
UNIVERSITE DE TOULON

IUT DE TOULON

DEPARTEMENT GEII

TD / TP d'Outils Logiciels semestre 3

Calcul matriciel, diagonalisation d'une matrice et applications

Enseignant: Sylvia Le Beux sylvia.lebeux@univ-tln.fr Bureau A042 - 04 94 14 21 15 http://moodle.univ-tln.fr/course/view.php?id=527

Partie I: Calcul matriciel

I. <u>Définition - Opérations</u>

1) Introduction

On peut faire appel au calcul matriciel pour résoudre un système de n équations à n inconnues.

Exemple : On souhaite résoudre le système de 3 équations à 3 inconnues x₁, x₂, x₃ suivant :

(S)
$$\begin{cases} 3x_1 + x_2 - x_3 = 2 \\ 5x_1 - x_2 + 4x_3 = -1 \\ 2x_1 + x_2 - x_3 = 3 \end{cases}$$

Pour cela, on note A, le tableau des coefficients de x1, x2, x3

A=

A est appelée matrice à 3 lignes et 3 colonnes, ou matrice carrée d'ordre 3. A est un élément de l'ensemble des matrices carrées d'ordre 3, on note :

.....

On note V le vecteur constitué par les 3 inconnues, et B le vecteur, second membre du système :

$$V=$$
 $B=$

On peut alors écrire le système (S) de la façon suivante :

On cherche le vecteur V, tel que $A \times V = B$. Si la matrice A est inversible, on note A^{-1} , sa matrice inverse et on obtient alors : $V = A^{-1} \times B$

TP: A l'aide du logiciel Maxima, déterminer A⁻¹ et le vecteur V solution de l'équation :

2) <u>Définitions</u> K=R ou K=C

On appelle matrice carrée d'ordre n, tout tableau de valeurs à n lignes et n colonnes.

$$\mathbf{A} = \begin{pmatrix} \mathbf{a}_{11} & \mathbf{a}_{12} & \dots & \mathbf{a}_{1n} \\ \mathbf{a}_{21} & \mathbf{a}_{22} & \dots & \mathbf{a}_{2n} \\ \dots & \dots & \dots & \dots \\ \mathbf{a}_{n1} & \mathbf{a}_{n2} & \dots & \mathbf{a}_{nn} \end{pmatrix} = \left(\mathbf{a}_{ij}\right)_{1 \le i, j \le n}$$

On note M(n, K), l'ensemble des matrices carrées d'ordre n.

On a alors: $A \in M(n, K)$

<u>remarque importante</u> : Dans l'écriture a_{ij} , i indique la ligne et j la colonne.

3) Opérations

✓ <u>Egalité</u>

Soit $A = (a_{ij})_{1 \le i, j \le n}$ et $B = (b_{ij})_{1 \le i, j \le n}$ deux matrices carrées d'ordre n. A=B si et seulement si $\forall \ 1 \le i, j \le n \ a_{ij} = b_{ij}$.

✓ Addition

Soit $A = (a_{ij})_{1 \le i, j \le n}$ et $B = (b_{ij})_{1 \le i, j \le n}$ deux matrices carrées d'ordre n.

$$\mathbf{A} + \mathbf{B} = (\mathbf{a}_{ij} + \mathbf{b}_{ij})_{1 \le i, j \le n}$$

 $A \in M(n, K)$ et $B \in M(n, K)$ donc $A+B \in M(n, K)$

Exemple:
$$A = \begin{pmatrix} 5 & 0 & 0 & 1 \\ 3 & -1 & 1 & 3 \\ 2 & 0 & 1 & 2 \\ 1 & 2 & 1 & 0 \end{pmatrix}$$
 et $B = \begin{pmatrix} 2 & 0 & 0 & 6 \\ 1 & 1 & 3 & 7 \\ 0 & 3 & 4 & 1 \\ 0 & -1 & 1 & 3 \end{pmatrix}$ alors $A + B = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{pmatrix}$

TP: Vérifier ce résultat à l'aide du logiciel Maxima.

<u>Remarques</u>: - On ne peut additionner que des matrices de mêmes dimensions (même nombre de lignes et même nombre de colonnes.)

