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Abstract

During the long history of co-evolution with protists, bacteria have evolved defense strategies to avoid grazing and survive
phagocytosis. These mechanisms allow bacteria to exploit phagocytic cells as a protective niche in which to escape from
environmental stress and even replicate. Importantly, these anti-grazing mechanisms can function as virulence factors when
bacteria infect humans. Here, we discuss how protozoan predation exerts a selective pressure driving bacterial virulence
and shaping their genomes, and how bacteria-protist interactions might contribute to the spread of antibiotic resistance as
well. We provide examples to demonstrate that besides being voracious bacterial predators, protozoa can serve as melting
pots where intracellular organisms exchange genetic information, or even “training grounds” where some pathogens become
hypervirulent after passing through. In this special issue, we would like to emphasize the tremendous impact of bacteria-
protist interactions on human health and the potential of amoebae as model systems to study biology and evolution of a variety
of pathogens. Besides, a better understanding of bacteria-protist relationships will help us expand our current understanding

of bacterial virulence and, likely, how pathogens emerge.
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Introduction

Most opportunistic pathogens transit in the environment for
significant periods of time instead of being directly trans-
mitted between humans. In fact, for many pathogens (e.g.,
Legionella pneumophila, Coxiella burnetti, Pseudomonas
aeruginosa, Burkholderia cenocepacia) humans represent
accidental hosts or even evolutionary dead-ends (Levin
1996; Matz et al. 2008; Winstanley et al. 2016) which
makes unlikely that virulence emerged from human selec-
tion. Therefore, it has been proposed that virulence traits
might have evolved for increased environmental fitness
rather for virulence per se (Brown et al. 2012; Martinez
2013; Erken et al. 2013). Indeed, genes encoding virulence
factors (e.g., protein secretion systems, toxins) are also found
in the genomes of non-pathogenic bacteria as well (Pallen
and Wren 2007; Persson et al. 2009).

< Francisco Amaro
famaroto @ucm.es

Department of Genetics, Physiology and Microbiology,
School of Biology, Complutense University of Madrid,
28040 Madrid, Spain

The environmental persistence of pathogens depends on
their ability to adapt to different ecological niches and stress
conditions. Among these, consumption by heterotrophic
protists is a major cause of bacterial mortality in soil or
aquatic environments, and even in man-made systems
(Sherr and Sherr 2002; Menon et al. 2003; Pernthaler 2005;
Rosenberg et al. 2009; Jousset 2012; Zhang et al. 2014).
As a result, bacteria have evolved anti-predator strategies
such as morphological changes, increased motility,
biofilm formation, production of toxic metabolites, and
resistance to lysosomal digestion (Matz and Kjelleberg
2005; Zhang et al. 2014). Anti-protozoan defenses can even
involve cooperative action, such as the mobbing behavior
recently reported in P. aeruginosa towards the amoeba
Acanthamoeba castellanii (Shteindel and Gerchman 2020).
Importantly, some of these anti-grazing mechanisms may act
as virulence factors when the pathogen (incidentally) infects
the human host. Hence, bacteria that have evolved strategies
to defeat microbicidal mechanisms of protozoa will be
better equipped (and virulent) when they encounter human
immune cells. According to this hypothesis, virulence
may be a coincidental by-product of grazing resistance
mechanisms (Adiba et al. 2010). This is supported by the

@ Springer


http://orcid.org/0000-0002-1392-3133
http://crossmark.crossref.org/dialog/?doi=10.1007/s10123-021-00192-y&domain=pdf

560

International Microbiology (2021) 24:559-571

fact that bacterial pathogens frequently exploit conserved
processes in both macrophages and protists (Fig. 1) (Segal
and Shuman 1999; Pukatzki et al. 2002). Indeed, several
studies have shown that deletion of virulence factors in
bacteria impairs intracellular survival and growth within
both amoebae and mammalian macrophages (Gao et al.
1997; Segal and Shuman 1999; Danelishvili et al. 2007,
O’Connor et al. 2011; German et al. 2013; Isaac et al. 2015;
Sun et al. 2018; Butler et al. 2020).

