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Editor: Henner Hollert Antibiotics and nanoplastics (NPs) are among the two most concerned and studied marine emerging contaminants in

recent years. Given the large number of different types of antibiotics and NPs, there is a need to apply efficient tools to

Keywords: evaluate their combined toxic effects. Using the thick-shelled mussel (Mytilus coruscus) as a marine ecotoxicological
Mytilus coruscus

model, we applied a battery of fast enzymatic activity assays and 16S rRNA sequencing to investigate the biochemical

A@bmne . and gut microbial response of mussels exposed to antibiotic norfloxacin (NOR) and NPs (80 nm polystyrene beads)
Biomarkers,16S rRNA sequencing . L. . . I
Joint toxicity alone and in combination at environmentally relevant concentrations. After 15 days of exposure, NPs alone signifi-

cantly inhibited superoxide dismutase (SOD) and amylase (AMS) activities, while catalase (CAT) was affected by
both NOR and NPs. The changes in lysozyme (LZM) and lipase (LPS) were increased over time during the treatments.
Co-exposure to NPs and NOR significantly affected glutathione (GSH) and trypsin (Typ), which might be explained by
the increased bioavailable NOR carried by NPs. The richness and diversity of the gut microbiota of mussels were both
decreased by exposures to NOR and NPs, and the top functions of gut microbiota that were affected by the exposures
were predicted. The data fast generated by enzymatic test and 16S sequencing allowed further variance and correla-
tion analysis to understand the plausible driving factors and toxicity mechanisms. Despite the toxic effects of only
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one type of antibiotics and NPs being evaluated, the validated assays on mussels are readily applicable to other anti-

biotics, NPs, and their mixture.

1. Introduction

Plastic production is fast-increasing (Kurniawan et al., 2021) and large
amounts of plastic waste end up in marine ecosystems (Andrady, 2011;
Wayman and Niemann, 2021). In natural environments, plastics are broken
down by mechanical (e.g., waves), chemical, UV, or biological factors into
smaller pieces, named microplastics (MPs, <5 mm) (Thompson et al., 2004;
Thompson et al., 2009). Microplastics have been found in various marine
environments, e.g., Antarctica and the Southern Ocean (Cunningham
et al., 2020), the Pacific Ocean (Ding et al., 2022), Southern Caspian Sea
Coasts (Mataji et al., 2020), and Southern Mediterranean coasts (Missawi
et al., 2020). Numerous studies have shown the uptake or negative effects
of microplastics on marine organisms, e.g., invertebrates (Wang et al.,
2020b), fish (Feng et al., 2019), whale (Besseling et al., 2015), and turtle
(Nelms et al., 2016). Nanoplastics (NPs, <1000 nm), which are several or-
ders of magnitude smaller than microplastics, have been shown more easily
ingested and enriched in aquatic organisms (Mattsson et al., 2015; Alimi
et al., 2018), causing generally higher toxicity than microplastics across dif-
ferent taxonomic groups (Matthews et al., 2021). For example, it was
shown that exposure to 50 nm NPs resulted in significant membrane dam-
age in Proteobacterium Halomonas alkaliphila, while 1 pm microplastics led
to moderate damage (He et al., 2018). The acute toxicity of NPs to mussels
(Mytilus spp.) was related to the enhanced immune response and oxidative
stress (Cole et al., 2020).

In addition to the direct effects of MPs and NPs, previous studies also
showed their carrying potential for other emerging contaminants (Alimi
et al., 2018; Bhagat et al., 2021). Among many different types of emerging
contaminants, antibiotics are one of the most concerned groups, due to
their high biological activity even at low environmental concentrations
(Tang et al., 2019; Iwu et al., 2020). Antibiotics are a commonly used
class of drugs that can be used as effective agents to kill infectious bacteria,
nevertheless, overuse of antibiotics will lead to bacterial resistance in the
host (Silbergeld et al., 2008; Makary et al., 2018). Residual antibiotics in
the natural environment may also affect the normal functions of environ-
mental organisms (Ojemaye and Petrik, 2019). For example, norfloxacin
(NOR), a fluoroquinolone antibiotic, can act on pathogenic DNA gyrase
and hinders bacterial DNA replication (Mathur et al., 2021). NOR is widely
used in agriculture, medicine, and other fields, and has been detected in
natural water and wastewater (Giger et al., 2003; Costanzo et al., 2005;
Tong et al., 2011) and marine species like oysters (He et al., 2019). In a
laboratory experiment, short-term exposure to NOR resulted in the homeo-
stasis imbalance of intestinal flora of juvenile large yellow croaker
Pseudosciaena crocea, which affected immunity, inhibited metabolism and
growth, and even led to death (Wang et al., 2020a). Environmental residues
of NOR were immunotoxic to the mussel Elliptio complanata, inducing 10 %
mortality, and loss of blood cell viability after 14 days of exposure (Gagne
et al., 2012). The occurrence of both antibiotics and plastic particles has
been detected in various marine environmental samples (Zheng et al.,
2021; Goncalves and Bebianno, 2021). Because of the special characteris-
tics of plastics surface, both MPs and NPs are considered carriers of emerg-
ing contaminants antibiotics, modifying their bioavailability and toxicity
(Hermabessiere et al., 2017; Amelia et al., 2021). The adsorption ability
of NOR on the surface of NPs has been reported, which may be attributed
to the hydrophobic interaction (Zhang et al., 2020).

