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ARTICLE INFO ABSTRACT

Keywords: Research into alternative renewable energy generation is a priority, due to the ever-increasing concern of climate
Microbial fuel cells change. Microbial fuel cells (MFCs) are one potential avenue to be explored, as a partial solution towards
Electromicrobiology combating the over-reliance on fossil fuel based electricity. Limitations have slowed the advancement of MFC
Microbiology development, including low power generation, expensive electrode materials and the inability to scale up MFCs
]élrzc;;';i};emmry to industrially relevant capacities. However, utilisation of new advanced electrode-materials (i.e. 2D nanoma-

terials), has promise to advance the field of electromicrobiology. New electrode materials coupled with a more
thorough understanding of the mechanisms in which electrogenic bacteria partake in electron transfer could
dramatically increase power outputs, potentially reaching the upper extremities of theoretical limits. Continued
research into both the electrochemistry and microbiology is of paramount importance in order to achieve in-
dustrial-scale development of MFCs. This review gives an overview of the current field and knowledge in regards
to MFCs and discusses the known mechanisms underpinning MFC technology, which allows bacteria to facilitate
in electron transfer processes. This review focusses specifically on enhancing the performance of MFCs, with the
key intrinsic factor currently limiting power output from MFCs being the rate of electron transfer to/from the

anode; the use of advanced carbon-based materials as electrode surfaces is discussed.

1. Introduction

Energy generation, storage and consumption are topics that are
increasingly prevalent within modern research fields and are of global
interest and importance [1,2]. Research into alternative renewable
energy generation sources are increasing exponentially, with vast re-
search showing promising results, in an abundance of areas including:
solar [3], wind [4], tidal [5], geothermal [6] and biomass energy
generation (Fig. 1) [7,8]. Currently no individual renewable energy
source has the ability to compete with and replace the conventional
fossil-fuel based energy generation approach, however, combining re-
newable energy sources such as, solar-wind hybrids and/or solar-hy-
drogen fuel cells may be alternative routes to be explored [9,10].

One potential alternative energy source is the use of microbial fuel
cells (MFCs). MFCs follow a similar concept to traditional fuel cells
(Fig. 2). However, MFCs utilise the bio-catalytic capabilities of viable

microorganisms and are capable of using a range of organic fuel
sources, by converting the energy stored in the chemical bonds, to
generate an electrical current instead of relying for example, on the use
of metal catalysts [1]. Microorganisms, such as bacteria, can generate
electricity by utilising organic matter and biodegradable substrates
such as wastewater, whilst also accomplishing biodegradation/treat-
ment of biodegradable products, such as municipal wastewater [1,11].
Table 1 provides an overview of the current literature of MFCs. Clearly,
significant attention has been given to MFCs cells due to their ambient
operating conditions (e.g. utilisation at low temperatures) and a variety
of biodegradable substrates as fuel. This review aims to highlight the
current understanding of MFCs, whilst giving a thorough overview of
the field. Particular emphasis is placed upon the fundamentals of MFC
technologies, electrode materials, mechanism of electron transport and
field standardisation. Further, this review focusses specifically on en-
hancing the performance of MFCs via the optimisation of specific
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Fig. 1. A) Average power outputs of a range of fuel technologies, including both traditional energy sources (i.e. coal and natural gas) and alternative/renewable
energy sources. B) Shows the average efficiency range of these fuel sources. Note that MFCs require further and sustained research to compare with other energy

sources. Data obtained from [106,112,294-296].
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Fig. 2. Schematic of a typically employed two-chamber microbial fuel cell
highlighting the various electrochemical and electro-microbiological processes.
Figure adapted from reference [1].

parameters, with the hope of highlighting the main limiting factors and
bringing them to the forefront of future investigations.

1.1. History of MFCs

The first recorded occurrence of electrochemical activity between
bacterial/fungal (yeast) species and electrodes can be traced back to the
early 20th century, reported by Potter, where live cultures of Escherichia
coli and Saccharomyces spp., produced electricity using platinum macro-
electrodes in a battery type setup with sterile media [12]. This was later
confirmed by Cohen in 1931, who reported a voltage of 35 V at a
current of 0.2mA from a stacked bacterial fuel cell system [13]. Al-
though these publications are often referred to as the origin of elec-
tromicrobiology, it was not until 1963 when a National Aeronautics and
Space Administration (NASA) space program demonstrated the oppor-
tunity to recycle and convert human waste to electricity during space
flights [14-16]. In 1990, pioneering work from Habberman and
Pommer first reported a long-term MFC. In this study, the MFC in
question was employed in continuous service, for 5 years (ie. from
1986), utilising municipal wastewater, without malfunction or
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Table 1 (continued)

References

Energy output

Suggested mechanism

Fuel/substrate

Microbial composition

Cathode material

Anode material

[289]

2083 mW m 2

Anaerobic sludge — Acetate

Stainless steel net with wet-proof gas diffusion layers, and Mixed community
a catalyst layer (86 wt% activated carbon powder, 12 wt%
PTFE, and 2 wt% acetylene black powder, containing

5mgcm ™2 MnO2/GNS catalyst)

Platinum rod

MnO,/functionalised graphene nanosheets

[290]

1624 mWm 2

Glucose

E. coli

Graphene oxide/SnO, composites coated onto

graphite
MWCNTs coated onto carbon cloth

[291]

65 mWm ™2

Domestic wastewater —

Acetate

Mixed community

Carbon cloth coated with CNTs or Carbon cloth coated

with CNTs and 0.5 mg cm ~ 2 of Pt catalyst or Carbon cloth
coated with CNTs and 0.5 mg cm ™2 of Pt catalyst and PEM

fused directly
Carbon paper

1060 mW m ~2

[292]

Lactate

S. oneidensis

Graphene/TiO, composites coated onto carbon

paper
Graphene oxide/CNTs coated onto hydrogel

[293]

434mWm™?

Glucose

E. coli

Carbon cloth

Key: CNTs — carbon nanotubes; MWCNT — multi-walled carbon nanotube; N/A - not available; PBS — phosphate buffer solution.
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maintenance [11]. Further, this study for the first time reported indirect
electron transfer (a mechanism of electron transfer, which allows spe-
cific bacteria to donate electrons) via soluble mediators, the example in
this study was sulphate/sulphide [11]. To the best of the authors’
knowledge, this study was also the first time that the treatment of do-
mestic wastewater was reported [11,17]. In 1999, it was discovered
that mediators were not an essential component within MFC config-
urations, this allowed MFCs to be developed without the need for ex-
pensive mediators [18-20]. Following this, an exponential increase in
interest occurred within the field of electromicrobiology research,
which now boasts over a thousand energy-generation-cells reported in
the literature, and the first commercial prototypes are expected soon
[21].

1.2. Fundamental bioelectricity generation in MFCs

The development of a bio-potential, due to the bacterial metabolic
activity in the anodic compartment (i.e. reduction reactions, generating
both electrons and protons), and electron acceptor conditions in the
cathode (which are separated by a membrane), leads to the generation
of bioelectricity in MFCs [22,23]. In the anodic compartment, the
electrochemically active microorganisms can donate electrons to an
anode, which are liberated by oxidising organic/inorganic waste (e.g.
the fuel), thus producing a source of energy [1]. An example of an
oxidation reaction that takes place by electrochemically active bacteria
in the anodic compartment, using acetate as a fuel source can be
summarised as [24]:

CH; COO~+4H,0—2HCO;+9H*+8¢~ )

Electrochemically active microorganisms capable of donating elec-
trons have been previously defined by Logan as exoelectrogens [25].
Other synonyms used throughout the literature include, anode respiring
bacteria, [26] electrochemically active bacteria [27,28] and electrici-
gens [29,30]. Microorganisms capable of accepting electrons have been
termed, exoelectrotrophs [31,32]. Protons produced via the electro-
chemically active bacteria in the anode diffuse through a half-cell se-
parator (e.g proton exchange membrane (PEM)) into the cathodic
compartment. In the cathodic compartment, oxygen is primarily used as
the oxidant, due to its abundance and high reduction potential [33,34].
However, the oxygen reduction reaction (ORR), remains one of the
contributing bottleneck factors which is inhibiting further optimisation
and therefore improvement of MFC configurations, due to both high
over-potentials and low kinetics observed [33,35]. Other studies have
shown the application of metal oxidants in the cathodic compartment,
examples include, copper, cadmium and chromium [35-40]. Once the
protons have diffused through the PEM into the cathode they can
combine with oxygen that is present, leading to the generation of water
via the following oxygen reduction reaction (ORR), which can be
summarised as [41,42]:

Oy+4H*+4e—2H,0 )

In order to be classified as an MFC, a device must be capable of
having its fuel source, which is oxidised at the substrate-anode interface
(e.g. wastewater), replenished either intermittently or continuously,
otherwise the system is not referred to as a MFC, but rather, it is bio-
battery [24]. The majority of MFC configurations are often utilised as
anaerobic devices. This is due to the anaerobic conditions required by
bacterial species’ currently seen as the “gold standard” in regards to
electron transfer properties e.g. Geobacter sulfurreducens [21].