- Soient A, B, C trois matrices de mêmes dimensions. A+B=B+A et (A+B)+C=A+(B+C). Si on note O la matrice ne contenant que des zéros de mêmes dimensions que A, on a : A+O=A. Si on note $-A = (-a_{ij})_{1 \le i \le p}$, on a : A+(-A)=O.

✓ Multiplication d'une matrice par un scalaire

Soit $A = (a_{ij})_{1 \le i,j \le n}$ une matrice carrée d'ordre n, et λ un scalaire réel ou complexe (un nombre réel ou complexe)

$$\lambda.\mathbf{A} = (\lambda.\mathbf{a}_{ij})_{1 \le i, j \le n}$$

 $A \in M(n, K)$ et $\lambda \in K$ donc $\lambda . A \in M(n, K)$

Exemple:
$$A = \begin{pmatrix} 5j & 1 & -1 \\ j & 2 & 3 \\ 0 & j & 0 \end{pmatrix}$$
 et $\lambda = j$ alors $\lambda A = j$

TP: Vérifier ce résultat à l'aide du logiciel Maxima.

Remarques - L'écriture $A\lambda$ n'existe pas.

- Si λ et μ sont deux scalaires de K, A et B deux matrices de mêmes dimensions à coefficients dans K, alors :

$$\lambda(A + B) = \lambda A + \lambda B$$
, $(\lambda + \mu)A = \lambda A + \mu A$, $\lambda(\mu A) = \lambda \mu A$, $0A = O$.

✓ Multiplication d'une matrice et d'un vecteur

Soit $A = (a_{ij})_{1 \le i,j \le n}$ une matrice carrée d'ordre n, et $V = (x_i)_{1 \le i \le n}$ un vecteur à n composantes réelles ou complexes.

$$\mathbf{A.V} = \begin{pmatrix} \mathbf{a}_{11} & \mathbf{a}_{12} & \dots & \mathbf{a}_{1n} \\ \mathbf{a}_{21} & \mathbf{a}_{22} & \dots & \mathbf{a}_{2n} \\ \dots & \dots & \dots & \dots \\ \mathbf{a}_{n1} & \mathbf{a}_{n2} & \dots & \mathbf{a}_{nn} \end{pmatrix} \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \dots \\ \mathbf{x}_n \end{pmatrix} = \begin{pmatrix} \mathbf{a}_{11}\mathbf{x}_1 + \mathbf{a}_{12}\mathbf{x}_2 + \dots + \mathbf{a}_{1n}\mathbf{x}_n \\ \mathbf{a}_{21}\mathbf{x}_1 + \mathbf{a}_{22}\mathbf{x}_2 + \dots + \mathbf{a}_{2n}\mathbf{x}_n \\ \dots \\ \mathbf{a}_{n1}\mathbf{x}_1 + \mathbf{a}_{n2}\mathbf{x}_2 + \dots + \mathbf{a}_{nn}\mathbf{x}_n \end{pmatrix} = \begin{pmatrix} \sum_{j=1}^{n} \mathbf{a}_{ij}\mathbf{x}_i \\ \sum_{j=1}^{n} \mathbf{a}_{ij}\mathbf{x}_i \end{pmatrix}_{1 \le i \le n}$$

A.V est un vecteur à n composantes.

Exemple
$$A = \begin{pmatrix} 3 & 0 & -1 \\ 2 & 1 & 3 \\ 1 & 0 & 0 \end{pmatrix}$$
 et $V = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$ alors $AV =$

TP: Vérifier ce résultat à l'aide du logiciel Maxima.

composantes du vecteur est égal à l'ordre de la matrice. - V.A est impossible.
Application Soit $V = \begin{pmatrix} x \\ y \end{pmatrix}$, un vecteur du plan muni d'un repère orthonormé (O, \vec{i}, \vec{j}) . Soit
α un angle. Cherchons $\begin{pmatrix} x' \\ y' \end{pmatrix}$, les coordonnée du vecteur W, obtenu en effectuant la rotation
d'angle α du vecteur V .