Given the co-occurrence of different types of emerging contaminants
and anticipated differences in their toxicity and environmental impacts,
there is a need to establish and apply an efficient toxicological system to
evaluate the potential adverse effects of emerging contaminants alone
and in combinations. The marine mussels (Mytilus spp.) are filter-feeding
bivalves that are known to readily accumulate micropollutants from the

environment, such as trace metals (Stankovic and Jovic, 2012), antibiotics
(Le Bris and Pouliquen, 2004), plastic particles (Hanna et al., 2014), etc.
Compared with other species, mussels are highly adaptable to environmen-
tal conditions with a relatively high tolerance to environmental contami-
nants (Lacroix et al., 2015). There is a growing use of mussels as
indicators of marine environmental pollution and toxicological model
organisms (Li et al., 2016; Pastorino et al., 2021). Moreover, it has been
found that the gut microbiota of mussels is closely related to the immune
system, metabolic functions, and overall health status of mussels
(D'Aversa et al., 2013; Yoo et al., 2020), complementary to the conven-
tional direct toxicological endpoints (e.g., survival rate, reproduction, and
biochemical parameters) in mussels.

Due to its advantage of high throughput, cost-effectiveness, and high
precision,16S rRNA sequencing has been widely applied in basic research
(Di Bella et al., 2013; Langille et al., 2013; Douglas et al., 2018). The contin-
ued development and refinement in sequencing techniques and computa-
tional ability make 16S rRNA sequencing a promising and advanced tool
for exploring and characterizing complex microbial communities
(Johnson et al., 2019; Wensel et al., 2022). The objective of this study
was to combine commercially available enzymatic activity assays and gut
microbiota 16S sequencing to evaluate the interactive effects of NPs and
NOR on Mytilus coruscus. Changes and associations in antioxidant enzymes,
digestive enzymes, and gut microbiota were quantified and compared be-
tween M. coruscus treated by NPs, NOR, and their combination. Our study
improves the understanding of the combined toxicity of polystyrene NPs
and NOR in mussels and offers a set of validated toxicological assays for fu-
ture evaluation of other types of NPs and antibiotics.

2. Materials and methods
2.1. Mussels

The thick-shelled mussels were collected from Gouqi Island, Shengsi
County, Zhoushan City, Zhejiang, China (N30°43'1.64”, E122°46’3.25”) in
December 2020. Once the mussels were transported to the lab, they were
washed to remove the mud and scraped off any attached organisms on
the surface. Five hundred mussels were cultured for 7-day acclimatization
and checked twice a day to remove dead mussels. Before experiments, mus-
sels of similar size (length: 77.1 + 2.4 mm) were transferred to 21 clean
tanks (20 L). Each tank contained 15 L of fully aerated artificial seawater
and 20 mussels. The tank conditions were set as below: salinity (25 psu),
temperature (20 °C), pH 8.1, dissolved oxygen >6 mg-L.”', 12 h/12 h
dark/light cycle. Mussels were fed daily with microalgae Chlorella vulgaris
(5 x 10* cells/mL) twice. Aerated artificial seawater was daily renewed
2 h after feeding.

