+AC4JuYbnz7AZsDK4dbI4fj6ZxMG0p0No5tyY+b0GkdFI2RVKTsimSmpRNkdSjXIqkjmjuVnYEsNA5t9g5twUYSdgo48GI5LmtTLm3ohSR+FI2RVKTsimSmpRNkdSjXIqkiGjGHNoP+DXk+XL8LRTzMLOz8LdB3xvoGDLJAR+bmQNedM4NirQRM7sCuAKgSpUqhzVurPGHpXSaOXPmGudczShmjXs2lUuR7ZRNkdSkbIqkpiizmZBzzVA1atRw9evX39lsIrus/LIZTeNQpFuU79Ba65wbDYw2s+Px14SeFEw61jm3wsz2Bj4xsx+dc19EWH4QMAigdevWbsaMGVGUJrLrMbNl0c4a4bWYZlO5FNlO2RRJTcqmSGqKMpsJOdcMbbitW7cuyqaUZvllM5rLypYD+4c8rwOsyG/mIIwNzaxG8HxF8O8qYDS+66CIFJ+yKZKalE2R1KRsiqSehOTSOTfIOdfaOde6Zs1oOhqKlD7RNA59AxxoZg3MrALQFRgTOoOZNTIzC/7fCqgA/GlmVcysavB6FeAUYG4s34BIKaZsiqQmZVMkNSmbIqlHuRRJETttHHLOZQN9gAnAfPzo8PPMrLeZ9Q5mOweYa2azgOeB84NBw2oBX5rZ98B04EPn3EfxeCMipY2yKRIjGRlQv77/NwaUTZEYUTZFUlMMs6lcisRQMbO501vZJ4Ou0ZZdUkYG9OoFgwdDenq+s5nZTOdc6wRWFhXlUnZJGRnQqRNkZkJaGowdm28+lU2RBFI2RVKTsimSmmKQzWguKxOR4soN67Jl/t8YfQsqIsUQuhMF/6/yKZJ8yqZIalI2RVJTjLKpxiGReNOOVCT1hOcyl/IpklzKpkhqUjZFUlMMs6nGIZF40o5UJDX16rVjLnNlZvrpIpJ4yqZIalI2RVJTDLOpxiGReNKOVCQ1DR7sr8eOJC3NTxeRxFM2RVLT4ME4ZVMk9cRwv6nGIZF4GjyYnErakYqknPR0lt7Yjx1uybCTAfxEJM7S05l/wQM7vq5siiRXejqz21634+vKpkhypaezpeOZO75ehGyqcUgkjnLapjO+2gU7TtCOVCSpNq3fwuYn+rPOquMqVfYvKpciSffXsr+pOuRZVpTbH1dZ2RRJFcunLafe+AEsTmuyvQeRsimSfFOmUO6dkYzjNLZVKl421TgkEkcj//s9J68cyoqD2m3v7qcdqUjSfXXqg/xn82wW3/MaNu5DqFdPuRRJAbNPvIna25bz98tvYx8qmyKpIGebY0XHyyjPVsqPfQ8bO1bZFEkF//zDxnO6s8zVZeYtIyk7rnjZLBeHEkUE+GnuFpo+3p2NFfak9pdvw9w5foyhwYO1IxVJotmvfEPbqY8y5cAeHHPf6f7FpUuTWpOIwJS7PqTtolf54tj/cnyPI/2LyqZI0n1+8cukr53Al12f47j0RkAjZVMkBWRdeyuVVy7moYYZDHh4d6iQXqxsqnFIJA62bfM9E3q52fz54vtYzRq+QUg7UpGkyly7ibSre7CqbG2afvpMsssRkcCan9ZywGOX83OlZhw1/t5klyMigaWTltJ6xE18t+cJHDvsqmSXIyIBN248lYcM5KkyN3P9qLZUqFD8deqyMpE4GH7DN1z826MsatODvXqekexyRCQw9eS7abRlPqseeYXd61ZLdjkiAjgH80+6lr1yVsNrr1GhasVklyQiwLatOazt3AuHsc+Hr2JldeookhL+/JNN3S5lDk3JvvchmjePzWqVcJEY+2FmFoc/14O/K+3DAe+rZ4JIqvj22S9J//ZJvmzam5a3nZLsckQk8NVN79Lm1zeYdtLdHNjl0GSXIyKBz7s8T6v1k5h36dPUPqpesssREQDnyOp1NWXXreHxZq9z052VYrZqNQ6JxNDWrTCzw90czHzKvvYqVl09E0RSwYaVG9nz5p78Vq4+h376eLLLEZHAH3NW0bhfb+ZXOYyjx/w32eWISGDhuJ846r3bmVGrA0cNuiTZ5YhIwI0YSeUP3uLhcvfxf++0pFwMBwpS45BIDA3r/SXdVj3F4pOvpFoX9UwQSRUzTryd+tmLWPf0YKrU2i3Z5YgI4HIci065iqpuPZVGvka5yuWTXZKIANmbt5HZpSebrRL1JryElbFklyQiAMuXs+Xyq5nC0dT4320cdFBsV6/GIZEYmfXVRtq82pM1VepzwLvqmSCSKqY/+hnpPzzP5MNuoFmftskuR0QCX1w1gmNWjmJ6pwdp0KlJsssRkcCkzk/RfONUfurTn5ot9k12OSIC/nKyCy4hO3MLzx8xlGuuj/29xdQ4JBIDmzfD/DNupxGLqDRiMFStmuySRARY98t69r37EpZUOIjDP3kk2eWISOC3b1bQYtA1zN39aI4ddXOyyxGRwI/vzqPNhP9j+n5ncWS/C5NdjogEcp5/gcpffsKdFZ/k4TcbUSYOLTlqHBKJgWG9PuOCtc+zuPMN7H66eiaIpIrvT7yJ2tuWs2nga1SqXjnZ5YgI/nKy5addTgU2s8eoIZQpXzbZJYkIsGXjVrZd3IN/bHcafToQTJeTiaSEBQvYdtOtjOdUmvW/kvr147OZqBqHzOxUM1tgZgvN7I4I0zub2Wwzm2VmM8zsuGiXFSnpvvn0b04acQm/7/EfDhiR2J4JyqZI/qbePY62C1/hq2Nu4+BeRyV028qmSP4m9RjMkX+O49vzHmP/E2M8YMJOKJsi+fuiw2M0yZrJktsHsmfjvZNdjogAZGeT1aU767dW5o0TXuHSy+LXaLvTxiEzKws8D5wGHAJcYGaHhM32GdDCOdcSuAR4uRDLipRYmZmw7JybqMNyqr77GlROXM8EZVMkf3/+vJYGj1zGz5WactRH9yV028qmSP6WfbGMw4bdwKzq7Th2RJ+EblvZFMnf3Ne/o+0XDzC1wYW0fvSchG5bjbYi+dv28KNUnj2dW6sMoO/r+8a1Q180PYeOABY65xY757YAI4HOoTM45/5xzrngaRXARbusSEk2/IKxnLv+VX7peju7nXhkojevbIrk44eTrmOvnNUw5DUqVK2Y6M0rmyIR5GTnsOaMSzAce48djJVN+OgGyqZIBFnrNlP+8h6sLVOTQz7rn9Btq9FWpAAzZ8IDD/AGF3DyS13YN87jw0ezV94P+DXk+fLgtTzM7Cwz+xH4EB/aqJcVKYmmfPAnncZczm97NqPBkHuTUYKyKRLBlzePos0vw5l6wv9x4PmtklGCsikSwaTzB3DY3xOZ0+NJ9j2mfjJKUDZFIpjS/n7+s3kOv933Ens02DPRm1ejrUgkWVls6nIxv+fU4uMznqdr1/hvMprGoUgdl9wOLzg32jnXGDgTeLAwywKY2RVBN8EZq1evjqIskeT55x9Yc8G11GAN1ce8BhUT3jMBEpBN5VJKmj/mruY/T/fmx7RWHDP2zmSVoWyKhFk0YSFHjrqNb2u25+hXL09WGcqmSJhZL35Nu+l9+arxJbS6u2MySlCjrUgE226/k0qL53NjtcE88Ur1hIwPH03j0HJg/5DndYAV+c3snPsCaGhmNQqzrHNukHOutXOudc2aNaMoSyR53jj7Hc7YOIIVl9xN2rGHJquMuGdTuZSSxOU4Fp5yFbu7v6kw4jXKVS6frFKUTZEQ2Zu3seHcXmRbeep89DJWJml3QFI2RUJsXJNF1Wt78EfZ/Wjx6VPJKkMdEUTCZWRQtv8zPMc1XPzaydSokZjNRtM49A1woJk1MLMKQFdgTOgMZtbIzLdlmVkroALwZzTLipQ0k95axVmfXMWvtQ6j3sD/JrMUZVMkxORrRnLs7+8yveMDHHBG02SWomyKhPj8rGdo+c+XzO/9LHu3qpPMUpRNkRBfn3QXDbcuYHXfV9ltvz2SVYY6IoiE+vtvNl/QgwUcxOxu/+OMMxK36XI7m8E5l21mfYAJQFngVefcPDPrHUwfCJwDdDezrUAWcH5wXWjEZeP0XkTibt1fjk09rmQPW0/VD1+D8knrmaBsioT47ZsVNBt4DXOrHsUxo25Jai3Kpsh2C96bz7Hj7+KbfTtz5HMXJ7UWZVNku5nPTKbd98/wZfOrOe7/2bvv6Kiqt4vj35MCJJGm9N6bSO89dBQEFUGaNEX0h2JFLNiwi/1FEZGoKAIWVEIvQXrvKL2DSJEe0s/7xwwaI0go4Uwy+7OWC3LvnWSjbCfz5Jw7jzV3GeWvwSuwH8/gtWvyC4wxpYDt1lqbYmh7/GKPFUlvEgYMJPCPAzyeeyFj/i/0mn5t8/e9vXxHjRo17IoVK1zHEPmXkY2+ot/8HuwZ8CZFPnwiTb6GMWaltbZGmnzyK6Beiq+ySZZledtx05E5HJm5hiLNy6TJ11E3RS5NXHQCW3LXI//ZHbBhIzdUyJsmX0fdFLk0Jw+c5ljRyhgDufevJST3dWnydVLbTWPMzcB7/D14fSX50NYY8yRwN3BuaPuEtXbBhR57sa+nborPmjgRbr+dlxhCvZkv0TyN5rYX6uZFVw6JiMfMz/dz5/wH2V2oHkXfe9R1HBHx+qVXBE2OTGZBx/dokEaDIRG5dPPbvkGz6OUse3wCtdJoMCQil25ls0E0TtjJbx//QpE0GgxdCmvtFGBKimMjkv3+DeCN1D5WJF06eJC43v1YTzUO3zckzQZD/0XDIZFUOHrEEnjfPWQxsYRN+xwCA11HEhFg94I9VBvzMGtzNKb+uAddxxERr41j19Iw6kWWFO1MnbfudB1HRLyWvjyT8E0fM7/mozTs39B1HBEBsJaEPv2wJ0/xTOExfDfMza1LUnNDahG/9/3Nn9E0bhpHB71JphtLu44jIkBSQhKH2/XFYMk1KQITqKc0EV8QczKOoD53czzgesrNHu46joh4Hdt1gsLP92FH5nLUmvGy6zgics7o0QRNncRg+zrPjq3AdY4W9Ok7aZGLmDx8F12WP8Ku4uEUevUB13FExGvuXSOocXwW6+8eRsEGxV3HERGvBa2HUjZ2HXuHjCRHyRtcxxERr7XNHiFv0gHiRn5B5hwhruOICMDOnSQ8+DBzCCf4sYdo0MBdFG0rE/kPf/yeRPaHe2MCDIVmjIYAzVNFfMGOmdup/f0TrMrdkroR/VzHERGvdZ8tp8ni11hUuif1XriG778rIv9p0dORNNkRwfyGT9Pw7lqu44gIQGIi8d16cjYmgFdLf07ky25fa+qVrsgFWAs/txpOg4S5nHz+HYJKFXMdSUSAhNhETtzRmwQTTMGpn2ECjOtIIgKcORpD6P09ORSYn5tmv+c6joh4Hd50lJJv3MuWkErUmfKc6zgiEhUFxYrBAw8QvHg+D/Ehb3xThCxZ3MbScEgkJW9ZF/b/km7rn2RHuTYUGNLXdSoR8XZzXeMHqXpqPr/e9wF5qxdynUpEvN3cXKcnpeJ/49Crn5G1cA7XqUQkKgpbrBi/N+zE9UlHCBzzBcHXZXadSsS/RUVB27awezd25Ejm0YBiQ3pQvbrrYNpWJvJP58oaHU3dkb2JDQih6IxRYLQyQcSpZN2suvtjNl1fjzrDe7hOJSLJu8lu1hdrS5VBLV2nEhFvN010NJXYzbrqvah0RxXXqUT8W7LnTAAD1DIrqddgLhDuMhmglUMif0tR1kCSCAmMJ3DbZsfBRPzceZ5Iy0avxvwy12ksEb93nm5W/GO257iIuJOimwA3/TZB3RRx6Ty9BMhizxLUoa1P9FPDIRG4YFlNfJznuA+UVcQvXaibMWfVTRGXLtTNs+qmiFMX6mZ0tLop4lLv3v/q5V+ioz3nHdNwSATSRVlF/JK6KeKb1E0R36RuivimiAgICTn/udBQz3nHNBwSAYiIwIaGnv+cj5RVxC9FRGB9/IlUxC9FRGCzqJsiPicigqTMF3jLI3VTxJ0mTbDVa2BTHg8NhchICNc9h0R8Q3g40+oP9emyivil8HDW5Gqubor4GNu4CRuzVFU3RXxMXO2G7KKYuiniaz77DLNgPp/Qj4RM3kUJPtZLDYdEgKXTjlFx5rv8GVro7+V+PlZWEX+06OlIqu6dxPpynTydBHVTxAdE9fiMiscXsaHh/eqmiA+Z1+oVSsRuYtOdQ9RNEV+xeTOJDw5ktmnGnDs+JnBqJBQt6nO91HBI/N6pk5ZDHe8nHwfJPHkiTJ7sk2UV8TcH1x2i1Ot92RJSiXLLvvR0Ut0UcW7b1K3UHjuQ1Tc0o2LU/6mbIj5izYglNFkwlMUlu1N+wkvqpogviI0lqXMXTsaHMCjvl4wYGYBpGg67dvlcL4NcBxBx7Zt2Y+l3Zjy77n2ZYk1qeA7u2uU0k4i/S0q07Gx+D1XtCU6Pm02mrJk9T6DqpohTcWfiOduxO3EmMwVnfI4JDFA3RXzAif2nyfFgd/4IKshNv/yf56C6KeLes88SsHY1PfmJN78qwPXXuw50YVo5JH5t6ojddJ73ALsL1afYx4NdxxERr7ndPqXu4Ums6PgGJW6t6DqOiHjNa/UKN0UvY+tjI8hTrZDrOCLitbrJIxRJ2MHxD8ZwXcHsruOICMDMmTBsGB9xP2Ueu5VmzVwH+m+pGg4ZY1obYzYbY7YZY/71CtoY080Ys877zyJjTOVk53YZY9YbY9YYY1ZczfAiV+LA3kSyPXg3gQGWArPHQGCg60iXTN2UjGjr5C3UHv8Iq3K1oP64B13HuSzqpmREqz9aTJOFL7O4VA9qvdXJdZzLom5KRrTg8R9psm0UC+s/yY33N3IdR0QADh8msfvdbAqswBcVh/HKK64DXdxFt5UZYwKB4UALYB+w3Bjzs7X212SX7QQaW2uPGWPaACOB2snOh1trj1zF3CJXJCkJpjYbRt+Eefz+2udcV6a460iXTN2UjCjuTDyxnboTa7JQeJZ3y0o6o25KRnRi/2lyDuzBwaBC3DT3Q9dxLou6KRnRgVUHKffOvWwOrUqd6S+6jnNZjDGtgfeBQGCUtfb1FOe7AU96PzwN3G+tXes9tws4BSQCCdbaGtcqt8gFWYvt25fEI8foHjidL8aFkjmz61AXl5rvumsB26y1O6y1ccA4oH3yC6y1i6y1x7wfLgG0zlh82oTBq+ixdQjbq3Uk/5N3u45zudRNyXDmtxxKxejlbH/iE3JXLuA6zuVSNyXDObdl5cSH6XrLiropGUpSomVvyz6E2dNk/u5rgsMyuY50yZINbdsAFYAuxpgKKS47N7StBAzFM7RNLtxaW0WDIfEZH3+MmTSJJ5Le4O5hlbjxRteBUic1w6GCwN5kH+/zHruQvsDUZB9bYIYxZqUxpt+lRxS5un5dEU2VYd04lTk3JaaPAGNcR7pc6qZkKKuHL6LJoldYVLonNd/o6DrOlVA3JUP5a8tKg8Hc2L+h6zhXQt2UDCWq88fUPjqVVV2GUaxNeddxLpeGtpKxbNhA0qOPMT2gDZtbPsSD6egOCal5t7LzvXK2573QmHA8T6QNkh2ub609YIzJA8w0xmyy1s47z2P7Af0AihQpkopYIpcuNhbWtRnEXXYTx76cgcl1g+tIVyLNu6leyrVyfO8pbhjYnQNBRag09wPXca6UuikZxoGVv1P+nXvYFFqNutNfcB3nSqmbkmFs+ek36n3/GCvztKbeVw+4jnMlzje0rX2Ba+HCQ1sLfGKtTbmqCFA35RqJiSHpri4cS8zGw9kjmPO5SVfrEFKzcmgfUDjZx4WAAykvMsZUAkYB7a21R88dt9Ye8P56CJiIZzr8L9bakdbaGtbaGrlz5079n0DkEnzdbQp3HRnO9vaPkLNTC9dxrlSad1O9lGtlbZOBFEzczcn/G8N1BbK5jnOl1E3JEJISLfta9iHERhPyw9cEhaa/LSspqJuSIcScjCPhru5Em+soOjsCE5COXn3+2+UMbZ9Mdri+tbYanm1p/zPGnPeO3OqmXBNPPknAxg10S/iC10bnJX9+14EuTWqGQ8uB0saY4saYTMBdwM/JLzDGFAF+AHqsQc7yAAAgAElEQVRYa7ckOx5mjMl67vdAS2DD1QovcikW/niYm7/vw/7rK1Jy3Kuu41wN6qZkCPMf+YHGOyJY1OgpbryvwcUf4PvUTckQou78iFp/TmNNt2EUbVXOdZyrQd2UDGFBixeoELOKXc98Sq6K+VzHuVLXZCGCSJqbPBk++ID3GUjhe1rToYPrQJfuotvKrLUJxpgBwHQ8d5Afba3daIzp7z0/AngOuAH4yHjWTZ27U3xeYKL3WBAw1lo7LU3+JCL/4fgxy+mu93K9OUbClBmQJYvrSFdM3ZSMYP/yA9z4/r38GlaDutOedx3nqlA3JSPY/ONv1Jv4OCvztqHul/e7jnNVqJuSEax8bz5Nl73OwvJ9qT80Hb76/Le/hrbAfjxD267JL/ivoS0QYK09lWxo+9I1Sy5yzsGDJPXqzabgSows/DpL33Ud6PKk5p5DWGunAFNSHBuR7Pf3APec53E7gMpXmFHkin3b+jPuPfsTewa+TZHalVzHuWrUTUnPkhKSONCqNzfas1w38SuCQoJdR7pq1E1Jz2JOxpHYpRvR5jqKzR6d3res/IO6KenZsV0nyPN4D/YGl6Dq3Pdcx7kqNLSVdC8pCXr1IuHYKTrbuUR8k4XrrnMd6vKkajgkkp5NemcrXZcNZGfxphR/52HXcUTEK6rjcJodm8HCHh9Tv0VZ13FExGth8+dpFrOalUN+pPqN6X7LikiGYC2sa/Ig9RP3sW3UAkLzpNNXn+ehoa2kax98ANOn8xAf03loBWql442NqbnnkEi6tWd7PPkHdScxMBOF53wBAforL+ILNn2/kXo/DWJF3luo9/l9ruOIiNeKd+YRvvwNFla4l+ovtb/4A0Tkmpg/YDyNd49hcdNnKderjus4IgKwZg32ySeJDGrP+rr3MXiw60BXRq+UJcNKTIQ5zV6hRuIyot/5hKBihVxHEhHg7PFYbPfunAnISvE5n2WoLSsi6dmxXSfIN6gHe4NLUjXqHddxRMRr7+J93PRRfzZmrU29yc+4jiMiANHR2C5dOMoNDMg8iq++NgSl831ZGg5JhjVu4GJ67B7Ktnp3k++hTq7jiIjXoubPUT5mDXuGjOKGCnldxxERPFtW1jceQL7E/Zz99KsMtWVFJD1LjE/iUJueBBNP9p/GEJgl49yfTyRde/RR2LyZznFjeOmjXBQv7jrQldNwSDKkdQtPUWd4d46EFqHklA9dxxERrxXD5hK+8i0W3tiPai/c6jqOiHjNHzCeRnu+YnGzIZTrWdt1HBHxiurwHtVPzGF9n/coFF7adRwRAfjxR/jkE4bxBLk6NaNHD9eBro50vvBJ5N/OnoVtbR+mPbs4NW4uJns215FEBPhzx3HyD76bPZlKUW2utqyI+AptWRHxTb+OX0/DKU+xvEB76nza13UcEQHYvx/bty8bM1fnoxuGsvJjMBnkDglaOSQZzjd3/sDtx0ez667B5GjX0HUcEcGzZWVjk/+RN/EAsaO+IiRXmOtIIkKKLSs/f0VgZv3cUMQXRP8ZQ2DPbpwIyEmpqE91fz4RX5CYCD16EHcyhjtix/LZmExcf73rUFePhkOSofzyzQHaT76XPXmqU/KL513HERGv+Q98Q8O9Y1nc4nnK9kjH7/EpksH8tWWl7/sUalLKdRwR8Vrc9BnKxq5n/9AIcpbJ7TqOiAAMGwZRUdyf8CG3Pl6Gpk1dB7q69OMhyTCOHk7C9upNqDlL2PSvIFMm15FEBNi9YA+VRtzPhmx1qTfpKddxRMTr13HraDjlKZYV7ECdkX1cxxERr6WvzqbZ2ndYUPkBGjzdxnUcEQFYsQL77LP8nPlOVpfrzZKXXQe6+rRySDIEa2Fii+E0iZvBkcFvk6VKOdeRRARIiEvi6C09CSSRnJPGaMuKiI+I/jOGoJ7dOB5wPWXmasuKiK84suVPCg/pyc5MZakx5y3XcUQE4PRpbJcuHA7KT38+4euxhsyZXYe6+jQckgzhp1c30m3tILaXu4XCr/R3HUdEvOa2f4dqJ+ey4d73KdiopOs4IuK1uOnTlInbwO+vRJCjVC7XcUQEsEmWzeH9yZ30BwlffE2W60NdRxLxb1FRUKwY3HknbN9Ox5ivePqtnFSo4DpY2tBwSNK3qCjiCxblpiHtiQnOSrHZn2Wc28WLpFfeJ9Kdz4yi0bSnWVboNuqM6O06lYh4u/lb32E0W/suC6oMoMrg1q5TiYi3m2vbPk39A9+y5OaXKH1XddepRPxbVBS0bQu7d8O0aYw13Qhr3YgBA1wHSzta3y/pV1QUtm1bgqOjKQkcf/hlAgvkdZ1KxL+deyKNjqboq/04bnJQJmqktqyIuJasm2VHP8H+4CLUnPOG61QikqyblXe/zo6witT/cZDrVCL+LVkvz7kt6Qfa3NMHY8IdBktbWjkk6ZO3sCZZYXMMf9VzXETcSPFEGoAlR1A0OfaudxxMxM/9q5uQ3xwi85qlbnOJ+LsU3TRAscTtBCyY5zaXiD87z2AIIJRorr+7bYZ+vanhkKQ/Fygs0dGe4xm4sCI+6wK9DIiPVS9FXLpQN+Ni1E0Rly7UzZiz6qaIS717//t15jnR0Z7zGZSGQ5L++HFhRXyWeinim9RNEd+kbor4pogIyJTp/OdCQz3nMygNhyTdSfosgngTfP6TGbywIj4rIgIbcoF3VVEvRdyJiMCGhJz/nLop4k5EBDaLuinic/LlwwYEkJRyVBIaCpGREO7n9xwyxrQ2xmw2xmwzxgw+z/luxph13n8WGWMqp/axIpdq7MQQjE0kyQT+84QfFDYldVN8Rng4qwrf+u/jfthLUDfFd9jGTViXrQE25Ql1U90UpxLqNWJzYHl1E/VSfMjp03DHHUQHZqUz3xCfyfuDTz/p5UWHQ8aYQGA40AaoAHQxxlRIcdlOoLG1thIwFBh5CY8VSbWlU47SaHgnjoYVxfw40VNU8JvCJqduii9Z9Mxkqm8Zx4Zibf26l6Buim+J6jGayn/MZH21Xuqmuik+ZG6LVyh3ZhW/tnnMr7upXorPsBbuvRe7eTO3nhlHSI9OBE2NhKJF/aaXqVk5VAvYZq3dYa2NA8YB7ZNfYK1dZK095v1wCVAotY8VSa0jh5I4dXtP8vEHYZETMLe28xTVjwqbgropPmH3gj2Ue+1utoRUpvTqCf7eS1A3xUf8Om4ddccOYPUNzam4ZJS6qW6Kj1j2+hyazn+BxSW7c+Pkt/y9m+ql+Ibhw2HcOF4NeZmDFZry8cdgmobDrl1+08ugVFxTENib7ON9QO3/uL4vMPUyHytyXklJ8FPDYfSNnczeQR9SuEkNz4lwb2H9k7opzsWejud467vIaeMJifyWzDlC/L2XoG6KDzi+9xRZ7r6TUwE5KDr/KwKCA9VNdVN8wIFVByn6dFd2ZS5LlcUfgzH+3k31UtxbvBj76KMsuqEdr0U/ybJvISzMdahrLzXDIXOeY//aHgtgjAnHU9gGl/HYfkA/gCJFiqQilviTr+9fQM8tT7Ot2p2Uev1/ruP4ijTvpnopFzO/0dM0P7OY5Y+No2bT0q7j+Ap1U5yySZZ19e6jfvw2Ng2fw43l87qO5CvUTXEqPiaR35t2pbw9SfS3swjJfZ3rSL5ArzXFrcOHoVMn/gwrTNujX/DxlwFU8NPNianZVrYPKJzs40LAgZQXGWMqAaOA9tbao5fyWABr7UhrbQ1rbY3cuXOnJrv4icU/H6bpyM4cvq44JeeM8vyEReAadFO9lP+y4MlJNF89jIWV7qfmsM6u4/gSdVOcmnPXSBrt+4bFrV/ixgcau47jS9RNceqXZi9R/UQU6/oNp3i7iq7j+Aq91hR3EhOha1cS/zhM8+Pf0fGenPTo4TqUO6kZDi0HShtjihtjMgF3AT8nv8AYUwT4Aehhrd1yKY8V+S+HDiYR06kHucxRsk79FpM9m+tIvkTdFGd2/bKbG9/syebQqtSc/47rOL5G3RRnNoxZTf1vB7IqdyvqRz7lOo6vUTfFmSVDZ9J00VAWl+lJnU96u47jS9RLceeFF2DWLB7O9BFJlarywQeuA7l10W1l1toEY8wAYDoQCIy21m40xvT3nh8BPAfcAHxkPKs6EryT2fM+No3+LJLBJCbC5Aav0Tt2OnufHUHhBlVcR/Ip6qa4EnMyjlM3d+J6Erlu6rdkypbFdSSfom6KK3/uOklYn04cC8xFiYVjMIGp+Rmg/1A3xZX9yw9Q8vlu7MxSnqqLhruO41PUS3Fm8mR4+WV+zt2XL2L6sOJbCAlxHcotY+15t2U6VaNGDbtixQrXMcSxMX3n0nV0M3bW6kypJV/7zXYyY8xKa20N1zlSUi/lnNmVHqHZ+vdYMfg7arx2h+s414y6Kb7MJlkWFr6LOge+Z8snc6nQr8HFH5RBqJviy+KiE9iYrxllTq3gyJTlFG3jPzczUTfFZ+3cCdWrsz+oKKUOL+KL8SF06uQ61LVzoW7qR0rikxZ8/wfNR3fhj2ylKTnzE78ZDIn4uvmPTqTZ+vdYUO1BvxoMifi6OXd+TIMDE1jS9hW/GgyJ+Lp54c9T9dQ8NgwY4VeDIRGfFRMDHTsSF2dpePh77hngX4Oh/5KadysTuab+OJCI7dqVHOYEdsYMTLasriOJCLBj1g5uerc3v15Xk9q/vOU6joh4rf98JQ1+eISVeW+m/o9PuI4jIl6Ln59G82Wvsqh8X+p96Md3uRXxJQ89BKtWcXfoz9xQowTDhrkO5Du0ckh8SmIiTKs/lIZxczj64v8RWvsm15FEBDh7PJazt3YCY8g5fTzB12V2HUlEgD93niDbPZ04GpiHUou+1H2GRHzEnkX7KDO0O1tDbqL6og9dxxERgM8/h08/ZXS+p5gW3I4JEyCzvqX9i76DEJ/yde9Z9Nj1Etvq3U2hZ/VODiK+YlH9J7jx7Eq2PxNB/nrFXccRESAp0fJbvT4USNzDyZHjyV7iBteRRATPfYb+bHUXmWwsWX7+lsw5/PwutyK+YO1auP9+NhdsSr+DL/HFF1Bc39L+g4ZD4jPmjf+dVmO68Xv28pSa8ZHuMyTiI+Y99B3Nfv2QBTUfofrQDq7jiIjXnNs/pP7BH1jW4TXK9annOo6IeM1r9CxVTi9k0yMjKdy8rOs4InL8ONxxB9Eh19Nw/zc8/FgQ7du7DuV7dM8h8Qm/700gsEcXsprTMCsKwsJcRxIRYNv07VT+sC8bs9amztzXXccREa81I5fR6OfHWZG/HfW+f8x1HBHxWvj0ZJqvfIOFFe+j/jtdXMcREWuhVy/s7t3cGvwLperm4bXXXIfyTVo5JM4lJMCsBi9QP/4Xjr06gtAaeicHEV9w5mgMcR3uJMkEkmvWeIJCM7mOJCLAka3HuOGBThwKKkCZRZ9jArTSVsQX7J6/h/Kv383m0CrUXPie6zgiAvDWW/DTT7yZZxhrQusxfjwEB7sO5Zs0HBLnvu4xjR57XmFro74UHKx3chDxFUvrP0qFmNXseuEL8tYq6jqOiOC5z9CWBr3Jm3iAM5+NJ1ux611HEhEg5lQ8x9vcRZCNJyxyApmyZXEdSUTmzoWnnmJ58U4MPvAQX30FhQu7DuW7NBwSp+Z+tY9bxnVnb86bKD1N7+Qg4ivm3j+epps/ZkHdx6n6XDvXcUTEa067d6l36CeWd3yTsnfXdh1HRLwWNnqKymcWs+WJURQKL+06jogcOAB33cXxvGVounMUTz9taN3adSjfpnsOiTP7dsYT0vsuQgJiCZvzLYTonRxEfMHWyVuoPuIeNmSrR905r7qOIyJeqz5aQuOpT7Ks0G3UGz/QdRwR8Vow6GearXmbhZUfoP6bnVzHEZH4eOjcmcSTp2lm51C9cVZefNF1KN+n4ZA4kZAAvzR8lm4JC9k/bCwFq+idHER8wenDZ0m8407iTGbyzBlHYBZtyhbxBYc2/UmehzrzR1Ahyi8arfsMifiInVG7uPGtnmwKq0atBe+4jiMiAIMHw4IFPFlgLPsSKrDmGwjS5OOitK1MnPjqrki67X+Trc36U/AxvZODiC+wFpbVf5hysevY+8oY8lTXpmwRX5AYn8T2hj3Jk/g7Z7+YQNbCOVxHEhEg5mQcp9t2JtAkkW3qBIKvy+w6koh89x288w4zygzgnd+78M03kD+/61Dpg4ZDcs3NidjNrd/fzZ4bqlI68l3XcUTEa+59Y2m6dSQLGgymylNtXMcREa85t7xN3SORrLjrbUp3rek6joh4LWzwJDdFL2PbU6Mp0LCk6zgi/isqCooVgy++gD59+KN4bdpueZsXX4SmTV2HSz+0uEquqT3b4sh2b2cyBSSQZ+4EyKJ3chDxBZt/2kTNT/uxLkdD6s4a6jqOiHit/GAh4TOfYlmRjtT9eoDrOCLiNf/RiTRb/x4Lqz9E/VfucB1HxH9FRUHbthAdDb17kxialfr7vyW8ZSaeecZ1uPRFK4fk2oiKwhYtxrba3aiRuJRT740mS8VSrlOJSFQUSYWLENKxDTEBoRSY+w2BmfVzAxGnvD8B/TPiR/I/0pn9wcWosGiU7jMk4pq3mweGfc1N7/bm1+tqUnveW65Tifiv5IMhAGtJOBNL1azb+OorCNC045LoFYCkPW9pTXQ0TdnNvpq3UejBjq5TiUhUFLZtWwKioykM7LjvDUpWLug6lYh/S/aNbvY+d3AdAez5ZinXFczuOpmIf0vWzXxP3E00IVw/cwJBoZlcJxPxTykHQ16ZiWXc6bYEboiE8HBH4dKnVM3SjDGtjTGbjTHbjDGDz3O+nDFmsTEm1hjzeIpzu4wx640xa4wxK65WcEknzlPaQhune47LFVM35bIlG9oCGKDkmBfVzatE3ZTLkuI5M5AkAgMDKJX7hONgGYe6KZclRTcDSCIkOIF8Z3c6Dibix3r3/tdg6JzAWM8WM7k0Fx0OGWMCgeFAG6AC0MUYUyHFZX8CDwHDLvBpwq21Vay1Na4krKQzF5jmEh3tOa4XoVdE3ZTLpm6mKXVTLssFehmYGKdeXiXqplyWC3UzPlbdvEo0tJXLEhFx4fvXhoZ6zsslSc3KoVrANmvtDmttHDAOaJ/8AmvtIWvtciA+DTJKevUf09xzNwyTK6JuyuVRN9OauimXTr28FtRNuXTqZprS0FYuW8mSEBKCNSnuxxcaCpHaUnY5UjMcKgjsTfbxPu+x1LLADGPMSmNMv0sJJ+lbwqcRxJvg85/UNPdqUDflspx9dwRJF/rfv7p5NaibcukiIrBZQs5/Tr28WtRNuXQRESRlVjfTkIa2culOnICbb8YmJfFCoc+IJtRzXIOhK5Ka4dD53hrDXsLXqG+trYZnGvw/Y0yj834RY/oZY1YYY1YcPnz4Ej69+CJrIeKNQwTbeJICAv95UqW9WtK8m+plxpOYYFn+4BdAEonBmf95Ut28WtRNuWQxNRqwJaDsv/+iqJdXk7opl+xYyRrsS8qvbqYdDW3l0sTFwR13YDdvZkiFH3h5f282vB4JRYuqk1coNcOhfUDhZB8XAg6k9gtYaw94fz0ETMQzHT7fdSOttTWstTVy586d2k8vPmr8o0vpPrsXOws1JGDKZM8TKOiJ9OpK826qlxnP7MYv0Wj/OBa3f4PA6VPVzbShbsolsUmWxVUfoGz0GjZ1GKxeph11Uy5JfEwim6p3o0D8bnb2f0PdTBtaiCCpZy307w+zZzO++SheWdyU99+HWk+Gw65d6uQVSs1waDlQ2hhT3BiTCbgL+Dk1n9wYE2aMyXru90BLYMPlhpX0YXbEHpq8154TYQUouvIHaNXK8wSqae7Vpm7KJYm6bxwtF73A4nK9qT/xCU8X1c20oG7KJZl1y7uEbx/FwsZPU37ia+pl2lE3JdWshbl1nqTukUks7/EBJT4epG6mDS1EkNR75RWIiGBl2+fpMq0nAwbAgAGuQ2UcQRe7wFqbYIwZAEwHAoHR1tqNxpj+3vMjjDH5gBVANiDJGPMwnhuK5QImGs9NooKAsdbaaWnzRxFfsHHJKfLc046wwBgCf4kiIE8uz4lw7zRXrhp1Uy7Fqo+WUHdkL9blbETNlSPg3M371M2rTt2USzH/yUk0m/Y4y4rcQb3ZQz0H1cs0oW7KpZjTdRQt1r7NwuoPUv/LBzwH1c208NfQFtiPZ2jbNTUP9A5qA6y1p5INbV9Ks6Ti1tdfw5Ah/N68B3WmPk/r1vDuu65DZSwXHQ4BWGunAFNSHBuR7PcH8Ux5UzoJVL6SgJJ+/HEgkYNNu9A4aSPHx04lV/XyriNleOqmpMauX3ZTaEB7DgUXpOjy7wkKzeQ6UoanbkpqbBi7jipvdmVLWDUqr/kSE5iaBd1yJdRNSY2lr0fRaNz9rMrTirqL3nEdJ0PT0FZS5ZdfoE8fztQOp/LyUZQtZxg3DoJSNc2Q1NK/TrkqYmJgTvUn6HJ2MrsHf0zRLi1cRxIR4NieU8S2bEdOYomZNJfsJXO5jiQiwP6VB8nRox2nA7OTe/HPZM4Z6jqSiABbIrdQ5qk72JOlDGVXjycgk14upTUNbeU/bdoEt91GQtESNPzje8iUichIyJ7ddbCMRz+ikitmLXzV6BO6HHyXrbcMpOhr/V1HEhHO3UizKyXjfmXPsG8p0kqr+UR8wenDZznaqAM5k44Q/c3P3HBTAdeRRAQ4vPlPAm9rR1JAIKGzIwkroFefIk4dOuR5y/rgYLrlmMKvv+fkp5+gWDHXwTImDYfkin3dexa9lv+PbWVvpvRPb7uOIyJ4b6RZexB1j0Sy4u4PuelRreYT8QWJCZZVVftQKXopm5/9ipJ3VnMdSUSAmFPx7K51J4USdnF45I/kr1fcdSQR/xYdDbfeij14kJdqTGLC8uJEREDduq6DZVwaDskVmfruJtp+0ZHfc5Sn5NJvIDDQdSQRAWZ3+ZQW695hYfWHqPPF/a7jiIjX7MYv0Wj/OBa1e41qQ29zHUdEAJtkWVRtADVOzmHtgFGU61vfdSQR/5aUBD16wLJl/HDHWF6YUosXXoAuXVwHy9g0HJLLtmrmUco81pak4MzkWTIJkz2b60giAix5dQ6Nxz/AqrytqbtIq/lEfEXUfeNouegFlpTtSd0fn3QdR0S8ZrZ9j6bbRrKw8dPU+rCH6zgiMmgQ/PADa3u9S8evOtClCzz3nOtQGZ/usCaXZc+2OGJvuZ1C7CP6xygyly3mOpKIAJsnbaHsM3ewO0tZyq4apxtpiviIVR8toe7IXqzP0ZAaKz/BBBjXkUQEmP9kJM2nPsayIndQb/ZQ13FEZPhwePtt/uj8IHXHDaRuXRg9GoyeNtOcVg7JJTt9yrKqVn/qxs/j8BsR5LxZGz9FfMGhTX8SfHtbEgOCuW7OJN1IU8RH7Jq3h4IDOnAouCBFVvxAUFhm15FEBNgwdh1V3uzClrBqVF7zJSZQL41EnIqMhIce4mzzdlSb+y5588KPP0KWLK6D+Qf9H1AuSWIifFf7LToci2Bbt+cp9IQ2for4gpiTceyp3ZGCCbs5MnIi+erqRpoivuDYnlPEtGxHFmJgUiTZS+ZyHUlEgP0rD5KjRztOB2Yn9+KfyZwz1HUkEf+2ciV07kxi5aqEH/yGU9GBTJoEefK4DuY/NBySS/LVHRO5+7fBbKl+F6XGPO86johw7kaa/6PGySjWPfSZbqQp4iPiYxLZVL0rpWI3suetCRRpVd51JBEBTh8+y9FGHciZdITob37mhpsKuI4k4t/27IG2bbG5c9M7VyTLfw1jwgSoWNF1MP+i4ZCk2o/PraLjT93ZnbcWZeZr46eIr5h587s03T6KheHPUvP97q7jiAhgLcyt/SR1j0SyoscH3PRYS9eRRARITLCsqtqHitHL2Dzka0reWc11JBH/duIE3HwznD3LW40nM2ZmPj74AFq3dh3M/2g4JKmy6Nv91BzajtNZclF4xY8QEuI6kogA8wdNovn0x1lWtCP1Zr7oOo6IeM3u8ikt1r3NouoPUufLB1zHERGv2Y1fotH+cSy59TWqvdTBdRwR/xYfDx07wubNRPb+nie/vJEBA+B//3MdzD/pbWzkoratPUNol1vJEXCSpFkLCSqUz3UkEQHWf7WWqm91YfN11am8+gvdSFPERyx5LYrG4x9gdZ5W1Fn0jus4IuIVdd84Wi56gcXlelHvx0Gu44j4N2uhf3+YNYtfn4jgtneb0aYNvPuu62D+S68k5D8dO5rE9gZ3c1PiGk6OHEfW+pVcRxIRYN+Kg+Ts2Y5TgTnIoxtpiviMzZO2UObpO9iTpQxlVo8nIJN+DifiC1Z9tIS6I3uxPkdDaq78RLdHEHEhKgqKFfP8+uqrMHo0Rx54jnoje1GuHIwbB0F62nRG/+rlguLjYWr1Z+l6+gd2PPguJfre4jqSiACnDp3lWKP2lEg6yh/fLSB/xfyuI4kIcGjTnwTf3hYbEEjYnEjCCmR3HUlEgJ2/7KHggA4cCi5IkRU/EBSayXUkEf8TFQVt20J0tOeGQnFxxHTqQZ1pL5A5M0yaBNmyuQ7p37RySM7LWvi6xed03f0am8Pvo8T7A11HEhE8N9JcXbU3N55dzpbnvqbEHVVdRxIRIOZUPHtrd6Rgwm4Oj5xIvrrFXUcSEeDYnlPEtmxHFmJgUiTZS+ZyHUnE/yQfDAHExWEDAnh6Y3f27Tf8+KNnQZG4peGQ/JN3qd8vt79H11/6sa1YM8pO/1BLb0Vc83ZzVeVeNDowniXtX6fqi7qRpohzUVHYosX4tdxtVD8ZxboHR1GubwPXqUT8m/c5M2H6LDZV70qpuI3sGfYtRVqVd51MxP+kHAx5maQkhm68jSlPRFG3rqNs8g/aViZ/S1bcxrsf4UiWwpRY8S0EB7tOJuLfknWzJl+ysUhr6k18wnUqEfF200RHU43dbKjclZof9HCdSsS/JXvONG3aUNcmsOTuj6jzaAvXyUT8U+/e/xoMnRNGNE3H9Iahu9i3gvUAACAASURBVK5tJjmvVK0cMsa0NsZsNsZsM8YMPs/5csaYxcaYWGPM45fyWPERKSa6BsjFYQLWrXGbS/6TuukHzvPTlgqH58Hcue4yyUWpm37gPN28ceuPnuPis9TNDC5FLwNtAokBQdTpVc5xMPkv6mUGFxEBWbKc95QNDfWcF59w0eGQMSYQGA60ASoAXYwxFVJc9ifwEDDsMh4rrl1oqV9MjOe4vtH1SeqmH7hQN89Gq5s+TN30AxfqZrS66cvUzQzuAr0MTEpQL32YeukHQkMhMPBftymxoaGYyEgID3cUTFJKzcqhWsA2a+0Oa20cMA5on/wCa+0ha+1yIP5SHys+4D+W+hEd7TkvvkjdzOjUzfRK3czo1M30St3MyNTL9Eq9zMgWLIDmzSFfPja/MJZoQgGwIRoM+aLUDIcKAnuTfbzPeyw1ruSxco0cfPETEi/0V0FL/XyZupnB7bnnReyFTqqbvkzdzOA2dxikbqZP6mZGFhFBYlDm859TL32ZeplRzZkDrVpBwYIsf3seNYfdRb8CkSQULIqZrMGQL0rNcOh8b1N1we+JLvexxph+xpgVxpgVhw8fTuWnlyu1e3MMv/V/n0CSSArK9M+ToaGgia4vS/NuqpfubPppM5mee4oTJgdJmVPs01Y3fZ26mYGtGrGMfO8/xaHA/NgsIf88qW76OnUzA1swK4bEhESSUv6nUi99nV5rZkTTp8Mtt0CJEiwf9gtNuxcgXz54Y1k4Qft2qY8+KjXDoX1A4WQfFwIOpPLzp/qx1tqR1toa1toauXPnTuWnlyuxe3MMO6reTnjMVHY/+ykBM6Z5nkBBT6TpQ5p3U710Y9PPW8hxWziBJpGTUxYSMHWKupm+qJsZ1KpPllPi/pacCM5FwLKlmCmT1c30Rd3MoBY8O40