o™= UNIVERSITE DE
s

== TOULON

UFR SCIENCES ET TECHNIQUES

Détection du Diabete de type 11
par l'intermédiaire de
’apprentissage automatique

fnath

RAPPORT DU PROJET PERSONNEL DE RECHERCHE

NESSIA FENNECH

2023-2024

Tutrice : Gloria Faccanoni
Laboratoire : Imath

Table des matieres

1. Introduction 2
2. Exploration des données 3
2.1. Boite amoustaches 5
2.2. Normalisation : centrage et réduction des données. 7

3. Choix des paramétres 8
3.1. Matrice de Corrélation 8
3.2. Visualisation 3Do 9

4. Méthode des k plus proches voisins 9
4.1. Introduction a la méthode des k plus proches voisins 10
4.2. Application de la méthode des k plus proches voisins 10

5. Evaluation de notre modéle 12
5.1. Croisement des variables L 12
5.2. Mesure de fiabilité des prédictionso oL 13
5.3. Les Métriques 13
5.3.1. Introduction aux métriques 13

5.3.2. Calcul des métriques 14

5.4. Valeur prédictive en fonction de la prévalence 15

6. Conclusion 18
A. Annexe 20

1. Introduction

De nos jours, le machine learning est employé dans de nombreux domaines pour effectuer des
analyses prédictives, notamment pour créer des modeles de détection précoce et de prévention
des maladies. Aussi appelé apprentissage automatique, il représente un modele d’apprentissage
qui permet & des applications de prédire des résultats de plus en plus précis. Dans le monde, plus
de 500 millions de personnes vivent avec le diabéte dont 96 % souffrent d’un diabéte de type
II. Ce nombre devrait plus que doubler et atteindre 1,3 milliard de cas dans les 30 prochaines
années. Cette augmentation met en évidence I'importance d’améliorer le dépistage pour mieux
gérer et prévenir le diabéte (Voire par exemple [2]).

Le diabete de type II est une maladie qui est caractérisé par un taux de glucose ou de sucre trop
élevé dans le sang. Elle survient lorsque le pancréas ne produit pas suffisamment d’insuline ou
lorsque 'organisme ne parvient pas a utiliser efficacement I’insuline produite. Les complications
de cette maladie sont sérieuses pouvant affecter significativement les vaisseaux sanguins, les reins
ainsi que les nerfs.

Le Machine Learning offre une approche prometteuse pour aborder ce probléeme. Dans notre
étude, nous explorerons un exemple concret d’application du Machine Learning, en utilisant un
classificateur basé sur un arbre de décision pour tenter de résoudre le probleme du dépistage
du diabete. Un classificateur d’arbre de décision est un modele qui utilise une série de choix
simples pour diviser les données en groupes basés sur leurs caractéristiques. Cette approche nous
permettra d’analyser et de choisir de maniére efficace les données les plus pertinentes, offrant
ainsi une prise en charge précoce du diabete.

Nous utiliserons des données provenant de de I’étude Pima Indians Diabetes faite par 1’Uni-
versité de Californie, School of Information and Computer Science. (Sujet issu de [1]) Nous nous
intéresserons a plusieurs critéres sélectionnés parmi une base de données plus grande. En parti-
culier, tous les patients, ici, sont des femmes dgées d’au moins 21 ans. De plus, les patients sont
également d’origine indienne Pima, population la plus touchée dans le monde par le diabete de
type II. L’ensemble de données comprennent plusieurs caractéres, notamment une variable cible
spécifique, « M ». Cette variable de classe indiquera si I'individu est sain ou malade. Elle vaut 1
si 'individu est malade et 0 si ce n’est pas le cas.

Dans notre jeu de données, chaque ligne représente un patient et les colonnes correspondent
aux variables prédictives et a la variable cible. Les variables sont les suivantes :

— Grossesses : nombre de fois enceinte

— Glucose : concentration en glucose plasmatique 2 heures dans un test de tolérance au

glucose par voie orale

— Pression : pression artérielle diastolique (mm Hg)

— Insuline : insuline sérique de 2 heures (mu U / ml)

— IMC : indice de masse corporelle (poids en kg) / (taille en m?)

— K : coefficient 1ié a la présence du diabete parmi ses parents et proches

— Age : 4ge en année (ans)

— M : variable de classe (0 ou 1) qui indique si 'individu est sain (0) ou malade (1).

Le nombre total de patient étudié est de 500. Pour tenter de résoudre le probleme du diabete,
nous allons construire un modeéle qui va faire des prédictions. Pour cela, nous devons trouver un
moyen d’évaluer la qualité de ces prédictions. Etant donné que les prédictions, par définition,
ne concernent que des données inédites, nous ne pouvons pas dépendre des données utilisées
pour créer le modele. Nous devons, tout d’abord, diviser le jeu de données en deux parties non
croisées : les données d’entrainement qui seront utilisées pour construire le modele et les données
de test qui serviront a évaluer les prédictions du modele. Nous utiliserons, ensuite, ’ensemble
d’entrainement pour construire notre classificateur. Enfin, nous évaluerons la performance de
notre modele sur ’ensemble de test.

Nous allons nous servir des bibliotheques Pandas, Pylab et Seaborn pour analyser nos données.
Dans notre cas, il existe déja deux fichiers séparés (avec des données déja bien préparées). La table
T sera utilisée pour I'entrainement et la table P pour la phase de test. Les données d’entrainement
contiennent les données de 400 individus, tandis que celles de test contiennent les données de
100 patients. Nous analyserons nos données et étudierons une méthode de machine learning
permettant de réaliser des analyses prédictives.

2. Exploration des données

Notre premier objectif est de comprendre les données et trouver les parametres qui influent le
plus sur la variable cible ("M"). La table T contient les données d’entrainement de 400 individus
qui vont permettre a notre modele de reconnaitre une personne diabétique.

Nous devons, tout d’abord, savoir quelle est la proportion de malade dans notre jeu de données.
Dans notre jeu de données, il y a autant de personnes malades que de personnes saines. Notre
jeu de données est donc équitablement réparti pour construire notre modele. Notre dataset ne
possede pas de valeurs manquantes. Ensuite, nous pouvons observer le résumé statistique de de
nos données pour en avoir un premier apercu.

grossesses glucose pression insuline ime K age M

count 400.000000 400.000000 400.00000 400.000000 400.000000 400.000000 400.000000 400.000000
mean 3.820000 107.422500 72.15250 155.992500 31.853995 0.427129 30.780000 0.500000
std 3.526854 31.304535 1642021 140.449859 9.642392 0.425077 12.612863 0.500626
min 0.000000 45.000000 27.00000 14.000000 18.217352 0.078656 21.000000 0.000000
25% 1.000000 85.000000 60.00000 45.000000 21.561065 0.137473 22.000000 0.000000
50% 3.000000 105.000000 74.00000 127.500000 31.839371 0.198598 24.000000 0.500000
5% 6.000000 125.000000 84.00000 218.000000 39.107978 0.666726 38.250000 1.000000
max 14.000000 190.000000 116.00000 758.000000 55.421694 2.278046 71.000000 1.000000

FIGURE 1 — Statistiques des données d’entrainement

Par exemple, nous pouvons constater que la moyenne de grossesses dans notre échantillon est
de 3.82, ce qui est assez élevé par rapport a la moyenne nationale francaise de 1.8, selon 'INSEE.
De plus, le nombre maximal de grossesses observé dans notre série est de 14, ce qui est également
un chiffre tres élevé.

Ces observations suggerent que notre échantillon pourrait présenter une prévalence de gros-
sesses plus élevée que la moyenne nationale. Il serait intéressant d’explorer comment cette variable
est corrélée au diabete. En particulier, nous devrions examiner si les femmes ayant un nombre
élevé de grossesses sont plus susceptibles de développer le diabete par rapport a celles ayant
moins de grossesses.

FIGURE 2 — Répartition du Diabete en fonction du nombre de grossesses

Grossesses

Ce diagramme montre que si on exclu les femmes sans enfants, plus le nombre de grossesses
augmente, plus le nombre de femmes diabetiques augmente. Cependant, ce n’est pas suffisant

pour conclure sur l'influence de la grossesse sur le diabete. Nous devons effectuer des analyses
statistiques pour valider notre observation. Nous pouvons explorer d’autres parametres comme
I'IMC. D’apres E-santé 'IMC d’une femme se situe en moyenne entre 18.5 et 25. Nous pouvons
chercher a voir combien de personnes ont un IMC supérieur a la moyenne en considérant seule-
ment les individus qui ont un IMC supérieur a 25 dans notre jeu de données. Dans notre jeu de
données, 272 individus sur 400 ont un IMC supérieur & 25. Ici, il y a donc plus de la moitié de
la population étudiée qui a un IMC supérieur & la moyenne. Ce qui peut nous faire penser que
I'IMC est un parametre indicateur du diabete.

De plus, nous pouvons chercher a séparer la moyenne de chaque variable en deux catégories :
ceux malades (attribués & la valeur 1) et ceux sains (attribués a la valeur 0).

grossesses glucose pression insuline imc K age
M
0 2.0 105.110 70.890 114.075 29.342952 0.342397 27.005
1 5.0 109.735 73.415 197.910 34.365038 0.511860 34.555

F1GURE 3 — Répartition des variables en fonction du statut de maladie

A premiére vue, nous aurions pu penser que 'insuline est le paramétre influencant principale-
ment le diabete. Cependant, en observant les données, nous constatons que les personnes malades
présentent des valeurs beaucoup plus élevées que les personnes saines pour chaque parametre.
Nous pouvons, notamment remarquer que, les personnes ont en moyenne plus que deux fois plus
d’enfants que celles non-malades.

2.1. Boite a moustaches

Nous pouvons, ici, utiliser un box plot, aussi appelé boite & moustaches pour analyser la dis-
tribution des données. Il nous permettra d’avoir un résumé graphique pour identifier ’asymétrie
de 'ensemble des données.