2.2. Chemicals and nanoplastics

Norfloxacin (NOR, purity >98 %, CAS number: 70458-96-7) and di-
methyl sulfoxide (DMSO, AR, CAS number: 67-68-5) were purchased
from Shanghai McLean Biochemical Technology Co., LTD. Nanoplastics
(polystyrene nanobeads, size: 80 nm, maximum excitation wavelength:
470 nm, maximum emission wavelength: 526 nm) were purchased from
Tianjin Bessler Co., LTD. Scanning electron microscope (SEM) and micro-
Fourier transform infrared spectroscope (m-FTIR) were used to characterize
the size and polymer composition of the NPs (Fig. S1). Ultrasonic oscillation
was used to suspend and prevent the agglomeration of NPs. DMSO was used
as the solvent of NOR (final 0.01 % v/v in 15 L exposure solution), which
followed the OECD guideline (OECD, 2002). NOR exposure solution was
prepared at two concentrations (5 pgL~* and 500 pgL™!). 5 pgL™?
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represented a high concentration detected in the coastal environment (Zou
etal., 2011), and 500 pg.~ ! was chosen as a biological effective concentra-
tion to understand toxicity mechanisms on mussels.

2.3. Exposure design

The 15-day exposure consisted of 7 groups, and each group included 3
replicated tanks with 20 mussels in each tank. The 7 groups were:
(1) DMSO solvent control group (0.01 % v/v); (2) Seawater control group;
(3) Low concentration NOR group (5 pgL.~"); (4) High concentration NOR
group (500 pg'L.~1); (5) NPs group (0.26 mg/L, based on two previous studies,
which was used as an exposure concentration to simulate realistic levels of en-
vironmental pollution) (Barboza et al., 2018; Zhou et al., 2020); (6) Low con-
centration combined group: NOR (5 pgL. ™) + NPs (0.26 mgL~"); (7) High
concentration combined group: NOR (500 pgL™~ 1) + NPs (0.26 mgL~ D.

2.4. Engyme activity assay

On days 5, 10, and 15, 2 mussels were taken from each tank (i.e., 6 mus-
sels in each treatment or control group). The digestive glands of each mus-
sel were collected to detect the activity of digestive enzymes and gut
microbiota, and the gills were dissected to detect the activity of antioxidant
and immune enzymes. The digestive glands and gills were removed into
micro tubes and immediately frozen in liquid nitrogen. 0.1 g of tissue was
weighted, and normal saline was added in a ratio of mass: volume
(mL) = 1:9; the mixture was bathed on ice, and then centrifugated at
4 °C, 2500 g for 10 mins; and the tissue homogenate was stored at —80 °C.

The activities of 7 enzymes including lipase (LPS), trypsin (Typ),
amylase (AMS), superoxide dismutase (SOD), glutathione (GSH), catalase
(CAT), and lysozyme (LZM) were measured by commercial kits (Nanjing
Jian Cheng Bioengineering Research Institute, Nanjing, China). The optical
density values were determined with a microplate reader (FlexStation 3,
Molecular Devices, USA). The total protein content of the tissue sample
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was determined by the Coomassie brilliant blue staining method
(Bradford, 1976).

2.5. Gut microbiota analysis

The sequencing and data analysis of the whole intestine samples on day
15 was completed at Shanghai Ouyi Biomedical Technology Co., LTD.
Briefly, DNA was extracted using a DNA extraction kit, and the concentra-
tion of DNA was detected using agarose gel electrophoresis and
NanoDrop2000. The corresponding regions for bacterial diversity identifi-
cation were the 16S V3-V4 region (Primer 343F: 5-TACGGRAGGCAG
CAG-3’ and Primer 798R: 5-AGGGTATCTAATCCT-3’). Tks Gflex DNA Po-
lymerase (Takara LTD) performs PCR to ensure efficiency and accuracy.
PCR products were detected by electrophoresis and then purified by
magnetic beads. After repeated purification, the samples were sent for
sequencing.

Vsearch (Version 2.4.2) software was used for OTU classification of
valid tags obtained from quality control with a similarity of 97 % (Rognes
et al., 2016). The sequence with the largest abundance in each OTU was se-
lected as the representative sequence. Then, RDP Classifier Naive Bayesian
classification test was used to compare and annotate the representative
sequence with Silva(V138) database (Wang et al., 2007). A flower plot pro-
vided the cluster results of unique and common OTUs. Based on the OTUs
data, the community richness of Chaol and the diversity of Shannon and
Simpson were calculated. Kruskal-Wallis test was applied to test the differ-
ences between diversity indices.