ar97GzrBKxIydqF6mL3qtmdFERsKtt0K5cix7I4qmXfKSP7/ntl8Fta7Lp6VmOLQcKG2MKW6MyQTcBfycys9/JY+VNPTXYOjsVHY9+ylFh97jeeKMjISiRfVEmj6omxnQpklbyX5bOEEmgbORcyjSuoK6mf6omxnQqk+WU6J/C04FX0/I4ihyVyusbqY/6mYGtGDIdGq80oHdYRUosHEmoV3aq5fpi3qZkfzwA9x2G1SqxNJXZ9Oscy7y5/e8ya4GQ74v6GIXWGsTjDEDgOlAIDDaWrvRGNPfe36EMSYfsALIBiQZYx4GKlhrT57vsWn1h5HU+cdg6JlPKTb0nr9PhofDrl3OsknqqZsZz+bIrWTv0IRg4omOjKJImxv/PqluphvqZsaTfDCUedFcclcv8vdJdTPdUDczngVDplPj5fbsDqtA/g2zyFr0es8J9TLdUC8zkHHjoHt3qFWLJc9PpUXH7BQo4FkxVKCA63CSGsba1G7pvHZq1KhhV6xY4TpGhrR7cww7q95Ok3ODoZfvufiD5Joyxqy01tZwnSMl9TJtbY7cSrb23sHQpDkUubmi60iSgrrpn1aNXEGJ+5p7BkMLo8hTs6jrSJKCuumfzg2G9oSWJ9/G2WQrdr3rSJKCuulHvvgC+vSBBg1Y/EwkLe/IqsGQD7tQN1OzrUwyiD1bNBgS8UWbJ28ja/twgonnzM8aDIn4itWfrqD4fS04HZxTgyERH7Lw+Rl/DYbyb5ylwZCIS59+Cr17Q9OmLBoylRa3azCUXmk45Cf2bIlhRxUNhkR8zZYp28h6axMyE8uZn+dQ9BYNhkR8wepRKynWrwVngnOQaeFcDYZEfMSC52dS7aW/B0NZi93gOpKI/xo+HPr1g9atWTh4Ei07hFKokOceQxoMpT8aDvmB5IOhnU9rMCTiK7ZM2UZYu3AyE8vpnzQYEvEVqz9bSbF7mxMdlJ1MC7RiSMRXLHxhJtVfupW9oWU1GBJx7Z13YMAAaN+eBY9NpFX7LBQq5FkxlD+/63ByOTQcyuBSDoaKv6LBkIgv2DJ1O2HtwslCDKcmzqZo25tcRxIRYPVnqyh6Twuig7ITvHAueWoVcx1JRICFL86i2ou3si+0DPnWazAk4tSrr8Jjj8Gdd7Jg4Le0bp+ZwoU1GErvNBzKwPZu1WBIxBdtmbqdsLZNCLFnOTVxNsVureQ6kogAa0avoug9zTkblE2DIREfsuilWVR7oR37QsuQd/1sspXI5TqSiH+yFp5/Hp55Brp1Y17/sbRuF0zhwjBnjgZD6d1F38pe0qe9W2PYXlmDIRFfs2XaDkLbhhNiz3LyxzkaDIn4iDWjV1Gkb3POBmXVYEjEhyx8aTbVnm/H/pDSGgyJuGQtPPUUvPEG9O7NvB6fcnO7wL9WDOXL5zqgXCkNhzKgvVtj2O5dMbTjqU8pocGQiE/YOn0Hobc0IdRGc1IrhkR8xpqI1X8NhoLmazAk4isWDZ1N1efbsS+kNHk3zNFgSMQVa+HRR+G996B/f+Z1Hk6bWwIoWtSzYkiDoYxB28oymH3bvIOhaO9g6FUNhkR8wdbpOwi5OdlgqH1l15FEBFj7+WqK9Pl7MJS3TnHXkUQEWPTyHKo81479IaW0YkjEhagoKFYMZs+G//3PMxgaOJBfOn+kwVAGpZVDGci+bTFsq+wZDG1/6lNKajAk4hO2zthJyM3hhNoznJw4R4MhER+x5vM1FOndnJigMILmRWkwJOIjFr08hypD2nIgpCR51s0mW8ncriOJ+JeoKGjbFqKjoXVrSEiAQYP4pc3r3HyLoWhRzyV587oOKleTVg5lEBoMifimbTN3EtKmCaH2NCe+14ohEV+x9os1FOndjJigMAJ+mUveuiVcRxIRYNErUX8NhnKvnU32UhoMiVxTyQdD4BkMBQezJm8rDYYyOA2HMoD92zUYEvFF22buJEtr72Dou1kUv62K60giAqz9ci2Fe3kHQ3OjyFdPgyERX7D41SiqPHsLv4eU8AyGSudxHUnEv6QcDJ0TH0/px9rRKXeUBkMZmIZD6ZV3D+jhr6aztZJ3MDRYgyER57zd3D/sGzK3DifMnvIMhm6v6jqZiH/zdnPbU6Mo3LMpsUGhnsFQ/ZKuk4n4N283N97zLpWfuYXfs5Qg19o5GgyJuNC7978HQ15hRDMqsbcGQxmYhkPp0bmJ7u7dXN/j5r8HQ69pMCTiVLJu5n+iGzmSjnL8u9kaDIm4lqybJV+/FxsQgJk7V4MhEdeSdbPCZ49yPDgPudZpMCTizD0Xfj1pQ0IJ/DLiGoaRa03DofQmxVK/QJJICspEyZb6BlfEqRTdDMASlimB4jmPOw4m4udSdNMAOYNPky9uj9tcIv7uPN3MH3iI7Ps2us0l4o/i4jxvVT9kCJQpA1my/OO0DQnFTI6E8HBHAeVa0HAoPbnAHtCAhDjP8agoR8FE/NyFuhkXo26KuHShbsaqmyJORUVhz9NNE3NW3RS51vbsgUaN4N13YcAAWLeOqCemcIZQQIMhf6LhUHryH3tAiY72nBeRa872UjdFfJHt1UvdFPFBST17YdRNEfciI6FKFfj1V5gwgbi3P2TgoMw0HRrOoPKRJBYqqsGQH9FwKJ04G22ZEdoBe6ELQkMhQntARa614weiWR1d9sIXqJsiThz89U9+/TP/hS9QN0Wc2DF/P9sPZb3wBeqmSNqLj4dBg6BdOyhaFFatYl/dO2nSBD74AAYOhHfXhBO4d5cGQ34kVcMhY0xrY8xmY8w2Y8zg85w3xpgPvOfXGWOqJTu3yxiz3hizxhiz4mqG9xc71p8hqlB3Wv72PvsK1MaGhPzzgtBQz9RXxfU76qZbv/60lYPF61DlyEx+rdULGxr6zwvUTb+lbrq1cuRK4m6qTunTq/it9UBPF5NTN/2WuunWgpdmk7VxVfLH7mZb1yHqpgDq5TW3b5+nY2+9Bf37w+LFzNpViqpVYf16GD8e3nsPMmVyHVSutYsOh4wxgcBwoA1QAehijKmQ4rI2QGnvP/2Aj1OcD7fWVrHW1rjyyP5lzkebiK1Si9bHvmFzj5cpvHcRZvLkv59M9STqt9RNt+Y8OJGCHWqQN34/m96ZSoWlEZjISHVT1E2HbJJlWsdR3HhffYICEtk3dj7lp77n6aK66ffUTXcS4pKY2vg16j7fklOZc3Fi1jJKff2Suinq5bU2dapnG9natTB2LEnDP2boW1lo2RLy5oXly6FTJ9chxZXUrByqBWyz1u6w1sYB44D2Ka5pD3xpPZYAOYwx/7GWWy4mIQG+uW0CNf9Xk7wBhzk0ZgZlv3wGAgI8T5qRkZ4lgHoS9WfqpgMxpxOYXnkQTf/vdn7PWpbE5auo8Egrz0l1UzzUTQdO/B5NVPE+tP7+XjblbUy2raso0aW256S6KR7qpgN/bDrG0gIdaDPvaVaV6kTBfcso2Ky856S6KerltZGQAE8/DTffDAUKwIoVHG3ZhbZt4bnnoGtXWLoUypVzHVRcSs1wqCCwN9nH+7zHUnuNBWYYY1YaY/pdblB/cmhfHD8XH0iXHztzKO9NhP62inzdm//zovBw2LVLT6L+Td28xvYsO8jG/M1ote4tlla7n9IH55OretF/XqRuirp5zW2K3MaBYvVouudzlrR8jsr7pnBdsVz/vEjdFHXzmls1eg1nK9ag1tGpLOv+ATW3jCXzDdf98yJ109+pl2ntwAFo1gxeew3uuQeWLmX5ybJUqwazZ8PHH8OYMRAW5jqouBaUimvMeY6lvC/yf11T31p7wBiTB5hpjNlkrZ33ry/iKXM/gCJFiqQiVsa0fOI+TOdO3B6/mF9bDKRC5Jva8CkXkubdVC//tuiN+ZR4qhPl7QlWP/Iltd/p4TqS+C518xqKevgnqr7fE2sC2PjmZOo8cbPrSOK71M1rxFqY0SWCRuMf4ETQDewZM49a3eu6jiW+Sa8109LMmdCtG5w5A2PGYLt1Z8QIePhhyJ8fFiyAmjVdhxRfkZqVQ/uAwsk+LgQcSO011tpzvx4CJuJZOvgv1tqR1toa1toauXPnTl36DMRa+OGBWRS7vSrlEtaz643xVJihO4HJf0rzbvp7LwESEyxTW7xDrcHhxGbKytEpS6mqwZD8N3XzGog9k8C0ak8R/n4H/riuFAlLV3GjBkPy39TNa+DkoRhml7iXVuP7sCV3fUJ/W0VJDYbkwvRaMy0kJnr2i7VqBXnywIoVnLmtOz16wAMPeBYSrVypwZD8U2qGQ8uB0saY4saYTMBdwM8prvkZuNt7J/k6wAlr7e/GmDBjTFYAY0wY0BLYcBXzZwinTiQxodLLdPi4JdFZ85K0ZDnFBulOYHJR6mYaO7LjJAsL3kmbWY+xtmh78uxeQeE2N7mOJb5P3Uxje5b/wbr8LWm9+nWWVu5Hyd8XkLtmMdexxPepm2ls89Qd7C1Sj+a7RrG42TNUOjCdbKXyuI4lvk29vNoOHoQWLWDoUOjZE5YuZZMpT61aMHas53BkJNxwg+ug4msuuq3MWptgjBkATAcCgdHW2o3GmP7e8yOAKcDNwDYgGujtfXheYKIx5tzXGmutnXbV/xTp2KZFf/JHyx50PjOFjVW6UX7eJwRk1YZPuTh1M22t/XoDWXvdTr2EHSy9cxi1xz8K5nyrmkX+Sd1MW0veXkjRJzpR0f7JqgcjqP1BL9eRJJ1QN9PW3Mcjqfx2D4yB9a9Oou5TbV1HknRAvbwKoqKgd2+IiPBsR+naFU6e9HzcqxcTJkDfvpAlC8yYAc2bX/xTin8y1qbc0ulejRo17IoVK1zHSHPTX1lBuSEdyWd/Z9fA9yj7bn+9+BSMMSt98a04/aWX1sLMXl9T/8t+nAnMxvER4ylzTyPXscQHqJtuJSZYZrT9gObTH+f3TEXhu+8p0q6y61jiA9RNt2KjE5nT6HnarHyFLWFVyTHrO/LUKeE6lvgAdfMaiIqCtm0hOhqCgz3vSla2LHz7LXFlKvLEE/DBB1C3LkyYAIUKuQ4svuBC3UzNDanlKouLtUxs/Qkd5g7kWKZ8nPhhAWVv0YZPEddOH41lUZ1HabntIzZc35BCC8ZTprzeKVXEtaO7TrGhzj20+WMCKwu3p/ySzwktkMN1LBG/t2/1YQ406UKbk7NZelNfqi34kOBsIa5jifiH5IMhgPh4CAyEt99mX46KdGoCixfDwIHwpt7jSFIhNfcckqto/5YzzC50N53n3s+OYk25Yfcq8mgwJOLctjl72FGoES23fcSSBo9T4cBscmgwJOLcunG/8mfpWjT44zuW3v4G1XZN1GBIxAcseW8JpkY1bjq5kJUPfEbtdaM0GBK5VlIOhs5JTCTx9jsZcGMU69d7Vgu9p/c4klTScCitRUVBsWIQFcXizzdzokIdWh35mg2dXqL89skE59OdwEScSNbNX56ZQc5m1Sge+xvrnv+eOvPfIiBzsOuEIv7J2007J4qZfcdRokstciT9ybYRs6n9/SBMgLZfizjh7WbSrDlMveX/qPZII5ICM3Fo4iKqD+/jOp2I/0hMhDvv/PdgyCswNprhZ3uzYoXnMpHU0raytJRsopvQojWVEgOJCwxl36hpVOzb0nU6Ef+VvJvNW9EwKZ6dIRUJm/Y9lRqVcZ1OxH8l62ZS85a0sAlszFmfAvMnUPbGAq7TifivZN20LVrShkRWFWxH2SVfEFYop+t0Iv7BWpg4EYYMgaNHPfeqPc/9g2MDQ7n+xwgKlnWQUdI1rRxKKymW+gUlxhFCLFk+G04RDYZE3EnZzaR4rAmkyLg3yKfBkIg7KboZaBNIDAii/DfPk1ODIRF3UnaTRBIDg6n6+UANhkSuBWth2jSoWRPuuMOzcmj8eJg5E0JD/3FpfKZQMs2IJOTmcEdhJT3TcCgtREVhb/n3HtAAkgh5oI/nSVZErr2oKOzNt/yrm4E2keAud6qbIq5ERZF0vm4mJRBwewd1U8SVqCiS2pynm4nxmPa3qpsiaW3ePGjUCNq08awWioiADRugUye2F2vGm40jOYNnQJSYJZTgaZGYphoMyeXRcOgqO3kskTNtO2HOnn8PKNHR0Lv3tQ0lIhzeeZroNrdjYs6e/wJ1U8SJ/ev/5Gzr2whQN0V8yrZ5Bzjbsj0BseqmyDW3fDm0agWNG8P27TB8OGzeDL16sXVnEL16ed6x/vmocEbfFklioaIETomEcA2G5PJpOHSVnDiawMSOX3MwV0XCoo+QxAVumBka6pn4isg1cXjHKaY0eh1TohihscdJutD/9tRNkWtq39qjTK32DFkrFSMk7gSJJvD8F6qbItfUtl/2M73sQxRqXIJMCWfUTZFracMGuO02qFULVq6Et96CbdvggQfYvDMTPXpAuXKedyF76CHYsQMe/CGcwL27NBiSK6bh0BU6fiSBibd9yeE8Fbjt++5kCgtm++vfEjDr33tA/5+9+w6Pqtr6OP5dCTUICIJIjyJIBxHbvV416gWkKHYFpdmw94pXEV9FvfZKBxGVa0VAUFCj2FBBQEEEAelK7z3Jev/YZ2QyzCSTMDNnkqzP8+QhM6etCfObc2afffYhLQ0mWouuMYmwdvE2Jv1rINLgSDp+dR8ra53A0rHTSfn8U8umMT5aMWs9k4+9n8qt02k/ayALG5zNn1N+IfUz228a46ffM1cypdGN1Dm9AWcsfJU5La9g0w+LLJvGJMKiRdC9O7RsCZ99Bg8/7Fp+7ryT+cvS6NYNmjSB99+H225zk555BmrW9LtwU5xY41AhbV63j3HnjmRjjcacN64nKRUrsPi/75O+eTYN7rkQzjzT7TQDO1PbiRqTEGt+38qkUx4j9eh0On59Pytrnciyt7+n9apJpF9yosugZdOYhFv+03omt76PKm3SaT/7cRYc3Yk1U3+h7aL/UfPfzS2bxvhk4WcrmNLwBuqd0YCM3wczp2UPts74nRPnDKXa8UdaNo2JlcxMSE/PPVbXihVwzTWuO9AHH8Bdd8Eff8CDDzJvRSUuvRSaNYPx4/dPeuopOOII316FKcascaiANq3Zy4ddhrG5xjF0Hd8HrViZxc9+yFGbfqLBnedBStCfNLAzrV/fdqLGxNlfC7fy0T8fpXSjdDp+048VtU9m2Ts/0HrVR9S/6ITcM1s2jUmYZTPWMbnlPVQ9Lp32c55gfsNzWPPpXNr+PpaaZzXLPbNl05iEWfDpCqYcfT31zzqajEVDmN26F9tm/s6Jc4Zw2HHpuWe2bBpzcAJ3/Vu2zP373ntw661w9NEwahRcd50bW+iJJ/h51WFcdBE0bw4ffQT33ANLl8ITT8Dhh/v9QkxxVsrvAoqKjX/u4asrR9H644Gcq8v4vcrxLHn4RRrc2BEkwvhC4HaeS5cmrE5jSpq/Fmzhp14vcNL0Z+nEJmbV6cL25x+k9flt817QsmlMXC39YS3zr3qKU395mfbsYmajy6g76AGOz2iS94KWTWPiasHU5SzrO5DTlwznSGDWsX1oOPw+Tjy2ft4LWjaNKZxAw1Dgrn87d8KFF7rvkL17w4MPQv36zJ4NA25wHYgqVoR+/dwlZIcd5m/5puSwxqF8bFi1m2+uHMGxUx7nXF3BgqonseT/BtGwb/u8G4WMMXH1529bmNXreU7+/lk6splZdc9hxwsPcmzX4/wuzZgSbekPa5l/5X85de4r1GU3Px1zGfUGP8DxpzX2uzRjSrTfPlnG8usHcvqSEa5RqM2VNBpxHye2qud3acYUX6ENQ8HKloXLL2fm+vo8cgt8+CFUruzaim65BapWTXy5pmSzy8oCQq4BXb9yNxPavcjuukdzzic3sKNqPf4YPIVj1n/LUdd1sIYhYxIlJJurf93MpBMfplyTdDp+/xBL653GinEzOXb5h9S1hiFjEickm39MX8PkZndy+InptJv7DL82Pp/1X/7K8b+NoYY1DBmTOCHZ/HXyMqYceS1HdWjIaUtGMuu4q9g5ZxEnznyVKtYwZEx8qMKcOe7OY+EahgB272ZNp960bQtffgn9+7vOeQ8/bA1Dxh/Wcwhytehqp05Mb9yb9Nkf0EX/5Nfqp7J34Gga98mwBiFjEi0omzkdO/FD/YtovOBDOrKFn+p3ZceLD3Jsl2P9rtKYkickmzMO70Tz5R9Rjz381KQ79Yc8wPGnNPK7SmNKnuBsnt2JmYeeQes1n9CAFGa3vZpGI+7lxBZ1/a7SmOJJFX780Y0n9N57bgwhETcmbU7OAbPvII2rU0fyyCNw002u15AxfrLGocxMtHNnxGvRlV27OHnWK/xxaGv+ePYtmvY6zecCjSmhMjPRTp2RXS6bKbt3cdKC0SyscQo7hr9Im06tfS7QmBIqTDaPX/4uC+q347A3X+L4fzT0uUBjSqjQbO7ZRds1H/HbMedS892XOKF5HZ8LNKYYys6Gb791jUHvv+/uPlaqFJxxBtx9N5x7Lvz6a65sAuwkjXFXTmTMMxlUquRj/cYEieqyMhHpICILRGSRiNwbZrqIyAve9J9FpE20yxZYuFsARkkVls/eyDePf8XH577Kj7W7kn3GWX83DAU7cu9Cjqx/YAuvMcmkuGQzJwf++H4tXw34nI87vsDMmp1dNncdmM1G236idtqmgy7XmHgqLtnM2qf8/uVqvuw3hcn/fpqfDu9ATphsCtB43ddU37PyoMs1Jp6KSzb37lHmf7yMzDs/YvLpT/BTtX+Tc8aZYbPZZMVUDl33+0GXa0y8JFUuIf9s7tsHn37q7jBWuzaceioMGgStW7Nv6CjmfraGMVd8wj2Lr6Fj7xrU7ZHBGbsmsoM0t3jpNJg4ke7DrGHIJBlVzfMHSAUWA0cBZYA5QNOQeToCk3H7oJOA76NdNtzPcccdp2F9/rlqWpoquH8//zz8fKq6Yfl2nTnoB/20+wid0uJ2nV65na6SWm5Z7ycbyfX4gJ/69SOu35h4AWZoPhlRH7IZMZeqBcrm2kVb9IcXvtWpFw/RqU1v1h8rZuhaqufKXhYplk2TdIpzNnNyVFf9skGnP/mlTun6sn7a6DqdWeFfuoEqlk2T9Ip7NpfPWKPf/t9n+kmn5/Wzo67SWeVP0i1UzJW9faRaNk3SiSabSfVdUzVyNnfvVp0wQbV3b9WqVd13yfJpuvIfF+p7F72lPc7bqk2aqKYGRbF0adWWLVW7dVMdOFD1u8c+1+y69fM8TjYmESJlM5rLyk4AFqnqEgARGQucC/waNM+5wGhvQ9NF5FARqQmkR7FsdMLdArBzZ/a+/QFLdtViXeZc9v40l/JL5lJrwy/Uy/6DNigAuyjH8kOasqLRWSxr1oLK/2xO3bObU/HPhdClS/hBwtLSYOTIApdpTAIldTZ3v/k+i7cdzvov5pI1ey6HLJ1LrU1zqZuznOreojukAssrNmdxs3NY3KI5VU5x2Uxb+qtl0xRlSZ3NHa+9w+It1dk4bS7Zc+ZSadkv1Nkyl1r6J7W8RbdIZVZWbs6CVpeQ0rI5VU9tTt0OzSj3+y+R77pi2TTJL6mzuW3YWBZvOoxNX81F586l8vK51Ns2l7q6jsAoQRtTDmNllRbMa9qT1NbNqXZac+q0b0aZebMsm6aoSo5cQvhsdujA3hNPIWXmj5TauY2dpSvxZaUujC57AR/uas+ub11voCOPhBYt3PjTLVq4n0aNoHTp4A1kwH1LC1WaMYkQTeNQbWBF0OOVwIlRzFM7ymXzF+kWgDt3UrpzexoDjYEsUllethFr6rRl5TG9SDuhObXaNafGyUdxTKnUA9fbpA5MnHjgutNcVz8yMgpcqjEJlNTZLNu1A828h3spzbLyTViVfgrLmzTnkJOaU7tDC6q1qUeTlDBXtx51hGXTFGVJnc0KF3WipfdwF+VYWqEZfzRsx5Kmzal4smugrdK8NpXD3YShToZl0xRlSZ3Nit3OITCa