In this review, we discuss how protists exert a selective
pressure for acquisition and development of virulence traits
in bacteria, and how bacteria-protist relationships might
contribute to the spread of antibiotic resistance as well.
Protists constitute a paraphyletic and exceptionally diverse
group of eukaryotic microorganisms (Adl et al. 2019). We
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Fig. 1 Macrophages represent a familiar niche for protozoa-resistant
bacteria since the fundamental events of phagocytosis and micro-
bicidal mechanisms are largely conserved with amoebae. A As an
example, we summarize here the intracellular lifestyle of L. pneu-
mophila, which hickjacks similar processes in both amoebae and
macrophages by translocating effector proteins into the host cyto-
plasm via the Icm/Dot type IV secretion system (T4SS). Uptake of
Legionella by amoebae and macrophages mainly occurs by coiling
phagocytosis after bacterial attachment to the host cell surface. Upon
entry, Legionella is enclosed in a phagosome that neither acidifies
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will focus on heterotrophic protists—those traditionally
known as protozoa—a group that includes amoebae, ciliates,
and flagellates. Besides being major consumers of bacteria
and fungi, protozoa have explored all sort of ecological
interactions with bacteria from mutualism to intracellular
parasitism and phoresy, whether persistent or temporary,
specific, or promiscuous (Shi et al. 2021). Thus, the protozoa-
bacteria system provides an excellent model to study how
intracellular pathogens and endosymbionts evolve. In addition,
protists are not only ubiquitous in the environment, but are
also part of the gut microbiota in many animals (Wildschutte
et al. 2004; Chabé et al. 2017). In fact, experimental evidences
suggest that protozoan predation in the intestine of vertebrates
might be a selective pressure maintaining O-antigen diversity
in Salmonella enterica (Wildschutte and Lawrence 2007).
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nor fuses with the lysosome. Instead, the bacterium remodels it into a
replicative compartment called Legionella containing vacuole (LCV)
that is decorated with recruited mitochondria, RER, and ER-to-
Golgi complex-derived vesicles. After several rounds of replication,
Legionella breaks out the LCV membrane into the cytosol before
lysing the host cell. B Besides phagosomal acidification, both mac-
rophages and protozoa challenge ingested bacteria with an oxidative
burst, Fe?* and Mn** depletion from the phagosome with efflux sys-
tems, and metal poisoning with Cu* and Zn?** pumps (P80 and Ctr,
copper transport system)
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Protozoan predators: from Trojan horses
to training grounds for intracellular
pathogens

Co-evolution between bacteria and protozoa has occurred
for billions of years (Strassmann and Shu 2017). The
ancestry of their interactions is supported by data such the
presence of genes acquired from amoebae in the genome
of Chlamydiales, the most ancient group of obligate intra-
cellular bacteria that include notorious intracellular patho-
gens and endosymbionts of protists (Taylor-Brown et al.
2015). Genomic analysis of Chlamydiales and their related
amoeba endosymbiont Protochlamydia amoebophila
UWE25 suggested that the bacterial type III secretion sys-
tem (T3SS) evolved in the Chlamydial linage long before
mammals appeared ca. 210 million years ago, most likely
to modulate their interactions with protozoa (Horn et al.
2004). Similarly, it was proposed that amoebae may be
the natural targets of some effector proteins secreted by P.
aeruginosa T3SS (Matz et al. 2008). Protozoan predation
is now recognized as a key force driving the evolution and
ecology of many microbial pathogens, including bacteria
and fungi (Wildschutte et al. 2004; O’Connor et al. 2011;
German et al. 2013; Erken et al. 2013; Amaro et al. 2015;
Laencina et al. 2018; Sun et al. 2018; Casadevall et al.
2019). This is perfectly illustrated by Legionella species,
the paradigm of bacteria that coevolved with protozoa. It
is established that the combined pressure of amoebae and
ciliates has shaped the repertoire of effector proteins found
in the genomes of Legionellae, representing 7-10% of the
bacterial genome (Burstein et al. 2016; Gomez-Valero
et al. 2019; Park et al. 2020). The so-called effectors are
proteins translocated by dedicated secretion systems that
subvert host cell processes for the benefit of bacteria.
Bacteria-protist interactions are now gaining attention
due to the fact that protozoa serve as a protective niche in
which many bacterial and fungal pathogens escape from
environmental stresses or even replicate (Table 1) (Sun
et al. 2018). Furthermore, many protozoa form dormant
cysts that resist harsh conditions, hence protecting the
encased bacteria from stress and biocides, and allowing
them to go undetected by the standardized culture-depend-
ent protocols (Lambrecht et al. 2015). Under favorable
conditions, cysts turn into vegetative cells, releasing
internalized bacteria, thus facilitating their persistence in
the environment and water distribution systems (Lambre-
cht et al. 2015). Likewise, bacteria that resist lysosomal
digestion in protozoa can be released into the environ-
ment freely after host cell lysis or packaged into expelled
food vacuoles (EFVs) that serve as vectors for bacterial
dissemination. Packaging into EFVs by ciliates or amoe-
bae confers many survival advantages to bacteria such as