The PICRUSt predicted metagenomes based on 16S rRNA gene sequenc-
ing data and the cluster of orthologous groups of proteins (COG) database
was used to predict the functional profiling of gut microbiota. COG clusters
were generated by using the COGNITOR program and the abundance of
COG functions was calculated according to the OTU abundance of the
groups. According to the Kruskal-Wallis test, the predicted COG results
were considered statistically different at p < 0.05.
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Fig. 1. The changes of total protein (A), Trypsin (B), Lipase (C), and Amylase (D) activity in the digestive glands of M. coruscus during 15-day exposure to NOR and NPs.
Different capital letters indicate the significant difference of NOR group at each time point in the absence of NPs. Different lowercase letters indicate significant

differences among time points within each NOR concentration in the presence of NPs.

“*” indicates the significant difference between the presence and absence of NPs at

the same NOR concentration and time point (p<0.05), while “**” indicates a highly significant difference (p<0.01).
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Fig. 2. The changes of Superoxide dismutase(A), Glutathione (B), Catalase (C), and Lysozyme (D) activity in the gills of M. coruscus during 15-day exposure to NOR and NPs.
Different capital letters indicate the significant difference of NOR group at each time point in the absence of NPs. Different lowercase letters indicate significant differences

among time points within each NOR concentration in the presence of NPs.

“*” indicates the significant difference between the presence and absence of NPs at the same NOR

concentration and time point (p<0.05), while “**” indicates a highly significant difference (p<0.01).

2.6. Statistical analysis

IBM SPSS Statistics 23 was used for statistical analysis. Normal distribution
and the homogeneity of variance were checked, followed by two-way
ANOVA. A three-factor ANOVA was used to evaluate the effects of NOR,
NPs, time, and their interactions. Principal component analysis (PCA) was per-
formed by integrating the 7 enzymatic activities (Typ, LPS, AMS, LZM, CAT,
SOD, and GSH) and the 3 time points (day 5, 10, 15) in Origin Pro 2018C.
GraphPad Prism was used to test the correlation between biomarkers and
COGs. All data were presented in the form of mean * standard deviation
(means * SD), with p < 0.05 (*) and p < 0.01 (**) indicating significant dif-
ferences among groups.

3. Results
3.1. Responsive enzymatic activities

Fig. 1A shows the changes in total protein (TP). Compared with the control
mussels, Typ was decreased by NOR or NPs exposure as early as on day 5
(Fig. 1B). The high concentration of NOR significantly reduced LPS activity
on day 15 (Fig. 1C). Exposure to NPs and NOR resulted in a significant de-
crease in AMS activity with increasing NOR concentration on day 5. AMS ac-
tivity was not significantly affected by NOR in the last five days (Fig. 1D).

On day 15, SOD and GSH activities in the NOR group increased signifi-
cantly. The addition of NPs significantly increased the SOD activity in the
high concentration NOR group on day 10 but significantly decreased the
GSH activity on day 15 (Fig. 2A, B). NPs exposure alone resulted in a signif-
icant increase in CAT on day 5 and then a gradual decrease (Fig. 2C). LZM
had a significant decrease in the low concentration NOR group and the high
concentration combined group (Fig. 2D).

There were no significant differences between the DMSO solvent con-
trol group and the seawater control group (Table S1).

3.2. Gut microbiota changes

The seven experimental groups, i.e., the seawater control, solvent control,
NPs, low concentration NOR, high concentration NOR, low concentration
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Fig. 3. Flower plot of OTUs. The number in the Core of the figure represents the OTUs
common to all samples (Core OTUs), and the number on the petals represents the total
OTUs of each sample minus the number of OTUs common to all samples.
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Fig. 4. The top 10 relative abundance of the gut bacteria in M. coruscus from different treatments at the phylum level.

combined, and high concentration combined group, contained 815, 805, 794,
750, 743, 745, and 657 OUTs, respectively, resulting in a total of 114 core
OTUs (Fig. 3).

Fig. 4 shows the top 10 relative abundance of the gut microbial phyla.
Proteobacteria, Bacteroidota, and Firmicutes were the three dominant spe-
cies in the intestinal tract of mussels. Compared with the control groups, the
relative abundance of Proteobacteria decreased with the increase in NOR
concentration. On the contrary, in the NPs group, the relative abundance
of Proteobacteria increased; when combined with NOR, it showed varying
degrees of decrease.

The alpha diversity of the gut community was not significantly different
between the seawater and the solvent control group. The community rich-
ness decreased with NOR, NPs, and combined exposure. Shannon and
Simpson index also decreased in all treatment groups. The coverage indexes
were >99 % in all groups (Table 1).