3nYqsKxic35vfA6/N29O5VNaUK9jc6o2OJyq4bJ5uGXTFFn+5xIiZ3PvXkp/9TmTOZuXuJE5lc7kmJZladECnm/uGoGaNYOKFQu1VWOSSjSNQ+Fu0aVRPzgQ8gAAIABJREFUzhPNsm4FItcA1wDUqxdyW83evSPeAlCAPRWrsWr0Z9T79zEcVaEsR4WdM4KMkJ2p7URN0RH3bOaZS8g/m5Wq8efYadTNOJqG5UpToGFqLZum6ErqbALsqVSddeO+ofa/jqJJuJMnebFsmqIr+bNZuTqbPv6BGsfXo1lqVEOD7mfZNEWT/981Id9j2ozDf6XNnI7UqGE3sDbFVzR7nZVA8D0v6wCro5wnmmUBUNUhqtpWVdtWr14998SRI90OLpy0NMp++DZHdW1JqQpl830xYQV2pvXr207UFCVxz2aeuYT8sznubdLPbkJqudLh58mPZdMUTUUgm/+jTkZDpKANQwGWTVM0JX82P/gfR5yUjhS0YSjAsmmKHv+/a0K+2Sw/diRHHGENQ6Z4i2bP8yPQUESOFJEywKXA+JB5xgM9vJHkTwK2qOqfUS6bv8COLjSwsTwjkpEBS5faTtQUJZZNY5KTZdOY5GTZNCb5+J9LSEw2jUly+TYOqWoWcCPwCTAfeFtV54lIXxHp6802CVgCLAKGAtfntWyhKg0NrAXVlHCWTWOSk2XTmORk2TQm+SRNLsGyaUo8cYO+J5e2bdvqjBkzwk/MzHTXhI4caUE1xZKIzFTVtn7XESrPXIJl0xR7lk1jkpNl05jkZNk0JjlFymY0A1Inl0BXWWNMcrFsGpOcLJvGJCfLpjHJybJpSqhCjnZnjDHGGGOMMcYYY4oDaxwyxhhjjDHGGGOMKcGsccgYY4wxxhhjjDGmBEvKAalFZB2wLI9ZqgHrE1ROfqyW8KyW8KKppb6qVk9EMQURRS6h6P2tE8VqCa+o1WLZjA2rJTyrJTzLZuJYLeFZLeFZNhPHagnPagmv0NlMysah/IjIjGQZ+d5qCc9qCS+ZaomHZHp9Vkt4Vkt4yVRLPCTT67NawrNawkumWuIhmV6f1RKe1RJeMtUSD8n0+qyW8KyW8A6mFruszBhjjDHGGGOMMaYEs8YhY4wxxhhjjDHGmBKsqDYODfG7gCBWS3hWS3jJVEs8JNPrs1rCs1rCS6Za4iGZXp/VEp7VEl4y1RIPyfT6rJbwrJbwkqmWeEim12e1hGe1hFfoWorkmEPGGGOMMcYYY4wxJjaKas8hY4wxxhhjjDHGGBMDSd04JCIdRGSBiCwSkXvDTBcRecGb/rOItPGxlu5eDT+LyLci0sqvWoLmO15EskXkQj9rEZHTRWS2iMwTkS/9qkVEKovIBBGZ49XSO051jBCRtSIyN8L0hL1v48WyWbhaguazbOaebtmMEctm4WoJms+ymXu6ZTNGLJuFqyVoPstm7umWzRixbBaulqD54ppNy2XEWuKTTVVNyh8gFVgMHAWUAeYATUPm6QhMBgQ4Cfjex1r+AVTxfj/bz1qC5vscmARc6OPf5VDgV6Ce9/hwH2u5H3jC+706sBEoE4daTgXaAHMjTE/I+zZeP5bNwtcSNJ9lM/c8ls3E/a0tm5bNgtRi2Uzc39qyadksSC2WzcT9rS2bPmXTcplnPXHJZjL3HDoBWKSqS1R1LzAWODdknnOB0epMBw4VkZp+1KKq36rqJu/hdKBOHOqIqhbPTcB7wNo41RFtLd2A91V1OYCqxqueaGpRoKKICHAILrBZsS5EVad5644kUe/beLFsFrIWj2XTshkvls1C1uKxbFo248WyWchaPJZNy2a8WDYLWYsn3tm0XEYQr2wmc+NQbWBF0OOV3nMFnSdRtQS7EtdSFw/51iIitYHzgEFxqiHqWoBGQBUR+UJEZopIDx9reQloAqwGfgFuUdWcONWTl0S9b+PFslnIWiybEWuxbMaGZbOQtVg2I9Zi2YwNy2Yha7FsRqzFshkbls1C1pKgbFouC69Q79tScSvn4EmY50JvrRbNPImqxc0okoEL6ylxqCPaWp4D7lHVbNdwGTfR1FIKOA44EygPfCci01V1oQ+1tAdmA2cADYCpIvKVqm6NcS35SdT7Nl4sm4WvxbIZvhbLZmxYNgtfi2UzfC2WzdiwbBa+Fstm+Fosm7Fh2Sx8LYnIpuWy8Ar1vk3mxqGVQN2gx3VwrXAFnSdRtSAiLYFhwNmquiEOdURbS1tgrBfUakBHEclS1XE+1LISWK+qO4AdIjINaAXEOrDR1NIbeFxVFVgkIn8AjYEfYlxLfhL1vo0Xy2bha7FsWjbjybJZ+Fosm5bNeLJsFr4Wy6ZlM54sm4WvJRHZtFwWXuHetxqHAZJi8YNruFoCHMn+QZ+ahczTidwDLf3gYy31gEXAP/z+u4TMP4r4Dd4Xzd+lCfCZN28aMBdo7lMtrwL9vd9rAKuAanH626QTeYCwhLxv/XwPWjYtmwWsxbKZuL+1ZdOyWZBaLJuJ+1tbNi2bBanFspm4v7Vl06dsWi7zrSnm2UzankOqmiUiNwKf4EYHH6Gq80Skrzd9EG5k9I64kOzEtdb5VcuDwGHAK14LapaqtvWploSIphZVnS8iHwM/AznAMFUNe8u9eNcCPAKMEpFfcEG5R1XXx7oWEXkLOB2oJiIrgYeA0kF1JOR9Gy+WzYOqJSEsm+FZNi2bedSSEJbN8Cybls08akkIy2Z4lk3LZh61xJ3lMrJ4ZVO8liVjjDHGGGOMMcYYUwIl893KjDHGGGOMMcYYY0ycWeOQMcYYY4wxxhhjTAlmjUPGGGOMMcYYY4wxJZg1DhljjDHGGGOMMcaUYNY4ZIwxxhhjjDHGGFOCWeOQMcYYY4wxxhhjTAlmjUMGABFpKiIzgh73F5H+Md5GuogsDXp8s4g8HsttmOQjIl+IyFV+1xENEVkqImd5v98vIsOCpp0nIitEZLuIHCsi80TkdN+KjRERaSci44IejxKRXjHexuki8kXQ42dEpG8st2FMoonItSLyXNDjL2L9mSAivURkVNDj90WkQyy3YUxJJSLfiMix3u+5jlFjuI2/PxdEpIaIzBeRsrHejjHFiWXTPyWqccj74rfL+3K3SUQ+EpG6QdNHicheEdnm/cwVkYEiUjlonl4iku2tI/DzkjftVhFZIiJbRWS1iDwrIqX8eK2F8AjwVIK3OQS4XEQOL+iCIlJVRD4QkR0iskxEuuUz/20i8peIbBGREcHhz2tdItI95P96p4ioiBxX0JqLspDs5HrfF1eq+piqBjdqPQXcqKqHqOosVW2mql/4VF4sPQYkupH2v0A/ESlT0AW9g4RML4u/BRrzIswrIvKEiGzwfp4UEYlmXSJSU0TGe5/lKiLpBa21OAhuMA16rpeIfO1XTcnAe+8+gHsvJ9LjwKOFWVBEWovITO/9PlNEWucxb1lvX7nV23feHu26RKS5iHwiIutFRAtTq3G8Ly+bQr+weMerKiLnhDz/nPd8L+9xJxH5WkQ2e/+PQ0WkYpjtjBKRLBGpFfJ8fxHZF7Tfny8iFwRNLyMi73qfEypF6ISJiHQBtqnqrERtU1XXAJnANYVZPq9j2TDz5pn3fI6Lt4f8ZIvIi4WpubiKQTYzROQXL5sbxH0PqR1mO4XN5kkiMlVENorIOhF5R0RqxvSPECeWTX+zWaIahzxdVPUQoCawBgj9gz6pqhWB6kBv4CTgGxGpEDTPd94XxMDPjd7zE4A2qloJaA60Am6O54uJBe/DIgMYl9+8Ua7vgAaxcM+p6m5gMtCjEJt5GdgL1AC6A6+KSLMI9bQH7gXOBNKBo4CHo1mXqr4R/H8NXA8sAX4qRM1FXZcI7/u4CPee8Vl9YJ7fRcSSiBwPVFbV6TFaX2o0z6nqn8BvwDmh06LwFjALOAzoB7wrItUjzHsN0BX3WdwS6AxcG+W6coCPgQsw5kDnAr+p6qqDXZE4Kfk9B6CqPwCVRKRtAbdRBvgQGANUAV4DPpTIDbT9gYa4z70M4G7xeixFsa59wNvAlQWp0eQmrkH6X4AS/rNyIdAzaP5SwEXA4qB5KgP/B9QCmgB1CGnQ9I5vLwC24I6BQv0v6BjoVmCMiNQImv41cDnwV/SvLin0BV6PxYqiPe71vEHu/VC028jvWDZ43jwzmt+6Qo57awC7gHcKWnNxFaNs/gq0V9VDcfn8HXg1ZDsHk80quJPw6bjP8W3AyAK8TD9ZNn3MZklsHAL+bph4F2gaabqq/ogL/WG4hqL81rlYVTd7DwX35eLowtbonYm5S0R+FterZbi4bm+TxfVs+lREqgTN/05QS+O0QAOHuDM7s0XkJu9xqrjueg96i/4b+Mn7m0SqpZaIvOe1Pv8hIjcHTesv7szRGBHZCvQK91yEVX8BdCrg3yXwYfkfVd2uql8D44ErIizSExiuqvNUdROul1Svg1jXaFW1s6Ee7/96TNDjdHFnR8J++IpIH+8MxyZxZ5frB01TEblBRH7H7ShDlw2su7e4S7w2iUhfETney8lmCerRJCIpIvKAuB5ha0VktOTuCXiFN22DiPQL97rEnUHfDqQCc0RksTf97x4V3nbuFZHF3rreFpGqB/E3VRG5XkR+97L+iIg0EJHvxJ3JfztoR1JFRCZ62dzk/V7Hm1ZVRFaKOwuDiBwiIotEJNAgezbwZT61NJb9Z58WiMjFQdNGicirIjJJRHYAGeGei7DqLyh49hsBbYCHVHWXqr4H/ELkBpyewNOqutL7Ev80+7Of57pUdY2qvgL8WJAaS6J89g+jROT/gh6fLiIrgx4vFZE7vfxuEZH/iUi5QtZR0M+HBiLyuZfZ9SLyhogcGjRto4i0CXqN62V/z4hosnOSiHzrbXdO0LKBs86Pisg3wE7gqHDPRVj1FxQwO8DpQCngOVXdo6ov4I5Tzogwfw/gEVXdpKrzgaHs34/nuS5VXaCqwylmjek+6AFMB0YR9EUzyATgn7L/OLAD8DNBjTSq+qaqfqyqO73jn6HAP0PWcwGwGRgQYTt/U9VPcF8yG3iP96rqc96xU3bBXt6BvP3uO96+d5u4nhWNROQ+bx++QkTaBc3fW9zxxDZxPfevDZp2j4hMF+9YRESuE3c5eDlv/3kGeWQ4r/160GfNlSKyHPg83HMRVv09Lu/1I0yPJOKxbBink3feC7KuC4G1wFcFrLc4i0U216jq6qBlsjnwO+PBZHOyqr6jqltVdSfwEgdmP2qWzTwVq2yW2MYhEUkDLsGFOyJV3QZMxbUQR7PebuIaQ9bjzlYPPshSL8A13jQCuuB62twPVMP9/wX3TJqMO9N3OK5nyxvea9iLO6szQESa4FokU9nfNb0FsCCP15SC+6CbA9TGtWbeKq51M+BcXGPboYHtRngu1Hzc3ymwrYnegXS4n4nebI2AbFVdGLSeOUDYnkPe83NC5q0hIocVZF3eh8WpwOgI2zH5EJGuuPfv+bjeeV/hem8E6wqcSISGW8+JuPf6JcBzuF4fZ+H+3y4WkdO8+Xp5Pxm4L1qH4HaQiEhT3FmaK3BnbQ7DnVXNxfvwPsR72EpVG4Sp52av7tO8dW3C9Ug7GB2A43C9F+/GnQHqDtTF9Uy8zJsvBXc2qD5QD3cW4SWv9o1AH2CouMs3nwVmq2rgPZxf9ivgPv/exH2uXAa8Irl76XXDfZZUxJ1BjvRcqNDs/5xH9l/xZmsGLPE+lwMKmv1mQdMKsi4TRpT7h/xcjHu/H4nr4dXrIMuK9vNBgIHs71VRF9djBlVdDNwDvOEdL4wERgVdSppfdmoDH+F6bVQF7gTek9y93K7A9W6rCCzL47lQodmJlJvNInKvN1sz4OeQExs/E35fV8X7m+SVnajWZQ5KD9yx0xtAe8ndWwdgN+5k1qVB8+d3fHIqBzba9cTth8cCjcVrEA0lTiegDK7XQ7x0wfUaqILr2fkJbj9XG/clOfi4ei2uR2gl3EncZ4Pq/y+uV/gDItIQdwn15d6J0IZAjqquJLJo9uun4T472ufz3N9UNQtYhJdh73tDXhmu5y2a17FsqPwyWpB12UnRA8UkmyJST0Q2447b7gSeDJklltkMl/2CsmyWgGyWxMahcV4Qt+IaXaIZL2A17uAu4KSQN8dJgQneWZpKuEaHQbhL1w7Gi17r8ircF+nv1Y13sgf4ADg2aNsjVHWbN60/0Eq8XhKqOhd3kPoB7gPoClUNnOU5FNfaHMnxQHVVHeCdJVqCO/t0adA836nqOFXNUdVdeTwXahuu23PgNXRW1UMj/HT2ZjsE18Uy2BbcwXQ4ofMHfq9YwHX1AL5S1T8ibKe4Gxfyvr+6EOu4FhioqvO9D+HHgNYhrfQDVXVjHu8ZcGe0d6vqFGAH8Jaqrg3KSSAX3YFnVHWJqm4H7gMu9c5WXAhMVNVpXmb+g+vtVxjXAv28HiqB/F0oB3dp3BPeGZ95wFxgivc6tuAago8FUNUNqvqed2Z4G65RJvDlF+9v9A7wGa63QXCX2fyy3xlYqqojVTVLVX8C3sP97QI+VNVvvJzvzuO5UNu87QfqbJlH9q/3ZotF9g8RESnEukqyXNkHXgmaFs3+IT8vqOpqrzFzAhBxLJwoRfX5oKqLVHWq1wC8DniG3NkZiuvB+D3uUvTg3oX5ZedyYJKqTvJyMBWYAXQMmmeUd3YwS1X35fFcqNDsRMrNoaoaGE+sIO/3Q4Kmh5vXshNnInIKrsH/bVWdibscJdzYiqOBHt6x3mnkMTyAiPwb92XiwaDn6uFOnrypbsyNzziwh8LFXu534L7wPqb7e8nHw1eq+ol3jPAO7kTS414exgLp4vXwU9WP1PXaV1X9EpiCdzJXVXNwx203e3U/qfvHMMkvvxDdfr2/qu4IOV4J91yovzPsfW/IK8PLvWXyOpYNlV9Go1qX9/44DXfpiyG22VTV5eouK6uGG8Put6DtxCybItISl/u7CvhyQ1k2S0A2S2LjUFcviGWBG4EvReSIfJapDWwMejw95M1xQO8jVf0d10L7Sug0ABEZJPsHk7o/j20HNy7tCvP4EG99qSLyuLgudluBpd481YLmfw13/eIkr76ATeR9UFcfqBXy5eB+3LWOASvCLBfuuVAVOTAk+dmOa4kOVonIHyah8wd+31bAdfWgZO8gu4a874cWYh31geeD3kcbcWfvgwfhi+Z9E1UucGcUgs++L8N156zhTft7W6q6A9gQ3cs4QH3gg6DXNR/XRTj0bBLiLgsNZD/cNeQB0WY/TUQGi7s8biswDThUco/1MwTX22ikqga/xmiyf2JI9rsDwZ+ZB5P9gn7BiEX2t6uqFmJdJVmu7OPGXguIZv+Qn+CxSnayP7+5iOt2HshOXr15o83O4SIyVkRWedkZQ+59JriGrua4EzV7gp6PJjsXhfxdTsE1MgUka3a2B00PN69lJ/564k4IrPcev0mYy0rUXc5VHffFcmKkLz3eScw3gQs1d0/pK4D5qjrbe/wG0E1ESgfN87aX/TTcJSs9JOgSkWiJyL+C8ptXD4bQvK7X/SczA68vkOGzxV2estHLWEeCMqyqS3GDzKaTu2dBfvmF6PbrfmY4+Fg2v3kD80fKcKR19QC+1pJ7UjScmGbTm3cj+8eeCTRwxCSbInI07oTiLaoa9vIjy2YuJT6bJbFxCABVzVbV93FvplMizScih+C6oxfmer5SeNd+htl+X90/qNRjhVh3qG64y7jOwvXESfeel6B5XgEm4rpABr/mn3E9nSJZAfwR0jBQUVWDz4CG69IWTTe3JgR1nwv54hz6M9mbbSFQyuuKGNCKyN0l5xHUBd/7fY33JTmqdYnIP3GNCe9G8ZpKmh1AWtDjvBpbVwDXhryXyqvqt0HzxLJ75GrcTiSgHpCF28H9ibuMBPj7UtNw3TajsQI4O+R1ldMwg9Wq6tlB2Y90uWVB3AEcA5yortfiqd7zAn8PCD0YdxbrOu9AISCa7H8Z8roOUdXrgl9SmOUKk/15eWR/kDfbPNz14MEHDgXN/rygaQVZlwkvv/1DQT4f8qTuDoGB7MTiGvuBuPdqSy87lxO0z/T2/88Bw4H+knscsWiy83rI36WC7u/JA7HLTqTcBJ98mge09HrNBbQkzPtd3TgHf5J3dqJalyk4ESmPu9TyNHHjSP4F3IbrDd4qzCJjcPuBsJeUibsd9Higj6p+FjK5B+5zMLCdZ3Bf4M4Oty7vC91k3OUlBaKqXwXl96AvQRR3B5/3cHcSreE1XE8id4Y7Aifjel0EXynwu5t84N2hgkSzXy9whr0v/0fjZVgOvCtu6E/g0pW8jmVD5ZfRaNdV0k+K5hLrbIYohbt8P9AYcNDZFNcr/1Ncb9qIAzxbNv+uybJJCW4cEudc3HWT88NMLyvuduXjcK2Y+Y7wLiJXiXdbdnHjmdyHe9MnQkVgD67nQxrucp3g2q7AjV/SC9eN7zXvwBfcmCJtJPIgoD8AW8UNIFZeXC+l5uLudHSwTsN9mAEHfHEO/Tnbm2cH8D5uDKUKXsPNuUQe2X40cKWINBU3lsIDuEHkCrKunsB7mnt8EuPMBk4Vd+10Zdz7PpJBwH2yf7D0yiJyURxrewu4TUSO9N7vj+Hu7pCFa+jrLCKniBsAbwCF/0wcBDzq7YgRkere50siVMSdsdnsfXl9KGR64MthH9yOerTs71U0iaDLaMKYCDQSN3B3ae/neHFjlx2s0Ow3yyP7fb15FuLebw+JG7jwPNxO9b0I2xgN3C4itcXdBvYO9mc/33V5n4mBW4iWzeMzsiTLb/8wG+gobnD0I3B3VEkWFXFn6TZ7B6KhXe6fB2aq6lW48YMGBU3LLztjgC4i0t77m5QTNxj3AeOaFUJodiLlJvjk0xe4k2E3e8c3gbtNRhqYczRuPIgqItIYuBovO/mtyzu+Kocb/wLvtUe8ra85QFfc37cp7hLL1rgGwa8If3fXF3DDJEwLnSAizXF3XbxJVSeETDsZdwLzhKDtNCdCTwhvmTq48cHmBT0X/NlYxvv/lnDLx1gZ3OfzOiBLRM4GggfErYZr2L0K93q6eF9IUXcZzKfkneF47ddPwF2uvcyr5Y18Mhy4dCXisWwYX5B33vNdl4j8A9er2+5Stl8ss3m+iBwjbnDl6rjGn1mqujEW2fT2aZ8DL6vqoHDLxJFlswhnsyQ2Dk0Qd+ehrbixOXqqG9Mj4G4R2Ya73GU0MBP4h9eIkJ9/Ar+Iu0PPJO8nr0vGYmk07pKZVbjByP6+1M1r2XwO6KHujlxv4sY+eBbciPm4N2XYYKnrMtgF9+H0B26w7WEEjRVUGN7BREcK1/J5PVAeN+DZW8B1gf9Hr5Hi7xZdVf0YN8hbJu5vtIzcX6AjriuozosLWWdxMkFyt5h/AKBuLI3/4c6kz8Q1KISlqh8ATwBjxV3GMZcIZ0FiZASuoW8a7r27G7jJq2UecANuZ/snrhE4rwHw8vI87szsFO/zYzpuUNxEeA73/l3vbffjwARxDdy347KfjfvbK25QetSNIbRFRMLW6jWGtsONH7Mad/nPE+xvMCkUEamJO7iKOD5GHi4F2uL+vx7HXSaxzlvvv7zP94DBuDFsfsG91z4i94CJEdfl2cX+S2x+Y3+3aeOJYv/wOu4s3FLcmAP/S3yVET2Mu2PdFtx74/3ABO9AswPulrrgctRG9l8KOgE3QGitcCtW1RW4fer9uAPkFbjGp4M67vIa3Xaou6V91NTdmKIr7gvMZlxjcVfv+cAZ0uBjoYdwY2ksw9015r/evjTfdeF6a+5ifwPCLvIYvNscoCfuEuDlqvpX4Ad3o4HuEjKWnbox+j5TDTso6R24S1uGB+27A/8vPXHjw/0Ssp3ncSdOAj3lLgksi7t74zfkvk3zAtz/cW3cALW7yN1jNy68/dPNwNu4z/BuuP1wwBDc65vknXW/Ehgm