resistance to different biocides, UV light, acid pH, starva-
tion, or desiccation (Berk et al. 2008; Denoncourt et al.
2014; Espinoza-Vergara et al. 2019). Additionally, the
diameter of EFVs (1-5 um) falls within the range of res-
pirable particles and could penetrate into human lung alve-
oli, suggesting that EFVs could help propagate pathogens
through the air (Denoncourt et al. 2014). The conditions
that favor production of packaged bacteria in natural and
man-made environments are currently unknown. Although
it is thought to be a protozoan-driven process, bacterial
virulence factors seem to play an important role in the pro-
duction of EFVs (Berk et al. 2008; Espinoza-Vergara et al.
2019), and further investigations are required to determine
the molecular mechanisms and environmental conditions
involved.

Remarkably, many pathogens appear to be more virulent
after passing through protozoa (Rasmussen et al. 2005;
Koubar et al. 2011; Espinoza-Vergara et al. 2019). For
instance, amoeba-grown L. pneumophila cells displayed
increased resistance to antibiotics, chlorine compounds,
and other biocides, and were more infectious compared to
in vitro grown bacteria (Cirillo et al. 1994; Chang et al.
2009; Personnic et al. 2021). Similarly, Vibrio cholerae
cells packaged into EFVs by ciliates exhibited enhanced
resistance to antibiotics and stressful conditions such as
the acid pH and long-term starvation (Espinoza-Vergara
et al. 2019). Importantly, Espinoza-Vergara and coworkers
demonstrated that V. cholerae cells in EFVs were highly
virulent and primed for infection, colonizing the mouse
intestine 10 times more efficiently than free-living bacte-
ria, illustrating the potential risks of EFVs. Noteworthy,
it has been recently shown that passage through amoebae
could revert virulence attenuation of the fungal pathogen
Paracoccidioides (Albuquerque et al. 2019). Surviving
protozoan digestion implies the ability to mount a rapid
response to the variety of stresses encountered within the
protozoan phagosome, namely acid pH, oxidative stress,
starvation, oxygen depletion, and antimicrobial peptides
(Koubar et al. 2011; Rehfuss et al. 2011; George et al.
2019). In line with this hypothesis, transcriptome analyses
revealed that S. enterica exhibited a similar gene expres-
sion profile following ingestion by either Tetrahymena or
human macrophages, conferring acid resistance to egested
bacteria (Rehfuss et al. 2011). Therefore, it is thought that
harsh conditions faced in the protozoan phagosome might
pre-adapt the pathogen to similar stressful conditions that
will be encountered in the human body (Espinoza-Ver-
gara et al. 2020). Furthermore, conditions faced within
the phagosome of amoebae and macrophages have been
recently shown to induce a highly virulent persister state in
L. pneumophila with an increased tolerance to antibiotics
(Personnic et al. 2019) that might be the cause for relaps-
ing forms of Legionnaires’ disease.
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Table 1

Reported associations between selected bacterial
recently reviewed in Durocher et al. (2020) and Shi et al. (2021)

pathogens and protozoa. Interactions with non-pathogenic bacteria were

Pathogen

Phenomenon

Protist

Reference

Aeromonas hydrophila

Intracellular survival

T. thermophila

(Pang et al. 2016)

Bacillus anthracis

Intracellular multiplication

A. castellanii

Dey et al. 2012)

Bordetella bronchiseptica

Intracellular survival

D. discoideum

Burkholderia species

Symbiosis, farming

D. discoideum

(
(Taylor-Mulneix et al. 2017)
(Brock et al. 2018)

B. cepacia complex (Bcc)

Intracellular survival

Acanthamoeba spp

(Marolda et al. 1999)

B. pseudomallei

Intracellular survival

Acanthamoeba spp

(Inglis et al. 2000)

Campylobacter jejuni Intracellular multiplication A. polyphaga, A. castellanii (Bui et al. 2012; Vieira et al. 2017)
Packaging into EFVs T. thermophila (Trigui et al. 2016)
Chlamydiae Endosymbiosis Several amoebae Horn et al. 2004; Kénig et al. 2019)

