TP1 Tableaux blancs du semestre 5 Programme : Probabilités conditionnelles

1) Rappels sur les bases des probabilités

Quelle sont les formules à retenir pour le calcul des probabilités?

Soient un univers Ω et \mathbf{P} une probabilité sur Ω . On a les formules suivantes :

Parties de Ω	Vocabulaire des évènements	Propriétés sur les probabilités
A	A quelconque	$0 \le P(A) \le 1$
\emptyset, Ω	événement impossible, certain	$P(\emptyset) = 0 P(\Omega) = 1$
$A \cap B = \emptyset$	A et B incompatibles	$P(A \cup B) = P(A) + P(B)$
\overline{A}	\overline{A} est l'événement contraire de A	$P(\overline{A}) = 1 - P(A)$
A, B	A et B quelconques	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$
		$\mathbf{P}(A \cap B) = \mathbf{P}(A) + \mathbf{P}(B) - \mathbf{P}(A \cup B)$
$\Omega = \{\omega_1, \dots, \omega_n\}$	Univers fini	$\sum_{i=1}^{n} \mathbf{P}(\omega_i) = 1$
$\Omega = \{\omega_i : i \in \mathbb{N}\}$	Univers discret	$\sum_{i \in \mathbb{N}} \mathbf{P}(\omega_i) = 1$

Quelques propriétés sur les opérations sur les ensembles qui doivent facilement être retrouvées :

$$A \cap \emptyset = \emptyset \qquad A \cup \emptyset = A$$

$$A \cap \Omega = A \qquad A \cup \Omega = \Omega$$

$$A \cap A = A \qquad A \cup A = A$$

$$A \cap B = B \cap A \qquad A \cup A = A$$

$$A \cap B = \overline{A} \cup \overline{B} \qquad A \cup B = B \cup A$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B} \qquad A \cup B = B \cup A$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B} \qquad A \cup B = B \cup A$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B} \qquad A \cup B = B \cup A$$

$$\overline{A \cup B} = \overline{A} \cap \overline{B} \qquad A \cup B \cup B \cup C \qquad A \cup C \qquad A$$

2) Rappels sur les probabilités conditionnelles

Formule de Bayes:

<u>Définition</u>: Soient A et B deux évènements tels que P(B) $\neq 0$. On définit la probabilité de A sachant B, notée P(A/B), par : P(A/B) = $\frac{P(A \cap B)}{P(B)}$

<u>Remarque</u>: Soient A et B deux évènements tels que $P(B) \neq 0$. Comme la probabilité de A sachant B, est :

$$P(A/B) = \frac{P(A \cap B)}{P(B)}$$
, on peut aussi écrire que : $P(A \cap B) = P(A/B).P(B)$

<u>Définition</u>: A et B sont deux évènements indépendants lorsque $P(A \cap B) = P(A) \times P(B)$

<u>Définition</u>: On dit que les évènements $A_1, A_2, A_3...., A_n$ forment une partition de l'univers Ω lorsqu'ils sont disjoints deux à deux : $A_i \cap A_j = \emptyset \ \forall i,j$ et $\Omega = A_1 \cup A_2 \cup A_3 \cup \cup A_n$ <u>Formule de probabilités totales</u> : Soient $A_1, A_2, A_3...., A_n$ une partition de l'univers Ω et B un

évènement. $P(B) = P(A_1).P(B/A_1) + P(A_2).P(B/A_2) + P(A_3).P(B/A_3) + \dots + P(A_n).P(B/A_n)$

Soient $A_1,A_2,A_3....,A_n$ une partition de l'univers Ω et B un évènement.

$$P(B) = P(A_1).P(B/A_1) + P(A_2).P(B/A_2) + P(A_3).P(B/A_3) + \dots + P(A_n).P(B/A_n)$$

$$\mathsf{Alors}\,P(A_i/\mathsf{B}) = \tfrac{P(\mathsf{B}/A_i).P(A_i)}{P(A_1).P(B/A_1) + P(A_2).P(B/A_2) + P(A_3).P(B/A_3) + \ldots + P(A_n).P(B/A_n)} \, \forall 1 \leq i \leq n$$

Exercice 1 Circuit électrique

1. Soient A, B, C trois événements. Montrer que :

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C).$$

- 2. On dispose de 3 composants électriques C_1 , C_2 et C_3 dont la probabilité de fonctionnement est p_i , et de fonctionnement totalement indépendant les uns des autres. Donner la probabilité de fonctionnement du circuit
 - 2.1. si les composants sont disposés en série.
 - 2.2. si les composants sont disposés en parallèle.
 - **2.3.** si le circuit est mixte : C_1 est disposé en série avec le sous-circuit constitué de C_2 et C_3 en parallèle.