0 100 200 300 400 500

FIGURE 4 — Boite a moustaches

Une boite a moustache est composée d’une boite qui correspond a ’écart interquartile. Ses
cotés gauches et droits représentent les quartiles des données. Elle est coupée en deux par une
ligne qui représente la médiane. Le point rouge qui est situé a droite de la médiane représente
la moyenne. De plus, des moustaches (des barres) se situent & gauche et & droite de la boite
(Extrait de [3]).

Ce graphique est surtout intéressant lorsqu’on essaye de comparer des variables sur des échelles
similaires. Nous pouvons, ici, utiliser un box plot pour analyser la distribution des données. On
obtient le graphique suivant :

700 A

600 1

i %%E—; s el

T

- -
grossesses glucose pression insuline ime K age

FIGURE 5 — Boite a Moustache T

Nous pouvons voir que les variables n’ont pas le méme ordre de grandeur, notamment ’insuline
et le glucose. Ce qui empéche une comparaison directe.

2.2. Normalisation : centrage et réduction des données

Pour pouvoir comparer les différents parametres (qui n’ont pas les mémes unités, ni la méme
étendue), nous allons standardiser les caractéristiques en les centrant autour de 0 et avec un
écart-type de 1 en les normalisant. Pour cela, on applique la formule :

T[parametres] — m

T, =
g

ou m représente la moyenne et o I’écart-type. On obtient une nouvelle table Tn avec les données
normalisées. Pour voir si les valeurs sont normalisées, nous pouvons alors vérifier si la moyenne est
nulle et si la variance égale a 1. Affichons notre boxplot avec les nouvelles variables normalisées :

R e

FIGURE 6 — Boite a Moustache Tn

Nous remarquons que maintenant que les valeurs sont normalisées, les dispersions sont com-
parables. On normalise également les paramétres des patients de la table de test avec la méme
moyenne et le méme écart-type que ceux de la table précédente et on crée la table Pn avec les
données normalisées. On obtient la boite & moustache suivante :

Out[25]: <AxesSubplot:>

1-
o‘ -

-2

=3

grossesses glucose pression insuline imc K age

FIGURE 7 — Boite a Moustache pour les données de test

3. Choix des paramétres

Pour construire notre modele, nous devons identifier les variables les plus prépondérantes
afin de déterminer les caractéristiques qui ont le plus d’impact sur les personnes atteintes d’un
diabete. Pour cela, nous devons chercher visuellement les attributs qui séparent nos données entre
les malades et le non-malades.

3.1. Matrice de Corrélation

Nous pouvons notamment utiliser une matrice de corrélation pour voir quels parametres sont
les plus liés a la variable ‘M’. Une matrice de corrélation permet d’évaluer la relation entre
plusieurs variables. Nous allons visualiser la matrice de corrélation de notre jeu de données avec
une "heatmap" (ou carte de chaleur) qui est un outil permettant de remplacer les nombres par
des couleurs et décrire l'intensité des données :

Correlation matrice heatmap

1.0
= 0.3 0.3 0.26 0.2 0.074 0.077

%]

@

0

(i 0.035 0.042 -0.012 0.8
v

e

[=]

% 0.1 -0.03 0.067

ﬂ=..l 0.6
= 0.051 0.051 0.033

=

g - -0.00081 0.024 0.0015

E - 0.4
v - 02 0.035 0.1 0.051 -0.00081

3 -0.2
S _ 0074 0.042 -0.03 0.051 0.024

=

=)

5

@ - 0.077 -0.012 0.067 0.033 0.0015 -0.02 0.019

g -0.0

i i I i i i i
M grossesses age insuline imc K glucose pression

FIGURE 8 — Matrice de Corrélation

Avec un facteur de corrélation de 0,46, la Grossesse a la corrélation la plus élevée avec la
variable "M", c’est-a-dire que la Grossesse est le facteur de risque le plus important pour détecter
le diabete d’apres la heatmap. De plus, I'insuline et I’dge peuvent également étre considérés
comme des facteurs significatifs pour prédire le diabete. Les autres parameétres ont des coefficients
de corrélation beaucoup plus faibles. Par ailleurs, nous pouvons voir que plus la case a une teinte
de bleu foncée, plus le parametre correspondant est en forte corrélation avec la variable "M". Les
parametres les plus corrélés avec la variable "M" semblent ainsi étre la Grossesse, l'insuline et

I’age. Nous pouvons chercher a utiliser d’autres méthodes pour déterminer quelles variables ont
le plus de corrélation avec la variable "M" pour choisir les parameétres les plus influents.

3.2. Visualisation 3D

Nous avons, aussi, la possibilité de déterminer les facteurs qui permettent de distinguer les
malades des non-malades par une représentation 3D des individus en fonction de trois para-
metres. Nous pouvons notamment nous servir d’un diagramme de dispersion 3D qui permet de
produire des graphiques en trois dimensions. Nous choisissons alors la représentation qui est la
plus favorable pour distinguer le nuage des malades avec celui des non malades. On représente
les individus malades en rouge et les personnes saines en vert. En testant plusieurs parametres
pour les valeurs x,y,z, nous pouvons remarquer que les valeurs les plus prépondérantes semblent
toujours étre : U'insuline, 'imc et les grossesses. Nous associons alors a la fonction "Par" ces 3 pa-
rametres que nous utiliserons pour nos prédictions. Le diagramme correspondant aux 3 variables
choisies est le suivant :

Malade ?
® 1
e 0

FIGURE 9 — Diagramme de dispersion

4. Méthode des k plus proches voisins

Le Machine learning ou apprentissage automatique se base sur un concept simple : 'utilisa-
tion des données pour que la machine apprenne et construise des modeles qui pourrons étre
appliqués sur des nouvelles données. Nous allons utiliser la méthode des k plus proches voisins
pour construire notre modele. Il est basé sur I’algorithme des k plus proches voisins et a pour
objectif d’identifier les voisins les plus proches d’un point afin de pouvoir attribuer un statut
a ce point. Dans notre cas, le point correspond & un patient pour lequel on veut savoir s’il est
atteint du diabéte ou pas. Comme discuté dans l'article [4], cette méthode repose sur la mesure
des distances entre les points de données pour effectuer des prédictions.

4.1. Introduction a la méthode des k plus proches voisins

La méthode des k plus proches voisins est une technique de base en Machine learning qui
nécessite seulement une valeur k£ et une mesure de distance. Nous allons voir comment elle
fonctionne. Cette méthode est globalement composée de 4 étapes.

— 1%r¢ étape : Sélection du nombre k de plus proches voisins. Nous devons choisir
un nombre k assez grand pour que notre modele soit fiable. Pour qu’il soit le plus fiable
possible, il faut que I'on prenne un parametre k qui minimise le taux d’erreur de I’ensemble
du test.

— 2%me gtape : Calcul de la distance entre les données de la table Tn et I’entrée de
la table Pn. Elle consiste a calculer la distance entre toutes les données déja classifiées de
la table Tn et la nouvelle donnée entrée Pn. Il est possible d’utiliser plusieurs mesures de
distances différentes. La distance que nous allons utiliser est la distance euclidienne entre
deux points (z1,y1) et (x2,y2) qui représente le chemin en ligne droite le plus court entre
deux points. Elle est définie comme :

distancecuciidienne = \/(7;1 - 1'2)2 + (yl - y2)2

Nous prendrons ensuite une autre distance, la distance de Manhattan. Nous comparerons
cette distance avec la distance euclidienne. Le but est alors d’essayer d’avoir une prédiction
plus fiable qu’avec la distance euclidienne. La distance de Manhattan calcule la somme des
différences absolues de coordonnées entre deux points. Mathématiquement, la distance de
Manhattan entre deux points (z1,y1) et (22, y2) est définie comme :

distancemannattan = |1 — T2| + |y1 — Y2l

Ca peut étre utile d’utiliser la méthode de Manhattan quand les variables d’entrée ne sont
pas de type similaire c’est-a-dire pour des données qui n’ont pas été mises dans la méme
échelle. Ce qui est le cas ici. (Voir [0])

— 3%me gtape : Extraction des k plus proches voisins. Notre modeéle extrait ensuite les
k données déja classifiées qui ont la distance d la plus petite avec la nouvelle donnée entrée.

— 4%me gtape : Test de la méthode On doit alors tester la méthode avec nos patients.
L’idée centrale est alors de prendre un nouvel individu dans la table "Pn’ et d’observer ses
k plus proches voisins dans la table "Tn’. On a alors deux possibilités. Si la majorité de ses
voisins est malade, on prédira qu’il est malade, et dans le cas contraire, qu’il est sain.

4.2. Application de la méthode des k plus proches voisins

Appliquons la méthode des k plus proches voisins comme énoncé précédemment.

Nous devons tout d’abord choisir le nombre de k plus proches voisins Nous choisissons k = 11
pour obtenir un résultat assez fiable. On pourrait aussi tester d’autres nombres pour le pa-
rametre k comme k = 7 et voir lequel donne la meilleure prédiction. Nous allons extraire les
trois parametres que nous avons déterminé dans le chapitre précédent pour réaliser une pre-
miere prédiction : la grossesse, I'insuline et I’dge. Nous utilisons seulement ces variables pour nos
prédictions. Nous allons, tout d’abord, le faire pour I'individu 0 de la population totale "Tn’ et
I'individu 0 du groupe des patients "Pn’. On associe a chaque individu dans 'Tn’ sa distance au
patient 0. Puis, on ordonne la table "Tn’ selon la distance au patient p = 0. On considere les 11
individus les plus proches, c’est-a-dire les 11 personnes qui ont la distance la plus petite avec le
patient O :

10

grossesses glucose pression insuline ime K age M distance

378 1.185192 1.072608 -0.740094 0.142453 -1.325189 0.182555 -0.616831 0 0.081397
59 1.185192 -0.332939 0.356116 -0.035546 1.653417 0.263949 .0.775399 1 0.181715
162 1.185192 -0.173218 -0.374691 -0.078266 1.582386 0.728298 -0.696115 1 0.206647
181 1.185192 0.178169 -0.374691 0.413012 -1.318690 -0.668360 -0.696115 1 0.284644
249 1.468731 1.519828 -0.800995 0.206533 -0.331803 0.484469 -0.616831 0 0.303461
204 1.468731 -1.099601 -0.740094 0.242133 0.753170 -0.487350 -0.775399 0 0.314077
102 0.901654 -0.205162 0.051613 0.021413 -0.029408 0.204744 -0.775399 1 0.314368
340 0.901654 1.647605 0.538818 0.021413 -1.069393 -0.595446 -0.616831 0 0.314807
131 1.468731 0.465667 0.417017 -0.014187 0.657378 0.975584 -0.696115 1 0.316036
58 1.185192 0.753166 -0.070188 0.455732 0.361753 2.131227 -0.696115 1 0.327363
80 1.468731 1.998992 0.173414 0.291973 -0.485054 -0.532658 -0.775399 1 0.335362