Chlamydia pneumoniae

Intracellular growth

A. castellanii

(
(Essig et al. 1997)

Coxiella burnetii

Intracellular survival

A. castellanii

(La Scola and Raoult 2001)

Escherichia coli O157:H7

Intracellular survival

A. castellanii, T. thermophila

(Barker et al. 1999; George et al. 2019)

Packaging into EFVs

Tetrahymena sp

(Lainhart et al. 2009; Smith et al. 2012)

Francisella tularensis

Intracellular growth

A. castellanii

Helicobacter pylori

Packaging into EFVs

A. astronyxis

(Abd et al. 2003)
(Denoncourt et al. 2014)

Listeria monocytogenes

Intracellular survival

A. castellanii

(Lambrecht et al. 2015)

Packaging into EFVs

Colpoda sp

(Raghu Nadhanan and Thomas 2014)

Survival within cysts

A. castellanii

(Lambrecht et al. 2015)

L. pneumophila and other
Legionella species

Intracellular survival and
multiplication

Over 20 species: N. gruberi,
A. castellanii, V. vermiformis,
D. discoideum, Tetrahymena

(Rowbotham 1980; Fields 1996; Hagele et al. 2000;
Berk et al. 2008; Boamah et al. 2017)

Packaging into EFVs

T. thermophila, T. tropicalis,
A. axtronyxis

(Berk et al. 2008; Denoncourt et al. 2014; Amaro et al.
2015)

Increased resistance to
stress, biocides, antibiotics

Several amoebae
and ciliates

(Thomas et al. 2004; Chang et al. 2009; Koubar et al.
2011; Personnic et al. 2021)

Increased virulence

castellanii

Cirillo et al. 1994; Personnic et al. 2019)

Resuscitation

castellanii, A. polyphaga

Steinert et al. 1997; Personnic et al. 2019)

Intracellular digestion

palustris

Mycobacterium avium

Intracellular multiplication

Cirillo et al. 1997)

Increased stress resistance
and virulence

castellanii

(
(
(Amaro et al. 2015)
(
(

Cirillo et al. 1997; Salah et al. 2009)

M. leprae

Survival within cysts

castellanii

(Wheat et al. 2014)

M. marinum

Intracellular multiplication

castellanii

(Salah et al. 2009)

Survival in cysts and
enhanced stress resistance

A.
A.
S.
A. castellanii
A.
A.
A.
A.

castellani,
Tetrahymena

(Salah et al. 2009)

M. tuberculosis

Intracellular survival

A. castellanii, A. polyphaga

(Mba Medie et al. 2011)

M. ulcerans

Intracellular survival and
enhanced virulence

A. polyphaga

(Azumah et al. 2017)

Pseudomonas aeruginosa

Intracellular survival

A. castellanii, A. polyphaga,
D. discoideum

(Pukatzki et al. 2002; Matz et al. 2008)

Enhanced resistance to
stress and biocides

A. castellanii

(Leong et al. 2020; Sarink et al. 2020)

Mobbing

A. castellanii

(Shteindel and Gerchman 2020)

Salmonella enterica

Intracellular survival

Tetrahymena, D.discoideum,
A. castellanii

(Wildschutte et al. 2004; Riquelme et al. 2016)

Packaging into EFVs

Enhanced resistance to
stress and biocides

Tetrahymena sp

(Brandl et al. 2005; Rehfuss et al. 2011)

Survival within cysts A. castellanii (Lambrecht et al. 2015)
Enhanced virulence A. castellanii (Carlson et al. 2007)

Staphylococcus aureus MRSA Intracellular survival A. polyphaga (Huws et al. 2006)

Stenotrophomonas maltophila Intracellular multiplication V. vermiformis (Cateau et al. 2014)

Vibrio cholerae Intracellular multiplication A. castellanii (Abd et al. 2005; Van Der Henst et al. 2016)
Intracellular survival T. thermophila (Espinoza-Vergara et al. 2019)

Enhanced stress resistance

Increased virulence

V. parahemolyticus

Intracellular survival

(Matz et al. 2011)

Yersinia pestis

Intracellular survival

C. roenbergensis
A. castellanii

(Benavides-Montario and Vadyvaloo 2017)

Aspergillus fumigatus

Intracellular survival

. castellanii

Van Waeyenberghe et al. 2013)

Cryptococcus neoformans

. castellanii, D. discoideum

Steenbergen et al. 2001, 2003)