Remarques - On ne peut faire le produit d'une matrice et d'un vecteur que si le nombre de

✓ Produit de deux matrices

Soit $A = (a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le n}}$ et $B = (b_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le n}}$ deux matrices carrées d'ordre n.

Le produit A × B est une matrice carrée d'ordre n définie par :

$$A \times B = (c_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le n}} \text{ où } c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} \ \forall \ 1 \le i, j \le n$$

En pratique On dispose la matrice A sous la matrice B, de la façon suivante :

$$A \times B =$$

Exemple
$$A = \begin{pmatrix} 1 & -1 & 0 \\ 2 & 0 & 1 \\ 3 & 1 & 1 \end{pmatrix}$$
 et $B = \begin{pmatrix} 5 & 3 & 1 \\ 1 & 0 & 2 \\ 2 & -1 & 1 \end{pmatrix}$

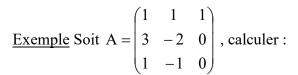
$$A \times B =$$

$$B \times A =$$

TP: Vérifier ces résutats à l'aide du logiciel Maxima.

Remarques En général $A \times B \neq B \times A$

$\begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \qquad \begin{pmatrix} 0 & 1 & -2 \end{pmatrix}$
Exercice Soit A = $ \begin{pmatrix} 1 & 1 & 1 \\ 3 & -2 & 0 \\ 1 & -1 & 0 \end{pmatrix} $ et B = $ \begin{pmatrix} 0 & 1 & -2 \\ 0 & 1 & -3 \\ 1 & x & y \end{pmatrix} $ où x et y sont deux réels. Pour quelles
$\begin{pmatrix} 1 & -1 & 0 \end{pmatrix}$ $\begin{pmatrix} 1 & x & y \end{pmatrix}$
valeurs de x et y a-t-on $A \times B = B \times A$? Donner alors la matrice $A \times B$.


Cas particulier

On appelle matrice Identité d'ordre n, la matrice In définie par :

On note:
$$I_n = \begin{pmatrix} 1 & 0 & \dots & \dots & 0 \\ 0 & 1 & 0 & \dots & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ 0 & \dots & \dots & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \end{pmatrix}$$

 $I_n \in M(n, K)$

Si A est une matrice carrée d'ordre n, alors $A \times I_n = I_n \times A = A$

$$A \times I_3 =$$

$$I_3 \times A =$$

4) Matrice carrée inversible

Une matrice carrée d'ordre n, à coefficients dans K est dite inversible (ou régulière) lorsqu'il existe une matrice B carrée d'ordre n, à coefficients dans K telle que :

$$\mathbf{A} \times \mathbf{B} = \mathbf{B} \times \mathbf{A} = \mathbf{I}_{n}$$

La matrice B est alors unique, elle est appelée matrice inverse de A et est notée A-1.

<u>Exemple</u>	Soit $A = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$	2 1), calculer, si c'	est possible A ⁻¹ .	

TP: Vérifier ce résultat à l'aide du logiciel Maxima.

Exercice suite de l'exemple précédent. Soit $B = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{3}{2} \end{pmatrix}$. Calculer $B^2 + B$ et en déduire que

B est inversible ainsi que la matrice B⁻¹. Calculer A.B, (A.B)⁻¹, B⁻¹.A⁻¹ . Comparer les deux derniers résultats obtenus.

TD/TP Outils Logiciels : Calcul matriciel, Diagonalisation d'une matrice

TP : Vérifier ces résultats à l'aide du logiciel Maxima.

II. Déterminant d'une matrice carrée

1) Matrice carrée d'ordre 2

Soit $A = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in M_2(K)$. On appelle déterminant de la matrice A et on note det(A) ou |A| le scalaire défini par : $\det(A) = |A| = ad-bc$.