FiGURE 10 — Tableau de Prédiction du patient 0

On peut voir que le patient p = 0 a des parametres semblables a 7 individus malades parmi
les 11 les plus proches. Comme 7 > 11/2, cela veut dire que le patient 0 a des caractéristiques
semblables avec plus de la moitié des 11 plus proches voisins considérés. On en déduit que ce
patient a plus de parametres similaires avec les individus malades que les sains et on prédit que
ce patient est diabétique. Nous devons alors généraliser cette méthode pour tous les patients.
Pour cela, on va alors créer une fonction de prédiction qui associe & chaque patient p dans ‘Pn‘
les 11 individus ‘Tn‘ les plus proches. Si parmi ces 11 individus plus de 5 patients sont malades,
on suppose que le patient p est malade. Si on vérifie avec notre fonction de prédiction le pronostic
du patient p = 0, notre fonction nous indique que celui-ci est bien prédit malade en retournant
le nombre 1. On ajoute, pour finir, dans la table ‘Pn‘ une colonne ‘T‘ qui indique la prédiction
a partir de notre fonction de prédiction. Ici, on a utilisé la distance euclidienne pour appliquer
la méthode des k plus proches voisins. Nous pouvons aussi chercher a utiliser une autre distance
comme la distance de Manhattan pour essayer d’avoir une prédiction plus fiable. On refait le
méme procédé et on remplace dans notre fonction de prédiction la distance euclidienne par la
distance Manhattan. On ajoute dans la table 'Pn’, une colonne T2’ qui désigne la nouvelle
prédiction obtenue avec la distance de Manhattan. On obtient le tableau suivant :

11

grossesses glucose pression insuline imc K age M T T2

0 1.186677 -0.013513 -0.253206 0.128374 -0.706641 -0.711474 -0.696987 1 1 O
1 -1.084475 -1.132962 0.722423 0.691556 -0.231660 0.965497 1.049449 1 1 0O
2 -0.516687 2.097448 0.051678 3.243701 -0.076218 1.584572 2.319584 1 1 1
3 -0.232793 -0.045498 0.112655 0.342240 -0.500231 -0.768260 -0.776370 1 1 1
4 1.470571 0.914030 -0.619067 -0.007075 0.652177 0.172542 -0.696987 1 1 0
95 0.618889 -0.557246 0.905353 -0.791254 -1.068121 -0.750247 -0.617603 0 0 O
96 -0.800581 2.161416 0.783400 -0.919574 -1.379340 0.172170 0334998 0 0 O
97 -0.800581 -1.005025 0.478516 0.206791 1.427533 -0.391351 -0.776370 0 0 O
98 -1.084475 1.969511 0.051678 0.591752 -1.084774 -0.606006 -0.379453 0 0 O
99 0.618889 -0.877088 -0.862975 -0.178169 0.624063 1.284638 -0.617603 0 1 0

Nous pouvons aussi tester notre fonction de prédiction avec la distance euclidienne et celle de
Manhattan et un k plus petit comme k = 7. On applique alors le méme procédé qu’avant et on
rajoute les deux nouvelles prédictions a la table 'Pn’. Il vient alors la nécessité de pouvoir valider

notre modele de prédiction.

5. Evaluation de notre modele

Apres avoir tester la méthode des k plus proches voisins, nous devons vérifier si notre modele

est performant.

5.1. Croisement des variables

Nous allons faire le croisement des variables afin de pouvoir comparer les données réelles pour
la variable "M’ et a celle prédite par notre modele. Nous pouvons nous représenter les valeurs
prédictives a l'aide d’une matrice de confusion. Elle possede une premiere colonne qui distingue

FIGURE 11 — Tableau de Prédiction

les cas des personnes malades et non malades et deux colonnes pour les prédictions.

12

T 0 1 Al

M
0 44 6 50
1T 92 41 50

All 53 47 100
FIGURE 12 — Matrice de Confusion

Nous constatons que 44 personnes non-malades ont été correctement prédites comme négatives
et 41 personnes malades ont été correctement prédites comme positives. Cela signifie que 44
personnes sur 50 non-malades ont été correctement identifiées, ainsi que 41 patients sur 50
malades. Ces résultats indiquent une assez bonne performance du modele.

Cependant, il est important de noter que 6 personnes non-malades ont été incorrectement
prédites comme malades. Bien que les traitements pour le diabeéte, tels que les modifications
alimentaires et les médicaments comme I’insuline, soient généralement sfirs lorsqu’ils sont admi-
nistrés correctement, ils peuvent néanmoins entrainer des effets secondaires et ne devraient pas
étre utilisés inutilement.

En revanche, il est plus préoccupant de constater que 9 personnes malades ont été incorrec-
tement prédites comme négatives. Cette erreur pourrait étre dangereuse dans le contexte de la
détection du diabete. En effet, des complications peuvent survenir si les malades ne sont pas trai-
tés, avec des symptomes tels que la perte de poids, une vision trouble, et d’autres complications
graves. Il serait ainsi souhaitable de réduire le nombre de non-malades incorrectement prédits
comme malades et le nombre de malades incorrectement prédits comme négatifs pour éviter ces
risques et garantir que les patients regoivent les soins appropriés.

5.2. Mesure de fiabilité des prédictions

Dans cette partie, nous allons évaluer la fiabilité de notre modele. Nous allons considérer les
événements suivants :

- M : la personne est malade,

- T : son test est positif.

Nous noterons respectivement M I’événement "la personne n’est pas malade" et T 1’événement
"le test est négatif".

Pour mesurer la pertinence du classement, nous avons besoin des élements suivants régroupés
dans une Matrice de confusion :

— vrai positif : MT (malade avec un test positif), ie. M =1let T =1

— vrai négatif : MT (sain avec un test négatif) i.e. M =0et T =0

— faux positif : MT (sain avec un test positif) i.e. M =0et T =1

— faux négatif : MT (malade avec un test négatif) i.e. M =1 et T =0

5.3. Les Métriques

5.3.1. Introduction aux métriques

Nous allons également utiliser des métriques qui sont des variables quantitatives qui caracté-
risent des valeurs numériques et qui sont couramment utilisées pour évaluer la performance d’un
modele en apprentissage automatique. Voici les métriques que nous allons utiliser, accompagnées
de leur formule et leur signification :

13

— Accuracy :

MT + MT
MT + MT + MT + MT
— Précision :
MT
MT + MT
— Sensibilité :
MT
MT + MT
— fl-score : .
2pre(:lslon X recall
precision + recall
— Spécificité : o
MT
MT +MT
Ces formules sont extraites de [5]. L’Accuracy nous permet de connaitre la proportion de bonnes

¥ o N A1t)) 4 : : . Nombre de bonnes prédictions
prédictions par rapport a toutes les prédictions. L’opération est simplement : —go —p === Srédictions

La précision correspond au nombre de malade correctement prédit sur le nombre total de
personnes prédits malades. Il permet de mesurer le coiit des faux positifs, c¢’est-a-dire d’es-
timer le nombre d’individus détectés par erreur. La sensibilité (aussi appelée Recall) corres-
pond a la probabilité d’étre positif si on est malade. Elle mesure la proportion des prédic-
tions positives correctement identifiées (qui étaient réellement positives). Ce calcul permet d’es-
timer combien de vrais positifs nous avons réussi a déterminer et ceux qu’on n’est pas par-
venu & détecter. De plus, on souhaite avoir un Recall (Rappel) = 1 ou le Recall représente

le nombre de positifs bien prédit (Vrai Positif) s s s
Tensembledespositifs(VraiPositif+ Fauz Negatif) et permet de savoir le pourcentage de positifs bien
prédit par notre modele. Le fl-score combine la précision et le rappel. Il est plus intéressant que
la précision car le nombre de vrais négatifs n’est ici pas pris en compte. Dans le cas de don-
nées déséquilibrées, nous avons une majorité de vrais négatifs qui faussent complétement notre
perception de la performance de I'algorithme. La spécificité représente la probabilité d’avoir un
test négatif sachant qu’on n’est pas malade. La spécificité mesure, a I'inverse de la sensibilité, la
proportion d’éléments négatifs correctement identifiés.

Nous pouvons chercher a les calculer pour estimer la précision de notre modele.

5.3.2. Calcul des métriques

Maintenant que nous avons les valeurs de MT, MT, MT et MT, nous pouvons calculer les
métriques énoncés précédemment pour pouvoir déterminer la fiabilité de notre modele de pré-
dictions. Apres avoir fait le calcul de 'accuracy, la précision, la sensibilité et la spécificité, nous
allons analyser les résultats.

Tout d’abord, nous avons calculer ’accuracy de notre modeéle en utilisant la formule mentionnée
précédemment. Le résultat obtenu était de 0.85, ce qui indique que 85 % des prédictions étaient
correctes.