Furthermore, biological functions of the gut community affected by
different treatments were predicted based on 16S sequencing data and
Clusters of Orthologous Groups (COG). The three main affected processes
were cellular processes and signaling, metabolism, and information storage
and processing (Table S2). Functional groups COG 1132, 1309, 4753, 1653,
and 0395 were predicted to be significantly enhanced by NPs, and such en-
hancement was more significant by high concentration NOR and combined
exposure groups (Fig. 5).

3.3. Variance, correlation, and principal component analysis

Three-factor analysis of variance revealed that SOD and AMS activities
were significantly affected by NPs exposure, while a significant interaction
effect was detected for TYP. There was also an interaction effect under com-
bined stress for GSH activity (Table S3).

The PCA combined 7 biomarkers and 3 sampling time points. PC1 ex-
plained 27.5 % of total variances, separating the NOR groups from groups

without NOR; PC2 explained 23.47 % of total variances, which separated
the presence or absence of NPs groups (Fig. 6).

There was a significant positive correlation between SOD and a COG
function, i.e., defense mechanisms (r = 0.828, p = 0.004, Fig. 7A), and
AMS was significantly and negatively correlated with energy production
and conversion (r = 0.704, p = 0.018, Fig. 7B).

4. Discussion

Superoxide dismutase (SOD) acts as a first-stage detoxification enzyme
in cells to combat reactive oxygen species (Esposito et al., 1999). In the
present study, SOD in the high concentration NOR group increased signifi-
cantly on day 15. Continuous exposure to NPs may aggravate oxidative
damage of cells, destroy the ability of the body to resist free radicals, and
decrease the activity of SOD (Letendre et al., 2008). In another short-term
study, exposure to 50 nm polystyrene NPs resulted in increased SOD activ-
ity in mussels after 24 h but decreased after 7 days (Cole et al., 2020). A
chronic study of Mytilus galloprovincialis showed that exposure to 40 nm
polystyrene NPs for 42 weeks reduced 65 % SOD activity than controls
(Hamm and Lenz, 2021). Our results showed a significant interaction
between NPs and the high NOR group on day 10, and NPs significantly
stimulated SOD activity in the high NOR concentration group, suggesting
SOD as a potential biomarker for NPs exposure in mussels.

Glutathione (GSH) plays important roles in maintaining intracellular
homeostasis and scavenging free radicals, and a decrease in GSH activity
is often accompanied by an increase in cell membrane peroxidation
(Jozefczak et al., 2012). Our results showed that GSH was not significantly
affected by the changes in NPs or NOR concentrations, but there was an in-
teraction effect under combined exposure. In the high-concentration NOR
+ NPs group, the significant inhibition on GSH might be due to the in-
creased bio-distribution of NOR in mussels carried by NPs, which leads to
stronger cellular peroxidation, resulting in cell damage and inhibition.

Table 1

Summary of intestinal microbiota alpha diversity (Chaol, Shannon, Simpson) in M. coruscus under different treatment conditions. NPs, nanoplastics; NOR, norfloxacin.
Groups OTUs Chaol Shannon Simpson Coverage
Control 929 + 28.32% 1397.99 + 88.60% 6.78 + 0.0038 0.9479 + 0.2221 99.57 = 0.06 %
DMSO 919 + 54.48% 1359.22 + 88.73% 6.67 + 0.1331 0.9487 + 0.0063 99.55 *+ 0.09 %
Low-NOR 864 + 20.43° 1284.08 + 112.08%° 6.55 = 0.0233 0.9430 *= 0.0031 99.58 = 0.01 %
High-NOR 857 + 36.59° 1260.63 * 27.46" 6.66 = 0.2756 0.9437 + 0.0103 99.54 = 0.05 %
NPs 908 + 54.24%" 1275.77 + 43.51° 6.52 + 0.1217 0.9423 + 0.0046 99.55 *+ 0.03 %
NPs + Low-NOR 859 + 26.10° 1229.34 * 36.92" 6.46 = 0.1240 0.9394 = 0.0126 99.56 = 0.04 %
NPs + High-NOR 771 *+ 7.94¢ 1065.43 + 28.34¢ 6.43 + 0.0654 0.9393 *= 0.0025 99.61 = 0.00 %
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Fig. 5. The heatmap of 16S COG functions predicted from different treatments. Red indicates increased abundance and blue indicates decreased abundance.