MFCs are routinely operated as closed-system devices, where the
anodic compartment is kept under anaerobic conditions. This is re-
quired in order to facilitate the growth of obligatory anaerobic bacteria
capable of electron transfer, such as G. sulfurreducens [21]. To date, fuel
sources with bacteria that have been identified as being capable of
partaking in electron transfer include wastewater, marine sediment soil,
freshwater sediment, soil and activated sludge (Table 1) [43,44].
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Bacteria in such systems are able to produce electrons by oxidising
substrates that are isolated in the anodic compartment. These electrons
flow from the anode to the cathode (positive terminal) via an external
circuit, this leads to the production of electricity due to the difference in
potential coupled to the electron flow [24,45]. Protons that are pro-
duced at the anode are able to migrate through the solution and across
the PEM [46]. PEMs are the most frequently used separators in MFCs
due to their desirable properties such as, high conductivity to cations,
selective permeability to protons, low internal resistance and the ability
to undergo long periods of inactivity without having a detrimental ef-
fect on the MFC [47-49]. Once at the cathode, the electrons are able to
combine with both protons and water to form oxygen. Currently, the
maximum power densities that microorganisms are theorised to be
capable of producing have not yet been reached. Theoretically, a single
Escherichia coli cell that replicates twice every hour with a volume of
0.491 um?® has the potential to produce ca. 16,000 kW m 3 [50]. De-
pending on the energy gain by the bacteria and the loss of energy at the
cathode, a voltage of between 0.3 V and 0.5 V is usually obtained when
using energy sources (fuels) such as glucose and acetic acid [50]. The
current produced from a MFC is dependent on the rate of substrate
biodegradation, whilst the maximum theoretical cell voltage also
known as the electromotive force, is dependent on the Gibbs free energy
(a thermodynamic quantity equal to the enthalpy of a system, plus the
temperature and entropy) of the overall reaction [51]. This can be
calculated as the difference between the standard reduction potentials
of the specific anodic substrate and the cathodic oxidant [17,24,52].
However, a MFCs electromotive force does not factor in internal losses
(ie. resistance) and therefore experimental values are subsequently
always significantly lower than theoretically obtained values [24,51].

Most modern MFC technologies developed thus far utilise waste-
water as a fuel source, working on the basis of recovering energy via the
biodegradation of organic-rich waste [1]. The ability to generate elec-
tricity from wastewater could play a pivotal role in the production of
renewable energy. In 2012, it was reported that 5% of the USA’s total
energy consumption was used to facilitate water and wastewater
treatment facilities [53]. However, for the adequate treatment of was-
tewater (to relevant regulations and standards), issues surrounding the
effluent quality of MFC treated wastewater are yet to be addressed
sufficiently [54]. The treatment of wastewater by MFCs alone, may not
be a viable option due to stringent effluent quality requirements [54].
Therefore, the addition of other steps such as MFCs integrated with
membrane technology and conventional treatment technology (post
MFC stage) may also be required [54-56]. MFCs offer a significant
advantage over other renewable energy sources, as they can be applied
towards wastewater treatment. Another advantage of MFC technologies
is it is less dependent in comparison to other renewable energy tech-
nologies (i.e. solar and wind) upon geographical location and seasonal
change [17]. Ye et al. [57] have previously demonstrated a sediment
MFC which was capable of power output in temperatures ranging from
4°C to 35°C. Further, MFCs can generate hydrogen from the fermen-
tation of sugars in wastewaters, which can then in turn be utilised as a
fuel source in other renewable energy technologies [29]. Oh et al. [58],
investigated hydrogen production from food processing wastewaters in
conjunction with electricity production.

The model bacterial species currently used in MFCs are iron-redu-
cing species such as Shewanella spp., and Geobacter spp [25]. These
bacteria have the ability to degrade organic matter for nutrient cycling,
for example iron oxides found in both soil and sediments [59]. Graphite
macro-electrodes (unpolished; grade G10, geometry: sticks) have been
used to grow such bacterial species as G. sulfurreducens, where acetate
was used as an electron donor (2 mM) [60].

1.3. Structural configurations

The structural configuration of MFCs varies considerably, ranging
from single and two-chamber configurations and with or without the
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utilisation of a PEM [46,61,62]. Fig. 2 provides a schematic presenta-
tion of a typically utilised MFC configuration which comprises of two-
chambers, an anodic chamber and a cathodic chamber which are con-
nected by a half-cell separator, with the most commonly utilised se-
parators being, PEM’s, salt bridges and ceramics [41,63,64]. This allows
protons to move freely to the cathode due to a potential gradient, whilst
inhibiting the diffusion of oxygen (or the electron acceptor utilised in
the cathodic compartment) to the anode where it can have a potential
detrimental effect on the bacteria present.

The structural design of the compartments can vary dramatically in
order to enhance power outputs of MFCs. Two-compartment MFCs are
typically utilised with a defined medium (such as glucose or acetate)
and ran in batch mode. MFCs can also be operated in a continuous
mode) and are currently used in laboratories to optimise MFC power
outputs [1]. Examples of two-compartment MFC designs include, con-
ventional rectangular shaped MFCs, [1,65,66] cylindrical shaped MFCs,
[67-70] miniature MFCs, [71-73] up-flow mode configurations [74,75]
and flat plate MFCs [76,77].

Miniature MFCs are receiving considerable attention in both fun-
damental and applied studies, due to their intrinsic advantages [71].
Miniature MFCs are capable of generating electricity at the millilitre to
microlitre scale [71]. One example of a miniaturised MFC has been
demonstrated by Mink et al [78]. In this study, a MFC was fabricated
with a graphene anode and an air cathode, with a working volume of
25 pL, whilst utilising human saliva as a fuel source [78]. This config-
uration produced a maximum current density of 1190 A m ™3, this was
higher than any previous air-cathode micro-sized MFC [78]. Interest-
ingly, in this study, the utilisation of graphene resulted in a 40 times
increase in power than that of the carbon cloth control [78]. These
findings could potentially result in saliva-powered appliances, utilising
MFC technology for both Lab-on-a-Chip and point-of-care diagnostic
devices [78]. Further, miniature MFC configurations have shown po-
tential promise as power sources for long-term underwater or littoral
autonomous sensors, as MFCs can scavenge nutrients from the en-
vironment allowing for the electrogenic biofilm to be sustained at the
anode [1,79]. Miniature MFC configurations would be particularly
beneficial in isolated regions as Ringeisen et al. have shown that the
power output of MFCs is more sensitive to diffusion distance through
the PEM, rather than electrode size, thus allowing for more effective
power outputs in miniaturised configurations [80].

Up-flow mode MFC configurations have received vast attention, due
to their increased suitability for application in wastewater treatment,
due to their relative ease to scale-up to industrially relevant sizes [1].
Min and Logan developed the flat plate MFC, in order to replicate the
parameters utilised in traditional hydrogen fuel cells, where the elec-
trodes are usually combined into a single strip separated by a PEM; thus
allowing the electrodes to be kept in close proximity to enhance proton
conduction between the two electrodes [76]. However, in the case of
MECs, PEMs such as Nafion are often utilised which are permeable to
oxygen, this could have a detrimental effect on obligate anaerobes if
used as the bacteria of choice in the anodic compartment [76].
Therefore this prototype was tested to evaluate if the design was more
beneficial than the risk of oxygen permeation to the anode [76]. The
results from this flat plate MFC configuration showed a maximum
power density of 72 mW m~2 when domestic waste water was utilised
as the fuel source, this represents a 2.8 times increase in power output
when compared to that of a single chambered MFC design, tested by the
same research group [76]. Other structural configurations have been
utilised throughout MFC technologies, and designs such as tubular
configurations have been developed and shown to be advantageous
towards increasing power outputs [81,82].

Sediment microbial fuel cells (SMFCs) have been intensively ex-
plored for energy generation from natural sediment, with recent focus
in particular on their application for wastewater treatment [83]. SMFCs
produce electrical current from the organic matter content of sediments
using bacterial metabolism. SMFCs differ from other MFCs due to their
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essentially complete anoxic conditions at the anode and their mem-
brane-less structure, where the sediment/water interface acts as the
membrane [84,85]. However, SMFCs have been criticised, as such set
ups are unlikely to generate considerable amounts of electrical energy
in order to compete with other energy sources. This is due to their re-
ported limitations, such as large internal resistance and issues arising
from scaling up, as increasing electrode size can result in a decrease in
power density [83,86]. Despite this, research into SMFCs has intensified
recently due to their realised dual functionalities allowing for electricity
generation and wastewater treatment via the removal of specific con-
taminations [83]. A study in 1989, using a non-corrosive stainless steel
mesh that was plated with platinum black and utilised as the anode,
produced a current density of (ca. 60 uAcm_z) with Enterobacter
aerogenes [87].