Ensuite, nous calculons la précision. Nous avons obtenu un résultat de 0.8723404255319149 ,
ce qui signifie que 8723404255319149 % des cas positifs prédits étaient réellement positifs. Nous
avons mesuré la sensibilité de notre modele, aussi connue sous le nom de Recall, en utilisant la
formule spécifiée précédemment. Nous avons obtenu un résultat de 0.82, ce qui montre que 82 %
des vrais positifs ont été correctement identifiés parmi tous les vrais positifs. La sensibilité est
supérieure a 0.5. On peut considérer que le test est performant s’il est utilisé pour des individus

14

testés positifs. Le f1-score a été calculé en combinant la précision et le rappel, comme indiqué dans
I'introduction. Nous avons obtenu un fl-score de 0.8453608247422681. Notre fl-score est plutot
élevé. Ce qui montre une bonne performance globale du modele. Enfin, nous avons évalué la
spécificité de notre modele en utilisant la formule mentionnée précédemment. Nous avons obtenu
un résultat de 0.88, montrant que 88 % des vrais négatifs ont été correctement identifiés parmi
tous les vrais négatifs. La spécificité est proche de 1. Le test semble ainsi performant lorsqu’il est
utilisé sur des personnes négatifs. Notre modele présente une performance satisfaisante dans la
prédiction du diabete avec des scores élevés dans toutes les métriques. Cependant, pour valider
notre modele, nous devons nous assurer que la prédiction soit bonne quelque soit la proportion
de malade. Supposons maintenant que la **prévalence du diabéte™* (c’est-a-dire la probabilité
détre malade) P(M) dans la population est égale a 0.1 :

P(M) = 0.1, P(M) = 0.9

On utilise la méthode de prédiction obtenue par Machine learning décrite plus haut. Si une
personne voit son test positif, nous allons chercher quelle est la probabilité qu’elle soit malade.
Cette probabilité est appelée la **valeur prédictive du test**, i.e. la valeur de Pp(M). D’apres
ce qui précede, la sensibilité est égale a 0.82 dans notre cas. On a alors :

Py (T) =0.1%x0.82, Ppy(T)=0.1x0.18, Py;(T)=09x0.12, Py;(T)=0.9x0.88.
On a :
P(T)=Pu(T)+P;z(T)=0.1x0.82+0.9 x0.12=0.19

La valeur prédictive du test est :

_P(TNM) Py(T) 0.1x0.82
Pr(M) = P(T) 11?>4(T) 019

=043

5.4. Valeur prédictive en fonction de la prévalence

Quelle que soit la prévalence p = P(M) du diabete, la valeur prédictive du test est :

Pr(M) = P(TONM) Pu(T) B px 0.82 082
PR T Pu(M) P (T) px082+(1—p)x 012 0.12+0.70p°

On affiche le graphe de :
p = IPT(M)

qui correspond a la valeur prédictive du test en fonction de la prévalence de la maladie.

15

1.04

0.8 4

0.6 4

0.4 4

0.2 4

0.0 4

0.0 02 04 05 08 10
Prévalence (proportion de malades P(M))

rédictive (proportion de malades parmi les positif

FIGURE 13 — Valeur prédictive du test en fonction de la prévalence de la maladie

Nous pouvons voir que lorque la prévalence est élevée la valeur prédictive est assez élevée.
Cependant, on remarque que lorsque la prévalence est faible, la valeur prédictive est plutot
faible. Cela signifie que quand la proportion de malades est basse, la qualité de notre prédiction
est faible. Lorsque la maladie est rare, il serait mieux que la valeur prédictive soit plus importante
afin de réduire les erreurs de pronostic et de minimiser le risque de manquer des cas de maladie.
Essayons de voir si avec la distance Manhattan, la valeur prédictive est plus élevée pour une
prévalence faible. On refait le méme procédé avec la distance Manhattan. On crée une fonction
de prédiction que utilise la méthode des k plus proches voisins mais cette fois-ci en prennant
en compte la distance de Manhattan. Puis, on affiche notre matrice de confusion. On calcule la
sensibilité, la spécificité, la précision et le fl-score pour la distance Manhattan. En les rangeant
avec les valeurs pour la distante euclidienne on trouve :

spécifité sensibilité précision f1_score
Manhattan 9.84 9.82 ©.836735 ©.828283
Euclidienne .88 8.82 ©.872340 ©.845361

FIGURE 14 — Métriques en fonction de la distance euclidienne ou de la distance de Manhattan

On observe que la sensibilité est la méme pour les deux distances. La spécificité est plus
basse avec la distance de Manhattan qu’avec la distance euclidienne (spécificité Manhattan=0.84
< spécificitéeuclidienne=0.88). Cela signifie que moins de vrais négatifs ont été correctement
identifiés parmi tous les vrais négatifs avec la distance de Manhattan. Le fl-score et la précision
sont légérement plus faibles aussi pour cette distance. De plus, si on calcule 'accuracy de la
distance de Manhattan il est aussi légerement plus faible.

Quelle que soit la prévalence p = P(M) du diabéte, la valeur prédictive du test avec la distance
de Manhattan est :

P(T N M) P (T) B p % 0.82 0.82p

Pr(M) = = = = .
(M) P(T) Py(T)+ P (T) px082+(1—p)x016 0.16+ 0.66p

16

1.04

0.8 4

0.6 4

0.4 4

0.2 4

Valeur prédictive (Pr(M))

: Prédiction pour distance Manhattan et k=11
0.0 1 : —— Prédiction pour distance euclidenne et k=11

0.0 02 04 05 08 10
Prévalence (proportion de malades P(M))

FIGURE 15 — Valeur prédictive du test en fonction de la prévalence de la maladie

Nous pouvons voir que pour une prévalence faible, la valeur de prédiction est la méme pour les
deux distances. Pour une valeur plus élevée, la valeur de la prédiction pour la distance Manhattan
est plus faible que celle pour la distance euclidienne. Utiliser la distance euclidienne semble étre
le plus adéquat pour notre modele si on choisit k£ = 11.

Nous pouvons aussi changer le nombre de k plus proches voisins et prendre k = 7. On refait le
méme processus qu’avant en remplacant 11 par 7 dans notre fonction de prédiction et en utilisant
la distance euclidienne.

On obtient les valeurs suivantes :

spécifité sensibilité précision f1l_score
11 0.88 0.82 ©.87234 ©.845361
7 8.96 0.64 ©.94000 ©.7600080

~
non

FIGURE 16 — Métriques en fonction de la distance euclidienne pour k=7 et k=11

Nous pouvons remarquer que pour k = 7, la sensibité est plutot faible par rapport a la
sensibilité pour k = 11. Cela signifie que le taux des vrais positifs a été moins bien identifié parmi
tous les vrais positifs pour kK = 7 que pour k = 11. Cependant, la spécifité et la précision sont
plus élevés dans le cas ou on prend k = 7. Cela signifie que pour k = 7, le test est plus performant
sur des personnes négatifs (car la spécificité se rapproche plus de un) mais que la probabilité
d’étre positif si on est malade est plus faible que pour k& = 11. Si nous choisissons & = 7, nous
obtenons donc un meilleur résultat permettant de diminuer le coiit des vrais négatifs et ainsi
diminuer le nombre de patients diagnostiqués négatifs alors qu’ils sont malades. Si on affiche la
courbe de la valeur prédictive du test en fonction de la prévalence de la maladie pour k = 7, nous
pouvons observer que la valeur prédictive est beaucoup plus élevée quand la prévalence est faible
et légérement plus grande quand la prévalence est grande. Ce résultat montre qu’avec k = 7, la
probabilité d’étre malade augmente si I'on est testé positif, améliorant ainsi la performance du
modele.

17

6. Conclusion

Tandis que de plus en plus de méthodes émergent en Machine learning, il est essentiel de tester
la fiabilité de ces modeles afin de les appliquer dans une variété de domaines tels que le dépistage
du diabete de type II. La construction d’un modeéle efficace nécessite une analyse approfondie des
données et la compréhension des variables qui influencent le plus la variable cible, en utilisant par
exemple des matrices de corrélation ou des diagrammes de dispersion. Nous avons sélectionné trois
parametres principaux : la grossesse, I'insuline et I’age. Ces parametres sont souvent influencés
par des facteurs de risque majeurs du diabete de type II, comme la sédentarité et I’alimentation.
En prenant en compte ces parametres, nous avons pu améliorer la précision de nos prédictions.

Parmi les nombreuses méthodes disponibles, celle des k plus proches voisins se distingue par sa
précision et sa facilité d’application. Dans notre étude, nous avons utilisé la méthode des k plus
proches voisins avec k = 11 pour créer un modele de prédiction basé sur le calcul de la distance
euclidienne. Pour évaluer la performance de notre modele, nous avons calculé divers métriques
telles que l'accuracy et la précision. Nous avons également expérimenté avec la distance de
Manhattan pour améliorer la fiabilité de nos prédictions. Cependant, les résultats obtenus étaient
moins bons que ceux avec la distance euclidienne. Cette observation souligne que efficacité de
la méthode des k plus proches voisins dépend fortement du choix de la métrique de distance
utilisée.

Notre analyse a montré que la méthode des k plus proches voisins est particulierement efficace
lorsque la prévalence de la maladie est élevée, mais présente des limites lorsque la proportion de
malades est faible. En ajustant le nombre de voisins k, nous avons pu améliorer la précision de
nos prédictions. Par exemple, nous avons constaté que la distance euclidienne avec k = 7 offrait
une meilleure performance prédictive comparée a k = 11 pour cette méme distance.

Ces résultats démontrent I'importance de choisir judicieusement le parametre k pour optimi-
ser les performances du modele des k plus proches voisins. D’autres distances, comme celle de
Chebychev, pourraient encore modifier les résultats.

Ces résultats cumulés avec d’autres prédictions sont illustrés dans le graphique suivant, qui
montre la performance prédictive en fonction de la proportion de malades :

1.0 1

0.8 4

0.6 4

0.4 4

i —— Prédiction pour distance euclidenne et k=7
0.2 —— Prédiction pour distance euclidenne et k=11
i Prédiction pour distance Manhattan et k=11
: Prédiction pour distance Manhattan et k=7
0.0 i —— Prédiction pour distance Chebychev et k=7

Valeur prédictive (Pr(M))

0.0 02 04 06 08 10
Prévalence (proportion de malades P(M))

FIGURE 17 — Diagramme de dispersion

Par exemple, le graphique montre clairement que la distance de Manhattan avec k = 7 offrait
une meilleure performance que k = 11, tandis que la distance euclidienne était plus efficace pour

18

k = 11. D’autres distances, comme celle de Chebychev, pourraient encore modifier les résultats.
C’est donc la distance de Manhattan avec k = 7 qui nous a donné le modele de prédiction le plus
efficace.

