
Probabilité 3 Rappels sur les probabilités conditionnelles

Chapitre 1 : Variables aléatoires discrètes et continues

Probabilité conditionnelle

Définition : Soient A et B deux évènements tels que $P(B) \neq 0$. On définit la probabilité de A sachant B, notée

P(A/B), par : P(A/B) =
$$\frac{P(A \cap B)}{P(B)}$$

Exemple : On lance une fois un dé à six faces bien équilibré.

- a) Quelle est la probabilité d'obtenir un nombre pair si l'on a obtenu un 4?
- b) Quelle est la probabilité d'obtenir un 4 sachant que l'on a obtenu un nombre pair ?

Exercice On considère une classe, dans laquelle il y a des filles et des garçons, avec ou sans lunettes. On sait que 20% de cette classe exactement sont des filles avec des lunettes. On sait aussi qu'une personne sur deux porte des lunettes. Si on tire au sort une personne qui a des lunettes, quelle est la probabilité que cela soit une fille? (on pourra utiliser l'évènement A être une fille et l'évènement B avoir des lunettes).

que 20% de o lunettes. Si o	On considère une class cette classe exactement s on tire au sort une person nement A être une fille e	ont des filles avec des une qui a des lunettes,	lunettes. On sait au quelle est la probab	ussi qu'une personne sur	deux porte des
	: Soient A et B deux évè (A∩B) P(B) , on peut aussi écr			probabilité de A sachant	t B, est :

Evènements indépendants

Définition : A et B sont deux évènements indépendants lorsque $P(A \cap B) = P(A) \times P(B)$

Exemple : Si dans un atelier de dix machines on estime la probabilité de fonctionnement de chacune d'elles à p = 0.95, la probabilité de marche de l'atelier à rendement maximum sera, dans la mesure où les machines sont indépendantes les unes des autres, est : P =

Exercice : Soit une grandeur X pouvant prendre les valeurs ci-dessous, avec leur probabilité :

X	2	4	6	8	10
P(X = x)	0,1	0,2	0,4	0,2	0,1

Soit les évènements : A ($X \le 6$), B($X \ge 8$) et C($X \ge 4$).

Calculer les probabilités : P(A), P(B), P(C), $P(A \cup B)$, $P(A \cup C)$, $P(B \cup C)$, $P(A \cap B)$, $P(A \cap C)$, $P(B \cap C)$, P(B/A), P(C/A), P(C/B)

Exercice : Soit une grandeur X pouvant prendre les valeurs ci-dessous, avec leur probabilité :

	X	2	4	6	8	10	
• • • • • • • • • • • • • • • • • • • •	P(X = x)	0,1	0,2	0,4	0,2	0,1	

Soit les évènements : A ($X \le 6$), B($X \ge 8$) et C($X \ge 4$).

Calculer les probabilités : P(A), P(B), P(C), $P(A \cup B)$, $P(A \cup C)$, $P(B \cup C)$, $P(A \cap B)$, $P(A \cap C)$, $P(B \cap C)$, P(B/A), P(C/A), P(C/B)

Formule de probabilités totales

Soient A et B deux évènements. $P(B) = P(A) \cdot P(B/A) + P(\bar{A}) \cdot P(B/\bar{A})$

Définition : On dit que les évènements $A_1, A_2, A_3...., A_n$ forment une partition de l'univers Ω lorsqu'ils sont disjoints deux à deux : $A_i \cap A_j = \emptyset \ \, \forall i,j \ \, \text{et} \ \, \Omega = A_1 \cup A_2 \cup A_3 \cup \cup A_n$

Formule de probabilités totales

Soient A_1,A_2,A_3, A_n une partition de l'univers Ω et B un évènement. $P(B)=P(A_1).P(B/A_1)+P(A_2).P(B/A_2)+P(A_3).P(B/A_3)+...+P(A_n).P(B/A_n)$

Un frigidaire contient des yaourts qui sont à la fraise, à la poire ou à l'abricot. Certains yaourts sont mixés, les autres contiennent des morceaux de fruits. On sait qu'un tiers des yaourts à la fraise sont mixés, un quart de ceux à la poire le sont et la moitiés de ceux à l'abricot. La moitié des yaourts sont à la fraise et un quart à la poire. Quelle est la probabilité, si l'on prend un yaourt au hasard, d'avoir un yaourt mixé? On pose F, P et A les évènements pour des yaourts d'être à la fraise, à la poire et l'abricot. On note M la probabilité qu'un yaourt soit mixé.

Un frigidaire contient des yaourts qui sont à la fraise, à la poire ou à l'abricot. Certains yaourts sont mixés, les autres contiennent des morceaux de fruits. On sait qu'un tiers des yaourts à la fraise sont mixés, un quart de ceux à la poire le sont et la moitiés de ceux à l'abricot. La moitié des yaourts sont à la fraise et un quart à la poire. Quelle est la probabilité, si l'on prend un yaourt au hasard, d'avoir un yaourt mixé? On pose F , P et A les évènements pour des yaourts d'être à la fraise, à la poire et l'abricot. On note M la probabilité qu'un yaourt soit mixé.

Formule de Bayes

Soient A_1, A_2, A_3, A_n une partition de l'univers Ω et B un évènement. $P(B) = P(A_1).P(B/A_1) + P(A_2).P(B/A_2) + P(A_3).P(B/A_3) + ... + P(A_n).P(B/A_n)$ $Alors \ P(B/A_i) = \frac{P(A_i/B).P(A_i)}{P(A_1).P(B/A_1) + P(A_2).P(B/A_2) + P(A_3).P(B/A_3) + ... + P(A_n).P(B/A_n)} \ \forall 1 \le i \le n$

Exercice On considère un programme écrit en commun par Alice et Bob. Alice a écrit 60 % du programme et Bob le reste. De plus 5% des lignes écrites par Alice ont un beug, et 10% de celle écrites par Bob. Si l'on tire au sort un ligne contenant une erreure, quelle est la probabilité qu'elle ait été écrite par Bob?