Due to their complex architectural designs, it is difficult to scale up
two chambered MFC configurations [1]. Single chamber configurations
offer simpler designs and eliminate the need for a cathodic chamber, as
the cathode is exposed directly to the air [1]. This allows for greater
financial efficiency, due to the lack of requirement for a cathodic
compartment and electron acceptors. Note, because passive oxygen
transfer to the cathode does not require air sparging of the catholyte,
which is an energy intensive process, this further reduces financial
expenditure [88]. The protons produced in the anodic compartment are
transferred from the anolyte solution to the porous air-cathode [88].
The first reported single chamber MFC was developed in 2003 by Park
and Zeikus [89]. This comprised of a rubber bunged bottle with a
centrally-inserted anode and a window-mounted cathode which con-
tained an internal proton-permeable porcelain layer, when sewage
sludge was used as the biocatalyst, a maximum power density of
788 mW m ™2 was obtained [89].

In order to attempt to scale up MFC technologies to an industrially-
relevant level, it has been previously demonstrated that a miniatur-
isation and multiplication approach is one viable route to scale up
power output, as opposed to merely increasing the reactor size [90-93].
In light of this, stacked MFCs have been developed. Stacked MFCs allow
multiple, individual MFCs to be connected in series or parallel allowing
power outputs produced to be enhanced [94]. Aelterman et al. con-
nected six individual continuous MFC units and produced a maximum
hourly average of 258 Wm ™3, whilst utilising a hexacyanoferrate
cathode and identical graphite granule electrodes (type00514, diameter
between 1.5 and 5mm, Le Carbone, Belgium) [94]. However, Oh and
Logan revealed that when multiple MFCs are stacked together a charge
reversal can occur and this can result in a reverse in polarity for one or
more of the cells and a reduction in power outputs [95]. Voltage re-
versal generally occurs when one or more cells in a stacked MFC con-
figuration experiences a more extreme condition (with one example
being fuel starvation) compared to the other cells [95]. More specifi-
cally, this phenomenon occurs when excessive current is drawn from
the fuel cell, at a higher rate than its fuel delivery can support, subse-
quently this leads to an increase in the anode potential and thus voltage
reversal occurs [94].

Other conditions that can result in voltage reversal and therefore
impair power outputs include, lack of oxygen at the cathode, im-
pedance differences, lack of a catalyst and insufficient fuel [95].
However, a number of studies have demonstrated MFC stacks that have
overcome this issue [95-97]. One example of this is by short-circuiting
a cell demonstrating voltage reversal, researchers have used diodes
connected in parallel in a hydrogen fuel cell due to their low ohmic
resistance, therefore when one or more of the cells are defective, the
MFC can automatically short-circuit [95]. Avoiding fuel starvation i.e.
ensuring there is sufficient substrate at the anode and oxygen at the
cathode (for air-cathodes) has also been shown to reduce the possibility
of voltage reversal [95]. Further, operating the MFC configuration at
lower current densities has also shown to inhibit voltage reversal [95].

One material with the potential of advancing the field of MFCs are
ceramics [98,99]. Research thus far demonstrates that when this
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material is used as a half cell separator, results obtained are comparable
to more conventional ion exchange membranes, with the added benefit
of being considerably less expensive [98]. The first demonstration of
ceramic materials utilised in a MFC configuration was reported in 2003
by Park and Zeikus [89]. In this study, a proton permeable porcelain
separator was employed and positioned between graphite electrodes
[89]. The graphite electrodes contained surface bound mediators, with
the anode containing Mn** and the cathode Fe®* [89]. With E. coli as
the biocatalyst the maximum current density and power density were,
1750 mAm ™2 and 788 mW m 2, respectively [89]. The use of ceramic
membranes has allowed for MFCs to be used in field trials, with one
example being by leropoulos et al. [100]. In this study, the application
of ceramic membranes allowed the cost of the structural materials to be
decreased to as low as 4.14 GBP per m? [101]. This is directly com-
parable with conventional cation exchange membrane, which in 2016
cost 79.17 GBP per m? [101].

In order to increase and optimise the efficiency of MFCs utilising
ceramic materials, it is stipulated that varying the ceramic type (with
one example being earthenware), the porosity of the clay and the
thickness of said ceramic could lead to an increase in power output
[98]. Ceramic electrodes have also been developed, as well as ceramic
chassis/housing units, this is beneficial, as it would allow the manu-
facturing process to be simplified, as the entire unit could be manu-
factured and kilned simultaneously [98,102]. Throughout the literature
there are many studies, which describe the coating of ceramics with
conductive materials [98]. An example of this has been demonstrated
by Thorne et al. in this study porous ceramic electrodes were developed
by coating macroporous titanium dioxide ceramics with a thin layer of
fluorine-doped tin oxide, by chemical vapour deposition [103]. The
power density obtained by the modified ceramic electrodes was around
16 times higher than the best performing carbon anode [103].

1.4. Limiting factors

The limiting factors of MFCs are reported to be high-associated costs
(most notably due to electrode materials and the use of PEMs), low
energy outputs and limited life spans; the key intrinsic factor currently
limiting the power output of MFC technologies is the rate of electron
transfer to the anode and the electrochemical properties of the material
[104]. Further, the PEM has been shown to be the main source of in-
ternal resistance (R;,) of MFCs [23,28,105]. In light of these limiting
factors, MFCs are currently unable to attain their theoretical power
outputs and therefore implementation of this technology into industry
is not yet feasible.

The overall efficiency and performance of a MFC can be effected by
a vast array of factors as depicted in Fig. 3. Other performance-limiting
factors have arisen whilst trying to enhance the performance of MFC for
industrial and social applications, these include biofouling (leading to
electrode surface blockage and ultimately a reduction in surface area),
catalyst inactivation (if present) and excessive biofilm growth - possibly
leading to the production of non-conductive debris (Fig. 3) [106]. The
production of non-conductive debris such as polymeric substances and/
or dead cells, can isolate the electrochemically active biofilm from the
electrode surface or with more porous electrodes become entrapped in
the 3D architecture; leading to a potential reduction in available surface
area and ultimately a reduction in current generation [106-108]. A
study conducted in 2017, used cell viability counts and field emission
scanning electron microscopy analysis to show that an increase in high
polarization resistance correlated with the formation of a dead layer of
cells [108]. Further, this study also revealed that the use of ultrasonic
treatment was a verified method of controlling biofilm thickness and
enhanced cell viability, maintaining stable power generation [108].

There have been other biofilm related factors that are thought to
contribute to the performance of a MFC. In a study conducted by Sun
et al. [109], it was revealed that when the predominant bacteria in an
MFC set-up was Geobacter anodireducens, a two-layered biofilm
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Fig. 3. A schematic depicting a number of ways in which performance of MFC
technologies can degrade. Examples here include biofouling (electrode
blockage), inactivation of catalysts and excessive growth of bacterial biofilms
leading to the production of non-conductive debris.

Figure adapted from [106].

developed over time, with an inner dead core and an outer layer of live
cells. Results suggest that the outer layer was responsible for current
generation and the dead inner-layer continued as an electrically con-
ductive matrix [109]. It could be speculated that this continued elec-
trochemical activity could be dependent upon the mechanism of elec-
tron transfer, for example Geobacter spp., are well known for their
electrochemical activity due to nanowires - which may still have a vi-
able connection to the electrode surface, even through the non-con-
ductive debris.

Other attributing factors which can have a detrimental effect on
both the power outputs and the efficacy of a MFC is the inactivation of
electro-catalysts (if present) and the crossover of organic compounds or
electron acceptors from the anode to the cathode (and vice versa). The
crossover of electron acceptors from the cathodic compartment into the
anode has been shown in a previous study to disrupt biofilm formation
and lead to biofilm inactivation, which can considerably decrease MFC
performance, due to the flow of internal currents and the formation of
mixed potentials (i.e. a system that is short-circuited) [110,111].

1.5. Optimisation of MFC power outputs

The power output obtained via MFC technologies can be improved
by a number of ways (Table 2):

The introduction of a magnetic field to living microorganisms pro-
duces a phenomenon known as the magnetic biological effect [121].
This effect has been shown to induce a series of biological reactions in
microorganisms, for example, magnetic fields effect DNA, enzymes and
organisational structure of biofilms, which in turn can lead to an al-
teration in the metabolism of the microorganism [122,123]. The in-
troduction of a high static magnetic field inhibits the physiological
processes in microorganisms, whilst the use of lower static magnetic
fields promotes microbial activity/growth [124]. In one study, the
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Table 2

Possible mechanisms by which to improve the power output.
Mechanism Refs.
Architectural design of the MFC setup [112]
Alternative electrode material selection [113]
Improvement of the cathodes (viable alternatives to platinum) [114]
Closer-spaced electrodes (leading to a decrease in ohmic resistance) [115]
Solution selection (allowing for increased conductivity) [116]
Addition of substrates (more acquiescent to energy production) [21]
Enhancement of appropriate fuel source [117,118]
Introduction of a magnetic field to MFC configurations [119,120]

application of a 100 mT magnetic field increased electricity production
of Shewanella-inoculated MFCs, leading to an increase in the maximum
voltage by 20-27% [125]. This improvement in electricity production
has mainly been attributed to enhanced bioelectrochemical activity,
possibly due to the induction of oxidative stress mechanisms [124,125].