Pour aller plus loin, il serait intéressant d’améliorer notre modele en testant d’autres valeurs
de k, en explorant différentes mesures de distance, ou en considérant davantage de parameétres.
De plus, nous pourrions développer d’autres modeles de prédiction en utilisant des méthodes
alternatives telles que les foréts d’arbres décisionnels ou les réseaux de neurones, afin de comparer
leur efficacité et fiabilité dans le dépistage du diabéete de type II.

Pour finir, je souhaite remercier Mme Faccanoni du laboratoire Imath pour son engagement,
son aide, le temps qu’elle m’a consacré et ses précieux conseils tout au long de la réalisation de
mon projet de recherche sur le Diabete de type II.

Références

[1] Frédéric BRoO et Chantal REMYL. Probléme 35 de “Python et Pandas et les 36 problémes de
Data Science®. 1%¢ éd. Ellipses, déc. 2021. 542 p.

[2] « Charge mondiale, régionale et nationale du diabéte de 1990 & 2021, avec projections de
prévalence jusqu’en 2050 ». In : THE LANCET (2023). URL : https://www.thelancet.
com/journals/lancet/article/PIIS0140-6736(23)01301-6/fulltext.

[3] Emmanuel JAKOBOWICZ. « Le box-plot ou la fameuse boite & moustache ». In : Stat{decision
(2020). URL : https://www.stat4decision.com/fr/le-box-plot-ou-la-fameuse-
boite-a-moustache.

[4] « L’algorithme des k-plus proches voisins (kNN) en Python ». In : (2024). URL : https:
//fr.python-3.com/7p=232.

[6] Beranger NATANELIC. « ML : Précision F1-Score, Courbe ROC, que choisir ? » In : Medium
(2020). URL : https://beranger .medium.com/ml-accuracy-pr.

[6] RAJESH. « Qu’est-ce que Manhattan Distance dans le Machine Learning ? Programmable
bibliographies and citations ». In : Datapro (2024). URL : https://datapro.blog/author/
rajesh/.

19

https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(23)01301-6/fulltext
https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(23)01301-6/fulltext
https://www.stat4decision.com/fr/le-box-plot-ou-la-fameuse-boite-a-moustache
https://www.stat4decision.com/fr/le-box-plot-ou-la-fameuse-boite-a-moustache
https://fr.python-3.com/?p=232
https://fr.python-3.com/?p=232
https://beranger.medium.com/ml-accuracy-pr
https://datapro.blog/author/rajesh/
https://datapro.blog/author/rajesh/

A. Annexe

Nous présentons ici les codes utilisés pour réaliser ce rapport, accompagnés de courtes descrip-
tions de leur fonction.

20

import pandas as pa

from seaborn import boxplot
import pylab as pl

import seaborn as sns
import pylab as pl

import plotly.express as px
import numpy as np

Détection du diabéte

Nous allons voir un exemple de mise en oeuvre d'un classificateur d'arbre de décision pour le probléme du diabéte. L'objectif de I'ensemble de
données est de prédire avec un diagnostique si un patient est atteint du diabéte. Plusieurs critéres ont été sélectionnés parmi une base de
données plus grande. En particulier, tous les patients ici sont des femmes dgées d'au moins 21 ans. Les patients sont également d'origine
indienne Pima, population la plus touchée dans le monde par le diabéte de type 2.

Les données proviennents de |'étude Pima Indians Diabetes faite par |'Université de Californie, School of Information and Computer Science.

Les ensembles de données comprennent plusieurs parametres et une variable cible, « M ». Chaque ligne représente un patient et les colonnes
sont les variables prédictives et la variable cible:

s Grossesses: nombre de fois enceintes

* Glucose: concentration en glucose plasmatique 2 heures dans un test de tolérance au glucose par voie orale
= Pression: pression artérielle diastolique (mm Hag)

& |nsuline: insuline sérique de 2 heures (mu U / ml)

* |mc: indice de masse corporelle (poids en kg / (taille en m}*2)

* | coefficient lié a la présence du diabéte parmi ses parents et proches

= Age: age (ans)

* M: variable de classe (0 ou 1) qui indique si I'individu est sain (0} ou malade (1).

Nous construisons un modéle qui va faire des prédictions, nous devons donc trouver un moyen d'évaluer la qualité de ces prédictions. Etant
donné que les prédictions par définition ne concernent que des données inédites, nous ne pouvons pas dépendre des données utilisées pour
créer le modeéle. Nous devons d'abord diviser le jeu de données en deux parties non croisées: les données de formation qui seront utilisées pour

construire le modéle et les données de test pour évaluer les prédictions du modéle. Nous utiliserons I'ensemble d’entrainement pour construire
notre modéle pour les arbres de decision. Puis on évaluera son score sur I'ensemble de test.

Dans notre cas il existe déja deux fichiers séparés (avec des données déja bien préparées). Si on a un seul fichier, la division de I'ensemble de
données en un ensemble d'entrainement et un ensemble de test peut étre réalisée par le module sklearn comme ci-dessous:

Données d'entrainement

Dans la table T nous importons les données permettant d'apprendre a reconnaitre une personne diabétique.
T =pa.read_csv('diabete_population (1).csv')

paramétres=[c for ¢ in T.columns] #énumere lLes paramétres
print('les paramétres étudiés sont:', paramétres)
print('(Nombre d individus, Nombre parameétres)=', T[paramétres].shape) # 400 individus classés selon 7 parametres

les paramétres étudiés sont: ['grossesses', 'glucose’, 'pression’, 'insuline', 'imc', 'K', 'age', 'M']

(Nombre d individus, Nombre paramétres)= (488, 8)

Résumé statistique de chaque colonne de notre tableau de données:

T.describe()

grossesses glucose pression insuline ime K age M

count 400000000 400.000000 400.00000 400.000000 400000000 400.000000 400.000000 400000000
mean 3.820000 107.422500 7215250 155.992500 31.853995 0.427129 30.780000 0.500000
std 3526854 31304535 1642021 140449859 9.642392 0425077 12612863 0.500626
min 0.000000 45000000 27.00000 14.000000 18.217352 0078656 21.000000 0.000000
25% 1.000000 85000000 60.00000 45000000 21561065 0137473 22.000000 0.000000
50% 3.000000 105000000 7400000 127.500000 31.839371 0.198598 24.000000 0.500000
75% 6000000 125000000 8400000 218.000000 39.107978 0666726 38.250000 1.000000

max 14.000000 190.000000 116.00000 758000000 55421694 2278046 71.000000 1.000000

MNous pouvons détecter et compter les valeurs manquantes de notre jeu de données.

T.isnull().sum()

grossesses <]
glucose
pression
insuline

imc

K

age

M

dtype: int64

D0 00600

On remarque qu'il n'y a pas de valeurs manquantes dans notre jeu de données.

On peut également choisir de se focaliser sur des données statistiques spécifiques

Moy=T[paramétres].mean()

Moy

Erossesses 3.820000
glucose 187.4225880
pression 72.152588
insuline 155.992588
ime 31.853995
K 8.427129
age 36.786000
M 8.5668008

dtype: floatéd

On a ici les moyennes de chague paramétre.
On peut afficher les premiéres lignes de notre tableau:

T =pa.read_csv('diabete_population (1).csv') #Test

T.head()

grossesses glucose pression insuline imec K age M
0 2 104 75 28 39.020106 0145273 35 1
1 10 121 64 517 30672607 0.154211 43 1
2 2 153 59 87 26.295668 1.029407 22 1
3 9 145 47 226 46077807 0086713 37 1
4 3 102 76 315 28335339 009751 21 1

Données de test

Dans la table P, nous importons les données pour mesurer |a fiabilité de prédiction d'une personne diabétique via notre modeéle.

P = pa.read_csv('diabete_patients.csv') #Vérification de la fiabilité du test de prédiction
P.head()

grossesses glucose pression insuline imec K age M
0 8 107 68 174 25048805 0125076 22 1
1 0 72 84 253 29623036 0837026 44 1
2 2 173 73 611 31.119992 1.099852 &0 1
3 3 106 74 204 27036600 D.100967 21 1
4 9 136 62 155 38134675 0500380 22 1

1.Exploration des données

Objectif:

Nous cherchons ici 8 comprendre les données et trouver les paramétres qui influe le plus sur la variable cible ("M")

print("Combien de malades et combien de sains?")
T['M"'].value_counts()

Combien de malades et combien de sains?
1 200

=] 268

Name: M, dtype: int64

Parmi T, il y a 200 malades et 200 non malades. Il y a donc autant de malades que de personnes saines.

Nous pouvons également chercher a appliquer un masque pour filter les valeurs qui nous semble le plus intéressante. Nous pouvans par exemple,
créer un masque qui filtre les IMC supérieurs a 25 de notre jeu de données.

mask = T.imc>25
extraction = T[mask]
print(f"{extraction.shape[0]} sur {T.shape[@]} individus ont un IMC>25")

272 sur 488 individus ont un IMC»25

D'aprés E-santé I'lMC d'une femme se situe en moyenne entre 18.5 et 25. Ici, il y a donc plus de la moitié de la population étudiée qui a un IMC
supérieur a la moyenne. Ce qui peut nous faire penser que I'IMC est un paramétre indicateur du diabéte.

Nous pouvons aussi chercher a vair si des paramétres comme le nombre de grossesses non pas un lien avec le diabéte.

print("Combien de grossesses en moyenne?")
T.grossesses.mean()

Combien de grossesses en moyenne?
3.82

Le nombre moyen de grossesses semble elevé,on pourrait ici essayer de voir a |'aide d'un diagramme a quel point le nombre de grossesses
influencerai la prédominance au diabéte.

labels = T['grossesses'].value_counts().index
values = T['grossesses'].value_counts().values
px.pie(T,labels=1labels, values=values,title='Grossesses',names=labels,color_discrete_sequence=px.colors.sequential.RdBu,hole=0.3]

C:\Users\33767\anaconda3\lib\site-packages\plotly\express_core.py:137: FutureWarning: Support for multi-dimensional indexing

(e.g. "obj[:, None]) is deprecated and will be removed in a future version. Convert to a numpy array before indexing instead.
return args["labels"][column]

Ce diagramme montre que si on exclu les femmes sans enfants, plus le nombre de grossesses augmente, plus le nombre de femmes diabétiques
augmente.