Blastomyces dermatitidis

Intracellular survival

Histoplasma capsulatum

Intracellular survival

. castellanii

Steenbergen et al. 2004)

Paracoccidioides spp

Intracellular survival and
enhanced virulence

. castellanii

(
(
(Steenbergen et al. 2004)
(
(

Albuquerque et al. 2019)

Sporothrix schenkii

Intracellular survival

A
A
A. castellanii
A
A
A

. castellanii

(Steenbergen et al. 2004)

Adenovirus

Intracellular survival

. castellanii

(Scheid and Schwarzenberger 2012)

Coxackie B3 virus

Intracellular survival

. castellanii

(Mattana et al. 2006)
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Collectively, the aforementioned facts have led to the
concept of protozoa as evolutionary “training grounds”
for bacterial virulence and “Trojan horses” of the micro-
bial world (Molmeret et al. 2005), meaning that patho-
gens can escape from stress, develop, and “train” their
virulence traits in environmental protozoa before facing
human phagocytic cells. Yet, while experimental data
demonstrated that coevolution with protists have shaped
bacterial genomes and virulence traits (Wildschutte et al.
2004; Danelishvili et al. 2007; O’Connor et al. 2011; Park
et al. 2020), it is thought that pathogens likely evolved
their ability to subvert the “more sophisticated” immune
defenses of metazoans that are not found in protists
through adaptation to multicellular organisms (Best and
Abu Kwaik 2019). In line with this hypothesis, recent find-
ings indicate a role for metazoans in Legionella’s ability
to manipulate innate immunity processes absent in protists
such NF-kB and Toll-like receptor (TLRs) signaling path-
ways or the inflammasome (Losick et al. 2010; Asrat et al.
2015; Mallama et al. 2017).

The natural choice: protozoa as host models
for intracellular pathogens

Research over the last decades has proved that amoebae
and ciliates not only represent an important ecological
niche for pathogenic bacteria and fungi, but are also
excellent and cost-effective models to study host—pathogen
interactions at the molecular and cellular level (Leoni
Swart et al. 2018; Espinoza-Vergara et al. 2019).
Amoebae share with macrophages similar mechanisms to
phagocytize and kill bacteria in acidic phagolysosomes
by hydrolases combined with reactive oxygen species
(ROS) and copper ions (German et al. 2013; Hao et al.
2015; Espinoza-Vergara et al. 2020) (Fig. 1). The acidic
pH (5-5.5) is maintained by vacuolar-type ATPases
(V-ATPases) that translocate protons into the phagosome
lumen. In addition to V-ATPases, recent research has
shown that heterotrophic protists also possess vacuolar-
type H*-translocating pyrophosphatases (V-PPases) whose
expression is upregulated during bacterivorous growth
and likely contribute to phagolysosome acidification
(Pérez-Castieira et al. 2002; Massana et al. 2021). ROS
in the phagosome are generated by the NADPH oxidase
complex and copper transporters (Ctr) which are present
in macrophages and protists as well (Jacobs et al.
2006; German et al. 2013). Indeed, ROS production in
the phagosome of T. thermophila during predation on
Escherichia coli O157:H7 has been recently visualized
and quantified (George et al. 2019). Consequently, deletion
of copper and zinc resistance genes impaired survival of
intracellular bacteria within protozoa (Hao et al. 2016).

Additionally, phagosomes are depleted of essential metal
nutrients for bacteria such as Fe>* and Mn?* by the action
of the natural resistance-associated macrophage protein
(NRAMP). This antimicrobial mechanism is thought to
occur in the protozoan phagosome as well, since homologs
of mammalian NRAMP1 were found in amoebae and
ciliates (German et al. 2013). In fact, studies have shown
that deletion of Nrampl genes rendered the amoeba D.
discoideum more susceptible to infection by intracellular
bacteria (Peracino et al. 2006, 2013; Brenz et al. 2017).