The introduction of a magnetic field has also been shown to affect
the bioelectrocatalytic transformations of several enzymes on the
electrode surface, resulting in accelerated electron transfer at the
electrode-solution interface [126-128]. Yin et al. reported that the
utilisation of magnetic fields (in the range of 0 mT, 100 mT, 200 mT
and 300 mT) led to a decrease in start-up periods of the MFCs, with the
100 mT needing the least amount of time (7 days) to obtain a stable
voltage output [119]. Further, the maximum power density reported,
was produced by the MFC under a 200 mT magnetic field (1.56 Wm ™ 2)
compared to the control MFC with no magnetic field (1.19 mWm~32)
[119]. However, the MFC subjected to a 300 mT magnetic field, pro-
duced a power density of 0.99 Wm ~ 2. Therefore, it was suggested that
there is an optimal intensity magnetic field range, and this could be
dependent on the microorganisms utilised in MFC configurations [119].
Thus, it may be noted, that the influence of the magnetic field on the
cathode of an MFC setup (due to its effect on the electrical behaviour
towards the ORR) needs to be explored comprehensively in order to
optimise this method for application within MFCs [119,129,130].

Other studies have reported that the utilisation of low static mag-
netic fields (= 220 mT) improved the cell performance of a MFC de-
monstrating that the MFC under a 220 mT magnetic field resulted in the
best output voltage (756 mV),compared to the control MFC which had
no magnetic field (360.1 mV). The use of higher magnetic fields with
MECs, such as 360 mT have been shown to exhibit negative effects upon
cell performance. This may lead to a decrease in biomass, lowered
maximum voltage (171.8 mV) and lower pollutant removal in the case
of residual ammonia nitrogen (84.6 *+ 0.5mg LY [120]. It is ap-
parent that before magnetic fields can be used to optimise MFCs,
comprehensive studies must be undertaken in order to optimise this
technique.

The use of catalysts and electron acceptors in MFC configurations is
non-essential and their use is often expensive due to the constant need
to replenish exhausted materials. In order to avoid expensive costs as-
sociated with the use of catalysts/electron acceptors in the cathodic
compartment, research interest is currently directed to replacing these
materials with microorganisms, known as biocathodes, which can assist
and improve cathodic reactions [131]. Both aerobic and anaerobic
biocathodes have been explored, this is of paramount importance de-
pending on the terminal electron acceptor adopted in the cathode. One
example of an aerobic biocathode is Thiobacillus ferrooxidans, and this
bacteria has been shown to regenerate ferric ions, which have been
utilised as electron mediators in the cathodic compartment [131]. An
example of an anaerobic biocathode is Geobacter metallireducens which
has the ability to oxidise ammonia and reduce nitrate (to nitrogen),
leading to denitrification in an MFC configuration [131].
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2. Electrode materials

One area which could potentially be explored in order to optimise
power output from MFCs, are the electrode materials themselves. In
order for a material to be effective as an electrode, it should have a
number of properties. It should ideally be economical and exhibit
beneficial electrochemical properties (i.e. favourable electron transfer)
whilst being mechanically stable, in conjunction with a large surface
area, giving rise to large current densities.

2.1. Materials

The electrode material is a major constituent of a MFC, determining
both the performance and the cost [132]. One of the key areas of cur-
rent research in electrochemistry is to develop new materials in order to
replace platinum [133]. The urgent need to replace platinum is due to
the increased global demand as this is a crucial resource within a ple-
thora of industries, with major applications in catalysts, electronics and
electrodes [133]. This, combined with an inadequate supply (approx-
imate annual global supply is about 200 Mg (metric ton)), has led to a
price surge in platinum making it extremely expensive [133,134].
Platinum may not be suitable as an electrode material for application
within MFCs, as this metal has shown antimicrobial properties which
lead to the inhibition of E. coli division, due to products produced
(cisplatin) from a platinum electrode during electrolysis [135]. In light
of this, carbon materials and non-corrosive metals are currently the
most widely used base electrode materials in MFC configurations, as
these materials meet the above requirements (Table 1) [136]. The se-
lection and optimisation of suitable electrode materials is essential in
order to increase power outputs from MFCs, as the selected material has
been shown to have a significant influence on the release, transfer and
acceptance of electrons between the electrodes and the bacteria
[132,137,138].

2.2. Electrode topography

Electrodes utilised in MFCs not only function as conductors, as with
traditional fuel cells, but the anode material also acts as a support for
bacterial biofilms and therefore must be biocompatible with the bac-
terial cells present. A high surface area is desirable, and a relatively
rough surface is thought to be an ideal surface property in a MFC
configuration, as it helps with the retention of the bacteria to the sur-
face [136]. Surface roughness/area of the electrode materials has also
been shown to play an important role in the generation of electricity
[139]. Walter et al. demonstrated that increasing the total anodic sur-
face area, within a fixed volume chamber resulted in an increase in
volumetric power density of the MFC [139]. Ye et al. demonstrated that
when two glassy carbon plates were polished to uniform roughness in
the order of magnitude of 10’s to 100’s of nanometres, after 275h of
experimentation, the (relatively) rougher electrode surface produced
higher power densities than its smoother counterpart. Surface rough-
ness is a vital parameter that needs appropriate consideration when
selecting electrode materials [140].

2.3. Oxygen reduction reactions

Another potential avenue to explore when trying to enhance power
density outputs of the MFCs is improving the oxygen reduction reaction
(ORR). This takes place in the cathode (compared to the hydrogen
evolution reaction (HER) in microbial electrolysis cells (MECs)) [141].
One way to optimise electricity output is to utilise electro-catalysts or
electrode materials that exhibit enhanced electrochemical properties,
such as boron nitride and molybdenum disulphide. These materials
possess the ability to reduce the over potential of the key electro-
chemical reaction, leading to a marked improvement in efficiency
[49,142-144].
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Feng et al. reported that a nitrogen-doped graphene catalyst (of 2-8
layers) gave rise to the oxygen reduction reaction at facile potentials,
comparable to that of a platinum catalyst, therefore in a MFC config-
uration this could give rise to beneficial outputs of the MFC [145]. The
advantages of nitrogen-doped graphene include being less expensive
than platinum with improved long-term operational stability in com-
parison to commercial platinum electrodes as measured within alkaline
electrolytes [145,146].

Another example of utilising catalysts to improve the ORR in MFCs
has been demonstrated by Li et al. [147] using iron and nitrogen
functionalised graphene sheets (Fe-N-G, ca. > 2 um), which were more
disordered than pristine graphene. The sheets were synthesised and
utilised as a non-precious metal catalyst for use within a single-chamber
air-cathode MFC. This MFC comprised of a cylindrical anode chamber
(5 cm diameter and an effective volume of 40 mL), a cation exchange
membrane and carbon felt electrodes [147]. The catalysed cathode was
placed at a distance of 1 cm from the anode, with its waterproof layer
facing towards air [147]. It was found that when used with MFCs, the
Fe-N-G catalyst obtained the highest power density (1149.8 mWm™2)
in comparison to a pristine monolayer graphene catalyst control,
(561.1 mW m~?) and a commercial Pt/C catalyst (109 mWm ™ 2) [147].

2.4. Capacitive layers

Capacitive bioanodes have been trialled in MFC configurations
[148-151]. In one study by Deeke et al. [148], a capacitive layer was
coated onto a current collector (plain graphite plate electrode). This
consisted of a mixture of activated carbon and a polymer solution,
consisting of N-methyl-2-pyrrolidone and poly(vinylidene fluoride),
this capacitive bioanode was compared against a plain graphite plate
electrode. The cathode utilised in both MFCs was a plain graphite
electrode plate. During polarization curves, the capacitive bioanode
maximum current density was 1.02 + 0.04 A m~2, whilst the control
electrode reached a maximum of 0.79 + 0.003 A m ™2 [148]. During
charge-discharge experiments (with 5min charging and 20 min dis-
charging) the capacitive electrode was able to store a total of 22,831C
m~2 compared to the control (non-capacitive) electrode 12,195 C m~ 2
Furthermore, the capacitive electrode was capable of recovering 52.9%
more charge during each charge-discharge experiment [148]. This in-
dicated that the application of capacitive electrodes in MFCs allowed
for simultaneous production and storage of electricity generated [148].