Similarly, Guo et al. (2021) evaluated the effects of combined stress of
80 nm polystyrene NPs and ciprofloxacin (CIP) on Corbicula fluminea and
found that the toxic effects of CIP were exacerbated by the presence of
NPs. Also, co-exposure of three antibiotics, oxytetracycline (OTC),
florfenicol (FLO), and sulfamethoxazole (SMX) with 500 nm polystyrene
NPs inhibited GSH and down-regulated detoxification-related genes in
thick-shelled mussels (Han et al., 2021). Catalase (CAT) is a common anti-
oxidant enzyme present in most aerobic tissues, but CAT can damage cells
at high concentrations (Ercal et al., 2001). We observed that the short-
term NPs exposure led to a significant activation of CAT in mussels,
showing a strong oxidative toxic effect, while the effects appeared to be
alleviated over exposure time. Thus, it is speculated that chronic exposure
to low concentrations of NPs may cause reversible oxidative damage as a
sign of slow adaptation, which needs further investigations. Exposures to
50 nm or 70 nm NPs have also been reported to cause significant increases
in CAT in other mussel studies (Wang et al., 2021; Capolupo et al., 2021).
Taken together the results of CAT, SOD, and GSH, we proposed in general
that under NOR and NPs exposures, oxygen free radicals and hydrogen
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Fig. 6. Principal component analysis (PCA) on 7 enzyme activities (TYP, LPS, AMS,
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0mgL~" x NOR 0 pgL.~! on day 5, 10, 15; ALN.5, 10, 15: NPs 0 mgL.~! x NOR
5pgL ™! on day 5, 10, 15; HN.5, 10, 15: NPs 0 mgL. ' x NOR 500 pgL ™' on day
5,10, 15; N.5, 10, 15: %NPs 0.26 mgL~! x NOR 0 pgL~' on day 5, 10, 15;
@NLN.5, 10, 15: NPs 0.26 mgL.~! x NOR 5 pgL ™! on day 5, 10, 15; éNHN.5, 10,
15: NPs 0.26 mgL ™" x NOR 500 pgL~" on day 5, 10, 15).

ions form hydrogen peroxide under the action of SOD, and the increase in
SOD results in excessive hydrogen peroxide, requiring more CAT enzymes.
Only the high NOR exposure group showed a significant increase in GSH,
suggesting that more GSH was needed to remove the accumulated oxygen
free radicals under higher NOR stress.

Trypsin (Typ) as a proteolytic enzyme, plays an important role in puri-
fication and anti-inflammation (Walsh et al., 1964). In the present study,
Typ was found responsive to NPs or NOR exposure in mussels. Lipase
(LPS) can hydrolyze triglycerides into glycerol and fatty acids that are con-
verted, absorbed, and utilized by organisms (Layer and Keller, 2003). LPS
was significantly reduced after 15-day exposure to the high concentration
of NOR but no significant changes were found for NPs exposure. A recent
study showed that different types, sizes, and concentrations of MPs did
not affect LPS activity in Mytilus galloprovincialis (Trestrail et al., 2021). Am-
ylase (AMS) is a general term for enzymes that hydrolyze starch and glyco-
gen (van der Maarel et al., 2002). Our results showed that the AMS activity
of mussels was significantly reduced within 5 days and gradually recov-
ered, suggesting that the toxicity of NPs or NOR did not exceed the recovery
capacity of mussels. Hypothetically, upon initial exposure to NOR or NPs,
the stress response and insufficient energy supply of mussels decreased
AMS activity, which gradually returned to normal levels over time. Also,
the inhibited feeding of mussels (e.g., insufficient nutrients) under environ-
mental stress conditions might be related to decreased digestive function
and lower digestive enzyme activity.

Lysozyme (LZM) is an alkaline enzyme produced by animals that can hy-
drolyze mucopolysaccharides in pathogenic bacteria, and its antibacterial,
anti-inflammatory, and antiviral effects form part of the innate immune sys-
tem of the animal (Ho and Ellermeier, 2022). In the present study, when mus-
sels were exposed to NOR, immune damage occurred and LZM activity
increased. Continuous exposure to NOR could lead to a breakdown of the im-
mune defense system of mussels. Similar immunotoxicity of NOR was also
found in zebrafish (Liang et al., 2020). Another study reported that MPs
caused immunotoxicity, accompanied by altered microbial profiles in juvenile
Eriocheir sinensis (Liu et al., 2019).