Remarkably, homologs of pattern recognition receptors
(PRRs) and interferon-y-inducible lysosomal thiol
reductase (GILT), an enzyme used by L. monocytogenes
during macrophage infection (Singh et al. 2008), have
been recently identified in the genomes of amoebae A.
castellanii, Dictyostelium discoideium, and Willaertia
magna (Clarke et al. 2013; Peracino et al. 2013; Pan et al.
2018; Hasni et al. 2020), supporting the use of amoebae
as model systems to study host—pathogen interactions.
Importantly, D. discoideum, A. castellanii, and T.
thermophila are molecularly amenable and genetically
tractable protist hosts (Higele et al. 2000; Karrer 2000;
Solomon and Isberg 2000; Eisen et al. 2006; Leoni
Swart et al. 2018) that have been used to screen bacterial
genome libraries and antibacterial compounds (Kicka et al.
2014; Harrison et al. 2016; Kebbi-Beghdadi et al. 2019;
Thewes et al. 2019; Park et al. 2020; Espinoza-Vergara
et al. 2020). Bacterial virulence factors can be unraveled
using amoebae as hosts in a simple amoeba plaque assay
(Pukatzki et al. 2002; Leoni Swart et al. 2018). In addition,
these protists have been successfully employed to discover
novel intracellular bacteria and potentially pathogenic
microorganisms (Pagnier et al. 2008; Tosetti et al.
2014). In fact, the amoebal co-culture is an established
method for isolating intracellular bacteria from clinical
and environmental samples (Corsaro and Venditti 2009;
Lienard et al. 2017; Thewes et al. 2019). Lastly, although
research has focused on host—pathogen interactions, the
social amoebae D. discoideum is currently being used
as model to understand microbiome formation and the
interplay between host and its microbiota (Farinholt et al.
2019; Sallinger et al. 2021).

Protists as hotspots for genetic exchanges

Amoebae have been proposed to serve as genetic melting
pots where intra-amoebal microorganisms can exchange
genes between themselves but also with the amoeba host
(Moliner et al. 2010; Bertelli and Greub 2012; Gomez-
Valero and Buchrieser 2013). Multiple lines of evidence
support this hypothesis. For instance, the closest homolog
of L. pneumophila ankyrin-containing protein Lpg2416 is
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found in the A. polyphaga Mimivirus, a giant virus that
infects Acanthamoeba, suggesting intra-amoebal horizon-
tal gene transfer (HGT) between Legionella and Mimivirus
(Lurie-Weinberger et al. 2010). Additionally, genes likely
acquired from amoebae-related bacteria have also been
identified in the Mimivirus genome (Moliner et al. 2010).
Moreover, HGT between amoeba-associated bacteria have
been evidenced by several studies. Genome analysis of
Rickettsia belli, the earliest diverging species of Rickett-
siae, revealed gene transfer events between the ancestors
of Rickettsia and phylogenetically distant amoeba-resistant
bacteria (ARB) such as L. pneumophila and P. amoebo-
phila (Ogata et al. 2006; Gimenez et al. 2011; Wang and
Wu 2017). Moreover, L. pneumophila phospholipases
PlcA (Ipg0502) and PIcB (Ipgi455) have not been found
in prokaryotic genomes except P. aeruginosa (which resist
protozoan digestion) and other amoebae-associated bac-
teria, supporting intra-amoebal gene transfer (Gomez-
Valero et al. 2019). Interestingly, although Rickettsiales
and Legionellales represent excellent models supporting
the amoeba melting pot hypothesis (Moliner et al. 2010;
Gimenez et al. 2011; Wang and Wu 2017), HGT has also
been reported for other bacterial species such as Bar-
tonella rattaustraliani and Rhizobium radiobacteri within
A. polyphaga vacuoles (Saisongkorh et al. 2010). Amoe-
bae and ciliates are thought to favor genetic exchange
by bringing resistant microorganisms in close proximity
within the same protozoan cell or compartment. Research
has evidenced that a single protist can harbor several phy-
logenetically different endosymbionts (Heinz et al. 2007,
Matsuo et al. 2010a). Moreover, the indiscriminate feeding
of ciliates makes likely that a mixture of different bacterial
species are encased in a single food vacuole, which might
favor gene transfer between packaged bacteria.
Importantly, amoebae and ciliates not only serve as
a place for HGT between intracellular microorganisms,
but can also participate in genetic exchanges themselves.
Hundreds of genes exhibiting best homology match with
viral genes have been found in the genomes of amoebae
Vermamoeba vermiformis (188 genes), W. magna (50
genes), and different Acanthamoeba species (261 genes),
supporting the hypothesis of amoeba-virus genetic trans-
fer (Moreira and Brochier-Armanet 2008; Chelkha et al.
2018, 2020; Hasni et al. 2019). Likewise, genes believed
to be acquired from bacteria have been also identified
in the genome of D. discoideum (Eichinger et al. 2005),
Naegleria gruberi, and A. castellanii (Clarke et al. 2013).
The strongest evidences of eukaryote to prokaryote gene
transfer are found in the genome of Legionellales (Burstein
et al. 2016; Gomez-Valero et al. 2019). Remarkably,
Legionella species contain a significant number of proteins
with highest sequence homology to protozoan proteins,
the so-called eukaryotic-like proteins (ELPs), which were
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likely acquired from protozoan hosts. Most genes encod-
ing ELPs have G + C biases compared to other Legionella
genes and cluster with eukaryotic proteins in phylogenies,
supporting the protozoa-to-Legionella transfer hypothesis
(Cazalet et al. 2004; De Felipe et al. 2005; Burstein et al.
2016; Gomez-Valero et al. 2019). ELPs contain domains
found only in eukaryotes such as ankyrin repeats (ANK),
leucine-rich repeats, F-box, or U-box domains, and are
believed to allow bacterial survival by subverting host
cellular processes in a phenomenon called molecular
mimicry (Mondino et al. 2020). Importantly, comparative
analysis of 514 prokaryotic proteomes revealed that ELPs
are significantly enriched in the genomes of bacteria that
replicate in protozoa (Schmitz-Esser et al. 2010), suggest-
ing that phylogenetically distant bacteria that infect amoe-
bae may exploit similar strategies to interact with their
hosts: molecular mimicry and HGT (Gomez-Valero and
Buchrieser 2019). The ability of some amoeba-resistant
bacteria (e.g., L. pneumophila, B. cenocepacia) to develop
natural competence for transformation (Stone and Abu
Kwaik 1999) might have facilitated genetic exchanges
within amoebae. However, how eukaryotic genes are taken
up by intracellular bacteria remains to be investigated.