Research from the same group, showed that variation in the thick-
ness of the capacitive layer had an effect on the efficacy of the electrode
[152]. Of the electrodes tested with capacitive layers of, 0.2mm,
0.5mm and 1.5mm, the electrode with a capacitive layer of 0.2 mm
out-performed the other electrodes in all studies. This electrode pro-
duced a maximum current density of 2.53 A m~? during polarization
curves, and during charge-discharge experiments stored a cumulative
total charge of 96,013 cm ™2 [152]. This was the first study to identify a
parameter that can determine the performance of a MFC with a capa-
citor [152].

2.5. Carbon based electrodes

The use of carbon-based electrodes has long been established and
has led to the production of vast amounts of analytical and industrial
applications, due to carbon’s high efficacy in heterogeneous electron
transfer kinetics. Fig. 4 offers a schematic detailing the structure of five
allotropes of carbon [153]. Since the discovery of graphene, there has
been a rapid increase in research interest towards utilising this and
other novel 2D-nanomaterials, especially in the field of electro-
chemistry. Nanomaterials, such as carbon nanomaterials, possess many
reported beneficial properties, which potentially make them ideal for
electrode materials for use within MFCs. Such properties include a large
surface area, enhanced electron transfer and promotion of the adsorp-
tion of molecules [154]. As microbial growth on the surface of metal
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Fig. 4. SEM showing the abundant coverage of an E.coli biofilm adhered to the
surface of a carbon-paste graphite electrode (courtesy of Whitehead et al. MMU,
UK).

anodes can accelerate the corrosion of metals in aqueous solutions,
carbon-based electrodes are currently the material of choice for appli-
cation with MFCs [155,156]. A variety of carbon-based electrode ma-
terials have been trialled for use within MFC setups; these include
graphite rods [46], carbon felts [157], carbon cloths [136] and carbon
meshes [158].

2.5.1. Carbon cloth and felt

Carbon cloth has traditionally been one of the electrode materials of
choice for use with MFCs due to its reported useful conductivity, sta-
bility, commercial availability and relatively inexpensive cost, in
comparison to other carbon-based electrode materials. [88,159] Carbon
cloth comprises long individual carbon fibres, between 5 um and 7 pym
in diameter and is produced via the thermal decomposition of acrylic.
These individual fibres are joined together as a bundle and are then
weaved together to produce the carbon cloth [160].

Carbon felt has also been utilised as an electrode material in MFCs.
One study has compared the efficacy of carbon felt anodes, using bac-
teria isolated from sludge from a domestic wastewater plant. The results
showed that under anaerobic conditions, a maximum power density of
7.07 + 0.45mWm 2 was produced [161]. One study, which com-
pared the electrochemical performance of 2D carbon cloth against 3D
carbon felt (with spaces between the carbon fibres ranging from ca.
20-200 pm), showed that the 2D carbon cloth enhanced the retention of
bacteria. A 39.3% microbial volume ratio was demonstrated as opposed
to the carbon felt, where bacterial retention was only 16.3% [107].
Denaturing gradient gel electrophoresis analysis determined that Delftia
acidovorans, Citrobacter freundii and Ochrobactrum intermedium were
isolated from the sludge and that these bacterial species may be po-
tential electrogenic bacterial species [161]. Further, electrochemical
analysis of the 2D and 3D carbon cloths showed that the 2D carbon
cloth resulted in similar current densities to that of the 3D carbon felt,
around 3.5 A m 2 [107]. This work demonstrated that 2D carbon cloth
had promising potential as an electrode material for MFCs, offering a
large specific surface area reported to be ~ 2500 m* g~ *. Further, there
was an increased biocompatibility when compared to the more tradi-
tional 3D porous carbon felts [162].

2.5.1.1. Limitations of carbon cloth and felt. There are some limitations
of the 3D carbon felt electrode, which were not present in the 2D
carbon cloth, such as the clogging of pores. The clogging of pores in 3D
porous carbon materials by the entrapment of bacterial cells can
ultimately result in cell death. This may lead to a significant
reduction of the active electrochemical reaction surface area, as well
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as a reduction in viable bacteria, thus reducing power outputs [17].
However, limitations have been associated with the use of 2D carbon
cloth as an electrode material in MFCs, for example there is a poor
reaction start-up [163]. This is often attributed to oxygen crossover
from the cathode to the anode which can lead to the inhibition of
current production by exoelectrogenic bacteria [163]. Recent research
has resolved this problem by using a phosphate buffer to increase the
solution conductivity. Further, pre-treating carbon cloth anodes with
ammonia gas, was shown to increase the surface charge of the carbon
cloths, by increasing the amount of amide groups on the surface [164].
The ammonia treatment of the carbon cloth was shown to increase
power production by 48% and reduce start-up time by 50% [164].

2.5.2. Graphite

Graphite has exceptional electrochemical properties, whilst the
biocompatibility of graphite has been determined using scanning elec-
tron microscopy (SEM), as an abundance of a monoculture biofilm (E.
coli) can be seen, adhered to a graphitic electrode surface (Fig. 4). A
study carried out by Chaudhuri and Lovley, demonstrated that in-
creasing the graphite surface area available for microbial colonisation
increased power outputs [165]. This was also demonstrated, when a
two chambered MFC was utilised using a pure culture of Rhodoferax
ferrireducens (anaerobic conditions for the anodic compartment), with
excessive amounts of glucose (10 mM) to act as an electron donor.
Graphite felt electrodes (with a higher surface area) were compared
against graphite rods and a threefold increase in current was produced
(0.57mAm~2 620mV) [165]. The study also compared porous gra-
phite foam electrodes against the graphite rods. It was demonstrated
that even though the geometric surface area was the same, the porous
graphite foam produced a 2.4 fold increase in current (74 mAm ™%
445 mV), which was attributed to the higher concentrations of cells
which were able to adhere to the graphite foam electrodes [165].

2.5.3. Graphene

An example of a new research direction that has the potential to
overcome some of the aforementioned issues would be the use of 2D-
nanomaterials, such as graphene, as an electrode material/surface
coating. Graphene, a two-dimensional (2D) monolayer lattice of sp2
hybridised carbon atoms, has attracted a plethora of interest in both the
scientific and technological communities due to its reported unique
properties [166]. Such properties include high physical strength [167],
high electron mobility/conductivity at room temperature (2.5%10°
em?V~1s™1) [168] and a theoretical surface area estimated at 2630 m?
g~ ! [169]. Graphene is also able to sustain extremely high densities of
current (reported as one million times higher than copper) [170]. Such
properties are ideal for efficient and effective electron transfer, making
graphene a prime candidate for use as an electrode material within
MEFCs.

Graphene has previously been used as the anode material of an MFC
with a pure culture of E. coli and delivered a maximum power density of
2668 m Wm ™2, which was 18 and 17 times larger than the stainless
steel mesh and polytetrafluoroethylene modified electrodes, respec-
tively [171]. Xiao et al. determined the difference between two types of
graphene with varying, multilayer morphology (ca. 50-100 um). These
graphene sheets were more defective than pristine graphene due to the
synthesis method utilised. This involved the thermal annealing of gra-
phene oxide via the Hummers’ synthesis, and crumpled graphene par-
ticles (ca. 0.2-5.0 um) produced via an aerosol-assisted capillary com-
pression process [172,173]. These varying graphene morphologies were
coated onto carbon cloth electrodes (loading rate: ~ 5mgcm™2) and
tested to determine if the difference in surface area/surface roughness
had a direct effect on the power density produced by the MFCs [172].
The results showed that modification of the graphene morphology from
graphene sheets to crumpled graphene particles led to an increase in
both surface area and the power density (3.6 Wm™>). This was twice
that of the activated carbon modified electrode (1.7 Wm™3) [172].
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Fig. 5. SEM showing varying morphologies of carbon — based electrodes: (A) carbon fibres in unmodified carbon cloth; (B) regular r-GO sheets deposited on carbon
cloth; (C) crumpled r-GO particles before being applied onto carbon cloth; and (D) crumpled r-GO particles stacked on carbon cloth. E) The polarization curves
(below the SEM images) show the electricity generation from the carbon - based electrodes, indicating that the reduced graphene oxide particles produced the highest
power density, possibly due to the higher electrode surface area as observed in the SEM images (D).

Figure adapted from reference [172].

Fig. 5 offers an insight into this modification of graphene electrode
morphology, showing how by increasing the surface area, an increase in
the power density may be achieved.

The highest recorded power density produced to date, 5.61 Wm ™2 /
11,220 Wm 3, was achieved using a 3D multilayer graphene macro-
porous scaffold anode. The power density produced a 3.3 fold increase
when compared to its planar single-layer 2D control counterparts
[174]. Ren et al. demonstrated the ability to produce highly effective
MFCs whilst utilising advanced 2D nanomaterials, such as graphene, as
the anode/cathode material (Figs. 6 and 7) [174]. It should be noted
that the 2D nanomaterials must be correctly analysed and characterised
for application as MFC electrodes. Raman spectroscopy is a powerful
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tool which can be used to effectively identify and characterise the
number of layers of graphene-based electrode materials [175]. One of
the challenges in the advancement of MFCs for industrial/social end-
point applications (e.g. wastewater treatment) is both the cost and the
reliability. Unfortunately, the production of 2D-nanomaterials such as
graphene is unsustainable for this application, however it is expected
that as more research is invested into the area of nanomaterials, the
production costs will decrease significantly [176].