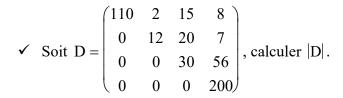
Exemple Calculer le déterminant de la matrice $A = \begin{pmatrix} 5 & 3 \\ -2 & 1 \end{pmatrix}$

2) Matrice carrée d'ordre n>2

On appelle <u>mineur d'indice (i,j)</u> d'une matrice $A \in M_n(K)$ et on note Δ_{ij} , le déterminant de la matrice d'ordre n-1 obtenue en barrant la ième ligne et la jème colonne de A. On appelle <u>cofacteur d'indice (i,j)</u> le scalaire $(-1)^{i+j}\Delta_{ij}$

Soit $A = (a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le n}}$ une matrice carrée d'ordre n, on calcule le déterminant de A de plusieurs façons différentes :

- En développant par rapport à la ième ligne : $\det A = \left|A\right| = \sum_{i=1}^{n} (-1)^{i+j} \Delta_{ij} a_{ij}$
- En développant par rapport à la j^{ème} colonne : det $A = \left|A\right| = \sum_{i=1}^{n} \left(-1\right)^{i+j} \Delta_{ij} a_{ij}$


Exemples

✓	Calculer	le déter	minant d apport à	e la matri	ce A =	$= \begin{pmatrix} a \\ d \\ g \end{pmatrix}$	b e h rapp	c f k	précédemment citée, en à la 2 ^{ème} colonne.	
• • • • • • •										•
• • • • • • •										

TD/TP Outils Logiciels : Calcul matriciel, Diagonalisation d'une matrice

1D/1P Outils Logiciels: Calcul matriciel, Diagonalisation d'une matrice
$\begin{pmatrix} 1 & -1 & 3 \\ 2 & 4 & 4 \end{pmatrix}$
✓ Calculer le déterminant de la matrice $B = \begin{pmatrix} 1 & -1 & 3 \\ 2 & 1 & 1 \\ 1 & 2 & -1 \end{pmatrix}$ précédemment citée, en
développant par rapport à la 3 ^{ème} ligne :
$\begin{pmatrix} 0 & 1 & 2 \end{pmatrix}$
✓ Soit $C = \begin{pmatrix} 0 & 1 & 2 \\ 4 & 3 & 0 \\ 3 & 5 & 0 \end{pmatrix}$, calculer $ C $.
$\begin{pmatrix} 3 & 5 & 0 \end{pmatrix}$

1D/1F Outils Logiciels. Calcul matricles, Diagonalisation d une matrice

• • •	• • • •	• • •	• • •	•••	• • •	• • •	• • •	• •	• • •	• •	• • •	• •	• •	• • •	• •	• •	• •	• • •		• •	• • •	• •	• • •	• • •	• •	• • •	• •	• • •	• • •	• •	• • •	• • •	••	• • •	• • •	• •	• • •	• •	• • •	• •	••	• •
• • •	• • • •	•••	• • •	• • •	• • •	• • •	• • •	• •	• • •	• •	• • •	• •	• •	• • •	•••	• •	• •	• • •	•••	• •	• • •	• •	• • •	• • •	• •	• • •	• •	• • •	• • •	• •	• • •	• • •	• •	• • •	• • •	• •	• • •	• •	• • •	••	• •	• • • •
• • •	• • • •	•••	• • •	•••	• • •	• • •	• • •	• •	• • •	• •	• • •	• •	• •	• • •	••	• •	• •	• • •	• •	• •	• • •	••	• • •	• • •	• •	• • •	• • •	• • •	• • •	• •	• • •	• • •	• •	• • •	• • •	• •	• • •	• •	• • •	• •	• •	• • • •
• • •	• • • •	•••	• • •	•••	• • •	• • •	• • •	• •	• • •	• •	• • •	••	• •	• • •	•••	• •	• •	• • •	• • •	• •	• • •	• •	• • •	• • •	• •	• • •	• • •	• • •	• • •	• •	• • •	• • •	• •	• • •	• • •	• •	• • •	• •	• • •	• • •	•••	• • • •

TP: Vérifier ces résultats à l'aide du logiciel Maxima.

Remarques

- ✓ En pratique, on choisira de développer le déterminant d'une matrice par rapport à la ligne ou la colonne comportant le plus de zéros.
- ✓ Le déterminant d'une matrice triangulaire est égal au produit des coefficients de sa diagonale.
- 3) Propriétés

Soit A, B deux matrices carrées de même ordre. det(AB)=detA.detB; det (tA)=detA.