Calcul de la Moyenne et de I'écart-type

On exclue le paramétre M de nos paramétres:

paramétres=[c for ¢ in T.columns if c!="M"] #énumére les parametres
parametres

[*grossesses', 'glucose', 'pression’, 'insuline', ‘imc', 'K, ‘age']

Moy=T[paramétres].mean() #calcul de La moyenne pour chaque paramétre
Moy

Erossesses 3.820000

glucose 187.422508

pression 72.152588

insuline 155.99250@

imc 31.853995

K 8.427129

age 38.780000

dtype: floated

ect = T[paramétres].std()

ect

Erossesses 3.526854
glucose 31.384535
pression 16.428218
insuline 14@.449859
imc 9.642392
K 8.425877
age 12.612863

dtype: floated

MNous pouvons aussi visualiser la répartion des individus en fonction des paramétres.

T[paramétres].hist(figsize = (9.5,6))
pl.show()

grossesses glucose pression
150 4 I !

100

0 5 .10 50 100 150 25 50 IZS 100
insuline imc

150

100 ++

0 250 500 730 20 40

200 17

100 /!

20 40 60

T.groupby (['M"]).mean()

grossesses glucose pression insuline imec K age

0 2.205 105110 70.850 114.075 29342952 0342397 27.005

1 5435 109.735 73415 197910 34365038 0511860 34.555

On arrondit la moyenne du nombre de grossesses pour avoir des valeurs plus cohérentes avec la réalité {le nombre de grossesses ne peut pas
étre une fraction dans la réalité

T.groupby('M')['grossesses'].mean().round()
Groupby=T.groupby (['M']) .mean()
Groupby.iloc[0,0]=2.0
Groupby.iloc[1,0]=5.0

Groupby
grossesses glucose pression insuline ime K age
M
0 20 105110 T0.890 114.075 29342952 0342397 27.005
1 50 109735 73415 197910 34365038 0.511860 34.555

On peut voir que les personnes malades ont des valeurs beaucoups plus élevées que les non malades pour chaque paramétre. En particulier, le
taux d'insuline semble beaucoup plus élevé chez les malades.

Calculons I'écart-type

Sig=T[parametres].std(ddof=0)

Sig

grossesses 3.522442
glucose 31.265380
pression 16.399672
insuline 148.274187
imc 9.630331
K 8.424546
age 12.597687

dtype: floated

MNous pouvons, ici, utiliser Un box plot paur analyser la distribution des données. |l nous permettra d'avoir un résumé graphigue pour identifier
I'asymétrie de | ensemble de données.

Boite a moustaches:

pl.figure(figsize=(8,6))
boxplot(data=T[paramétres], color='lightblue', whis=[0,100],orient="h"',palette="Set2");

gQrossesses

glucose

pression }—I—{

insuline 1 |— I

imc

age

T T T T T T T
0 100 200 300 400 500 600 700

Une boite a moustache est composée d'une boite correspondant a la plage dans laquelle se situent 50 % des données. Ses cotés gauche et droit
représentent les quartiles des données. Elle est coupée en deux par une ligne qui représente la médiane. De plus, des barres appelées
"moustaches” représentent les lignes qui se situent a gauche et a droite de la boite. Elles indiquent les valeurs minimales et maximales, et
définissant les bornes des moustaches.

pl.figure(figsize = (12,4))

boxplot(data =T[parametres],

color="cyan’,

whis = [0, 100])

pl.savefig("boxplotzoom.png");

#Dispersion entre taux d'insuline et de glucose

700 A
600 -
500 A
400 A

300

T T T T T T T
grossesses glucose pression insuline imc K age

On remargue que dans notre cas l'insuline et le glucose n'ont pas le méme ordre de grandeur. Nous devons alors normaliser les données.
La dose d'insuline d'un individu est de 200 mUI/L, sa valeur normalisée est donc

(200-Moy['insuline'])/ect['insuline']

B.3133324615663732

Normalisation : centrage et réduction des données

Pour pouvoir comparer les différents paramétres (qui n'ont pas les mémes unités), nous allons standardider les caractéristiques autour du centre
et de 0 et avec un écart-type de 1 en les normalisant.

On normalise alors chaque colonne de T (sauf la colonne M). Il s'agit de faire en sorte que la moyenne soit nulle et que la variance soit égale 4
1.

Tn = (T[paramétres]-Moy)/ect
Tn

grossesses glucose pression insuline ime K age
0 -0516041 -0.109329 0173414 -0.911304 0743188 -0.663069 0334579
1 1.752270 0433723 -0496492 2570366 -0.122520 -0.642042 0.968852
2 -0.516041 1455939 -0.800995 -0491225 -0.576447 1416869 -0.696115
3 1468731 1200385 -1.531801 0498452 1475133 -0.800832 0493147

4 0232502 -0.173218 0.234315 1132130 -0.364915 -0.746634 -0.775399

395 0.051037 -1.003768 -0.922796 -0.790264 -1.210104 D.315%29 -0.696115
396 -0.799580 -1.163490 -1.105497 -0.932664 -1.078406 -0.583855 -0.696115
397 -0.799580 0401779 0538818 0235013 -1.210369 -0.670262 -0.696115
398 -0.799580 -0.939880 -0.374691 -0.120986 -1.090458 -0.682149 -0.458262

399 0799580 0.912887 0.599718 -0.982504 -0.039462 -0.635427 0.017443

400 rows x 7 columns

Pour voir si les valeurs sont normalisées nous pouvons véridier si la moyenne est nulle et si la variance égale & 1:

Tn.std()

grossesses 1.0
glucose 1.8
pression 1.8
insuline 1.8
ime 1.8
K 1.8
age 1.8

dtype: float64

Tn.describe()

grossesses glucose pression insuline ime K age

count 4.000000e+02 4.000000e+02 4.000000e+02 4.000000e+02 4.000000e+02 4.000000e+02 4.000000e+02
mean 1.942890e-17 2.83106%e-17 -1.917910e-16 -1.082467e-17 1.868072e-15 1.074141e-16 -3.824198e-17
std 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
min -1.083118e+00 -1.994040e+00 -2.749813e+00 -1.010984e+00 -1.41423%e+00 -B8.197870e-01 -7.753989%e-01
25% -7.995795e-01 -7.162700e-01 -7.400941e-01 -7.902642e-01 -1.067467e+00 -6.814188e-01 -6.961148e-01
50% -2.325018e-01 -7.738495e-02 1.125138e-01 -2.028660e-01 -1.516604e-03 -5.376222e-01 -5.375465e-01
75% 6.181147e-01 55615001e-01 7.215194e-01 4.414921e-01 7.523012e-01 5.636558e-01 5.922525e-01

max 2.886425e+00 2.637877e+00 2.670337e+00 4.286281e+00 2.444176e+00 4.354307e+00 3.188808e+00

pl. figure(figsize = (12,4))
boxplot(data =Tn[parametres],
color="'cyan',

whis = [0, 100])
pl.savefig("boxplotzoomN.png")

e e

_3 <

T T
grossesses glucose pression insuline imc K age
On remarque que maintenant que les valeurs sont normalisées, les dispertions sont comparables

Tn['M'] = T['M"'] #Ajout de M a Tn
Tn.head()

grossesses glucose pression insuline ime K age M
0 -0.516041 -0.109329 0173414 -0911304 0743188 -0.663069 0334579 1
1 1.752270 0433723 -0496492 2570366 -0.122520 -0.642042 0968852 1
2 -0.516041 1.455939 -0.800995 -0491225 -0.576447 1416869 -0.696115 1
3 1468731 1.200385 -1.531801 0498452 1475133 -0.800832 0493147 1

4 -0232502 -0.173218 0.234315 1.132130 -0.364915 -0.746634 -0.775399 1

On normalise également les paramétres des patients (avec la méme moyenne et le méme écart-type que ceux de la table présédente)

Pn=(P[paramétres]-Moy)/Sig
Pn.head() #Affiche valeur normalisée de chaque paramétre

out[29]:

grossesses
0 1186677
1 -1.084475
2 0516687
3 -0232793
4 147057

glucose pression
-0.013513 -0.253206
-1.132962 0.722423
2097448 0.051678
-0.045498 0.112655

0.914030 -0.619067

pl. figure(figsize = (12,4))
boxplot(data =Pn[paramétres],

color="cyan

v
B

whis = [0, 100])

#Dispersion entre taux d'insuline et de

<AxesSubplot: >

0.128374

0.691556

3.243701

0.342240

-0.007075

ime K age
-0.706641 -0.711474 -0.696387
-0.231660 0.965497 1.049449
-0.076218 1.584572 2319584
-0.500231 -0.768260 -0.776370

0.652177 D.172542 -0.696987

glucose

.

grossesses

T
glucose

T T T
pression insuline imc K age

2.Estimation des parametres qui permettent de distinguer les malades des non-
malades

Nous pouvons notamment utiliser une matrice de corrélation pour voir quels paramétres sont les plus liées a la variable 'M'

corr = T.corr()
corr.abs().sum(axis=1).sort_values(ascending=False).index
corr.abs().sum(axis=0).sort_values(ascending=False).index

row_order =
col_order =

corr = corr

pl.title("Correlation matrice heatmap")

pl.show()
pl.savefig(

.loc[row_order, col_order]
pl.figure(figsize=(10,6))
sns.heatmap(corr, cmap="Y1GnBu", annot=True)

"matrice.png")

Correlation matrice heatmap

1.0
= 0.3 0.3 0.26 0.2 0.074 0.077
[7s]
[F]
o
2 0.17 0.035 0.042 -0.012 0.8
e
o
% 0.048 0.1 -0.03 0.067
g - 0.6
5 0.081 0.051 0.051 0.033
£
E - D286 0.17 0.048 -0.00081 0.024 0.0015 d o4
8 - 0.2 0.035 0.1 0.051 -0.00081 -0.02
? -0.2
2 - 0074 0.042 -0.03 0.051 0.024 -0.024
=3
=
5
'E - 0.077 -0.012 0.067 0.033 0.0015 -0.02 0.019
o -0.0
= | | | | | | |
M grossesses age insuline imc K glucose pression

<Figure size 648x480 with @ Axes>

Avec un facteur de corrélation de 0,46, le Grossesse a la corrélation la plus élevée avec le résultat, c'est-a-dire que la Grossesse est le paramétre le
plus élevé pour prédire le diabéte. De plus, l'insuline et I'Age peuvent également étre considéré comme un facteur significatif pour prédire le
diabéte.