Gut microbiota is the largest and most dynamic micro-ecosystem of liv-
ing organisms (Sekirov et al., 2010). Gut microbiota plays an important role
in digestive physiology, metabolism, and immunity (Tremaroli and
Backhed, 2012). The flower plot in Fig. 3 shows that mussels contain shared
OTUs, known as the core gut microbiota (Shade and Handelsman, 2012)
under different treatment conditions. The core gut microbiota involves in
identifying pathogens and improving survival, which has been used to as-
sess the health risks of mussels (Southwick and Loftus, 2003). In the present
study, it was observed that both NOR and NPs exposures induced signifi-
cant inhibitory effects on the richness and diversity of gut microbiota, and
such effects were more significant under combined exposure. Specifically,
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the relative abundance of Proteobacteria in mussels' gut was decreased
after NOR exposure. NOR is a known fluoroquinolone antibacterial agent
against a variety of pathogenic bacteria belonging to Proteobacteria
(Meireles et al., 2019). In contrast, the relative abundance of Firmicutes
was increased after NOR exposure, which may be related to the relative de-
crease of Proteobacteria. Firmicutes can accelerate the formation of fat
droplets in the intestinal epithelium and liver, facilitating fat absorption
(Semova et al., 2012).

The impact of NOR and plastic particles on gut microbiota has also been
reported in other organisms. For example, after 14 days of NOR exposure,
the diversity of gut microbiota of large yellow croaker Pseudosciaena crocea
was significantly reduced (Wang et al., 2020a). Juvenile sea cucumber
Apostichopus japonicus was fed NOR for 45 days and its growth was affected,
which was related to the changes in intestinal microbiota structure (Zhao
etal., 2019). Li et al. (2020a) showed a decrease in gut microbiota diversity
after 6 weeks of MPs exposure, and the abundance of pathogenic bacteria
remained high after the recovery period. In Larimichthys crocea, after expo-
sure to 100 nm NPs for 14 days, gut microbiota structure was significantly
changed, further manifested as increased mortality and decreased growth
rate (Gu et al., 2020). Different from the above studies that focused on ei-
ther NPs or antibiotics, our combined exposure showed an additive effect
of NOR + NPs on intestinal homeostasis, which was indicated by OTUs,
Chaol, Shannon, and Simpson.

According to PCA (Fig. 6), two principal components accounted for
50.97 % of the total composition. PC1 separated the presence of NOR
from the absence, accounting for 27.5 % of the total variances, while PC2
separated the presence or absence of NPs, accounting for 23.47 % of the
total variances. The PCA results indicated that antioxidant, immune, and di-
gestive enzymes co-responded to the combined stress of NOR and NPs,
which was consistent with the results of Brandts et al. (2018) and Li et al.
(2020b). Significant correlations of biochemical parameters and COG func-
tions were also found (Fig. 7). The reduced activity in the antioxidant en-
zyme SOD and the digestive enzyme AMS might be related to the reduced
abundance of bacteria that are involved in oxidative defense and energy
storage.

While enzymatic assays efficiently assessed the responsive of selected
biomarkers to NPs and NOR exposures, the results of gut microbiota 16S
rRNA-seq enabled the prediction of COG functions and biological processes.
Although further confirmatory data is needed, the three primary processes -
cellular processes and signaling, metabolism, and information storage and
processing - are predicted to be impacted by NPs and NOR exposures. The
correlation between enzyme activities and COG functions indicates the po-
tential to integrate both approaches as a standard and efficient method for
environmental hazard assessment.

5. Conclusion
Antibiotics and NPs, as emerging contaminants or pollutants in the ma-

rine environment, have been gradually acknowledged. In the present study,
integrating enzymatic assays and gut microbiota 16S rRNA-seq, we

observed combined toxic effects of NOR and NPs on mussels, including
disrupted enzymatic activities, gut homeostasis, and physiological damage.
The standardized enzymatic assays and gut microbiota 16S rRNA-seq can
also be applied to assess the combined or individual effects of other
micropollutants. Given the anticipated increasing environmental exposure
of both antibiotics and NPs, the direct dual hazards of contamination by an-
tibiotics and NPs warrant more investigations in other environmental or-
ganisms, meanwhile, the health risks associated with indirect hazards,
such as antibiotic-associated resistance genes, also need to be explored in
the future.
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