III. Calcul de l'inverse d'une matrice carrée inversible

1) Définitions - théorème

- On appelle <u>matrice transposée</u> d'une matrice carrée d'ordre n A = (a_{ij})_{1≤i,j≤n} la matrice carrée d'ordre n notée ^tA définie par : ^t A = (a_{ji})_{1≤j,i≤n}.
- On appelle mineur d'indice (i,j) d'une matrice A∈ M_n(K) et on note Δ_{ij}, le déterminant de la matrice d'ordre n-1 obtenue en barrant la i^{ème} ligne et la j^{ème} colonne de A.
- On appelle <u>cofacteur d'indice (i,j)</u> le scalaire $(-1)^{i+j}\Delta_{ij}$
- On appelle <u>comatrice</u> d'une matrice $A \in M_n(K)$ et on note CoA, la matrice transposée de la matrice des cofacteurs : $CoA = ((-1)^{i+j} \Delta_{ij})_{1 \le i, i \le n}$

<u>Définition</u> Soit A une matrice carrée d'ordre n. A est dite <u>inversible</u> (ou régulière) lorsqu'il existe une matrice B carrée d'ordre n, à coefficients dans K telle que : $A.B=B.A=I_n$

La matrice B est alors unique, elle est appelée matrice inverse de A et est notée A^{-1} .

Théorème A est inversible si et seulement si $\det A \neq 0$, on a alors : $A^{-1} = \frac{{}^t CoA}{\det A}$

Exemples
- Soit $A = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$ tel que ad-bc $\neq 0$. Calculer, si c'est possible A^{-1} .
TP: Vérifier le résultat avec le logiciel Maxima en affichant $A \times A^{-1}$ et $A^{-1} \times A$.
- Soit $C = \begin{pmatrix} 0 & 1 & 2 \\ 4 & 3 & 0 \\ 3 & 5 & 0 \end{pmatrix}$. Calculer, si c'est possible C^{-1} , et vérifier le résultat.

																														•••	
••	 •••	 •••	 • • •	••	 •••	 	•••		••	• •	• • •	 	 	 		••	•••	• • •	 • •	 	•••	 •••	 •••	 	• • •	 ••	• • •	 ••	 	••	
•••	 •••	 •••	 • • •		 •••	 	• • •			• •	• • •	 	 	 		••	•••	• • •	 • •	 	• • •	 •••	 •••	 	• • •	 •••		 ••	 	• • •	•
	 • •	 	 • • •		 • •	 	• • •	· • •			• • •	 	 	 				•••	 • • •	 	• • •	 	 	 		 	• • •	 • • •	 		
••	 • •	 • •	 	••	 • •	 						 	 	 			• •	• • •	 • •	 	• • •	 • •	 • •	 		 • •		 	 		•
	 • • •	 • • •	 • • •	••	 • • •	 	• • •				• • •	 	 	 			•••	• • •	 • •	 	• • •	 • • •	 •••	 		 		 • • •	 		
	 • •	 • •	 • • •		 • •	 		· • •			• • •	 	 	 	· • •			• • •	 • •	 	• • •	 • •	 	 		 		 	 	• • •	
• •	 • • •	 • •	 		 • • •	 	• • •					 	 	 			•••	• • •	 	 	• • •	 •••	 •••	 		 • •		 	 		
	 	 	 		 	 		. 				 	 	 	. 				 	 	• • •	 	 	 		 		 	 		

1D/1F Outils Logiciels. Calcul matricles, Diagonalisation d une matrice

TD/TP Outils Logiciels : Calcul matriciel, Diagonalisation d'une matrice
TP : Vérifier le résultat avec le logiciel Maxima en affichant $C \times C^{-1}$ et $C^{-1} \times C$.
2) Propriété

Soit A, B deux matrices carrées de même ordre. (A.B)⁻¹=B⁻¹.A⁻¹

Système d'équations linéaires et calcul matriciel

3) Application

Soit le système
$$S_n$$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n = b_2 \\ ... \\ a_{n1}x_1 + a_{n2}x_2 + ... + a_{nn}x_n = b_n \end{cases}$$
Soit les matrices ; $A = \begin{pmatrix} a_{11} & a_{12} & ... & a_{1n} \\ a_{21} & a_{22} & ... & a_{2n} \\ ... & ... & ... & ... \\ a_{n1} & a_{n2} & ... & a_{nn} \end{pmatrix}$, $X = \begin{pmatrix} x_1 \\ x_2 \\ ... \\ x_n \end{pmatrix}$, $B = \begin{pmatrix} b_1 \\ b_2 \\ ... \\ b_n \end{pmatrix}$.