Exercice 2

Dans une entreprise deux ateliers fabriquent les mêmes pièces. L'atelier 1 fabrique en une journée deux fois plus de pièces que l'atelier 2. Le pourcentage de pièces défectueuses est 3% pour l'atelier 1 et 4% pour l'atelier 2. On prélève une pièce au hasard dans l'ensemble de la production d'une journée. Déterminer

- 1. la probabilité que cette pièce provienne de l'atelier 1;
- 2. la probabilité que cette pièce provienne de l'atelier 1 et est défectueuse;
- 3. la probabilité que cette pièce provienne de l'atelier 1 sachant qu'elle est défectueuse.

Exercice 3

Le gérant d'un magasin d'informatique a reçu un lot de clés USB. 5% des boites sont abîmées. Le gérant estime que :

- 60% des boites abîmées contiennent au moins une clé défectueuse.
- 98% des boites non abîmées ne contiennent aucune clé défectueuse.

Un client achète une boite du lot. On désigne par A l'événement : "la boite est abîmée" et par D l'événement "la boite achetée contient au moins une clé défectueuse".

- 1. Donner les probabilités de P(A), $P(\bar{A})$, P(D|A), $P(D|\bar{A})$, $P(\bar{D}|A)$ et $P(\bar{D}|\bar{A})$. En déduire la probabilité de D.
- 2. Le client constate qu'une des clés achetées est défectueuse. Quelle est la probabilité pour qu'il ait acheté une boite abîmée?

Exercice 4

Une usine fabrique des pièces, avec une proportion de 0,05 de pièces défectueuses. Le contrôle des fabrications est tel que :

- si la pièce est bonne, elle est acceptée avec la probabilité 0,96.
- si la pièce est mauvaise, elle est refusée avec la probabilité 0,98.

On choisit une pièce au hasard et on la contrôle. Quelle est la probabilité

- 1. qu'il y ait une erreur de contrôle?
- 2. qu'une pièce acceptée soit mauvaise?

Exercice 5

Une compagnie d'assurance répartit ses clients en trois classes R_1 , R_2 et R_3 : les bons risques, les risques moyens, et les mauvais risques. Les effectifs de ces trois classes représentent 20% de la population totale pour la classe R_1 , 50% pour la classe R_2 , et 30% pour la classe R_3 . Les statistiques indiquent que les probabilités d'avoir un accident au cours de l'année pour une personne de l'une de ces trois classes sont respectivement de 0.05, 0.15 et 0.30.

- 1. Quelle est la probabilité qu'une personne choisie au hasard dans la population ait un accident dans l'année?
- 2. Si M.Martin n'a pas eu d'accident cette année, quelle est la probabilité qu'il soit un bon risque?

Exercice 6

Une forêt se compose de trois types d'arbres : 30% sont des chênes, 50% des peupliers, et 20% des hêtres. Suite à une tempête, une maladie se déclare et touche 10% des chênes, 4% des peupliers, et 25% des hêtres. Sachant qu'un arbre est malade, quelle est la probabilité que ce soit un chêne? un peuplier? un hêtre?

Les rôles spécifiques dans le groupe

Animateur

- S'assure que l'équipe suit les étapes prévues
- Anime les rencontres et la discussion :
 - distribue la parole, suscite/sollicite la participation ou modère les interventions
 - amène l'équipe à clarifier les idées développées
 - o réalise des synthèses
- Crée un climat où tous sont invités à participer
 - S'assure que tout le monde a la chance de s'exprimer
 - Motive les silencieux à faire valoir leurs idées et opinions.

Scribe

 Note au tableau l'essentiel des échanges (support et mémoire de la discussion de l'équipe)

- Résume et fait la synthèse des informations pour aider l'animateur
- Organise le tableau en fonction des étapes (de manière à garder la trace de toute la réflexion → ne pas effacer).

Secrétaire

 Garde une trace écrite et complète des documents et de la production de l'équipe

 Transmet cette trace à tous les membres de l'équipe et au tuteur.

Gestionnaire du temps

Pour alléger la tâche de l'animateur, un gestionnaire du temps peut être désigné pour :

- S'assurer du respect du timing pour chaque étape et du timing général
- Informer l'équipe régulièrement (ex : il nous reste 30 minutes pour cette séance)
- S'assurer que le travail progresse et que l'équipe n'accumule pas de retard

Consignes

- Ces rôles ne sont que secondaires, votre premier rôle, à chacun, est avant tout de résoudre les exercices, **tout le monde doit participer**!
- A la fin de chaque exercice, faire en sorte que **tous les membres du groupe ont bien compris** sa résolution avant de poursuivre,
- Je circulerai de groupe en groupe, et vous poserai quelques questions pour vous aider si besoin est, et/ou pour m'assurer que tous les membres du groupe ont bien compris.
- Le secrétaire devra inscrire les noms des étudiants de chaque groupe en haut à gauche de sa feuille de rédaction. A la fin de la séance, chaque étudiant devra photographier la copie du secrétaire.
- Tous les membres du groupe devront me remettre sur moodle à l'emplacement TP1 les photos converties en pdf, et terminer les exercices inachevées (et les fusionner avec le pdf précédent).