Protozoa as key players in the dynamics
of the community resistome

Until recently, the interactions between bacteria and pro-
tozoa have received little attention regarding the spread of
antibiotic resistance. However, studies carried out over the
last years point out that protozoan predation might play a
key role on the dissemination of antibiotic resistance genes
(ARGs) and the dynamics of the community resistome
(Cairns et al. 2018a; Nguyen et al. 2020). Remarkably,
work done by Cairns and collaborators clearly evidenced
the relevance of protozoan predation for plasmid persis-
tence in bacterial communities (Cairns et al. 2016, 2018b).
Their experiments in laboratory microcosms revealed that
ciliates foster bacterial conjugation frequency and prevent
loss of resistance plasmids even in the absence of antibi-
otic pressure (Parry 2004; Cairns et al. 2016). This can
be explained because protozoan grazing prevents bacteria
from reaching the stationary phase when conjugation rate
is lower (Wright 1988; Simek et al. 1997; Cairns et al.
2018a). Therefore, under continuous protozoan pressure,
surviving bacteria exhibit the higher metabolic activ-
ity required for maintaining the conjugation apparatus
(Lopatkin et al. 2016), and thus an enhanced conjugation
rate. Experimental data from two independent research
groups supported this hypothesis (Bellanger et al. 2014;
Cairns et al. 2016). Additionally, different laboratories
have reported a dramatic increase (100-1000 X fold) in
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the transfer of resistance plasmids between E. coli and
other bacterial species when a protozoan predator is pre-
sent (Schlimme et al. 1997; Matsuo et al. 2010a; Bien et al.
2017; Matsushita et al. 2018).

Protists can serve as vectors for multidrug-resistant
microorganisms from soil consumers to higher trophic lev-
els via food chains (Chen et al. 2019; Zhang et al. 2019),
but also as places where antibiotic resistance likely evolves.
Although it remains to be investigated, protozoan predation
might indirectly promote antibiotic tolerance by selecting
genes conferring resistance to both intracellular digestion
and antibiotics such as copper efflux pumps (Vieira et al.
2017). Heavy metals have been shown to co-select for ARGs
in bacteria (Poole 2017; Dickinson et al. 2019). As stated
before, macrophages and bacterivorous protists use copper
and zinc to kill their prey in the phagosome. Hence, the
ancient relationships between bacteria and protists sug-
gest that grazing might represent a strong selective force
for maintaining metal resistance genes. Indeed, given the
acknowledged role of protozoan predation in shaping the
structure and diversity of bacterial communities (Gao et al.
2019), it has been proposed that protists might play a sig-
nificant role in the dynamics of the metal resistome in the
environment as well (Hao et al. 2021).