On peut écrire : B=AX, et X=A-1B

On résoudra donc le système en écrivant sa matrice A, en déterminant l'inverse A-1, puis en effectuant le produit A-1B. Ceci suppose que A est inversible, c'est à dire que $det A \neq 0$.

Le système S_n possède donc une unique solution si et seulement si det $A \neq 0$.

Remarque Cette méthode n'a évidemment aucun intérêt pour résoudre des systèmes numériques simples.

Exemple Soit le système : S	2x + y - z = 4 $x - 2y + z = -1$ $-x + 2y + 2z = -5$	Résoudre S. (On vér	fiera les calculs	
intermédiaires à l'aide du log	giciel Maxima)			
				· • • • • •

1D/1P Outils Logiciels: Calcul matriciel, Diagonalisation d'une matrice

TP: A l'aide du logiciel Maxima, résoudre le système (S) suivant :
(S) $\begin{cases} X + 2Y + 3Z - T + V = 1 \\ X + 2Y + Z - U + V = 0 \\ Y + Z + 2T - 2U = 1 \\ Y + 3Z + 2T + U + V = -1 \\ 2X - 3Y + Z + 2T + 4U + 2V = 0 \\ X + 2Y + 2Z - U + V = 1 \end{cases}$

Partie II: Diagonalisation d'une matrice

I. Définitions

1) Valeurs propres d'une matrice carrée

Soit A, une matrice carrée d'ordre n. On appelle valeurs propres de A, les solutions λ de l'équation dite caractéristique suivante : $\det(A-\lambda \operatorname{Id})=0$.

Cette équation, étant un polynôme de degré n, possède n solutions complexes.

Une matrice carrée d'ordre n, possède donc n valeurs propres complexes.

2) Vecteurs propres d'une matrice carrée

Soit A, une matrice carrée d'ordre n. Soit λ , une valeur propre simple de A. On appelle vecteur propre associé à la valeur propre λ , un vecteur V, solution de l'équation : $(A-\lambda I_n)(V)=0$.

3) Matrice de diagonalisation

Soit A, une matrice carrée d'ordre n, possédant n valeurs propres simples. On appelle matrice de diagonalisation, la matrice P, dont les colonnes sont les n vecteurs propres de la matrice A.

La matrice A est alors dite diagonalisable et on obtient alors l'égalité suivante : $D = P^{-1}AP$ où D est la matrice diagonale, dont la diagonale contient les n valeurs propres de A.

II. Exemples

1)	Soit A = $\begin{pmatrix} 2 & 3 \\ 2 & 1 \end{pmatrix}$. Rechercher les valeurs propres de la matrice A ainsi que ses
	vecteurs propres associés. Déterminer P, la matrice de diagonalisation de A. Calculer P ⁻¹ , puis P ⁻¹ AP.

2)	Soit la matrice $B = \begin{pmatrix} -1 & 4 & 2 \\ 0 & 3 & 1 \\ 0 & 4 & 3 \end{pmatrix}$. Même questions que précédemment.

TD/TP Outils Logiciels : Calcul matriciel, Diagonalisation d'une matrice

	(1	0	1	
Soit la matrice C =	0	1	1	. Même questions que précédemment.
	(U	U	2)	
			• • • •	
			• • •	
	• • • • •		•••	
			•••	
			• • •	
			•••	
	••••	• • • • •	• • •	
•••••	••••	• • • • •	•••	
		· • • • •		
			• • • •	
			• • • •	