2.5.4. Carbon nanotubes
Carbon nanotubes (CNTs) are another allotrope of carbon, where
the carbon atoms are arranged in hexagons, like graphite. However,
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Fig. 6. SEM showing A) 3D graphene macroporous scaffold fabricated via chemical vapour deposition, B) monolayer graphene, C) morphology of biofilm adhered to
the 3D graphene macroporous scaffold anode and E) morphology of biofilm adhered to monolayer graphene anode. Optical profilometry images of both the 3D
graphene macroporous and monolayer anodes with biofilms adhered are shown, D) and F) respectively, this allowed the biofilm thickness to be quantified before

SEM was utilised to show morphological differences — C) and E).
Figure adapted from [174].

unlike graphite, the structure of CNTs consist of enrolled tubular gra-
phene in the configuration labelled armchair. This is where the hexa-
gons are orientated parallel to the axis of the nanotube arranged as a
seamless cylinder [174,177,178]. CNTs can consist of one or more
layers of graphene, which can then be denoted as either single-wall,
(SWCNT), or multiwall, (MWCNT), with either open or closed ends
[179]. CNTs have demonstrated excellent electrochemical activity due
to a variety of factors. These include, their edge plane site/defects to
basal plane ratio, chirality, relative size to surface area ratio and na-
nometre-sized diameter and micrometre-sized length, (where the length
of the CNT exceeds the width ratio by one thousand times) [179-181].
SWCNTs and MWCNTs typically have diameters of 0.8-2nm and
5-20 nm, respectively, although the diameter of MWCNT may exceed
100 nm and have a hollow geometry [179,180].
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CNTs have demonstrated enhanced electrochemical performance, in
comparison to more traditional electrodes when utilised within MFC
technologies [182]. Cyclic voltammetry was utilised to compare the
electrochemical activity of a glassy carbon electrode (GCE), with its
surface modified with MWCNTs, using Shewanella oneidensis [182]. The
results found that the use of CNTs raised the current density to
9.70 = pA cm™?, 82 times greater than the GCE control [182]. This
was further confirmed when CNT mat-modified air-cathodes produced
a maximum power density of 329 mW m ~2, which was more than twice
the amount of peak power obtained with carbon cloth cathodes
(151 mWm™?) [183].

The activity of single-walled CNTs with carboxyl groups, multi-
walled CNTs with carboxyl groups and multi-walled CNTs with hy-
droxyl-groups as anodes have also been compared [184]. Multi-walled
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Fig. 7. The MFC with the largest power output reported to date. A) A plot of
power density versus current density, B) A plot of current density against vol-
tage. Varying anodes were utilised throughout this study: control, 2D single
layer graphene, and 3D graphene macroporous scaffold; unless specified, all
data collected at 18 uL min ! (via flow cell set-up).

Reproduced with permission from [174].

CNTs have been reported to provide better results than single-walled
CNTs; a power density of 167mWm ™2 was achieved by the multi-
walled CNT with hydroxyl groups, which was 130% more effective than
the carbon cloth control [184]. MWCNTs with hydroxyl functional
groups are a possible alternative anode material to traditionally used
carbon cloth, due to their greatly improved performance in electron
transfer capabilities, microbial attachment and substrate diffusion/
oxidation rates [184].

2.6. Non-carbon based electrodes

Despite carbon-based electrodes being the electrode of choice in
MEFC configurations due to their versatility in structure, non-carbon
based electrodes have also been utilised in MFCs. In 2007, Dumas et al.
produced a MFC that consisted of a stainless steel anode and cathode.
The anode was embedded into marine sediment, which was coupled to
the cathode in the overlying seawater [84]. The maximum power
density produced by this SMFC configuration resulted in a lower output
(4mWm~2) than the laboratory control (23 mW m~2) [84]. It was
suggested that this might be due to biofilm damage on the cathode, due
to grazing fish and possible damage to electrical connections by waves
[84]. These results can be compared against carbon-based electrodes
utilised within SMFCs (with similar-sized anodes: ~ 0.18 m?) with a
graphite plate anode with a stainless steel cathode (12 mW m~2), plain
graphite electrodes (28 mW m~2) and a single graphite rod anode with
a carbon brush cathode (34 mW m~2) [84,185-187].

Commercial platinum-coated titanium metal (deposited by electro-
plating) and uncoated titanium have also been trailed as non-porous
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Fig. 8. Comparison of a selection of metal electrodes utilised in MFC config-
urations compared to a graphite control. A) Electrochemical performance, with
the red columns showing average maximum current densities achieved and the
blue columns showing the mean values of the slopes of the turnover cyclic
voltammograms. B) Correlation of the electro-catalytic current density against
biofilm thickness (as determined via confocal laser scanning microscopy).
Figure adapted from [189].

bioanodes, and were compared against flat and roughened graphite
[188]. Polarization curves and impedance spectroscopy showed that
bioanode performance decreased in the order roughened graphite >
platinum coated titanium > flat graphite > uncoated titanium [188].
The uncoated titanium anode produced the lowest current, whilst the
anode potential was considerably higher than the other electrodes
(> —150mV vs. Ag/AgCl at R = 1000 Q) [188]. This result may have
been due to anodic passivation of the titanium, suggesting that un-
coated titanium is an unsuitable anode material for MFC set-ups [188].

A study by Baudler et al. in 2015compared the performance of gold,
silver, copper, nickel, cobalt and titanium electrodes against a graphitic
benchmark (Fig. 8) [189]. The average maximum current densities
demonstrated that of the three most noble metals, copper produced the
highest maximum current density (1515 p.Acm_z), followed by gold
(1175 pA cm~?2) and silver (1119 pA cm ™~ 2), which were slightly higher
than that of the graphite control (984 pA cm™2) [189]. The results for
silver and copper are surprising, as these metals are well established in
their application as antimicrobial metals, and have been studied ex-
tensively i.e. for implementation as surface coatings for medical de-
vices/equipment [190-192]. However, it was demonstrated that elec-
trochemically active, electrode respiring bacteria from secondary
biofilms (which are highly Geobacter dominated) have the ability to
adhere to, colonise and form highly active biofilms on both copper and
silver electrodes. These produced biofilm thicknesses of 249 = 21 um
and 154 + 10 um, respectively [189]. In light of this, copper and silver
electrodes could play a pivotal role in the optimisation of MFCs. Of the
non-noble metals (titanium, cobalt, nickel and stainless steel) stainless
steel produced the highest average maximum current density
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(674 pA cm~2) followed by nickel (384 pA cm ™ 2). However, the current
densities produced by cobalt and titanium were negligible in compar-
ison to the other electrode materials [189]. This marked decrease in
current density by the non-noble metals may be attributed to the for-
mation of metal oxides, acting as a barrier in charge transfer processes
between the biofilms and the metals [189,193].

The suitability of gold electrodes for use within MFCs has also de-
monstrated by Ritcher et al. which were used in conjunction with G.
sulfurreducens (ATCC 51573), with 10 mM acetate as the electron donor
and 40 mM fumarate as the electron acceptor [194]. The results showed
that the current stabilised at 0.4-0.7 mA after ca. 6 — 10 days and that
this maximum current was comparable to carbon fibre anodes under
the same conditions [194,195]. The ability to transfer electrons to the
gold anode was postulated to be due to the direct contact between G.
sulfurreducens via micro-nanowires (pili). However, work by others has
suggested that using gold electrodes with Shewanella putrefaciens, was
not suitable for use within MFCs [196]. A possible explanation for this
variation in electrochemical response between the bacterial species’
could be due to the differences in electron transfer mechanisms, as G.
sulfurreducens is associated with direct electron transfer, whilst S. pu-
trefaciens is associated with redox proteins displayed on the surface of
bacterial cells, such as c-type cytochromes [60,194,197]. Thus, the
interactions of the different electrochemical pathways of the bacteria
with the surfaces may have resulted in the conflicting results.

3. Mechanisms of electron transport

Exoelectrogenic bacterial species have the ability to facilitate elec-
tron transfer via two mechanisms, direct and indirect electron transfer
[198]. Direct electron transfer requires a physical connection between
the bacterial cell and the electrode surface, namely nanowires and/or
redox-active proteins. Indirect electron transfer does not require a
physical connection but instead this mechanism relies on electron
shuttling molecules [199]. There are currently 3 established methods of
electron transfer (e.g nanowires, membrane bound cytochromes and
electron mediators) which bacteria can utilise to donate electrons to the
anode in a MFC configuration (Fig. 9) [200].

