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Etude de fonctions
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Soit f, la fonction définie par : f(x) = e;

Son ensemble de définition est donc :

1.D; = R*

2.Dp =R — {1}

3 Dy=R—{-1;1}
4. D;=R

5. Aucune des réponses précedentes n’'est juste
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Soit f, la fonction définie sur R* par : f(x) =
f est donc :

1 paire
2. impaire
3. 'un, ni autre




O‘PQA"JMM; Fm MP‘- J-“'OE.U:SQ .‘.Oa[-
-e,b.A,Q\A.Lquv.Q ‘gz?-uh.jo ‘\'°°r_ fﬂ-




2

On etudie la fonction f, définie par : f(x) =
[’expression de sa dérivee est alors :
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sur R?
2 eX? -1 " 0

On etudie la fonction f, définie par : f(x) =

dont la dérivéeest: f'(x) = (_Zf'e )2. Quel est alors le tableau de variation complet de f ?
e*” —1
K| o = x| o yoo x| o o
0o | o — {0 — 4 ') f

A }w\q ’ﬂ lm\ﬂ { /

1. Le premier tableau est correct

2. Le deuxieme tableau est correct _
Le troisieme tableau est correct

Aucun des tableaux ci-dessus n’est correct.
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Pour tracer la courbe représentant f sur son ensemble de
definition, on commence par placer les droites suivantes :
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1. I'asymptote horizontale d'équation y = 0,
et 'asymptote verticale d’eéquation x=1.

2.1'asymptote horizontale d’équationy = 1,
et 'asymptote verticale d’équation x=0.

3. les asymptotes horizontales d'équationy =1, et y=-1
et 'asymptote verticale d’équation x=0.

4. La tangente horizontale en 0,
'asymptote horizontale d’équationy = 1,
et 'asymptote verticale d’équation x=0.
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On étudie la bijectivite de la fonction f, définie par : f(x) = T a
Quelle assertion ci-dessous est juste ?

1. f:]—0;0[ = [1;+00] x>y = f(x) esthbijective, car elle est strictement monotone et continue

2. f:]0; 40| = [1;+o[ x+ y = f(x) est bijective, car elle est strictement monotone

3. fiR* > ]1; 40| x » y = f(x) est bijective

4. Aucune des reponses précedentes n’est juste.
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La fonctionf: |—o0; 0| = ]1;+00| x>y = f(x)= etant bijective, elle admet une

fonction réciproque £~ telle que : o °
1. f71:]1; 400 - ]—o0; 0] y'—>x=f‘1(y)=\/@
2. f71]—00;0[ - ]1; +oo] ny=f‘1(y)=\/@
3. fTh]=;0[ - ]1; +oof y'—>x=f'1(y)=—\/@
4. f7h]1 400 - J—0; 0 yx =1 (y) =—\/@

5. Aucune des réponses précéedentes n’est juste.
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Calcul de limites
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Soit f, la fonction définie par : f(x) = (Eox7—x+2) alors : °

(2x3+x+1)2

. lim f(x) = —

X—+ 00

thr-lpoo f(x) = 2
3 lim f(x) = £

X—>+ 00
4 lim f(x) _if’

X—>+00

5. Aucune des réeponses précedentes n’'est juste.
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Soit f, une fonction dérivable en 0. On obtient un
equivalent de f en 0 a I’aide de la formule suivante :

L. f(x)~of (0) + x.£(0)
2.1 (O~of () + 5. (0)
3. Aucun des résultats ci — dessus n’est juste
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Soit f, la fonction définie par : g(t) =

1. 11_r)1(1)g(t) =

2 g et =

il SlW 1]lw

3 e =

1

gl =7

5.Aucune des réponses precedentes n'est juste.







Soit f, la fonction définie par : h(t) =

: _ 5
1. }rl_r)l(l) h(t) = -
2.}1_%1 h(t) =0

3 g ) =

4. lim h(t) =

t—0

5. Aucune des réeponses précedentes n’'est juste.
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Soit f, la fonction définie par : f(t) = V2t + 1 —+/2t + 3 alors e

= tl—1>£-noof(t) -
Z.tl_l)grnoo f(t) =+
3'tl_l>Too f(t)=0

4. Aucune des réponses précedentes n’est juste.
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Calcul integral




L’intégrale | = f_22(3x2 + 4)dx estegale a:

1.1=2. [ (3x? + 4)dx = 32
2.1=0
3.1=16

4, Aucun des résultats ci — dessus n'est juste
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Soit x # — - 0
Les primitives de la fonction f(x) = 3e>* — 1+ x3.sin(x*) sont :

2x+1

1. F(x) = 15e>* + orr 1) + 3x“.sin(x*) 4+ 4x°.cos(x*) + cte 1

4
2.F(x) = 3e>* —In|2x + 1| — x:.cos(x“) + cte
4
3.F(x) = 3e>* —In|2x + 1| + x:.cos(x‘*) + cte
4. F(x) = 265" = %lnIZx + 1| — i.cos(x‘*) + cte

5.F(x) = %eSx = %lnIZx + 1| + i.cos(x‘*) + cte
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L’intégrale I = [ 3 sin(3t)dt estégalea:

1.1=2/3
2.1=0
3.1=—2/3
4, Aucun des résultats ci — dessus n'est juste
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Soit f(w) = —— 5 L.w(w*+1) — alors [ f(w).dw est égal a :
L
L 2Vw?r+ 1+ 0*(@0?+1)° + oz T cte

2. Vw2 +1+ %.a)z(wz 4+ 1)3 + C.arctan(w) + cte

3 Vo? +1 +§.(w2 +1)% + C.In(w? + 1) + cte

4.\/a)2+1+§.(a)2+1)3+ C _+tcte

(w?+1)2

5. Aucune des reponses ci-dessus n’est juste
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