1D/1P Outils Logiciels: Calcul matriciel, Diagonalisation d'une matrice

III. <u>Application à la résolution de système d'équations différentielles linéaires à</u> coefficients constants

1) Méthode

Soit un système différentiel linéaire de la forme :

$$\left(S_{n}\right) \begin{cases} \frac{dx_{1}}{dt} = a_{11}x_{1} + a_{12}x_{2} + ... + a_{1n}x_{n} \\ \frac{dx_{2}}{dt} = a_{21}x_{1} + a_{22}x_{2} + ... + a_{2n}x_{n} \\ ... \\ \frac{dx_{n}}{dt} = a_{n1}x_{1} + a_{n2}x_{2} + ... + a_{nn}x_{n} \end{cases} ,$$

dans lequel $x_1, x_2,...,x_n$ sont des fonctions de la variable t. On peut résoudre un tel système par le calcul matriciel.

Soit:
$$V_{C} = \begin{pmatrix} x_{1} \\ x_{2} \\ ... \\ x_{n} \end{pmatrix}$$
 et $W_{C} = \begin{pmatrix} x'_{1} \\ x'_{2} \\ ... \\ x'_{n} \end{pmatrix}$, en posant $x'_{1} = \frac{dx_{1}}{dt}$, $x'_{2} = \frac{dx_{2}}{dt}$, ..., $x'_{n} = \frac{dx_{n}}{dt}$.

$$\mbox{Soit la matrice}: \ A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}.$$

On travaille pour cela dans la base canonique de Rⁿ.

On peut écrire alors : $W_C = A.V_C$.(1).

Si A est diagonalisable sur **R**, il existe alors P, une matrice de diagonalisation telle que :

$$P^{-1}AP = D = mat_{B'}f = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & 0 \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

On travaille maintenant dans la base B', constituée par les vecteurs propres de A.

(1) s'écrit alors dans la base B': W_{B'}=D.V_{B'}.

En notant :
$$V_{B'} = \begin{pmatrix} y_1 \\ y_2 \\ ... \\ y_n \end{pmatrix}$$
 et $W_{B'} = \begin{pmatrix} y'_1 \\ y'_2 \\ ... \\ y'_n \end{pmatrix}$, où $y'_1 = \frac{dy_1}{dt}$, $y'_2 = \frac{dy_2}{dt}$, ..., $y'_n = \frac{dy_n}{dt}$

(1) équivaut alors au système différentiel à variables séparables suivant : S_n $\begin{cases} \frac{dy_1}{dt} = \lambda_1 y_1 \\ \frac{dy_2}{dt} = \lambda_2 y_2 \\ \dots \\ \frac{dy_n}{dt} = \lambda_n y_n \end{cases}$

Après l'avoir résolu, on obtient donc $V_{B'}$, puis V_C par changement de base : $V_C = P.V_{B'}$, où P, la matrice de diagonalisation de A est aussi appelée matrice de passage de B' vers C.

1) Exemple Résoudre les systèmes suivants :

$$\checkmark \begin{cases} \frac{dx}{dt} = 3x + 6y \\ \frac{dy}{dt} = 8x + 5y \end{cases} \text{ avec } x(0)=1 \text{ et } y(0)=0.$$

 	 . 	 	 	 	 	 	 								

TD/TP Outils Logiciels : Calcul matriciel, Diagonalisation d'une matrice

	$\frac{dx}{dt} = x(t) - y(t) + 3z(t)$ $\frac{dy}{dt} = -2x(t) + 2y(t) + 3z(t) \text{ v\'erifiant les conditions (initiales)} : x(0) = y(0) = 0 \text{ et } \frac{dz}{dt}(0) = -27.$ $\frac{dz}{dt} = -4x(t) - 2y(t) + 9z(t)$
•	
•	
•	
•	
•	
•	
•	
•	

TD/TP Outils Logiciels : Calcul matriciel, Diagonalisation d'une matrice	
	••••
	• • • • • • • • • • • • • • • • • • • •
	••••
	•••••
	•••••

TD/TP Outils Logiciels: Calcul mat	riciel, Diagonalisation d'une	matrice	
			•••••

Exercices sur le calcul matriciel

Exercice 1: Soit A la matrice définie par $A = \begin{pmatrix} 2 & 0 & 1 \\ -1 & 2 & 0 \\ 0 & 1 & -2 \end{pmatrix}$ et V le vecteur défini par :

$$V = \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix}$$
. Calculer A.V.

