
Travaux Pratiques d’Outils Logiciels sur les fonctions réciproques 
 
Rappel 
 
On appelle fonction bijective sur D, toute fonction f : D                   f(D)   
                                                                                           x                    y = f(x) 
 
vérifiant :                                 ∀ 𝐲 𝛜 𝐟(𝐃)  ∃ !   𝐱𝛜𝐃 / 𝐲 = 𝐟(𝐱)  , c'est-à-dire : 
  
      « Pour tout y, élément de f(D), il existe un unique x, élément de D tel que y=f(x) » 
 
Question 1 Etudier la fonction f, définie par : f(x) = (√x − 1)ଶ et montrer, à l’aide d’un 
contre-exemple, qu’elle n’est pas bijective sur son ensemble de définition.  
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Rappel 
 
Toute fonction continue et strictement monotone sur D est bijective sur D. 
 
Question 2   Déterminer deux intervalles sur lesquels la fonction f est bijective, justifier ce 
résultat. 
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Rappel 
 
Définition/Théorème   Soit une fonction bijective f : D                   f(D)   
                                                                                          x                    y = f(x) 
 
il existe alors une fonction notée f-1 et appelée « fonction réciproque de f »,  
                                                                 telle que : f-1 : f(D)                   D   
                                                                                             y                    x = f-1(y) 
 
Remarques : x=)x)(f(f  , Dx   -1 ∈∀   et    y=)y)(f(f  , )D(fy 1

∈∀   
Les courbes représentant f et f-1 sont symétriques l’une de l’autre par rapport à la droite 
y = x. 
 
Question 3 Déterminer l’ensemble de définition, l’ensemble image et l’expression de g-1, la 
fonction réciproque de la fonction g définie par : g(x) = (√x − 1)ଶ sur I=  ;1 . Dans un 
même repère tracer les courbes représentant g et g-1 
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Question 4 Déterminer l’ensemble de définition, l’ensemble image et l’expression de h-1, la 
fonction réciproque de la fonction h définie par : h(x) = (√x − 1)ଶ sur I=[0; 1]. Dans un 
même repère tracer les courbes représentant h et h-1 
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Résoudre l’exercice 6 page 40 du chapitre 3. 
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