+wd2HUzkO9NC/Pbr3cnd0ByV/I5lxfW8v9+bN8+MRnFcDO798b6dFM0lltmsjTte24Y7RskBzgvazsFm8yrcjVgeCj52j9UfIi+WzaKdTQn/fjUljbieTq8BJ6iqikh/AFXtH8NtpANfqGq69/gmoK6q3h2rbRhjCkbcrUevV9Wu3uNRuJyOiuE2TscNBHi69/hpYLG6W8UbUySJyDVAU1W91Xv8Be59/kUMt9ELOF1Ve3mP38Pd5nZSrLZhTEklIl/jelXNCj1GjeE2vsD7XBB3dcGXwLEa+WYNxpR4lk3/HMyddEwxoqq/4u46k8htvpjI7RljDqTujk5TErzNOxK5PWPiQVWH+LDNCxK9TWOKK1WNOOZonLa3FncZkjEmD5ZN/1jjkInkizisczPuEhhjTPIax/67HcbKUiJff21McTGK2GdnNgW/c4oxpuDidYw6ith/LhhTklg2E8guKzOmCBORDrhrb1OBYZr7TjiBcTMewV3LnAXcqu72mojIUty1ztlAlqq2TWDpxhRrlk1jkpNl05jkY7k0JjlE1ThkgTUm+Yi749RC3J0QVuIGo7vMu0QwMM8huMFLVURaAm+ramNv2lKgraquT3jxxhRjlk1jkpNl05jkY7k0Jnnke9cML7Av4+4o1BS4zBu8ONhnQCtVbY0bdXtYyPQMVW1tDUPGxNQJwCJVXeKNcj+WkDvOqbs7XaAFuALuTlXGmPiybBqTnCybxiQfy6UxSSKaMYf+DiyAiAQC+3drrqoG3xrvoANbrVo1TU9PP5hVGFNkzZw5c72qVo9i1tq42yMHrCTMrRxF5DxgIHA40ClokuJuA6nA4PwGV7VcmpLOsmlMckqmbHp3sbsGoEKFCsc1btw46tdhTHETZTYTss+0bBqzX6RsRtM4lNCDXID09HRmzJgRRWnGFD8isizaWcM8d0DDrKp+AHwgIqfiLv88y5v0T1Vd7d2+caqI/Kaq00Jq+XtHWq9ePculKdEsm8Ykp2TKpnecOwSgbdu2atk0JVmU2Yx7Lr3lLZvGeCJlM9/LyihAYL1rP7viAhvwT1Vtg7ss7QYv0OEKvEZEZojIjHXr1kVRljEl3kqgbtDjOsDqSDN7O8oGIlLNe7za+3ct8AGul2DoMkNUta2qtq1ePZpFEiIlAAAgAElEQVSTssYYLJvGJKu4Z9MYU2CWS2OSRDSNQwkJrB3oGlNgPwINReRIESkDXAqMD55BRI4WEfF+bwOUATaISAURqeg9XwFoB8xNaPXGFF+WTWOSk2XTmORjuTQmSUTTOGSBNSYWMjMhPd39GwOqmgXcCHwCzMfduWGeiPQVkb7ebBcAc0VkNm5g+Uu8Af1qAF+LyBzgB+AjVf04JoUZU9RYNo1JTpZNY4o9y6UxySPaW9l3BJ7D3cp+hKo+Ggirqg4SkXuAHsA+YBdwl6p+LSJH4XoLgRvf6E1VfTS/7dl1oKbYycyEzp1h505IS4OJEyEjI+ysIjIzGe/sZ7k0xZJl05jkZNk0JnllZkLv3jByZMRcgmXTmGQVKZvR9BxCVSepaiNVbRBo3FHVQao6yPv9CVVt5t2u/mRV/dp7fomqtvJ+mkXTMGRMsRN8gAvu386dY3Ym1BhTSJZNY5KTZdOY5BXI57Jllktjks1B9riNqnHIGFNIoQe4AXaga4y/LJvGJCfLpjHJyxpujUlemZns63BwDbfWOGRMPPXufeABbsDOnW66MSbxLJvGJCfLpjHJyRpujUlemZlkd+xM6b0H13BrjUPGxNPIkW6shHDS0tx0Y0ziWTaNSU6WTWOSkzXcGpOcMjPRTp1J3X3wDbfWOGRMPGVkwDPPcMCw7/kMrmmMibOMDPb0G3Dg85ZNY/yVkcGyrrcc+Lxl0xh/jRzJvtLWcGtM0undG9kVm4ZbaxwyJp5270ZfeIEtpQ5jJ+Xdc3aAa4z/tmxhx+MvsJy6ZJe1bBqTLHYsWEmVsa+woHQztLz3RdSyaYzv5h2ewRPZdxw4wfJpjK/m3DqS3ZQNP7GADbfWOGRMPD3wAPLrr1yS9Qbf3v8R1K9vO1BjksDqS2+n8raVvHfJO6ROtmwakxRUWfrvq0jN2ce20eOQjyZaNo1JAvv2wW3d1nCdvkJWg2P2X/ppDUPG+GrbNuj9bEt2p6ShIrknFiKfpWJcnzEm4Msv0WeeYUjKdVQ8rz1n/h/w6FK/qzKmxNv59kRqfTyCV6vez7UjToQ0YOlSv8sypsSbd+tQmq34hPfPeInzLz0aONqyaUwSGPiY0vfn6zi09HZSx0+DNWvcpSojR1rDkDE+uusuuGv5jVRK3YYMGgy33uouJStkw601DhkTD1u3oj17saL0UTxe+b/88CqENuYaY3ywYQN7e13N77SkzQcPRhz31hiTWFtnLyH9xdv5Lu1MOk64zu9yjDGeWbPg9wFv8SAfwKNPQtOm7scabo3x1ZQpsH7wu1zGWHhoAFx9NRx99EE13FrjkDHxcPvt6PLlXKpf8fywClSv7ndBxhiAVeffSPVdG/iyz8fcfGqE67ONMYmVk8PqDr2ppSmkjR1BuTQb9cCYZLBnD9zZbTXv6o3sO/5kSt9+u98lGWOAzZvh7l5r+Tz1OnJaHUfKvfe6CRkZB9Vwa3tfY2JtwgQYPpwnuYdGPf/BOef4XZAxBmDb8LepPW0sg2s8xLWvtPK7HGOMZ+41L9B4zTQ+7fw8rbrU87scY4zn4f7Krb9dS6XSuyg9ZhSkpvpdkjEGuPUW5T9/Xs+hKVtJeW0UlC4dk/VazyFjYmndOvSqq/itbCuGVu/PT8/7XZAxBoC//oLrr+dHjudfE++hrHUaMiYpbPruNxoMv48vK3Wm87u9/C7HGOP5/nv464nX6MJEeOJZaNTI75KMMcD48bBn9Fgu4D0YMBCaN4/Zuq1xyJhYUYW+fcnesJlLsqcyZFQZKlf2uyhjDKqs6nItVffuYMbNo7mure36jEkKWVms79yTqqRR/f0hlClrg/MZkwx27YK7u61kAreQdfK/KHXzzX6XZIwBNmyAB678k69SbyDnuBNJufPOmK7fLiszJlbGjIH33+f+7Ec47caWnHmm3wUZYwC2vDia2jPGM6juY1z9dGO/yzHGeH6+/EkabvyBaZe8QtMza/pdjjHG0+9+5f4lV1KhbBalXh8JKfaV0ZhkcMP1ymMbrqViqV2kjH4NSsX2hKedPjUmFlasQG+8kRll/8n4unfw0xN+F2SMAdDlKyh1x818JafSYfItsd6HGmMKaf1nc2j8v/5MrXoxXcZc4nc5xhjPtGmw/blhtGcKPP0yNGjgd0nGGODtt6HM26/TmQnw2NNwzDEx34YdJhtzsHJyoHdv9uzMplv2a7z+eqrdHtuYZKDKnx37UCkrm4X3j+RfzezMpzHJQPfsZdv5PciiKukTX7ZGW2OSxPbt0K/7UibL7WSdegal+vb1uyRjDLBmDTxy7Uq+Tb0ZPekU5JZb4rIdO1I25mC9/DJ89hk3Zz3DRfc24KST/C7IGAOwceAgas37lEFHP02vAUcldNsi0kFEFojIIhG5N8z0c0XkZxGZLSIzROSUaJc1pqj75aIBHLn1Z6b3HkLDk6sldNuWTWMiu+euHPqvvJJy5aDUayMSdjmZ5dKYyFThmquVp7ZcTYUy+5BRI+N250BrHDLmYPz2G3r33XxapiPft7iahx5K7OZtZ2pMeLpoMWn/uZNPU9tx3uRrEnr3XRFJBV4GzgaaApeJSNOQ2T4DWqlqa6APMKwAyxpTZK0Z/z3NJgxkUo1edBl6TkK3bdk0JrKpU0EHDeJMPqfU889A/foJ2a7l0pi8vf46VJ8wnPb6MSlPPgFHHx23bUXVOGRfQI0JIysL7dGD7Tlp9MkZxutjJKG3x7adqTERZGfzV4de7M4pzZ+PDKfB0Qm/A9IJwCJVXaKqe4GxwLnBM6jqdlVV72EFQKNd1piiSnfuYu9lPVkttWny8XMJbbT1WDaNCWPLFni4x2KekrvIPqs9XHVVIjdvuTQmgpUr4b83LuP51NvR0zPg+uvjur18G4fsC6gxEQwciPz4I332DuK6ATVp2TLhFdjO1Jgw1j/wHDUXf83gZi9y+b11/CihNrAi6PFK77lcROQ8EfkN+Ai374x6WWOKop/P6UfdnQuYddMIjmxd2Y8SLJvGhHH7rTk89ldvylQoTerIYSAJPaliuTQmDFW4+socXtzRh/LlFBkZ/0s9o1m7fQE1JtTMmeiAAbxTphsrT7qIu+7ypQrbmRoTIvuXX6n4RD8mlupKt0mXJ/j49m/htqoHPKH6gao2BroCjxRkWRG5xuupO2PdunUHVawxibD6rS9p8dlzjK9zPV2eO8uvMiybxoSYOBEqjnqBU/mKUi8+B3USflIl7rkEy6YpeoYOhSOnDOL0nM9JefopSE+P+zajaRxKyBdQC6wpMnbtQq+4gg2ph3NLykuMHo1fd1qxg1xjgu3bx7pOPdmqFdnx9CDq1vOnZQi3r6sb9LgOsDrSzKo6DWggItWiXVZVh6hqW1VtW7169dhUbUyc5GzZBn16s1SOos3UJ/xqtAXLpjG5bNgAA3sv5HG5j+yOnaFnTz/KiHsuveUsm6bI+OMPePG2JTydchf673ZwzTUJ2W40jUMJac21wJoio18/ZP58uu0Zyf3/rULDhr5VYge5xgRZd8fjHLFiBiPavsrFN9Xws5QfgYYicqSIlAEuBcYHzyAiR4u4r8gi0gYoA2yIZlljipq5Z9/FEbuX8tu9o6jT+BA/S7FsGhPkpuuzeWp9L0pVLE/qsCGJvpwswHJpTJCcHOjTK4dX9/SmbIVSyPDEXeoZTX+HAn8BFZECt+YaUyRkZsKzzzKk1PXknNYu3mOC5efvHSKwCrdD7BY8g4gcDSxWVQ3ZmW7Ob1ljipKsH2dR5aUBvFumGz0nXOhnzwRUNUtEbgQ+AVKBEao6T0T6etMHARcAPURkH7ALuMS7PDvssr68EGNiYMWwT2j53WDeb3An5z16Sv4LxJFl05j93n0Xar/9DCfzHbz6BtSs6UsdlktjcnvpJWg57UVOYRo8PwLq1s1/oRiR/UMFRZhBpBSwEDgT9yXyR6BbcPDCfAGdgGsISs1v2XDatm2rM2bMKPSLMiYutm5FW7Rg1doyHF96Nj/MqxCXrIrITFVtG+W8HYHn2L9DfDR4Zyoi9wA9gMDO9C5V/TrSsnlty3JpktaePayt15astRv4YcRcuvauGpfNFCSbiWTZNMkqa/1mNtZqzqbsSlRe/BNHpJeLy3Ysm8YUzJo1cH7jX/l8SxtKn9ORlA/ei0vPBMumMQWzcCFc2HIhP+xrTdmzz0AmTEhoNvPtOWStucZ4br0VXbGSi/RrHh8Un4ahglLVScCkkOcGBf3+BPBEtMsaUxStua4/NdbO5YlTP+KeODUMGWMKbn67W2iy7y9mPzqOdnFqGDLGFIwqXH9NFs9v6Ulq5UNIGfyqX5eTGWOCZGdDn57ZDMvqRZlK5ZAhib/UM6phdO0LqCnxPvwQRo7kyZT7qXHOyfTo4XdBxhiAvV9+R7WRT/JG+au46v2OfpdjjPEsfW4cLWaN5p2mD3LR/UnXccCYEuuNN+CY8U/Slhkw5G2o4esYfcYYz9NPw8nTn+EEvoOXxkCtWgmvwZ97LBlTlKxdi159NQvLt+KFtIeY7dt4fcaYXHbuZOt5PdlOXQ4b9TSHHeZ3QcYYgL2r1lHxrmv5udSxZEzt53c5xhjPqlXw6nU/84X0J+fCi0m56CK/SzLGAHPnwhsP/MqPKf9Bz+mKdPNnKNho7lZmTMmlCn37kr1xCxfuep2XhpTh8MP9LsoYA/Bn7/uotul33j57JB0uruR3OcYYAFV+P+s6DsnazPqnXqNarTJ+V2SMwR3SXttnH6/s6IlUrULKKy/7XZIxBti3D/r0yGKk9qLUoYcggwb51hPBeg4Zk5fXX4cPPqCfPEnry1tw/vl+F2SMAdg9OZOab7/AiENupu/YDL/LMcZ4ljw2lma/vcf/2jzOJbe08LscY4xn+HBoO+VRWjEbhn0A1ar5XZIxBhg4EM6a9SRt+BEG+Xupp/UcMiZUZiakp8PYsehNNzGj/Cm8VfN2XnzR78KMKeEC2Zw4kZ2X9GYhDTly7EAqWachY/zlZXPvG+9w2IM3MLP0SbSfcqffVRljPEuXwqibf+IBeRTtfjl07ep3ScYY4KefYNyAnxmQ0h8uvhh8vtTTeg4ZEywzEzp3hp07oXt39kkZLs5+jWHjUjn0UL+LM6YEC8pmzrnnUTknm5EXfMMdndL8rsyYki0om6WuuJSyWoqdQ17j0MNS/a7MGAPk5MC1vfYweE9PqF4deeF5v0syxgB79sCVV+zldelJStUq8LL/l3pazyFjAoIbhgByctDsHG4+Zxnt2vlbmjElWkg2U3KyyCGV6/vs9rkwY0q40GxqDqVSlH8dtcrnwowxAGRmsr1aOld82YdmOXMpNWIoVK3qd1XGmMxMdh6ezi2/Xk3zrNmkDBmcFJd6WuOQMXBgw5CnLHu5ZWpnN90Yk3gRslmaLMpfZNk0xjcRslkqZ5973rJpjL8yM8np2JlKm5bRnTfR9h2gUye/qzLGZGaS3bEzVbYuoyej4ayzkuZST2scMgagd+8DDnADZNdON90Yk3h5ZJOdlk1jfGPZNCZ5ZWainTuTsttlVACZ9qU12hrjt8xMtFNnUoOyyTffJE02rXHIGICRIyEtwtglaWluujEm8SybxiQny6Yxycnr1Sehjbe7dlmvPmP8FMjmruTNpjUOGQOQkQH9+x/4fFoaTJzophtjEi8jAx06DA193rJpjL8yMtj68DOWTWOSjfXqMyY5FYFsWuOQMQDr16PPPsuacvXYSXn3nB3gGuO/7GzWPPQKO0hjXynLpjHJQnfsZMvDz7Gew8gpa9k0JlnsemUku6R8+InWq88Y32x8euT+75mhkiSb1jhkjCpcdRU56zbQfveHfHzjR1C/vh3gGpME1t/1BEcs+poXmw4m9WPLpjHJ4tfOd1N3+29M6zuWlMmWTWOSxa0fZjBNT7FefcYkEVXoOSqDaXJ6UmezlN8FGOO7IUPgww+5v9TT1OzQmvNeAF5c6ndVxpR4WdNncOhzD/F+6Uu44uPupNQVWLrU77KMKfFWDZ1Esy9e5t16t3P+y2e5U42WTWN8N348bBzyDu2ZCj16wLvvustVkujLpzEl0ZAhkDpxHB2YDN26wbhxSZlN6zlkSrb589HbbuPbQ9oxsvKtjBwJIn4XZYxhxw42d+rOn3oEKYNfpU5dC6YxyWDfqrWUv74381JbcPLnj5JiR5LGJIW//oJ+vVYxLPVactoeD8OGuS+d1qvPGF8tWACP3/oXo0pfjbZp4y4fS9JsWs8hU3Lt2QPdurGDClywfRTD30zhiCP8LsoYA/DX5Xdy+MbfebLdZ9zbu4rf5RhjAFRZfMZVpGdtYdVTn9KsQTm/KzLG4I2Q0CeHZ7b0oWLZPaS8MQZKl3ZfOq1XnzG+2bcPLu+uDMnuQ+XU7ciYMVCmTNJm0873mJKrXz+YPZtuu4bTtW9NunTxu6CCE5EOIrJARBaJyL1hpncXkZ+9n29FpFXQtKUi8ouIzBaRGYmt3JjIdv5vAkeMG8TQSndy/TvJczalICybpjhafO9QGi+cwPvHP067O1r4XU6hWDZNcTRoEKRPfoV/50wh5ZmnoVEjv0sqEMulKa4GDIC2Mwfx732TkSefhCZN/C4pT1H1HBKRDsDzQCowTFUfD5neHbjHe7gduE5V53jTlgLbgGwgS1XbxqZ0Yw7C1Knw9NO8VuE6FtY5h7FP+11QwYlIKvAy8G9gJfCjiIxX1V+DZvsDOE1VN4nI2cAQ4MSg6Rmquj5hRRuTnzVryOp1JbNpRYtxj1Cpkt8FFZxl0xRH239aSM3/3sbX5c6i85Sb/S6nUCybpjhasACG3Daf6Sl3oe07Itde63dJBWK5NMXVt9/CO48uZE7qHXBmO7jhBr9Lyle+PYeCAns20BS4TESahswWCGxL4BFcYINlqGpraxgySWH9erRnT1ZUbMLNe57izTfdWGBF0AnAIlVdoqp7gbHAucEzqOq3qrrJezgdqJPgGo2Jnip/nt2H0ru38dW1b/CPjLJ+V1RYlk1TvOzbx7r23dml5Sjz1mtUOrTIdjy3bJpiZd8+6HnZXkZlXU6pyhWQEcOL4uCZlktT7GzbBr267+N/pS+ndKXybpyhIjBIXzQVWmBN8aEKV15JzroNdNn2Jv0eTaNNG7+LKrTawIqgxyu95yK5Epgc9FiBKSIyU0SuiUN9xhTI5scHUXPWJF6u9yR9X2zmdzkHw7JpipX5lw3gyPUz+OSCIZzQtZbf5RwMy6YpVh5+GDrPGkCr7J9IHT6UIjp4puXSFDu33AKXL/0/Wu39kZQhg6FW0dh3RnNZWbjAnhhhXogcWAUGq2poryJjEmfwYBg/nn5lnqbK6a254w6/Czoo4U4NadgZRTJw2Twl6Ol/qupqETkcmCoiv6nqtJDlrgGuAahXr15sqjYmjJxff6PcA3cwNaU950y5kdKl/a7ooFg2TbGxftzXNHrvMcYf1puL3rrA73IOlmXTFBtffw1fPPYt02Qg9OoN553nd0mFFfdcestaNk1CvPce/DpyOkPlUbiiB1x4od8lRS2ankOFCew9QU//U1Xb4C5Lu0FETo2w7DUiMkNEZqxbty6KsowpoPnz0dtvZ3qldgwpfyujR0Nqqt9FHZSVQN2gx3WA1aEziUhLYBhwrqpuCDyvqqu9f9cCH+B6CeaiqkNUta2qtq1evXqMyzfGs3cv69p3Z3tOGn89PpJGxxS5LvGhLJumWMjZvJWsy65gmaTTZMrzRb3RFiybppjYuhX6dt/GG6lXuNthP/+83yUdjLjn0ptu2TRxt3o13Hb1dt4pezkp9erACy/4XVKBRNM4ZIE1Rd+ePXDZZeyUCpy3dRSDh6ZQt27+iyW5H4GGInKkiJQBLgXGB88gIvWA94ErVHVh0PMVRKRi4HegHTA3YZUbE2Tt9f2psfInhhw/jMvvrOl3ObFg2TTFwoJ2N1F993J+vmsMDdtU9LucWLBsmmLh5pvhtuW3US9nKSmvj4aKRTqflktTLOTkQK9e0H/r7dTZuwQZPRoqV/a7rAKJ5rKyvwMLrMIFtlvwDHkFFkhR1W1BgR0Qq+KNiVq/fjBnDt3lQ9r3rMlFF/ld0MFT1SwRuRH4BHcnwRGqOk9E+nrTBwEPAocBr4gboDBwx8AawAfec6WAN1X1Yx9ehinh9nw6jWrDH2dM+au4+qOuRXAczQNZNk1xsOLpt2ny42jeavgglz5+st/lxIRl0xQH77wDm18bx5UMh3vug1NOyX+hJGa5NMXFSy9Buanj6cNQuPtuODXsBVNJTVTDXiGWeyaRjsBz7A/so8GBFZFhwAXAMm+RLFVtKyJH4XoLwf7APprf9tq2baszZswo+KsxJpypU6FdO16veB39q7/CrFkk9e2xRWRmMt7Zz3JpYm7LFjbWbcnGbaVZ8t5s2p1/iN8V5cmyaUqKPYtXsvuYliyWhtRZ+jWH107u68ksm6akWLUKzmi2huk7mnNo87rI99OhTBm/y4rIsmlKinnzoEObtfxCcyo3qYV8/z2UTd677kbKZjQ9h1DVScCkkOcGBf1+FXBVmOWWAK0KXK0xsbJ+PfTsyarKTbh+21NM+SS5G4aMKUn+PP8Gqm9bxfALvuGuJG8YMqbEyMlh+Rk9qZm9ly2Dx9AmyRuGjCkpcnKgV0/luW1XUrn0duSNMUndMGRMSbFnD3TvpgzjKirLVuSNzKRuGMpLVI1DxhRJ3m3rs9dtoGPWZO7sn8bJxaNnvDFF3rYhb1Hz8zd4sdrD3