Visualisations 2d

fig, axs = pl.subplots(nrows=2,ncols=4,figsize=(30,10))

for c,ax in zip(parametres,axs.flatten()):
colonna = T.eval(c)
#
ax.hist(colonna[T.M==1],bins=15,1label="Malade"',color="r"',alpha=0.2)
ax.hist(colonna[T.M==0],bins=15,1label="Sain"',color="b",alpha=0.2)

#

histplot(colonna[T.M==1],bins=15, Label="Malade"',color="r"',alpha=0.2, ax=ax)
histplot(colonna[T.M==0],bins=15, Label="Sain",color="b",alpha=0.2, ax=ax)
#

distplot(colonna[T.M==1],bins=15, Label="Malade',color="r', ax=ax)

distplot(colonna[T.M==0],bins=15, Label="Sain',color="b", ax=ax)

W

ax.legend()

ax.set_xlabel(c)
ax.set_ylabel('frequency")

v hrade | e Hrlade e s
S man = i -
- .
A LE
"
x|
g R
) 4
Ex| g
42
e o=
% b1}
i
2 = al, P " . e
o 1 13 L] et] u u a (3 a0 s e pL ot L L] B8l 10 10 3 wo s 30 00 o 600 Iy
QroGEIEsCs quucase pression rrsulne
L= wn Ll
Moiads rmads Mziadz
win | i sain
w 09| 00 vig
0 811 "o
w | a6
- 4
R B
< £ ne
= A an
- ErR nz
a a 8 = an
C 0 L] 45 o 5 o o 1 2 i Q B 50 [i (1 0 L e ne 1
me 13 e
sns.pairplot(T, hue = 'M') #Crée une matrice de diagramme de dispersion avec en bleu les malades et vert Les non malades + les

<seaborn.axisgrid.PairGrid at @x284d5hd9a9e>

14 -
- .
12 . .
L] -
10 -n - -
o o sen
a LU - s 8
- e e
a6 L R
B - ssme =
4 - o e
- -
r
il

160
§ 140
5 120
E]
T 100
a0
&0
8 leen
A0 - T
120 ¢)
- -
100
§ a0
B a0
40
e .
.
= =
-
0 :

400

insuline

!!!

200 H]
L H
Bfeetagiall

HE |
w0 1 1 A e
~y .
L L g
g b b,
30 g g 5 ﬁ ::-.
* .,c‘ .
L] ﬁ-_g,‘-:'»
20 1 | . Ch
[
154 1 a@ e e
11.0 2’ lé} 2; .
boini:

bol bRl | Belidaose s

-

] L
e -

.

ey®s® .

60 82 3 o1 W
*gatas

et

w® s g
ES lfi;;s';a.!.-

” =§§::f: .
30 e,

L
ol HisRecdiiits o

a El o] wn. ash o0 o 50 B B0

ransesses glucose insuline

Ce graphique associe les constructions de tracés a partir de deux figures de base, I'histogramme et le nuage de points. L'histogramme sur la
diagonale nous permet de voir la distribution d'une seule variable tandis que les nuages de points sur les triangles supérieur et inférieur montrent
la relation (ou I'absence de relation} entre deux variables.

Visualisation 3D

import plotly.express as px
fig=px.scatter_3d(

data_frame=Tn,

x="'grossesses"',

y="age’',

z="insuline",

opacity = 0.6,

color =Tn['M'].astype(str),

color_discrete_map = {'1' ‘red’,

'9' : 'green'}

)

fig.update_layout(
width= 700,
legend={'x"':0.9,
"W 8@.5,
"title’
‘bordercolor':'gray"’,
‘size': 14},
'borderwidth’
fig.show()
pl.savefig("diagrammedispersion.png")

' Malade ?",

‘font': {'family': 'Verdana',

1 2,})

<Figure size 64@x480 with @ Axes>

En testant plusieurs paramétres pour les valeurs x,y,z, nous pouvons remarguer que les valeurs les plus prépondérantes semblent toujours étre :
I'insuling,l'imc et les grossesses. Nous associons alors a la fonction "Par” ces 3 parametres.

Choix des parameétres

Par = ['grossesses', 'insuline', 'age']

3. Prédictions

Machine learning : pour un patient p on doit prédire s'il est malade.

Le machine learning ou apprentissage automatique se base sur un principe simple: |'utilisation des données pour que la machine apprenne et
construire des modéles qui pourrons étre appliqués sur des nouvelles données.

|déé: on prend un nouvel individu dans la table Pn et on observe ses 11 plus proches vaisins dans la table Tn .
Si la majorité de ses voisins est malade on prédira qu'il est malade, dans le cas contraire qu'il est sain.

Prédictions du patient 0

On extrait les parameétres de 'individu 0 (de la population totale):

L1 = Tn[Par].loc[0]

L1

grossesses -8.516041
insuline -9.911384
age ©.334579

Name: @, dtype: floatsd

On extrait les paramétres de I'individu 0 (du patient):
L2 = Pn[Par].loc[0]

L2

grossesses 1.186677

insuline B8.128374

age -8.696987
Name: @, dtype: floated

On calcule la distance entre les deux points

from math import dist
dist(L1,L2)

2.2459526824552336

Prédiction pour le patient p et I'individu i
distance = lambda i,p : dist(Tn[Par].loc[i] , Pn[Par].loc[p])

Tn['distance']= [distance (i, @) for i in range (400)]
Tn. head ()

grossesses glucose pression insuline ime K age M distance
0 -0516041 -0.109329 0.173414 -0911304 0743188 -0.663069 D0.334579 1 2245953
1 1752270 (0433723 -0496492 2.570366 -0.122520 -0.642042 0968852 1 3.009691
2 -0516041 1455939 -0.800995 -0491225 -0.576447 1416869 -0.696115 1 1.811946
3 1468731 1.200385 -1.531801 0498452 1475133 -0.800832 0493147 1 1277862

4 0232502 -0.173218 0.234315 1.132130 -0.364915 -0.746634 -0.775359 1 1.740041

selected_columns = Tn.iloc[:, [7,8]]
selected_columns.head()

M distance
0 1 2.245953
1 1 3.009691
2 1 1.811946
3 1 1.277862
4 1 1.740041

On choisit de prendre les 11 individus les plus proches:

Tn.sort_values('distance").iloc[:, [7,8]].head(11) # par rapport au patient @, 7 personnes avec les valeurs les plus proches sont

M distance

378 0 0081397
59 1 0181715
162 1 0.206647
181 1 0.284644
249 0 0303461
204 0 0314077
102 1 0314368
340 0 D314807
131 1 0316036
58 1 0327363

80 1 D0.335362

Tn.sort_values('distance").head(11).M.sum()

7

le patient p=0 a des paramétres similaires 3 7 individus malades parmi les 11 les plus proches.

Comme 7>11/2, on prédit que ce patient est diabétique.

Fonction de prédiction

On associe a chaque patient p dans Pn les 11 individus Tn les plus proches. Si parmi ces 11 individus il y en a plus de 5 malades, on suppose
que le patient p est malade.

def prediction(p): #fonction de prediction
Tn['d']= [distance (i , p) for i in range (400)]
nb_malades = Tn.sort_values('d').head(11).M.sum()
if nb_malades »>= 6:
return 1

else:
return 0
151 prediction(@)

1

On ajoute dans la table Pn une colonne T qui indique la prédiction.

| [461: Pn['M'] = P['M"]
Pn.head()

it [4¢ grossesses glucose pression insuline ime K age M
0 1186677 -0.013513 -0.253206 0.128374 -0.706641 -0.711474 -0.696987 1
1 -1.084475 -1.132962 0722423 0.691556 -0.231660 0.965497 1.049449 1
2 -0.516687 2.097448 0.051678 3.243701 -0.076218 1.584572 2319584 1
3 0232793 -0.045498 0.112655 0.342240 -0.500231 -0.768260 -0.776370 1
4 1470571 0914030 -0.619067 -0.007075 0.652177 0172542 -0.696987 1

} Pn['T'] = [prediction(p) for p in range(100)]
Pn

t[4 grossesses glucose pression insuline imc K age M T
0 1.186677 -0.013513 -0.253206 0.128374 -0.706641 -0.711474 -0.696987 1 1
1 -1.084475 -1.132962 0722423 0691556 -0.231660 0.965497 1.049449 1 1
2 -0.516687 2097448 0.051678 3243701 -0.076218 1.584572 2319584 1 1
3 -0.232793 -0.045498 0112655 0342240 -0500231 -0.768260 -0.776370 1 1

4 1470571 0914030 -0.619067 -0.007075 0.652177 0.172542 -0.696987 1 1

95 0618889 -0.557246 0905353 -0.791254 -1.068121 -0.750247 -0.617603 0 O
96 -0.800581 2.161416 0.783400 -0.919574 -1.379340 0.172170 0334998 0 0O
97 -0.800581 -1.005025 0478516 0206791 1427533 -0391351 -0776370 0 0
98 -1.084475 1.969511 0.051678 [0.591752 -1.084774 -0.606006 -0.379453 0 0O
99 0618889 -0.877088 -0.862975 -0.178169 0.624063 1284638 -0.617603 0 1

100 rows % 9 columns

Prédiction pour k = 7 et la distance euclidienne

Regardons maintenant en prenant les 7 plus proches voisins.