Electron mediator

nanowire

Conductive
extracellular matrix

Fig. 9. Three methods of electron transfer demonstrated by exoelectrogenic
bacteria, including; direct electron transfer — conductive pili denoted within the
literature as nanowires and redox-active proteins, and indirect electron transfer
by electron shuttles.

Reproduced with permission from [200].
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Fig. 10. A) SEM showing the difference in morphology of flagella and pili on
the surface of E. coli. Due to this distinct difference in properties, we propose
the terms “micro-nanowires” and “macro-nanowires” in order to describe pili
and flagella, respectively, in terms of electron transfer properties in MFC con-
figurations. Section A image, courtesy of Whitehead et al. MMU, UK. B)
Transmission electron microscopy showing G. sulfurreducens strain GUP, (top
part of the image), expressing abundant micro-nanowires. This allows the
bacteria to reduce metals, such as iron oxide, and donate electrons to the anode
in a MFC set-up.

Section B, adapted from [208].

3.1. Direct electron transfer via conductive pili

Bacterial colonies isolated in the anodic chamber of a fuel cell are
incapable of transferring electrons directly to the electrode [1]. How-
ever, anodophiles have the ability to use electrons (in the anode) as
their end electron acceptor. Thus, these specific bacterial species are
involved in electron transfer, leading to the generation of an electrical
charge [201]. A major breakthrough in MFC technology was observed
by Kim et al. who demonstrated that electron transfer does not always
need mediator (electron transfer) compound molecules [157]. The
bacterial cell surface of specific isolated bacterial species, such as She-
wanella spp., and Geobacter spp., have micrometre long proteinaceous
filaments that extend from their outer surface into the extracellular
matrix. These appendages are thought to be involved in extracellular
electron transport processes, referred to as microbial nanowires — due to
their long filament-like appearance and conductive attributes [202].

Nanowires can be either flagella or pili, both of which have very
distinct properties, and therefore we propose the terms micro-nano-
wires and macro-nanowires (Fig. 10). Traditionally, the major role of
the flagellum of bacteria is to mediate the motility of the cell via
swarming and swimming, allowing for colony expansion on a surface.
One of the roles of Type IV pili is to mediate twitching to pull the cell
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across a surface (often in dense aggregates) [203]. Nanowires have the
ability to partake in direct electron mediated transfer. Type IV pili play
vital roles in secretion systems for effectors, microbial adherence and
bacterial movement, establishing contact between the bacterial species
and the electrode surface [204]. Reguera et al. showed that wild type G.
sulfurreducens could attach to Fe(III) oxides after 48 h, as demonstrated
by an increase in biomass. However, in the same time period, the pilA-
deficient strain could not grow, which was indicated by a decrease in
biomass [205]. In regards to the bacterial species evaluated for elec-
tricity generation for potential application in microbial fuel cell tech-
nologies, G. sulfurreducens is currently the “gold standard”, producing
the highest recorded current densities of any known pure culture, uti-
lising micro-nanowires (Fig. 10) [206-208].

G. sulfurreducens is a Gram - negative, §-proteobacterium, and is a
rod shaped, non-fermentative, obligate anaerobe, with flagella and type
IV pili production. G. sulfurreducens is able to generate energy in the
form of adenosine triphosphate, due to its ability to reduce metals such
as Fe(III), by using metal ion-mediated electron transport mechanisms
to oxidise organic compounds to CO, [209]. The electrically conductive
pili of G. sulfurreducens play a pivotal role in long-range electron
transfer. Pilus conductivity is dependent upon pH levels, with a re-
duction in conductivity observed in a higher pH (pH 10) - 37 + 15 pS
cm~!. However, a marked increase was noted at pH 2, where the
electrical conductivity of 188 = 33 mS cm ™' was also produced from
individual pili [210].

It is thought that the reduction of iron (and other metal) oxides by
G. sulfurreducens requires direct contact between the bacteria and the Fe
(III) oxides. This is in order to reduce equivalents from the tricarboxylic
acid cycle (TCA), also known as the Krebs cycle [211]. This ability to
locate (via chemotaxis) and reduce Fe(III) oxides in order to use them as
terminal electron acceptors is advantageous in subsurface environments
due to the abundance of Fe(IIl) oxides [209,212]. Both nicotinamide
adenine dinucleotide phosphate (NADPH) and nicotinamide adenine
dinucleotide (NADH) have the capability to transfer reducing equiva-
lents to the electron transport chain, during fumarate reduction by G.
sulfurreducens. This provides a source of ATP from the iron oxides
[211].

The current density generated by a monolayer of planktonic cells
attached to the surface of an electrode is limited by the surface area of
the electrode. It is thought that this is presumably due to a lack of
available space for the nanowires to adhere to, thus leading to a re-
duction in direct electron transfer [213]. Therefore, it is of little sur-
prise that conductive biofilms (which are many layers thick) have the
ability to produce much higher power and current densities, due to
multiple layers of bacteria contributing to the overall net energy gen-
eration. Friman et al. described a current generation (under a constant
external resistor of 1kQ) of 125 mA m~2 from planktonic cells as op-
posed to 541 mAm ™2 from an established biofilm, where acetate was
used as the substrate with a pure culture of Cupriavidus basilensis [213].
Conductivity measurements with G. sulfurreducens in biofilm formula-
tions have shown high conductivities, even rivalling those of synthetic
conductive polymers [207]. G. sulfurreducens, in multi-layered biofilms
of an average height of 40 um ( = 6 pm), produced a maximum current
of 12mA, while the planktonic cells produced a maximum current of
2.5mA, [205] after 4 days of incubation using a continuous batch
method [214].

3.2. Direct electron transfer via redox-active proteins

Most studies suggest that the direct contact by pili of the conductive
bacterial biofilms and the iron oxides is essential for the reduction of
iron oxides. However, another mechanism of electron transfer requires
redox active proteins and allows for short-range electron transfer to
take place [215]. C-type cytochromes are commonly known for their
primary function in mitochondria, as these molecules play a pivotal role
in ATP synthesis [216]. Smith et al. revealed that deletion of the gene
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encoding for PilA, a structural pilin protein in the KN400 strain of G.
sulfurreducens inhibited iron oxide reduction [217]. One possible ex-
planation for the continued iron reduction even with structurally da-
maged pili is the utilisation of c-type cytochromes, such as OmcS and
OmcE [218].

C-type cytochromes were found in abundance on the surface of G.
sulfurreducens cells, with OmcS and OmcE being the most commonly
isolated. It has been shown that when either omcS or omcE genes were
deleted, reduction of iron (III) oxides could no longer take place [219].
Immunolocalization and proteolysis studies have also demonstrated
that the cytochrome, OmcB is essential for optimal Fe (III) reductions, it
is both highly expressed during growth upon electrode surfaces and is
embedded in the outer membrane of the cell [220-222]. It has been
suggested that bacteria such as G. sulfurreducens developed this ability
to reduce metal oxides such as iron, due to being isolated in harsh
environments surrounded by large quantities of insoluble materials.
Therefore, natural selection and evolution have led to the production of
effective strategies to overcome the lack of ATP production that is
usually achieved by more conventional methods, i.e. aerobic respiration
[223,224]. Thus, the genome of G. sulfurreducens gained the ability to
reduce iron oxides due to selection pressure. Therefore, it may be
speculated that such mutations may lead to improved degradation of
iron oxides, in order to increase ATP production [225,226].

3.3. In-direct electron transfer via electron shuttles

Bacteria can generate electricity due to the production of secondary
metabolites, which are able to act as endogenous redox mediators, often
referred to as electron shuttles. Electron shuttles are organic molecules
with a low molecular weight that have the ability to catalyse both re-
duction and oxidation reactions, using for example phenazines and
quinones [227]. Bacterial cells can utilise both added/in solution
(exogenous) or self-produced/on bacterial cell surface (endogenous)
shuttle compounds for extracellular electron transfer. However, for ef-
fective electron transfer to take place, electron shuttles must be both
chemically-stable and not easily biologically degraded (Fig. 11) [227].

Unlike conductive pili, electron shuttles eliminate the need of direct
contact between the bacterial cell and the electron acceptor (which in
the case of MFCs is the electrodes) [202]. Within the bacterial cells,
electrons are first transported to the cell surface via a metabolic
pathway, which involves redox-active proteins and low molecular
weight compounds. Subsequently, electrons are then transported to
cytochromes or potential shuttles in either the periplasm or the outer-
membrane [227]. Soluble electron shuttles can diffuse into the medium
surrounding the bacterial cell, and once outside, the electrons can be
transferred to suitable external acceptors, with examples including

Fig. 11. Exogenous and endogenous redox mediators, capable of partaking in
electron transfer [297].
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insoluble Fe (III) oxides or a MFC anode [227]. Some compounds shown
to be effective electron shuttles include thionine, methyl viologen, 2-
hydroxy-1,4-naphtoquinone, methylene blue, humic acids and anthra-
quinone-2,6-disulfonic acid [228-231]. Other more common examples
of electron shuttles are molecules known as flavins.