Furthermore, apart from the selection pressure imposed
by grazing, it has been evidenced that protozoa may pro-
mote horizontal transfer of ARGs among bacteria encased
within a food vacuole (Oguri et al. 2011). Successful trans-
ference of plasmids bearing extended-spectrum-p-lactamase
blary..o7 and metallo-p-lactamase blay,p ; genes have
been observed between E. coli and Aeromonas caviae, and
between clinical E. coli isolates within Tetrahymena food
vacuoles (Matsuo et al. 2010b; Oguri et al. 2011; Matsushita
et al. 2018). Notably, the addition of phagocytosis inhibitors
(latrunculin B and cytochalasin D) abolished conjugation,
suggesting that accumulation of donor and recipient bac-
teria within protozoan vacuoles was required for conjuga-
tion to occur (Oguri et al. 2011). Likewise, McCudding and
coworkers described conjugative transfer of the p-lactamase
gene blac,y., between Klebsiella and Salmonella within cat-
tle rumen ciliates (McCuddin et al. 2006). Similar observa-
tions were made for different conjugative ARG plasmids
under grazing by diverse protozoa (Bien et al. 2017).

Bacteria can also acquire ARGs coded on extracellular
DNA (eDNA) via natural transformation (Chen et al. 2005).
Studies have shown that eDNA released from bacteria can
persist in natural and anthropogenic systems for months
(Zhu 2006; Mao et al. 2014; Bien et al. 2017). Interestingly,
research indicates that grazing activity by ciliates and
nanoflagellates represents a considerable source of bacterial
eDNA either in soil or aquatic environments (Ishii et al.
1998; Kawabata et al. 1998; Bien et al. 2017). By using real-
time PCR, Bien and collaborators demonstrated an increase

in the release of the tetracycline resistance gene fet(M)
as eDNA by marine bacteria upon addition of protozoan
grazers (Bien et al. 2017). The released eDNA remained
stable in seawater over the course of the experiment, up
to 30 days, suggesting that protozoa may contribute to the
formation of an ARG pool in natural systems.

Nevertheless, although the contribution of protozoa to
antibiotic resistance in bacteria is beginning to be appre-
ciated, further studies at community level are required to
understand the impact of bacteria-protozoa interactions on
the dynamics of the resistome in natural and man-made sys-
tems. Special attention should be focused on those environ-
ments where protozoa and antibiotics co-exist, for instance
wastewater treatment plants (Rodriguez-Mozaz et al. 2020).
The seminal work done by Cairns and collaborators have
demonstrated that protozoan predation and other ecologi-
cal factors might impose stronger effects on ARG dynam-
ics than sub-inhibitory levels of antibiotics do (Cairns et al.
2018b). Therefore, this finding emphasizes the need to
include trophic interactions in studies addressing the selec-
tive forces driving dynamics and evolution of ARGs in natu-
ral and anthropogenic environments.

Concluding remarks and future perspectives

Over the last decades, a plethora of data has evidenced
the role of protozoa as drivers for the evolution of bacte-
rial pathogens. The dramatic impact of protozoa on patho-
gen virulence and persistence highlights the importance of
bacteria-protist interactions as evolutionary forces shaping
bacterial genomes and virulence traits. Besides serving as
reservoirs and vectors for bacterial dissemination in the envi-
ronment, the voracious feeding activity and promiscuous
relationships of protists make them protective microniches
where genetic exchanges between hosted microorganisms
take place. Moreover, although their contribution to anti-
biotic resistance in bacteria is beginning to be appreciated,
recent studies point out that protozoan predation may fos-
ter transference of antibiotic resistance genes in microbial
communities as well. Amoebae are demonstrated useful
models for the study of host—pathogen interactions and we
argue that more attention should be paid to bacteria-protist
relationships to identify clues that favor bacterial virulence,
persistence, and transmission in both natural environments
and anthropogenic systems.

A remaining challenge in the study of bacteria-protist
interactions is the largely underestimated diversity of
the associated bacteria since most of them are non-
culturable. Likewise, most research focused on a limited
number of ciliates and amoebae species, and more studies
characterizing environmental isolates are needed. Studies
have traditionally relied on classical approaches such as
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microscopy, fluorescence in situ hybridization (FISH), and
rRNA gene sequencing. However, the incursion of single-
cell genomics and other high-throughput sequencing (HTS)-
based approaches is expected to provide new opportunities
to unravel unseen interactions by capturing genomic data of
physically associated microorganisms and exploring a large
number of microorganisms directly from environmental
samples.
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