Exercice 2: Soit les matrices : $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & -1 \end{pmatrix}$ et $B = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}$; calculer les produits

AB et BA.?

Exercice 3: Soit $A = \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix}$, calculer, si c'est possible A^{-1} .

Exercice 4 Soit
$$M = \begin{pmatrix} 0 & 1 & -1 \\ -3 & 4 & -3 \\ -1 & 1 & 0 \end{pmatrix}$$

- 1) Déterminer la matrice M²
- 2) Vérifier que M²=3M-2I
- 3) En déduire que M est inversible et déterminer M⁻¹

4) Résoudre le système :
$$\begin{cases} y - z = 6 \\ -3x + 4y - 3z = 8 \\ -x + y = 0 \end{cases}$$

Exercice 5

Calculer le déterminant des matrices suivantes :

$$A = \begin{pmatrix} 2 & -2 \\ 5 & 3 \end{pmatrix}; B = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & -2 \\ -3 & -1 & -4 \end{pmatrix}; C = \begin{pmatrix} 3 & 1 & 2 \\ 2 & 0 & 1 \\ 1 & 0 & -1 \end{pmatrix}.$$

Exercice 6: Soit la matrice : $M = \begin{pmatrix} 1 & 3 & -12 \\ 2 & 0 & -8 \\ 1 & -1 & -2 \end{pmatrix}$. Vérifier qu'elle est inversible et

déterminer sa matrice inverse.

- 1) Résoudre alors le système suivant : $\begin{cases} x + 3y 12z = 2 \\ 2x 8z = -4 \\ x y 2z = 6 \end{cases}$ 2) Faire de même pour résoudre : le système $S\begin{cases} 2x + y z = 4 \\ x 2y + z = -1 \\ -x + 2y + 2z = -5 \end{cases}$

Exercice 7

- 1) Soit la matrice carrée : $A = \begin{pmatrix} a & 1 & a \\ -a & 0 & a \\ a & a & 1 \end{pmatrix}$ ou a est réel. Pour quelles valeurs de a cette matrice est-elle inversible? Trouver A⁻¹ dans le cas où a=2.
- 2) Résoudre par inversion de la matrice le système : (S) $\begin{cases} -2x + 2z = 0 \\ 2x + 2y + z = 2 \end{cases}$

Exercice 8: On donne un réel a et l'endomorphisme u_a de End(R³) dont la matrice, dans la base canonique de \mathbb{R}^3 , est : $A_a = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 0 \\ a & 0 & a \end{pmatrix}$.

- 1) Calculer les valeurs propres de A_a (ou de u_a).
- 2) Etudier suivant le réel a, si la diagonalisation de A_a est possible, en précisant clairement les différents cas.
- 3) Si a = 0 Calculer A^n où n est un entier naturel. (On cherchera d'abord les vecteurs propres de A, puis la matrice de passage. On calculera alors Dⁿ, où D est la matrice diagonale associée à A.)

Exercice 9: Soit $Y = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$, une matrice réelle. Résoudre l'équation $Y^2 = I_2$

• •	•	 	 		 	••			•	••	 	 	•		 •	 • •	 •	 •		• •			•		• •					 •	 •		 • •	•	 •	 	•	 •	•	 •		•		•	 	
• •	• •	 	 	• •	 	••			•		 • •	 			 •	 • •	 •	 •		• •	•		•	•	• •						 •			•	 •	 	•	 •	•			•	• •	•	 	
• •	• •	 	 		 		٠.		•		 • •	 	•		 •	 • •	 •	 •	•	• •	•		•		• •	 •			 •	 •	 •		 •	•	 •	 		 •	•	 •		•		•	 	
	• •	 	 		 			٠.	•		 • •	 	•		 •	 • •	 •	 •			•		•		• •				 •	 •	 •		 • •	•	 •	 	•	 •	•	 •		•		•	 	•••

TD/TP Outils Logiciels : Calcul matriciel, Diagonalisation d'une matrice

TD/TP Outils Logiciels : Calcul matriciel, Diagonalisation d'une matrice