Flavins demonstrate enhanced efficiency when partaking in bio-
geochemical iron cycles, and redox potentials, which improves electron
transfer. Thus, flavins have the potential to be applied to MFC tech-
nologies as such molecules can be used as endogenous electron transfer
mediators [232]. Further, the importance of flavins as electron shuttles,
have been shown, as the concentration of flavins increased from 0.2 pm
to 0.6 um to 4.5-5.5um the peak current produced by S. oneidensis
became four times greater [227].

Flavins are often produced as secondary metabolites in bacteria, for
example, riboflavin which is also known as vitamin B2. This compound
has been shown to act as an electron shuttle by Marsili et al. when S.
oneidensis biofilms were analysed [233]. Results showed that the re-
moval of riboflavin from biofilms resulted in a reduction of electron
transfer rate to the electrodes by more than 70% [233]. Another ex-
ample of a flavin is pyocyanin, this has been shown to mediate electron
transfer in MFCs [234]. The concentration of pyocyanin in an anodic
culture has shown a direct correlation to power generation efficiency,
due to its ability to transport electrons through the cell membrane
[235]. Pyocyanin is produced as a secondary metabolite by Pseudo-
monas aeruginosa, it is a water-soluble blue green phenazine compound,
responsible for the green pigmentation often associated with infected
wounds [236]. The production of pyocyanin by P. aeruginosa is of
paramount importance due to its versatile nature. Pyocyanin has mul-
tiple functions including antimicrobial activity against a range of mi-
croorganisms (including bacteria, fungi and protozoa), an electron
shuttle and a key sensing molecule to upregulate the transcription of
quorum sensing genes, leading to biofilm formation [237-245].

3.4. Mixed community microbial fuel cells

The different mechanisms in which bacteria can facilitate electron
transfer has been considered, however, few monoculture strains have
the capacity to produce power densities as great as strains that are in-
oculated in mixed communities. For example, enriched anodic biofilms
have previously been shown to generate power densities as high as 6.9
W per m? (projected anodic area) [25]. Some bacteria found in MFC
biofilms have shown that the cells do not interact directly with the
anode, however through interactions with other bacteria they can still
contribute indirectly to the production of electricity. One example of
this has been demonstrated by Brevibacillus spp., (strain PTH1), which
was found in abundance in a MFC community. Power production from
this bacterial subclass alone is low, however when co-cultured with
Pseudomonas spp., (or supernatant from an MFC community containing
Pseudomonas spp.,) there was a marked increase in electricity genera-
tion [246].

Specific members of fluorescent Pseudomonads can produce and
secreet phenazines i.e. pyocyanin production by P. aeruginosa strains
[243]. The effect of pyocyanin addition to non-pyocyanin producing
MEFC biofilms has shown varying results. Rabaey et al. demonstrated
that the addition of pyocyanin to a pure culture of Enterococcus faecium
(strain KRA3), led to a peak power increase from 294 + 49 uyWm ™2 to
3977 = 612 uW m_z, a 13-fold increase [246]. However, against E.
coli (ATCC 4157), the power output showed a reduction by 50%, after
the addition of pyocyanin (117 + 16y Wm™2 to 50 + 53 yWm 2
[246]. A possible explanation for this could be due to the selective
antimicrobial activity of redox-active proteins such as pyocyanin
[237,238]. Pyocyanin, has shown greater antimicrobial activity against
aerobic bacterial strains; in 1981 Baron and Rowe showed that fa-
cultative anaerobes were two-fold (or more) resistant [237]. The ad-
dition of pyocyanin (or pyocyanin producing strains of bacteria e.g. P.
aeruginosa) to non-pyocyanin producing biofilms could therefore be
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used to increase power outputs. One example, where this approach
could be applied is the degradation of waste/toxic matter (such as to-
luene) to efficiently convert organic matter to electricity in a MFC set-
up [247]. However, significance should be placed upon the selection of
bacteria utilised within mixed community biofilms MFC configurations,
ensuring resistance to the antimicrobial effects of exogenous redox
mediators.

The interactions of mixed community biofilms is complex and is yet
to be fully understood. However, the use of mixed community biofilms,
both inter-bacterial and other microorganisms (i.e. fungi such as yeast)
for MFCs, has vast potential. A pure culture MFC (G. sulfurreducens) was
shown to produce a maximum power of 461 * 8 mW m ™~ 2, compared
to a mixed community biofilm MFC that produced a maximum power of
576 + 25mW m 2 under the same conditions [248]. Another study,
which used the fungus Trametes versicolor and S. oneidensis in combi-
nation, showed that the bacterial-fungal interactions enhanced power
generation, producing a maximum power density of 0.78 Wm ™3 [249].
Fernandez de Dios et al. suggested that the bacterium was capable of
both adhering to and transporting electrons from the T. versicolor fila-
mentous networks. Further, T. versicolor can produce oxidative en-
zymes, which provide an oxidoreductase mechanism, which involves
the transportation of electrons from donor to acceptor [249]. Clearly
mixed biofilm communities, that have the ability to generate electricity
by more than one mechanism, will play a pivotal role in the improve-
ment of MFCs [250].

4. Field standardisation and comparison techniques

Differences in MFC configurations, including architectures, anode/
cathode/PEM materials and solution chemistries have hindered the
progression of MFC technologies, due to the lack of direct comparisons
of power production available [117]. In the late 1980’s, Bennetto et al.
studied synthetic mediators, and this resulted in the development of the
“analytical MFC” that is still used by a number of research groups to
date [35,251]. Furthermore, over the last decade researchers have also
started to use another MFC design whilst carrying out experiments
[88,117,252-256]. This design utilises a single-chamber cube shaped
MFC (4 cm) with a 3 cm (diameter) analyte chamber, a graphite fibre
brush anode and a platinum cathode catalyst [117]. This configuration
usually uses 50 mM phosphate buffer solution and acetate as a fuel
source [117]. The use of identical MFC designs and conditions
throughout the field allows for direct comparisons between energy-
generation results from a wide array of laboratories [117]. In order to
improve power outputs from MFC technologies, the design of the MFCs
need to be detailed (e.g. distance between electrodes, PEM type etc.),
allowing for appropriate comparisons and identification of factors
capable of improving energy generation.

One issue that greatly hinders the advancement of MFC technologies
is the lack of consistency and standardisation in regards to stringent
comparisons of energy outputs of MFCs (Table 1) [257]. Current den-
sity is the most typically used performance indicator of MFCs at a set
potential which is typically calculated in watts per square meter (W
m™~2), and measures power output in relation to the surface area of the
anode [257,258]. However, the use of surface based power density has
many limitations, making it unsuitable for measuring MFC energy
generation. One major limitation is that it is difficult to measure the
exact surface area of porous electrodes, and therefore it is often esti-
mated as the projected surface area [257]. Further, surface areas of
porous electrodes of identical size could vary drastically between si-
milar electrodes [257]. Another way to quantify energy outputs from
MECs is watts per cubic meter (W m~3), which takes into account the
anode liquid volume but excludes variation in the electrode size and
configuration [257]. Traditional performance indicators such as cur-
rent/power density, resistance, impedance and capacitance testing can
all provide vital information [259]. Ge et al. proposed a new parameter
in order to effectively describe energy generation from MFCs, and this



A.J. Slate et al.

term is the normalised energy recovery (NER), which gives energy
generation in kWh m~3 [257,260]:

power X time (t)
(treated within time (t))

NER

wastewater volume
Power
wastewater flow rate 3)

However, this calculation assumes that all MFC technologies are
wastewater treatment systems but this is not the case [260]. Eq. (3) can
be modified in order to take into account the organic substrates present
in solution, based on the removed chemical oxygen demand (COD) in
kilowatt hours per kilogram of COD [kWh (kg CcoD) 11 [2571:

power X time (t)

NER =
COD (removed within time (t))
_ power
wastewater flow rate X ACOD 4)

Such performance power indicators will allow for a better under-
standing of organic compound conversion to energy via MFCs.

5. Conclusions

MEFC technologies have the potential to play a pivotal role in the
transition from fossil fuel based technologies to more renewable energy
sources. Research into this area is clearly progressing but there is still
much more to do in order for MFC technologies to be routinely adapted
into industry and society. This review provides an overview of MFC
technologies thus far, whilst benchmarking MFC performance and
limitations. Currently the highest power output from an MFC is com-
parable to that of a PEM hydrogen fuel cell; however, further pro-
gression of this field is expected. This expected advancement will be
due to the optimisation and tailored development of individual para-
meters such as, enhanced electrode materials that are more suitable for
this application. This, alongside interdisciplinary research in-
toexoelectrogenic bacteria, their biochemical pathways and the influ-
ence of secondary metabolites that underpin electron transfer me-
chanisms, could lead to power outputs much closer to that of the
theoretical limits, as well as furthering the advancing field of electro-
microbiology.
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