



# MOSM – Design for Additive Manufacturing

**Tutorial**:

Topology Optimization via Rhino GH Applications

Version 1.0 Spring 2024

### **Dr. Zhiping WANG**

Lecturer at SeaTech, École d'ing énieurs de l'universit éde Toulon zhiping.wang@univ-tln.fr

## 1. Introduction

#### **Objective**:

In this TP, we will learn how to do Topology Optimization via toPos plugin in GH. TOpos is a 3D Topology Optimization plugin which is using GPU for computation acceleration. It is based on SIMP methodology. With tOpos, you can optimize material distribution for a given design domain within Grasshopper's design environment.

#### Demonstration tool: tOpos, Pufferfish.

toPos: <u>https://www.food4rhino.com/en/app/topos</u> .

### 2. Tutoring example

In this tutoring example, we will optimize material distribution for a 3D structural optimization problem.

#### 2.1. Problem description

Step 1: Design domain construction

Use **Rectangle, Box Rectangle and Mesh Brep** components to generate a design domain (60\*20\*20).



Step 2: Set boundary condition

We use **Rectangle and Boundary surfaces** components to generate load surface. Support is defined using **Rectangle and Box Rectangle** components.

![](_page_1_Figure_13.jpeg)

![](_page_2_Figure_0.jpeg)

![](_page_2_Figure_1.jpeg)

Step 3: Material properties

Connect design domain with **Boundary Domain** component, and set **Density Value**, **Young Module and Poisson Number** as 0.1, 210 and 0.3.

|               | Bour                                           | ndary domain   |                 |
|---------------|------------------------------------------------|----------------|-----------------|
|               |                                                | Domain Mesh    |                 |
| Density Value | • • 0.10 · · · · · · · · · · · · · · · · · · · | Density Value  |                 |
| Young Modul   | └──�210└─────                                  | Young Modul    | Boundary Domain |
| Poisson numb  | er ••••••••••••••••••••••••••••••••••••        | Poisson Number |                 |
|               |                                                |                |                 |

Step 4: Set Boundary Condition

Use **Surface load** component to connect *Load surface input* with the surface in Step 2. Set *Load Value* as -5. Link *support input* of **Boundary Conditions** to the support in Step 2.

![](_page_2_Figure_7.jpeg)

Step 5: Set resolution

Use **Resolution** component to define a resolution: resolution size = 1.

|               | Reoslution |                   |
|---------------|------------|-------------------|
| Number Slider | 1.0 0      | Size 🗙 Resolution |
|               |            | Size              |

Step 6: Select GPU model

If you use NVIDIA graphic card with Cuda Computation Capability, you can select GPU **Model** to solve the TO problem. Connect **Boundary Domain, Boundary Condition Setup, and Resolution** with the inputs of GPU **Model** component.

![](_page_3_Figure_3.jpeg)

Step 7: Connect with TO Optimus component

Link GPU model to **Optimus** solver. Drag **Analyzer Parameters** and **Optimus Parameters** components to the interface and connect them with the **Optimus** component. Set the optimization iteration as 40.

![](_page_3_Figure_6.jpeg)

Step 8: TO solver

Click the **Boolean Toggle** component connected with *Run* input to solve the TO problem.

![](_page_4_Figure_0.jpeg)

### 2.2. TO result output

Step 1: Iso mesh output

Change Iso value to find a valid Iso mesh.

![](_page_4_Figure_4.jpeg)

Step 2: Smooth the TO mesh result

Use **Unify Mesh, Align Vertices, Weld Mesh,** and **Smooth Mesh** components to obtain a valid mesh with smooth boundary. Or use **QuadRemesh** command in Rhino 7 to have a SubD TO result.

| - Model                            |               |                                                                            |                                                |                     |        |
|------------------------------------|---------------|----------------------------------------------------------------------------|------------------------------------------------|---------------------|--------|
| Iso Value Mesh Count<br>Deflection | Angle Result  | <ul> <li>Mesh</li> <li>Strength</li> <li>Skip Naked 🤗 Mesh &gt;</li> </ul> | Closed                                         | Mesh m <sup>3</sup> | Volume |
|                                    | Number Slider | Limit                                                                      | Quadrangulate Amount<br>Openings<br>Result Boo | olean               |        |
|                                    |               | 33ms                                                                       | 17ms                                           |                     |        |

![](_page_5_Picture_0.jpeg)

Step 3: Model preview

Use Voxel Mesh and Element Data Preview components to show more model results.

![](_page_5_Figure_3.jpeg)