DA6rxtgGmMSadENz9Jw+eeMOW0ol1/T0O9yjDGeF16AIz8bytl8BE8+D02b+l2SMQb4z3/g+J+H0Z4J8Oyz0KyZ3yUVmjUOmeLLu239f8o9Q4XjW9Gvn98FGWMAdNlyUm68ju/kZE6ZdD9paX5XZIwB2PrVHOoOup+pFbpy3sQr/S7HGOP55RcYevfvzEy9Dc04C7nxRr9LMsYAmZnw/+zddXxV9R/H8dd3xRgdo2OAGKCggK3I6NhIGdKNtHSDNCKKoHSNls7RsgsG0siP7pTY6Fje3e/vjzMExyYDtp273c/z8dgDds8544MP35x7PvcbK8ec5pBLV/isnLFafDImzSGRMkVvW78nY0UmRH7FX/PBRf5vF8J8UVFcr9SENJFRHOo1jzbvSjCFsAc6JJS7Pg1xITOeq6aTJm0KWB1eiBQgLAyaNLAyVzfGLV0q1OzZ4BSfDaeFEInp9m1o3tjKKvdGpHJ3hRSQzeRdvRCxid62PlSlocad2UyY5ETBgmYXJYQAuNl/LDlObGfiaz/ScmQhs8sRQkQ7Ubsvee8dYVuz2bxdPqvZ5Qghog0YAL6HR1LSugunKZMhd26zSxJCAB06QLOrI3k7bBdq8mTIk8fskl6afGQrUp5+/eDgQeo7raW0X04aNza7ICEEgHXPAdJ/2581LrVpsKkZzs5mVySEALg+bzOvbxrP0pyd8JtRyexyhBDRAgPht+93s0MNhQYNoV49s0sSQgALF8Kpn/cw32koNGgAX3xhdkkJQppDImXZvBnGjmVBhvbsT+fD/6aAkpHxQpgvNJTb1RoSqbMSOXEa+fJLMIWwB1HXb+DSqinHnIrw7tbR0rQVwk7cvg1tGz9ks2sjVPZcMGGC2SUJIYCLF6FHu4fsdG+E8swFEyeaXVKCkWllIuUIDoamTbmSsQit737HvHmQKZPZRQkhAK416YVn8DHmeM+hTpssZpcjhADQmtPlviRdxE1OD16A1xupza5ICIGx4W67dtDtak/yW0/jNHcOZMxodllCOLyoKGjSBIaE9CRv+CnUnJSVTRk5JFKGR9vW37hFZesmOvdOTZkyZhclhAAIXbGBHMsmMCNdF9qtqGB2OUKIaBcG+/PakRXMKzaGRgPeNrscIUS0hQvh3uL1tGUydO8O3t5mlySEAMaOBY/t62mdQrMpzSGRMkyZAmvXMsjjB1yLFWPoULMLEkIAEBxMRKPmnOZNXl02KiV9uCJEshZ6+AxZh3XmDzdvqm3tJlOwhbATFy7AgLY32OvaAv36W6jhw80uSQgB/PUX/NAvmCOpWqBffQs1YoTZJSU4aQ6J5M1igUaN0MHB7M1SiXEPO7NvAbi5mV2YEAKtuerTmsyhtwlssZmvKrqbXZEQAsBq5Vr5RmTUrtj855A5q6wyIIQ9iIqCJo0148PakNnpNmr+ZnCXe6cQZgsNhYYNNDOd25BRR2czVSqzy0pw8m5AJF8WC/j4wJUrEBnJNzdb8/0PTrz+utmFCeHgLBbw8uJBu57k3L2aiblH0W5yMbOrEkJEZ/NS5VYUuL6TgGpT+LRBXrOrEkJE++47KPDbHKpbVxqjEorJvVMIe9CnD7x/zJ8q4atSdDZl5JBInh41hkJCAFDAAucmpHo1M5Cy5n4Kkaw8kc00U79nv3qHqpu7yGg+Icz2RDbzXJjDjjTlqbtMtsUWwi5YLIQ3bM7h6yOZ6tIZ/fFnqK5dza5KCGGxEPpFc4KDRjDL9Sv4uAx062Z2VYlGRg6J5CdGY+gR96gQlK+PcVwIkfRiadoWcznO69e3m1uXEI4ulmx+EPUH7n/K/VII01ks6Go+pLp6gdm2xri7Rhk7IDk7m12ZEI4tOpupgy4wjyakctMwZw44pdwWSsr9m4mUq3nzpxpD/wgJMY4LIZJWHE1bl8hQ43Vp2gphjjiy6RQm2RTCdNH5VKFGPp2x4RRlhbNnTS5MCAdnsaBjZFNFRsKZMyYXlrikOSSSn6lT4+7YeniAv3/S1iOEkKatEPZKsimEfYqjcUtEhDRuhTDTo6atA2ZTmkMi+Vm9Gmw2womxQryHBwQEgLesOSREkvP3R6dOHfsxadoKYR5/f3Rcux1JNoUwjzRuhbBPDpxNaQ6J5GXBApg8mXk5elLHYwM2dw/jdQdtDCmlKiulTiilTiul+sRyvKFS6n/RXzuUUsXje60Qz7E7wMoAACAASURBVOXjj7md0Qsd83XJpmRTmEqXKMlNsmCLeUCyKdkUpgqf4k+o8oj9oIM1biWXwp7cG+9PiINmM17NIQmssAtHjkCbNpzOVZrm10bSYp43TusDIH9+R32D6wxMBKoARYD6SqkiMU47B3ymtS4GDAOmPce1QsRbUMu+ZL56jPkFBqI9HL5pK9kU9kFrTpdtQ6awqwT6/GBkEiSbkk1hBzqt8GaCbvf0AQfLp+RS2BObDRrO8Gaqavv0QQfI5jObQxJYYRfu34c6dQhzTcenVxbRqYsLtWtjhPP8+RQd0v/wHnBaa31Wax0BLAJqPHmC1nqH1vp29Lc7gTzxvVaI+Ar5eTXZ5o/F36MDlXYORQU4btM2mmRT2IUL/aZQeP9i5r06nLKruxiZlGxKNoXpFiyAP6cfoovLRChRwtEbt5JLYTe+/x4uBhykk9NEKFXK4bIZn5FDElhhLq2hVSv0qVPUjliE1wc5GT3a7KLsQm7g0hPfX45+LS4tgQ0veK0QsdJnz6GbNmUvJSm85nuyZcPRm7Yg2RR24P62feT4pguB7lXw/b23sY+DZDPRs6mUaqOU2quU2hscHPyS5YqU6Phx6NbmAQGp/XDJmhHWr3f0xm2S3DMlm+JZ/vgDRvS5z4a0fjh7ZoZ16xwumy7xOCe20L3/H+c/K7CxXquUagO0AciXL188yhIO46efYMkSxuX4ht2RZTiwBNzczC7KLqhYXntqyRcApZQ3RjY/eZ5rJZfiP4WHE+TtR6pI2NtrKW3LpXr2NY5BsilMpe/c5aGPH3fIRroVc8niKUtMRkv0bGqtpxE9gr5UqVKx/mzhuEJCoG5d+DGqA/kiTqACfoHs2Y2v8+fNLs8siZ5LkGyK/3bjBtTz08zxaEvOkNOogEDIls34cqBsxufdwosEtvfzXqu1nqa1LqW1LuXp6RmPsoRD+PNP6N6dA/mq0+1aL+bNg7x5zS7KblwGnvyvkQe4EvMkpVQxYAZQQ2t983mulVyK/3K9aU+yX9zLhBL+tBlVwOxy7IlkU5hHa8581oIsDy/ye8fFvFslq9kV2ZNEz6YQ/6VjRyh1eDb1wueiBg2CsmXNLskeSC6FqWw2aNwYfK7PpMaDhaghQ+Czz8wuyxTxaQ5JYIU5goPBz497mfLhfXEO/fsrqlQxuyi7sgcorJQqoJRyA74A1jx5glIqH7ACaKy1Pvk81wrxXx7OXkr2xT8xPW1X2m2uZUxZEY9INoVpLnT/kVf+t4L5Rb/hix8/MrsceyPZFKaZMwd2+h9lqmsHY3rKwIFml2QvJJfCVKNHw+WNh5jg1AkqVIC+fc0uyTTxmVb2T+iAvzFC1+DJE+IT2LiuFSJWUVHQsCG2oGAqqT8p4Z2RIUPMLsq+aK2tSqmOwCbAGZiltT6ilLG8vtZ6CjAIyAJMUkoBWKNHG8R6rSl/EZHs6FOnUa1bsov3Kbb+G7JkMbsi+yLZFGa5u2U3OX/oyZbU1an5azdUbOO3HZhkU5jlyBHo1jaEvR5+uKZNa6xI7exsdll2QXIpzPTbbzCq/wOOpauLc5qMMG+eQ2fzmc0hCawwxdChsGULg7JP57x6hwMLHTqncdJarwfWx3htyhO/bwW0iu+1QjxTWBjB3nVxtrpyaOASWn0qC4DFRrIpkpq+eYuwGn7cJhdZ1s4mU2bpDMVGsimS2sOH4OcHP9EJr9CjqFWbIGdOs8uyK5JLYYagIPiinmZe2nbkengKtTp6DTAHFp+RQxJYkbQ2bkQPG8Z2r2aMutCSrYGQI4fZRQkhAK7X70L2v/9i+AcB9B8iCyELYRe05kzpZuQLvcK2br9Tr1wmsysSQmBsuNu+PZQ4Op8GzIL+/Y1pK0IIU/2zzlCwPzWs842BCQ6wG9mzxKs5JESSuXABGjbkZq63qHp+IsNHKsqUMbsoIQTA/akLyb5qKlMz9KLjhmoyZUUIO3G+0/e8cnQts4qPp/l375ldjhAimr8/7Jp7nP+5toUPPoXBg80uSQgBjBwJf28+zDrXjlCuHPTrZ3ZJdkGaQ8J+hIdD3bpYw618em853lU96N372ZcJIRKf7ehxXDq04Xf1CaU2DidjRrMrEkIA3Fn3B3km9mFDmjrU2dZJmrZC2IlDh6B7+1D2pfXD1T01/PwzuMijlxBms1jg20EPOJa+Ls4eGWQNsCfIv1DCfnTvDnv20MFzBSFZXmHuXGQHJCHsQUgIN8vWhajUnB6+iGYfuJpdkRACsAXdwFqnHhfJT851M8mQUTpDQtiD+/ehbl340akLBR8cgqUbIHdus8sSwuFdvw4N6mvmpWtPrvsnUCtlnaEnyaO3sA8LF8LEiawo1AP/O7VYsgTZAUkIO3GtbkeyXD/CtNILaNpP3twKYRdsNs592ph04cHs67OUtz/LYHZFQgiMdYbatoWSJ3+mceg06N0bKlc2uywhHF5UFDRoANVvzabGvXmor7+GsmXNLsuuyMghYb6jR6F1ay57fUK9MyP5fjy8/77ZRQkhAO79NIcc6/2ZmHkAndZWlCkrQtiJc21HU+jkRmaWnESLkSXMLkcIEW36dNiz8CSH3NpAqY9g2DCzSxJCYETxWuARNrl1MJpCAwaYXZLdkeaQMNf9+1CnDhHu6fjw4mJqfu5Kp05mFyWEAIg6eBi3Lu3YrsrwyZbBpE9vdkVCCIDbq7aTb/oAAtJ+Qd2tbaVpK4Sd+Osv6NkpjP3p/HBzdYNFi8BVpmILYbZffoHvhjzkRIa6uLinl3WG4iDNIWEeraF1a/TJkzTItBX3grmYMQN5kyuEPXjwgFvl6xJlS8/lMQv5rITcQIWwB1FXrmOrV58z6hXyb5pG+gxy0xTCHty7F73OkEs3Ct0/CGvXQt68ZpclhMO7ehUaNoR5GTqS695xWL4FcuQwuyy7JGsOCfNMnAiLFzOz4AjWPSzDsmWQQZZMEMJ8WnO1Vjsy3ziJf/mFNOie0+yKhBAAUVFc+LQRHhG3OTRwKW99lM7sioQQ/PN5JyXPLKFpyGRjkxUfH7PLEsLhWa1Qvz7UvDObWndnowYONLauF7GSkUPCHDt3QrdunHjVlzYnezF9BhQvbnZRQgiAO9/PJOcv8/kp6xA6rSwro/mEsBPnWg6n4NlfmP7+DFoNLmZ2OUKIaJMnw94lZziaqhW8/T6MGmV2SUIIYPBgCNp+lF/cOkCZMjBokNkl2TVpDomkd+MG+PkRkiUPH56cQ+MmTrRoYXZRQggA676DePTqyFanCpTd2p+0ac2uSAgBcGvpVvLPGcLq9I2pv6WFNG2FsBP79kHvLuEcSO+Hm5OzrDMkhJ3YtAnGjXjIiYx1cXFLa+yOLesM/SdpDomkFRUFDRuig4LwTb2DXEUzMWmSrDMkhF24d487FesSrrNwY/x8yhWTG6gQ9iDq8lVo2IAT6nVe2TKZtOnkpimEPbh7F/z8YHyqnrxybz+sWgVeXmaXJYTDu3wZGjWCeZk6kevOMdi8GXLKMgnPImsOiaRhsRg3yxYtYPNmvs3zE7utJVi2DNKkMbs4IQRac9W3NRlvnWV+1Z+p1ymb2RUJIQCsVi5+Up9UkQ84PmwZRd+Tm6YQ9kBr421tifMraPHgJ+jSBWrUMLssIRzeP+sM3ZtLrdv+qAEDoHx5s8tKFqQ5JBKfxWIsynfhAsydywmvivQ504pp0+D1180uTggHF924vd+qKzl/XcKE7MPptLS02VUJ4dgefaBisXC2yWAKXNjOwk8mU6t/EbMrE0JEmzAB9q84xzy3FvDuuzB6tNklCSGAgQPhxu/HmKzawWefwddfm11SsiHTykTietQYCgn556U853/jh+rbqF/f28TChBBP5jPtrPHscXqfKpZeeHiYXZgQDuyJXOrKVSgYEc7yjC1puKmJ2ZUJIaLt2QN9ukVwIGM9Umlg8WJwczO7LCEc3vr1MP6bEE5lqouLSxpZZ+g5ycghkXhiaQwBpCGUr37xMY4LIcwRI58KeMflf7x2bbu5dQnhyGLmMiIcG4p3R38uTVsh7MTt29HrDKXuw6t39qBmzYICBcwuSwiHd+kSNG4M8zN3JtedozB/PuTKZXZZyYo0h0Tiad78qcbQIyokxDguhEh6cTRuXSJCjdelcfvSlFKVlVInlFKnlVJ9Yjn+ulLqT6VUuFKqR4xj55VSh5RSfyml9iZd1cJUceTSCU2+rnUklwlEsilehg60EJnbi8YXh9Pq/g/QsSPUrm12Wcme5FK8LOsWCy6veNH3fj9q35qJ6tcPKlY0u6xkJ17NIQmseCH+/uASx8xFDw/juHgpkk3xQv6jcYs0bl+aUsoZmAhUAYoA9ZVSMReLuQV0Br6L48d4a63f1lqXSrxKhV2RXCY6yaZ4KRYL1so+ZAu9wBDbQChcGL6L638TEV+SS/HSLBZsVX3IGXGB7pGjoFgxGDzY7KqSpWc2hySw4oWdOwdWKzanGA0iDw8ICABvWXPoZUg2xQvz90fHtTaCNG4TwnvAaa31Wa11BLAI+NcWNlrrIK31HiDSjAKFHfL3J865Y5LLhCLZFC/GYsFaxQfXyMdTsbl0CXbsMLWsFEJyKV6cxUJkZR/crE9k89Qp+O03U8tKruIzckgCK57fli3w5ZfcKFWJKqwnzCn6Da80hhKSZFO8EKt7WiIjNVExbwGSz4SSG7j0xPeXo1+LLw1sVkrtU0q1SdDKhP3y9uZel4HomK9LLhOSZFM8P4uFqKo+uITHGNkXFiZTsROG5FK8GIuFqCo+uEbEyGaoLJPwouLTHJLAiudz+DB8/jlhBd/gnZNLuFKkAlGrAyB/fnmDm7ASPZtKqTZKqb1Kqb3BwcEvUaqwF/riJR6Wr87fOjfbOix9PFJBHkATkorltaee+f/Dx1rrEhijAjsopUo/9QdINlOcsL2HcfpmJGdUIWzuqY0XJZcJTbIpnpu1cXOcw2TKZyJK9FyCZDMlimzUHOeYTdtHJJsvJD7NIQmsiL8rV6BqVaI80lI+bB0R7ukJCIA0Pt5w/ry8wU1YiZ5NrfU0rXUprXUpT0/PF61T2IsHD7jxoS8q5CErWwRQbkJt48FTGrcJ7TKQ94nv8wBX4nux1vpK9K9BwEqMUYIxz5FspiC2a0Hc+8yHe7a0nJm+Daf16ySXiUOyKZ5LSAh0SONPGKliP0GmfCaERM9l9HHJZgpy4wY0x59wyWaCik9zSAIr4ufBA/D1Rd+6RavsAewLysuaNcb7W5EokiSbIoWIiuJa+YZkvnKIcR8uocv0osbr3tK4TQR7gMJKqQJKKTfgC2BNfC5USqVRSqV79HugInA40SoV5gsL4/K7NUkbEsTWzmuo1DKP5DLxSDZFvNls0KQJBJ7Mi7O7K6gYn8nJyL6EIrkUzyU83Ngk8GRwJlzcFDjJMgkJJT7NIQmseLaoKKhfH/3XX4wptYTZB99h7lx4/32zC0vRJJsi3oJb9SXHrjV8l2c83bdUfuo+KhKO1toKdAQ2AceAJVrrI0qptkqptgBKqRxKqctAN2CAUuqyUio9kB34XSl1ENgNrNNabzTnbyISndacK9eSfJf/ZLb3XBqNk70BEpNkUzyPgQNhy/K77Mzmi6uHG8ydK1OxE4HkUjwPraFtWzj52zUs6avjnC0rLF4s2Uwgcewz/pjW2qqUehRYZ2DWo8BGH5+ilMoB7AXSAzalVBeM3ZOyAiuV0Wl3ARZKYFMgraFLFwgIYH21SfReV5URI6BuXbMLS9kkmyK+7o6diefsMfh7dKDRzo6kSWN2RSmf1no9sD7Ga1Oe+P01jNF+Md0DiidudcJeXGgznAI7FjLdawStNn7+1MAEkfAkmyI+5s2D0SOt/JXnCzJfO21stFKmDOTObaxj4u8vD58JSHIp4mvMGPh5dhin8tQiza2bsOV3eOcdyJJFspkAntkcAgmseIbx42HCBI5V647PunY0bQp9+5pdlGOQbIpnCd+0jTQ92vKLU0WKW8aR+3mWLBdCJJqgCYvJP2MQK9M1pvaevri5mV2REALg99+hVStYlLcnb17aCFOnGo0heDzlUwiR5FauhD69Nb/mb0XeCzth+XKjMQSSzQQSr+aQEHFauRK6deNmmTqU2PItpUvDtGlPT8sWQiQ9ffIUkdVrc1q/SujcJZR4T/7JF8IePAzcRfrOzdjp/DFF/5hOlqxy0xTCHpw9C7VqQY9MM/j80jjo3BnayGbLQpjtwAFo1Agm5hnFJxcWwIgRxsJDIkHJk4J4cbt3Q8OGhBV/j3cOzyNPPidWrEA+/RTCHty6xc2PfNARzvzeay1fNspgdkVCCMB69iLhVWpwR+ckYvFKXn0rjp1WhBBJ6u5d8PWF98O2MzysHVSqBN9/b3ZZQji8K1eMbDZMvYJ2l/tDw4YyTSWRyJKk4sWcOwe+vkRly0H5h2t4EJWadeuM6Z5CCJNFRnLt089Jd/M8M6qupM03Bc2uSAgBcP8+19/3xTkilH2DAyhdR3ZnFcIeWK1Qrx5EnjjLCqc6qEKFYNEicJHP0YUwU0gIVK8O+W8dYMrDxvDBBzBjhkxTSSTyL554frdvQ7Vq6MhI2ryynl27s7FlC7z6qtmFCSHQmut12pPjqIURr8+l58pP5P4phD2IiuLcxw3Je+MIs2qvo83XRcyuSAgRrWtX2LHpHhdy+uIWZoO1ayFjRrPLEsKh2WzQpAlc2XeVM1mr45Q6i7Gkibu72aWlWNIcEs8nIgLq1EGfPs3YyluYtfZ1Zs16vE6fEMJcNwf8QPa1M5iUqT9tf28s0zyFsBPn6/WmwKG1TH5zIm2WVDK7HCFEtIkTYdKEKA4VbECmCydg82YoXNjssoRweIMGwbrloZzNV5PUN2/DL39Ajhxml5WiSXNIxJ/W0Lo1WCxsbDCPHgs/o08fY9dAIYT5Hi5aS6aRPVjl+jnl/hgq0zyFsBNXhkzHa/n3LMzSiUY72uPsbHZFQgiATZvgq69gaaE+FDmzDiZNgrJlzS5LCIc3bx6MGKHZVagFOc/sNkYMFZeNlhObrDkk4m/YMJg7l+MNhlLt50bUqWMsFC+EMJ9130GcGtVnPyXJuGoOr70h/7wLYQ/urAjEc3B7At0q8/GusaRLZ3ZFQgiAo0fBzw/65ZpN7TPfQYcO0K6d2WUJ4fB+/x1atYKZBUbw3plFMGoU1KxpdlkOQZ4eRPzMmwdff81N32aUXDmAUqVg7lxwkv+DhDDf1avcK+PLzaiMnByzmjJVPcyuSAgBRBw+ibNfHU6q10i/fhH5C8mAbSHsQXAw+PjAZ86/M+RaGyhXDn74weyyhHB4Z89CrVrQJvMyWpwbCI0bQ+/eZpflMOTRXjzbtm3QsiVhH5el5N6pZMmqWLMGPOT5UwjzhYZy/YMapHpwkyWN1tKgRy6zKxJCAPrGTW59VI3QKFfOjV9LqXIZzC5JCAGEh0Pt2uD693mWUxvl5QVLl4Krq9mlCeHQ7t41tqx/M3wf4+80gY8+gunTZWeyJCQfYYn/duwY1KpFVKHCVLy3nJv33fhD1gITwj7YbFyt1JTsF/cyqtQK+sx+x+yKhBAAERFcfP9zcty/yIKWFlp0KmB2RUIIjOUz27SBv36/z6V81XG9F2nsTJYpk9mlCeHQrFaoVw/un7jC/ozVccrkaawzlCqV2aU5FGkOibgFBRlb1qdKRds86/gjMCNr10KxYmYXJoQACOowmJy/LeWHnN/ylaWmLHIrhD3QmvNV2uF1dhsTP5xP++kfmV2RECLa6NEwb66NY681IuPpo7BhA7z2mtllCeHwunWDXzeFcCF/DVLduAuBOyBbNrPLcjgyrUz8m8UCXl7GzbJ6dbh2jR/Lr2XGL16MGwdVq5pdoBAC4O6kBWSbMoyFqVvw+c4epE1rdkVCCIDLXb/HK3AWs3IPpGVgQxkNL4SdWLEC+vaFVW/047UTa4w1hipUMLssIRzexInw00+aHa82x/PiPli4UEYjmERGDonHLBZjdb6QEGPCZ1QUm9qtosvkd+nYETp1MrtAIQRAuGUHqTu24Ff1Ga/+Mpm8+eTpUwh7cHPWanKN70WAhx/V9gzG3d3sioQQAPv2QaNGMOSVeVQ/Nhq+/BI6djS7LCEc3ubN8NVXsODVobx9cokxvK96dbPLclgyckgYnmwMAURFYXNxZczU9FSpIhs4CGG66FF9euHPhFWpyQWdjzszl1PqIzezKxPCsUVnM/ynaXi0bsA+p3fx2jab7DnlLZYQ9uDvv41nzUrp/2TgxVZQpgz89JMsciuEyY4ehbp1oWvuJTQ4ORiaNoWePc0uy6HJyCHxdGMompM1krXKB1v7AFxcvE0qTgjxr4w2bIgTHmzt8httm2cxuzIhHNsT2XTr3JYgsnJ33mrefTe12ZUJIYCHD43GUPo7F1niXhOVNy8sWyY7kwlhsuBg4/b5ocseRl9vCh9/DFOnStPWZPKxloDmzZ9qDD2SWoeQpmPzJC5ICPGPGM1bhcbdycqXvldMLkwIBxdLNrO43Kd87mMmFyaEALDZoEkTOHXgATuzV8fVGmbsTJZFPlgRwkzh4VC7NvD336xxqoFTzhyyM5mdiFdzSClVWSl1Qil1WinVJ5bjryul/lRKhSulejzPtcIO+PvH/QmKh4dxXNglyWYKF8eoPldbOMrXxzgu7JJkM4WLI5su1jDjdcmm3ZJsOgiLhbuZvLi9Yiv732xChguHYPFieOMNsysTsZBcOg4daOF+Fi/S/L6Bvbmr4xZ232jaenqaXZogHtPKlFLOwESgAnAZ2KOUWqO1PvrEabeAzkDNF7hWmG3fPoiMRDs7o6KiHr/u4QEBAeAtU8rskWTTAfzHqD5CQozj588naUni2SSbDkCymSxJNh2ExUJkJR8yRYawWVXG5ZDVWDyzcmWzKxOxkFw6Dh1oZDOrNYT1yhenc1FGY+jNN80uTUSLz8ih94DTWuuzWusIYBFQ48kTtNZBWus9QOTzXitMNnw49OyJra4f35XbwEM8jNelMZQcSDZTulmz0C4yqi8ZkmymdDNnYnOK4/M1yaY9k2ymdNGNIddIo3nroq3g4iLbYts3yaUDeNQYcrMa2XTSUcbMlTRpTK5MPCk+zaHcwKUnvr8c/Vp8vMy1IjFpDQMGwMCB2Bo1pmWqBfTaXIFlTQMgf35pDCUPks0U7sby7ShrJNaYgzyleWvvJJspmc3GxTGLcLJZiZRsJjeSzZQsRmPoH1Yr+PrKdE/7JblM4WI2hv4RGSlTse1MfJpDsS0ZruP58+N9rVKqjVJqr1Jqb3BwcDx/vHghWkOPHjBiBLZWrWnObGbPd2HoUGg629sYCi9vbJODRM+m5NI8NzoOJuukoSx0b8HlmRuNh06Qh8/kQbKZUtlsXKzWlnybZjAjR3/CVm2SbCYvks0U7F6d5k83hh55NN1T2CN51kzBtIY7tZs/3Rh6RLJpV+LTHLoM5H3i+zxAfLfJife1WutpWutSWutSnrIgVeKx2aBjRxg7FlvHTjQJmcrc+U4MGwYDB5pdnHhOiZ5NyaU5bnQcTNaJQ/jZvTlv75mOV4tyxkOnjOpLLiSbKdGjxtDG6czI0Z/ah4eRrkZZyWbyItlMoSZNghq3/Ylwco/9BJnuac/kWTOF0hoGDYLad/2JdHKL/STJpl2JT3NoD1BYKVVAKeUGfAGsiefPf5lrRUKLioLWrWHSJGzde9L45ngWLFSMGGHMMBPJjmQzBbrRacg/jaHie2ZQ5M3of6a9ZVRfMiLZTGlsNi76tCPfxunMzN6P2oeHkTlL9AfWks3kRLKZAk2aBB06wNulM+Ca2hlUjMEkMqrP3kkuUyCt4euvjeVtv/AOwkVHglOM1oNk0+48c7cyrbVVKdUR2AQ4A7O01keUUm2jj09RSuUA9gLpAZtSqgtQRGt9L7ZrE+svI/6D1QpNm8LChdgGDKLhqcEsWqwYNQr6yKaPyZJkM+W50WkIWScM5mf3Zv9uDIlkRbKZwthsXPJpR74N05iVvS+1jgx/3BgSyYpkM+WZPNloDHUqfZCxhyugsmaFUaOgVStjuoo8fNo9yWXK86gxNGwYTCq7jDbbG6I++cR46KxbV7Jpz7TWdvdVsmRJLRJQeLjWdepoDdo6fKSuV09r0Hr0aLMLE7EB9mo7yGHML8ll4grqOERr0Avdm+kj/7OaXY6IhWTTAUVF6QtVv9Qa9MzsffXNGzazKxKxkGw6psmTjfez7csc1rasWbXOk0frM2eMg4GBWufPb/wqTCPZdEyDBhnZnFBuhba5uGj98cda37tnHJRs2oW4svnMkUMimQsLMzq0AQFEffcD9Xd1YelS+PZb6NnT7OKEEADBnYfhOeFrFrs3pfjuGRR5y9nskoQQNhsXfTuQb/1UZmXvQ80jI2TEkBB2YsoUaNcO2pY5zoRj5VCurhAYCAULGic8mu4phEhSgwfD0KHwY7nVtN/uh3r3XVi/HtKlM06QbNo1aQ6lZCEhUKsWbN5M1E+T+GJ7O5Ytg+++g+7dzS5OCAHRjaGfBrHEvQlv7Z4pjSEh7ME/jaEp+GfrTc0jI6UxJISdmDrVaAy1LnOKSSfKGttVBQZC4cJmlyaEQxs8GIYMgXHlA+i4vS6qRAnYsAHSpze7NBFP0hxKqR48AF9f2L4d6/RZfLGxOcuXw9ix0LWr2cUJIQCCvxr+T2Pozd2zpDEkhD3QmovVO/7TGKpxdJQ0hoSwE1OnQtu20ML7LFNPlkVFRsK2bfD662aXJoRDe9QYGlthA52310EVLw6bNkGGDGaXJp6DNIdSort3oUoV2L0b6+z5+K1qwMqV8MMP0KWL2cUJIQCCu4zA88eBLHVvLI0hIeyF1lys3oF86yYzO1svaQwJYUemTTMaQ828LzDjtDcqNMQYMVS0qNmlCeHQhgwxvr6ruJku22uhihaFzZshY0azSxPPSZpDKc2tEn5V/QAAIABJREFUW1CpEhw8SOSCxfgtqsOqVTB+PHTubHZxQgiA4K4j8Rw/gKXujSm6218aQ0LYg0eNoYDJzM7Wk+pHv5HGkBB2Yto0+PJLaFr2ErPOeqPu34OtW6F4cbNLE8KhDR1qjBoaXXEr3X6tgXr9ddiyBTJlMrs08QKkOZSSBAdD+fJw/DiRi1dQd44Pq1fDjz9Cp05mFyeEgOjG0Lj+LHVvJI0hIezFo6lk0Y0h3yOjpTEkhJ2YPt1oDDUqe4VZF8qibt2EX36BEiXMLk0IhzZ0qLFl/aiKFnr+5osqXNjIZpYsZpcmXpA0h1KKq1ehXDk4f56IFQF8PrUCa9fChAnQoYPZxQkhAIK6jSLbP42h2dIYEsIeaM3FGp3IFzCJOZ498D0ymixZpTEkhD2YPh3atIEG5a4z51JZnK5fM6arvPuu2aUJ4dCGDTMaQyMq/Urv33xQBQsao/myZjW7NPESpDmUEly6BGXLwtWrRKzeQJ0fPyMgACZOhPbtzS5OCAEQ1P0bsv3Qj2XuDXlzz2zeeFMaQ0KY7lFjaO1E5nh2x+fot9IYEsJOzJhhNIbqlQ1m3pWyOF2+BBs3wocfml2aEA5t+HAYNAiGVf6Dvr9VReXLZzSGPD3NLk28JCezCxAvyGIBLy9YuBBKl4agICICNlN7vNEYmjxZGkNC2Iug7t+QbWxflrs3oOieOdIYEsIeaM3Fmp3Jt3Yicz274XN0jDSGhLATM2dC69ZQt+xNFgaXx+n8OVi3Dj791OzShHBow4fDwIEwpPKf9P+9Mip3bmNh+OzZzS5NJAAZOZQcWSzg4wMhIdCoEaRJQ/hGC7VHlmL9emObzzZtzC5SCAEQ1H30P42hIrulMSSEXXjUGFozgbme3ah29DtpDAlhJ2bOhFat4PNyt1l0swJOJ09AQACUKWN2aUI4tBEjjMbQ15V3MfCPSqicOY3n0pw5zS5NJBAZOZTcPNkYAtAabbUyqOt91q83dnOQxpAQJno0qs9iIajHt2Qb24cV7vWNxtBb0o8XwjSPshkYyIVaX5FvzQTmZe1K1SPSGBLCXsyaZYwYql3uLovvVMLp6BFYtcrYcEUIYZqRI2HAABhUdS9f/1kJ5elpjBjKlcvs0kQCkieV5CRmYyiaCgtj0B4fPusRQNXW3iYVJ4R4MqO6YiWyWSNZmeoL3tg9VxpDQpjpiWzaKlYif5SV+Vm7UOXo92T1lMaQEPZg1ixjxFCNsvdZ+qAKTv/7C5Yvh8qVzS5NCIc2ciT07w/9q+xn8I4KqMyZjftqnjxmlyYSmIwcSk6aNXuqMfRIGkKourR50tYjhHgsRvNWWSOx4kyJiS2lMSSEmWJk0ynKihUXfKf5SmNICDvh7280hnzLPmR5aFWc9u6GxYvB19fs0oRwaKNGGY2hvlX+YtjO8qgMGYz7ar58ZpcmEoE0h5KLU6fA1TXu4x4exp1VCJH04hjV50IU+TvXMI4LIZJenNm0kqGRr2RTCDuwoZcF7xZe9H17Ayusvjjt3GFsuFKrltmlCeHQFrSyUL+fF1Pfn8mI3eVRadMaU8ny5ze7NJFIpDmUHPz8M5QoAbdvw/Dh6NQe/z7u4WEs1OctU8qEMEXz5nGO6iMkxDguhEh6kk0h7FZUFPg3sVB6jA9eXGD4QR+ct1tg7lzw8zO7PCEcVng4jKthoeZMI5utd7VCKWV8oFKwoNnliUQkzSF7FhpqrC7doAEULw5//cVvpftTN3UAD4luEEljSAjT2YYMRRPH9BQZ1SeEaSK69ZFsCmGHbtyAPu9b8JvnQxqip2PbbODmJgvcCmGiixehS3ELrdc8kU2ABw+MgyJFk+aQvTp2DN57D6ZPh7590YEWvlucF29v+F8Wb65NDzCG9EljSAhT3Z+7ktBWnbhHOiKdUv37oDRvhTCH1gQNnwZdviKIrES6uP/7uGRTCNPs2gUdilgYvO/xw+c/IiKMqaAy5VOIJLdpE3R+y8L3J2LJZliYZNMBxKs5pJSqrJQ6oZQ6rZTqE8txpZT6Mfr4/5RSJZ44dl4pdUgp9ZdSam9CFp9izZkDpUrB9euwcSN3eo2kdj1XevY0pl/v3QuFWnnD+fPyxtbBSTZNZLVytWlv0jWtzdGo11gz/BAuWzYYD50gD58OTrJpopAQLpZrTraBX/K7cxkO/XwU183rJZsCkGyaSWuYNAk+/RS+v9X86YfPR2TKp8ORXJrLZoOhQ6FKFZgU2hwPyabDemZzSCnlDEwEqgBFgPpKqSIxTqsCFI7+agNMjnHcW2v9tta61MuXnII9fGjsSNasmTFq6K+/OJCtEiVLGu9jx42DJUsgfXqzCxX2QLJpHn31GleKlCfn3G+Zl7Yd/PobjfvnQ5X1NsIqo/ocmmTTPNYTZ7hS4CPyWeYwPecgCh5fT/kvshpZlGw6PMmmeR4+hMaNoUMHqFgRMn3dKe6TZcqnQ5FcmuvmTahWDb7+Gpo3CCdb+bfiPlmymeLFZ+TQe8BprfVZrXUEsAioEeOcGsBcbdgJZFRK5UzgWlO2Q4eM0UJz58KgQegtvzBjfS4+/NAYYfvrr/DVV6Bk113xmGTTBGG//M6dQiXIeGo3Y96aS5Vzk3j3kyemk3nLqD4h2TTD7TlrCCtaEvegi0yoso4m54bgVcj58QmSTSHZNMWJE/D++8YGZMOHadZ4jyXN4F7GVtjuMuVTSC7NsmePsedRYCDM/+YyM05/hsuGAKhX7/Fo20ckmw4hPs2h3MClJ76/HP1afM/RwGal1D6lVJsXLTTF0hpmzDBGCt2+Db/8QkjvITRv5Uzr1lC6NOzfDx9+aHahwg5JNpOS1gT1+wGXCmW4EZqGOW130u1AY7JmNbswYYckm0nJauVi435kalaDU7ZCbPtuHx3XVyVVqmdfKhyOZDOJLVsG775rrJSwZXUI/Y82xKlHd6hZEw4fhvUy5VNILpOa1jB1KnzyiTHw4H8/bqPh2JKoI0eM0C5aZGRRsulw4tMcim2sin6Ocz7WWpfAGA7YQSlVOtY/RKk2Sqm9Sqm9wcHB8SgrBbh/Hxo2hNatjXQePMjJPGX54ANjANHgwbBhA3h6ml2osFOJnk2HzGVs7t/n8sf1yDaqG5tcfbm4fC/tJhfD2fnZlwqHJNlMIvp6EBffqES++aNYkr4Vrrv/oHb3AmaXJeyXZDOJREZC9+5Qty4ULQoHV52j3MCPjIfOESOMB9B06WTKpwB51kxSISHGCiZt20JZb82RFt/zWofykCkT7N4NdeoYJ0o2HVJ8mkOXgbxPfJ8HuBLfc7TWj34NAlZiDB18itZ6mta6lNa6lKcjdEMOHDDG8S1eDMOHw8aNLP01O6VKwZUrsHGjMfdTHj7Ff0j0bDpcLmMRefAo173eI+efy/kp72jeOrWCcrUzmF2WsG+SzSTwcOtObhUogefpHUx4ZyaVLk7nzVLuz75QODLJZhK4cgXKloWxY6FTJ/h14BZyVS8FFy7AunXQr9+/10mQKZ+OTp41k8ipU/DBBzBvHozs94D16b8gzdc9oEYNozH0xhv/vkCy6XDi0xzaAxRWShVQSrkBXwBrYpyzBmgSvZL8B8BdrfVVpVQapVQ6AKVUGqAicDgB609+Hm3V8MEHRuvWYiGiZ3+6dHfGz8/4dOXAAWOxPiGeQbKZyG5NXkxkiffg1i0m1NxKm1O9yJdfFv4SzyTZTExac6XfBFzLl+ZuqBvLuu6gw74WZJCerXg2yWYi27bN+Oxz/35YuEDzY55vcfWtDLlyGdvtVqlidonC/kguk8DKlcbytn//Ddunn6Tv6g9Qy5fBN98YI/lkxyMBuDzrBK21VSnVEdgEOAOztNZHlFJto49PAdYDVYHTQAjwaI+77MBKZXw64AIs1FpvTPC/hT2zWIwt//z94Z13jClky5YZN8c5c7gU5onfZ7BzJ3TpAqNHg5ub2UWL5ECymYgiIrjcoBd5lo9nh9PHBE1cwlftc5ldlUgmJJuJ6OFDzlVoTYE/f2ZLqmqkWT6PxtUymV2VSCYkm4lHaxgzBvr2hcKFwbL2AW+MaQFLl4KfH8ycCWnTml2msEOSy8RltRqD9caMMZa4DWi9Gs9uTcDVFTZtgvLlzS5R2BGldcwpneYrVaqU3rt3r9llvDyLBXx8jBFC7u6QMSMEB8OoUdC9O5u2ONGwobEb2axZ8PnnZhcs7IFSap89bsWZYnL5DLZLf3PlUz/yXNjBnExdeNfyLUWKu5pdlrADkk1zRRw6wY3P6pD99jFmeQ3D948+5MgVnwHQIqWTbJrr7l1jDZNVq6L7QH1Pk7ZxLTh61BiV0KOHbLfroCSb5rp2zdh47NdfoUPbKMZl+BqX0SOMIUTLlxs7BgqHFFc2nzlySLygJxtDAGFhxlYNP/5IVLuODBsKQ4fCm28aA4lefdXccoUQcH91IFF+9ckY8ZBxHy6m5SY/0qUzuyohRPCU5aTu0BxXWypm1t1Ei4XlcZF3MEKY7uBB48PN8+dh3DjoXHgDyrsBODkZC2hWqGB2iUI4pN9+M5q1d+/C4kk38Vvd0Bgp1LIlTJhgDFwQIgb5yC0xxGwMPaI1uldv+rxvYcgQaNzYmE4mjSEhTGCxgJeX8avW/P3VaDxqVuBqRGZW9dvDV39IY0gIUzyZzchIztXpgWe7zznOG+ybtp82S6QxJIQ9mDPn8RKa2wJtfPVgBMqnmrG70d690hgSwgRaw/ffG2tIp0sHB/334/dtKeOeOm0azJghjSERJ3l7lRgaNny6MRRNhYbQcV9zXpt+npYtZZStEKZ4soFbrRrXcr1D7jM7WJ26HjnWTKdReekKCWGKJ7Kpq1XjerpXKBB0iEVZOlBq+/eUKprK7AqFcHhhYfDVV8Zzprc3LJp+n2w9mxor3jZoANOng4eH2WUK4XDu3TOWul2xAmrXhvkV5pC6WVvImtUYSvRerBu5CfEPaQ4lpOPHjf3nr16N85QQ5UHEFH9atUrCuoQQj8Uc2RcaSvYzO1iVpwMf7/sJz2zSsRXCFDGyqUJDyR56iDVv9qP6rhHyrCmEHTh/3phGtm+fsfj00IYncPGtBSdPGnvXd+kin3wKYYJDh6BOHTh7Fn4YHcFX57qg2k2O7uAugmzZzC5RJAMyrSwhnDtntGmLFoV166B/f1i9+qlPTcKcPbCtDqBwG2+TChXCwcUx5VMBNW7543lkmyllCeHw/iObvmfH4bHLYk5dQoh/BAQY29SfPm28zR35wRpcPnrP2Gxlyxbo2lUaQ0IkMa1hU18L6Yt58dYNC38s+ZsuKz9DTZkMPXvC5s3SGBLxJiOHXsbff8Pw4cbcTRcX46bYuzd4evLgAQQ0CqD6NB88CCHS1YNUGwNwLyuNISFM06xZ3FM+Q0KMJu/580lakhACyaYQduzXX2HIELAFWjjs2hw9cya59/9mvFiypDGHRXY9EiJJaQ3r10NAdwvfnfAhDSEsC6mCapna2L9+6VLZCls8N2kOvYigIBg9GiZNgqgoaN3aGC2UOzf378PEb4yFwG7c8KZHyQCG/92cVAv9jWF9QoikZ7USPG4BLjesZIrrHA8P8PdPyqqEEGFhXP56OumuPiRDXOdINoUwxbZtRv9n2zaoncnCIlcfXCNDoHkl4/1vkyYwZQqkTm12qUI4DK2NiSpDhkDavRbWKWMgAoAKD4eICJg5UxpD4oXItLLncfs2DBgABQsa+3XWrw8nTsCkSdxNm5vhw40NVvr2hXffhR07YMxeb1JdPS+NISHMYLUSNGYO1zO/jmfPZpwPzc6a94ZhSx1j8RIPD2O8vORUiKQRFsal3hO4makQeb7tzGFbUTZWHIuWbAphKq2NWZ5lyhixO34clnWwsCwsujEERmPI1RWaNpXGkBBJRGtYs8Z4xvT1hcKXLWx288FDP707Nh07GkEW4jlJcyg+7t+HESOMptCIEca6CEePwqxZ3M5YgMGDjabQwIHw8cewe7cxzO/DD80uXAgHZbVyfcxcrmd+g2y9mnH1QTqmV1uF54V9VN81AKd1AY/XBJOHTyGSTlgYF3tP5EamV8j7bSdORBZiTtNAit7YTuVNXVGSTSFMoTUEBhpNobJljfWlx4+H8/4W6syqhgqN8QAaGWk8ocoDqBCJSmtjja+SJaFGDWOswqxZsMC1Ka4RsU/H5tF0bCGekzSHHrFYjA7Pkze50FBj54WCBY0RQ6VLw8GDsGgRN7O+xsCBxiVDhhg30337Hnd0hRAmsFq5NmYe1zIXIXuvplx9kJYZPqvIdmk/rQNqkCdv9EKZ3t7GQ2f+/PLwKURSCA/nQu9J3Mj0Cvm+7cipyALMa7aVoje203S2NxkzRp8n2RQiSWkNW7cab3HLlTMWm/7xR2PHo84tHpCqfm3j/XBs5AFUiERjs8HKlcYi8DVrGtvU+/vD8cNWmlunox48iPtimY4tXpA0h+DxLikXLhi/bt4MkyfDK69A9+5GKnftgtWrCc5ZjL59jabQ8OFQsSL89dfj8AohTBAVxdUx87mauSg5ejUh6IEHs3xXkv3yflqtrUGu3LHsnuLtbSxwKw+fQiSe8HDO95pEcMZXyP9tB05ZCzC/+VaK3PiVxv5lyZBRsimEGbQ2Nhj79FMoX97YeHfCBDhzBjq1Ccd9+k9QqBDcuQPOzrH/EHkAFSLB2WzGGu/vvAO1a8ODBzBnDhw/pmmWNQDXUsWhTRt4/XWjk+sh07FFwpHmUMztc0NCoHJlaN/eGDG0fTts2sT1/O/Rs6fRFBo92rjk0CFjIfjixU39GwjhuKKi+PvbBVzJVIScvRoT/MCd2dVXkP3v/bRYU5OcuWRLXSFMER7OuV6TCc74Cl5jOnDGmp+FLX6h6I1faTQrjqaQECLRaW18Bvrxx8YHnBcuwMSJxoihDm2jcF8y13jo7NwZ3ngD/vjD6CLJA6gQicpmg2XL4O23oU4dCAuDuXPh2DFoUmQvLhXLGlM5IyNh+XIjm506GTmU6dgigTh2cyhmY+gRrSFVKhgyhKuFS9O1KxQoYMwwq10bjhyBn3+GN980p2whHEpsUz6jorj87UL+zlSU3L0bcfOBO3NrLCfHlQM0W12L7Dkd+582IZJEbNkMD+dsrykEZSxMgTHtOWvNx88tt1D05m80mFmO9BmkKSSEGbSGjRvho4+gUiW4fNnYdPf0aWjfTuO+cZXxaWfTppA5s3GyxWJc8Gi6pzyACpHgbLbHgw3q1oXwcJg/31jetvGn53Fp0sBYs+TwYWN435EjxgOpkqUSRMJz3K3sz50z2rIxG0OPhIdzq2YLCkScx2qFRo2gXz949dWkLVMIh/ZkA9fHB1av5tK+IJxGDCXP/RMcdnoLS63lVJpckybZpSEkRJKJmc2VKzm95RzpJ4ygYNgldrt8iKXlTKr9UJ7300lDSAizPGoKDRlirJCQN6+x+3yzZsbnoFgsxja7u3YZb3KXLDHeHzvFuKc+egBt3tyYSiYPoEK8lKgoY6TQsGFGv+e112DBAqhXD5zv3oLeI+Gnn4ws9usHvXtD+vSx/7BH07GFeEmO1Rw6dsyYxLl8ORw4YLymlHHnjOEhHvg99KdRc+OeWahQEtcqhKOLZcqnrUJF8qI54vQm22svo+LkWjTKJk0hIZJULNnUlSrzCpq9Lh+wvdUMqoytwHvSFBLCNFobO+cOGQJ79kC+fDB1qtEUcnMD9u41Hji3bIE8eWDGDGPUkMt/PBrIA6gQLy0qyhgpNHSo8Wj6xhuwcCH4+YGzNRzGTTB2x75zxwjs0KFGRoVIAim7OaS1sVr08uVGU+jYMeP1Dz+EMWOMIXkXLqCr+fxri86HeDDFJ4AZP3nj5WVO6UI4NIsFXa0aKsYOKU5orM5u5F02jqI1y5lUnBAOLDAQ7ePzVDYVGqtLKoquHkGpqmVNKk4IxxYZaWxBv3+/sU7t3r3GzM9p04y+j5sbcPy4sQPv8uWQJYuxZkK7duDubnb5QqRY4eFG9HbvNiJ3/DgUKQKLFsHnn4Ozshnf9O9vNGArVzYWuS1WzOzShYOJ10fuSqnKSqkTSqnTSqk+sRxXSqkfo4//TylVIr7XPrfY1jh4ks0Gf/4JPXoYw31KlIBRoyBHDsK/n8BfAZeZ1WoH3a70oMKXBcnZwJuyoQE8xJhHHe7iwYOfA+i+VhpDwv4lq2zGJTKSu38c5vjABeyv0IsjeSsRVbb8Uw+fj7hERZC+S8uXLleIxJQishkezs1fDnCk52z2f9aVYznLYitXIe5sWsNJ3b7FS5crRGJKCdnU2lgzaMMG+PZbaNzYWK8kbVpjPcxZTSysPODFuh4WTp6E1q3B7dpFaNkSihaFTZvg66+N/eq7dpXGkDCdXeUSXjibNpuxcsmaNcbgny++MCKXJo2x0PTCNhZ+OeNF4EALhw5FTyH71QLvvQcNG0LGjMZovg0bpDEkzKG1/s8vwBk4AxQE3ICDQJEY51QFNgAK+ADYFd9rY/sqWbKkjlVgoNYeHlqD8WtgoPF6ZKTWW7dq3aGD1rlyaQ3a5uKq/36nql7pM0M3rhKsCxXSWinjUtDa3V3rkiW1btZM6+++03r36EBtzZP/8c8UwiTAXv2MjGgTshlnLrWOO5sxhF0O1qembtV7GozVe4o21afTva3DcPsnmGG46YNOb+udGSvqSCfXx4F98us/fr4QiSklZ/Phmav6+PiNeled0XrPaw302TRFdSTO/+TuIan1fpd39Z9Zqko2hd1Jydm8c0fr33/XevJkrdu31/rTT7XOmPHf0cudW+vKlbXu2VPrTX0CdZT7Ez93xQqtu3TR2s1N61SptO7aVeugoAT4ry7Es8Unm3b1rKl1vLN544bWFovWP/6odevWWn/wgdZp0/47m15eWvv6at2vn9ZbB8TI5qxZWlerZnyfN6/Wc+dqHRX18v/RhYiHuLIZn2ll7wGntdZnAZRSi4AawNEnzqkBzI3+g3YqpTIqpXICXvG4Nn5iW+OgShXCPiqL0749pLp3g3Dn1PyWtgpzneuw2lqNewcy4HQQCheGd94xPll56y3jq2BBcHZ+8g/whl7nn7ssIUxkv9n08SHo64lcvO5OxJ6DeJw6SK4bB8luvcIr0ZddJQfn0hbjeJEK6GLFyVC6OAUqv8ZbXq7GBgyx7SYoO6SI5MF+s1nNh2v9xnPxeiqsew+S5sxB8tz6H1mjgngt+rLLKg/n0xfnSLEaqLeLk9m7OIUqvcL/27v72LrqOo7j76+Mjk6mbLTMuq0CBt3YoBGqEIKGhwR5SohIgtGEsBFxIah/Ykx8SPxH/tKIQYKEEaOBQCQGDEjMQDEBxGFgAxexTBhzJogaTdaNWfbzj3tHb8u5t7dn9zy09/1KbtLb87unn3NyPknvr7fn97GRY7L3C3ZTC0V9u3nllbx62y95+rgL2bmTdx579ky/bPnyxu+w1147/fvsxo2NxcVm7Pfg9H7fWdVo8+bGp4XWrp13XKlg9egltO3mxPfe3c19+6ZftnJlo4/XXz/dzQ0bWu4fndXNzZsbHym69dbGkvSDg7kiS73UzeTQauD1lud7gXO6GLO6y9fOrc2S8/HWWxz3xKNs42Ju5yZ2nHQpp40t44wz4LaNjWKuW2fXtGjVt5uTk6y6ZROrgP+xhImB09n1gYv440fHGDxnjJFLxzj13JMYObbDvo+sjHJk/7751MJR324emGTkG19kBDjIUl5ZuoEda6/g0Lox3nveGKsvO5OTz1rJmk7/dG43tXDVt5uTk6y54RLew9UMxSifPRG2DMHQJ2F4CIaG4X3Lp1ev5tXm4+Hm8z17GvfXnJp6989curTxLytODKmequ8ldOzmyV+6hOe4mpFjRtm4Er4yDMOnwdAQDA835nje6eZfmo8Hm887dfPw4cYy9b5ZVU10MzmUtdzI7OW92o3p5rWNHUTcCNwIMDo6OnPjpk1tl5wP4PxVE5y962pWrMgcIi1WhXezYy+hYzcBDp04wqGXX2X9ygHWtx3VgUvnamGqfzeHPkja/Robli9hQ9tRHdhNLUy17uaxTHEtD8DgIDEJ7Gk+unHgQObquwAcPNj4ua40pnqq/r0mdNfNpYPEfmA/jcnZbnTq5oEDdlO10s0NqfcCrX9qWAPs63JMN68FIKV0Z0ppPKU0Pjw8PHPj1q2Nv0xmWbaM4+7d6sSQ+lHh3ezYS5izmwMP/IzjVw7MeSAdHVk61zefWjjq3837f8rg8qNcsNRuauGpfTfj8W3E/v0w38e2bR33y9at2duk6lX/XhPspkR3k0N/AE6LiFMiYgD4HPDQrDEPAdc17yR/LvCflNLfu3zt3I78hXJ2sfwou/qb3ZTqyW5K9bR4u2nntXBV30uwmxJdTA6llKaAm4HHgF3A/SmllyJiS0RsaQ57BNgNTAA/Bm7q9NpcSWcXy0Kpz9lNqZ7splRPi76bdl4LUG16CXZTfS9Su/+BrND4+Hjavn179sYnnvAeB1rUIuK5lNJ41Tlm69hLsJta9OymVE92s6T9SvNkN0varzRP7bp5lDccqMCRexxIqhe7KdWT3ZTqqahu2nnp6NhN9alu7jkkSZIkSZKkRcrJIUmSJEmSpD7m5JAkSZIkSVIfq+UNqSPiH8BrHYYMAW+WFGcuZslmlmzdZPlQSmm4jDDz0UUvYeGd67KYJdtCy2I3e8Ms2cySzW6WxyzZzJLNbpbHLNnMki13N2s5OTSXiNhelzvfmyWbWbLVKUsR6nR8Zslmlmx1ylKEOh2fWbKZJVudshShTsdnlmxmyVanLEWo0/GZJZtZsh1NFv+tTJIkSZIkqY85OSRJkiRJktTHFurk0J1VB2hhlmxmyVanLEWo0/GZJZtZstUpSxHqdHxmyWaWbHXKUoQ6HZ9ZspklW52yFKFOx2eWbGbJljvLgrznkCRJkiRJknpjoX5ySJIkSZIkST1Q68mrXqzkAAAEiElEQVShiLg0Iv4cERMR8bWM7RERP2hu3xERZ1WY5QvNDDsi4qmIGKsqS8u4j0fE2xFxTZVZIuKCiHg+Il6KiN9WlSUi3h8RD0fEC80smwrKcXdEvBERL7bZXtp1WxS7mS9Lyzi7OXO73ewRu5kvS8s4uzlzu93sEbuZL0vLOLs5c7vd7BG7mS9Ly7hCu2kv22YpppsppVo+gGOAV4BTgQHgBeD0WWMuBx4FAjgX+H2FWc4DVjS/vqzKLC3jHgceAa6p8LycAPwJGG0+P6nCLF8Hbm1+PQz8CxgoIMungLOAF9tsL+W6LephN/NnaRlnN2eOsZvlnWu7aTfnk8Vulneu7abdnE8Wu1neubabFXXTXnbMU0g36/zJoU8AEyml3SmlQ8B9wFWzxlwF/CQ1PAOcEBEjVWRJKT2VUvp38+kzwJoCcnSVpenLwM+BNwrK0W2WzwMPppT2AKSUisrTTZYELI+IAI6nUdipXgdJKT3Z3Hc7ZV23RbGbObM02U27WRS7mTNLk920m0WxmzmzNNlNu1kUu5kzS1PR3bSXbRTVzTpPDq0GXm95vrf5vfmOKStLqxtozNQVYc4sEbEa+AxwR0EZus4CfARYERG/iYjnIuK6CrP8EFgP7AN2Al9NKR0uKE8nZV23RbGbObPYzbZZ7GZv2M2cWexm2yx2szfsZs4sdrNtFrvZG3YzZ5aSumkv88t13S4pLM7Ri4zvzV5arZsxZWVpDIy4kEZZzy8gR7dZvg/cklJ6uzFxWZhusiwBzgYuBgaBpyPimZTSyxVk+TTwPHAR8GHg1xHxu5TSf3ucZS5lXbdFsZv5s9jN7Cx2szfsZv4sdjM7i93sDbuZP4vdzM5iN3vDbubPUkY37WV+ua7bOk8O7QXWtjxfQ2MWbr5jyspCRJwJ3AVcllL6ZwE5us0yDtzXLOoQcHlETKWUflFBlr3Amyml/cD+iHgSGAN6XdhusmwCvptSSsBERPwVWAc82+Mscynrui2K3cyfxW7azSLZzfxZ7KbdLJLdzJ/FbtrNItnN/FnK6Ka9zC/fdZsKuEFSLx40Jq52A6cwfdOnDbPGXMHMGy09W2GWUWACOK/q8zJr/D0Ud/O+bs7LemBbc+wy4EVgY0VZfgR8u/n1KuBvwFBB5+Zk2t8grJTrtspr0G7azXlmsZvlnWu7aTfnk8Vulneu7abdnE8Wu1neubabFXXTXs6ZqefdrO0nh1JKUxFxM/AYjbuD351SeikitjS330HjzuiX0yjJJI3ZuqqyfBM4Ebi9OYM6lVIaryhLKbrJklLaFRG/AnYAh4G7UkqZS+4VnQX4DnBPROykUZRbUkpv9jpLRNwLXAAMRcRe4FvAsS05Srlui2I3jypLKexmNrtpNztkKYXdzGY37WaHLKWwm9nspt3skKVw9rK9oroZzZklSZIkSZIk9aE6r1YmSZIkSZKkgjk5JEmSJEmS1MecHJIkSZIkSepjTg5JkiRJkiT1MSeHJEmSJEmS+piTQ5IkSZIkSX3MySFJkiRJkqQ+5uSQJEmSJElSH/s/Qok9BIHxW6YAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "figure(1,figsize=(20,16))\n", "\n", "subplot(4,5,1)\n", "plot(tt,yy,'b-',tt,uu_ep,'r-D')\n", "title('AB1=EE - max(|err|)=%1.3f'%(max([abs(uu_ep[i]-yy[i]) for i in range(N+1)])))\n", "\n", "subplot(4,5,2)\n", "plot(tt,yy,'b-',tt,uu_AB2,'r-D')\n", "title('AB2 - max(|err|)=%1.3f'%(max([abs(uu_AB2[i]-yy[i]) for i in range(N+1)])))\n", "\n", "subplot(4,5,3)\n", "plot(tt,yy,'b-',tt,uu_AB3,'r-D')\n", "title('AB3 - max(|err|)=%1.3f'%(max([abs(uu_AB3[i]-yy[i]) for i in range(N+1)])))\n", "\n", "subplot(4,5,4)\n", "plot(tt,yy,'b-',tt,uu_AB4,'r-D')\n", "title('AB4 - max(|err|)=%1.3f'%(max([abs(uu_AB4[i]-yy[i]) for i in range(N+1)])))\n", "\n", "subplot(4,5,5)\n", "plot(tt,yy,'b-',tt,uu_AB5,'r-D')\n", "title('AB5 - max(|err|)=%1.3f'%(max([abs(uu_AB5[i]-yy[i]) for i in range(N+1)])))\n", "\n", "subplot(4,5,6)\n", "plot(tt,yy,'b-',tt,uu_N2,'r-D')\n", "title('N2 - max(|err|)=%1.3f'%(max([abs(uu_N2[i]-yy[i]) for i in range(N+1)])))\n", "\n", "subplot(4,5,7)\n", "plot(tt,yy,'b-',tt,uu_N3,'r-D')\n", "title('N3 - max(|err|)=%1.3f'%(max([abs(uu_N3[i]-yy[i]) for i in range(N+1)])))\n", "\n", "subplot(4,5,8)\n", "plot(tt,yy,'b-',tt,uu_N4,'r-D')\n", "title('N4 - max(|err|)=%1.3f'%(max([abs(uu_N4[i]-yy[i]) for i in range(N+1)])))\n", "\n", "subplot(4,5,9)\n", "plot(tt,yy,'b-',tt,uu_RK4,'r-D')\n", "title('RK4 - max(|err|)=%1.3f'%(max([abs(uu_RK4[i]-yy[i]) for i in range(N+1)])))\n", "\n", "subplot(4,5,10)\n", "plot(tt,yy,'b-',tt,uu_er,'r-D')\n", "title('AM0=EI - max(|err|)=%1.3f'%(max([abs(uu_er[i]-yy[i]) for i in range(N+1)])))\n", "\n", "subplot(4,5,11)\n", "plot(tt,yy,'b-',tt,uu_CN,'r-D')\n", "title('AM1=CN - max(|err|)=%1.3f'%(max([abs(uu_CN[i]-yy[i]) for i in range(N+1)])))\n", "\n", "subplot(4,5,12)\n", "plot(tt,yy,'b-',tt,uu_AM2,'r-D')\n", "title('AM2 - max(|err|)=%1.3f'%(max([abs(uu_AM2[i]-yy[i]) for i in range(N+1)])))\n", "\n", "subplot(4,5,13)\n", "plot(tt,yy,'b-',tt,uu_AM3,'r-D')\n", "title('AM3 - max(|err|)=%1.3f'%(max([abs(uu_AM3[i]-yy[i]) for i in range(N+1)])))\n", "\n", "subplot(4,5,14)\n", "plot(tt,yy,'b-',tt,uu_AM4,'r-D')\n", "title('AM4 - max(|err|)=%1.3f'%(max([abs(uu_AM4[i]-yy[i]) for i in range(N+1)])))\n", "\n", "subplot(4,5,15)\n", "plot(tt,yy,'b-',tt,uu_BDF2,'r-D')\n", "title('BDF2 - max(|err|)=%1.3f'%(max([abs(uu_BDF2[i]-yy[i]) for i in range(N+1)])))\n", "\n", "subplot(4,5,16)\n", "plot(tt,yy,'b-',tt,uu_BDF3,'r-D')\n", "title('BDF3 - max(|err|)=%1.3f'%(max([abs(uu_BDF3[i]-yy[i]) for i in range(N+1)])))\n", "\n", "subplot(4,5,17)\n", "plot(tt,yy,'b-',tt,uu_em,'r-D')\n", "title('Euler modifie - max(|err|)=%1.3f'%(max([abs(uu_em[i]-yy[i]) for i in range(N+1)])))\n", "\n", "subplot(4,5,18)\n", "plot(tt,yy,'b-',tt,uu_heun,'r-D')\n", "title('Heun - max(|err|)=%1.3f'%(max([abs(uu_heun[i]-yy[i]) for i in range(N+1)])))\n", "\n", "subplot(4,5,19)\n", "plot(tt,yy,'b-',tt,uu_AM2AB1,'r-D')\n", "title('AM2AB1 - max(|err|)=%1.3f'%(max([abs(uu_AM2AB1[i]-yy[i]) for i in range(N+1)])))\n", "\n", "subplot(4,5,20)\n", "plot(tt,yy,'b-',tt,uu_AM3AB2,'r-D')\n", "title('AM3AB2 - max(|err|)=%1.3f'%(max([abs(uu_AM3AB2[i]-yy[i]) for i in range(N+1)])));" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "colab": { "collapsed_sections": [], "default_view": {}, "name": "EdoExplicites.ipynb", "provenance": [], "version": "0.3.2", "views": {} }, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.5" }, "latex_envs": { "LaTeX_envs_menu_present": true, "autoclose": true, "autocomplete": true, "bibliofile": "biblio.bib", "cite_by": "apalike", "current_citInitial": 1, "eqLabelWithNumbers": true, "eqNumInitial": 1, "hotkeys": { "equation": "Ctrl-E", "itemize": "Ctrl-I" }, "labels_anchors": false, "latex_user_defs": false, "report_style_numbering": true, "user_envs_cfg": true }, "toc": { "base_numbering": 1, "nav_menu": {}, "number_sections": true, "sideBar": true, "skip_h1_title": true, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": false, "toc_position": {}, "toc_section_display": true, "toc_window_display": false } }, "nbformat": 4, "nbformat_minor": 4 }