| [48]: Tn.sort_values('distance').head(7) # par rapport au patient @, 4 personnes avec les valeurs les plus proches sont malades

grossesses glucose pression insuline ime K age M distance
378 1.185192 1.072608 -0.740094 0.142453 -1.325189 D.182555 -0.616831 0 0.081397
59 1.185192 -0.332939 0356116 -0.035546 1.653417 0.263949 -0.775399 1 0.181715
162 1185192 -0.173218 -0.374691 -0.078266 1.582386 0.728298 -0.696115 1 0.206647
181 1185192 0.178169 -0.374691 0413012 -1.318690 -0.668360 -0.696115 1 0.284644
249 1468731 1.519828 -0.800995 0.206533 -0.331803 0484469 -0.616831 0 0.303461
204 1468731 -1.099601 -0.740094 0.242133 0.753170 -0487350 -0.7753%9 0 0314077
102 0901654 -0.205162 0.051613 0021413 -0.029408 0.204744 -0.775399 1 0.314368
Tn.sort_values('distance").head(7).M.sum()
4
def prediction2(p): #fonction de prediction

Tn['d']= [distance (i , p) for i in range (400)]

nb_malades = Tn.sort_values('d').head(7).M.sum()

if nb_malades »>= 6:

return 1
else:
return 0

prediction2(0)
2}
Pn['T2'] = [prediction2(p) for p in range(109)]
Pn

grossesses glucose pression insuline ime K age M T T2
0 1186677 -0.013513 -0.253206 0.128374 -0.706641 -0.711474 -0696387 1 1 0
1 -1.084475 -1.132962 0722423 0691556 -0.231660 0.965497 1.049449 1 1 0
2 -0.516687 2097448 0051678 3.243701 -0.076218 1.584572 2319584 1 1 1
3 0232793 -0.045498 0.112655 0342240 -0.500231 -0.768260 -0.776370 1 1 1
4 1470571 0914030 -0.619067 -0.007075 0.652177 0.172542 -0696387 1 1 0
95 0618889 -0.557246 0905353 -0.791254 -1.068121 -0.750247 -0.617603 0 0O O
96 -0.800581 2.161416 0783400 -0.919574 -1.379340 0.172170 0334938 0 0 O
97 -0.800581 -1.005025 0478516 0.206791 1427533 -0.391351 -0776370 0 0O O
98 -1.084475 1969511 0.051678 0.591752 -1.084774 -0.606006 -0.379453 0 0O O
99 0618889 -0.877088 -0.862975 -0.178169 0.624063 1.284638 -0.617603 0 1 0
100 rows x 10 columns
Prédiction pour k = 11 et la distance Manhattan
from scipy.spatial.distance import cityblock
distance2 = lambda i,p : cityblock(Tn[Par].loc[i], Pn[Par].loc[p])
Une autre facon de calculer la distance manhattan est d'utiliser la fonction suivante:
manhattandistance= lambda i,p : sum(abs(Tn.loc[i, Par] - Pn.loc[p, Par]))
def prediction3(p): #fonction de prediction

Tn['d']= [distance2 (i , p) for i in range (400)]
nb_malades = Tn.sort_values('d').head(11).M.sum()
if nb_malades >= 6:

return 1
else:

return 0

d

0.650768

0.604930

0.580383

0.822410

0.932860

0.961137

0.380379

prediction3(0)

1

Pn['T3'] = [prediction3(p) for

Pn

95

96

97

238

99

grossesses
1.186677
-1.084475
-0.516687
-0.232793
1.470571

0.618889
-0.800581
-0.800581
-1.084475

0.618889

glucose
-0.013513
-1.132962
2.097448
-0.045498

0.914030

-0.557246
2.161416
-1.005025
1.969511

-0.877088

100 rows x 11 columns

pression
-0.253206
0722423
0.051678
0.112655

-0.619067

0.905353
0.783400
0.478516
0.051678

-0.862975

p in range(100)]

insuline

0.128374

0.691556

3.243701

0.342240

-0.007075

-0.791254

-0.919574

0.206791

0.591752

-0.178169

Tn['distance2']= [manhattandistance (i,

Tn. head ()

grossesses
0 -0.516041
1 1752270
2 -0.516041
3 1468731
4 -0.232502

glucose
-0.109329
0.433723
1.455939
1.200385

-0.173218

pression
0.173414
-0.496492
-0.800995
-1.531801

0.234315

insuline

-0.911304

2.570366

-0.491225

0.498452

1.132130

ime
-0.706641
-0.231660
-0.076218
-0.500231
0652177

-1.068121
-1.379340
1427533
-1.084774
0.624063

0) for i

imc
0.743188
-0.122520
-0.576447
1475133

-0.364915

K
-0.711474
0.965457
1.584572
-0.768260

0.172542

-0.750247

0.172170
-0.391351
-0.606006

1.284638

in range

K
-0.663069
-0.642042

1.416869
-0.800832

-0.746634

age M
-0.696987 1
1.049449 1
2319584 1
0776370 1
-0.696987 1
-0.617603 O
0334998 0
-0.776370 0
0379453 0
-0.617603 0
(400)]
age M
0.334579 1
D.968852 1
-0.696115 1
0.493147 1
0775399 1

Prédiction pour k = 7 et la distance Manhattan

def predictiond(p):
Tn['d']= [distance2(i , p) for i in range (400)]
nb_malades = Tn.sort_values('d').head(7).M.sum()
if nb_malades »>= 6:

return 1

else:

return 0

Pn['T4'] = [prediction4(p) for p in range(100)]

Pn

#fonction de

T T2 T3
10 1
10 1
11 1
11 1
T 0
o 0 0
o 0 0
o 0 0
o o 0
10 1
distance d distance2
2.245953 2820247 3.773%960
3.0096591 5468371 4.673424
1.811946 1.526497 2323188
1277862 2637214 1.842267
1.740041 2319485 2.501347
prediction

grossesses glucose pression insuline ime K age M T T2 T3 T4
0 1.186677 -0.013513 -0.253206 0.128374 -0.706641 -0.711474 -0696987 1 1 0 1 O
1 -1.084475 -1.132962 0722423 0691556 -0.231660 0965497 1049449 1 1 0 1 0
2 -0.516687 2097448 0.051678 3243701 -0.076218 1.584572 2319584 1 1 1 1 1
3 -0.232793 -0.045498 0.112655 0.342240 -0500231 -0.768260 -0.776370 1 1 1 1 1
4 1470571 0914030 -0.619067 -0.007075 0652177 0.172542 -0696387 1 1 0 1 0

95 0618889 -0.557246 0905353 -0.791254 -1.068121 -0.750247 -0617603 0 0 0 O 0O
96 -0.800581 2.161416 0.783400 -0.919574 -1.379340 0.172170 0334998 0 0 0 O 0O
97 -0.800581 -1.005025 0478516 0.206791 1427533 -0391351 -0776370 0O 0O 0O O 0
98 -1.084475 1.969511 0.051678 [0.591752 -1.084774 -0.606006 -0379453 0 0 0 0O 0O

99 0618889 -0.877088 -0.862975 -0.178169 0.624063 1284638 -0617603 0 1 0 1 0

100 rows x 12 columns

Prédiction pour k = 11 et la distance Chebychev
Chebyshevdistance= lambda i,p : max((abs(Tn.loc[i, Par] - Pn.loc[p, Par])))

def prediction5(p): #fonction de prediction
Tn['d']= [Chebyshevdistance(i , p) for i in range (400)]
nb_malades = Tn.sort_values('d').head(11).M.sum()
if nb_malades >= 6:
return 1
else:
return 0
prediction5(0)

1

Pn['T5'] = [prediction5(p) for p in range(100)]
Pn

grossesses glucose pression insuline ime K age M T T2 T3 T4 T§
0 1186677 -0.013513 -0.253206 0.128374 -0.706641 -0.711474 -0696387 1 1 0 1 0 1
1 -1.084475 -1.132962 0722423 0691556 -0.231660 0965497 1049443 1 1 0 1 0 1
2 -0.516687 2097448 0051678 3.243701 -0.076218 1.584572 2319584 1 1 1 1 1 1
3 -0.232793 -0.045498 0.112655 0342240 -0.500231 -0.768260 -0.776370 1 1 1 1 1 1
4 1470571 0914030 -0.619067 -0.007075 0652177 0.172542 -0696987 1 1 0 1 0 O

95 0618889 -0.557246 0905353 -0.791254 -1.068121 -0.750247 -0617603 0 © 0 O 0 O
96 -0.800581 2.161416 0.783400 -0.919574 -1.379340 0.172170 0334998 0 © 0 O 0 1
97 -0.800581 -1.005025 0478516 0206791 1427533 -0391351 -0776370 0 © 0 O O O
98 -1.084475 1.969511 0.051678 0591752 -1.084774 -0.606006 -0379453 0 ©0 0 O O O

99 0678889 -0.877088 -0.862975 -0.178169 0.624063 1284638 -0617603 0 1 0 1 0 O

100 rows x 13 columns

4. Mesures de fiabilité des prédictions

Croisement des variables
On considére les événements suivants:

* $M3: la personne est malade,
= T: son test est positif.

On notera $\bar M$ et $\bar T$ respectivement les évenements la personne n'est pas malade et le test est négatif.

Pour mesurer la pertinence du classement, nous avons besoin des élements suivants régroupé dans la Matrice de confusion:

s yrai positif: $MTS (malade avec un test positif), i.e. $M=1§ et $T=1%

= yrai négatif: $\bar M \bar T$ (sain avec un test négatif) i.e. $M=0% et $T=0%
» faux positif: $\bar M T$ (sain avec un test positif) i.e. $M=0% et $T=1%

» faux négatif; $M \bar T$ (malade avec un test négatif) i.e. $M=1% et $T=0%

Les prédictions pour les patients sont stockes dans Pnorm colonne T et il faut la comparer a la colonne M.

On construit la matrice de confusion en croisant les variables M et T :

Annexe

Cf. https://beranger.medium.com/ml-accuracy-pr%C3%A9cision-f1-score-courbe-roc-que-choisir-5d4940b854d7

Distance Euclidienne ($k=11%)

Croisement des variables pour méthode k=11 plus proches voisins / Euclidienne

#Prédiction variables M et T
E = pa.crosstab(Pn['M"'], Pn['T'],margins=True)

E
T 0 1 Al
M
0 44 6 50
1 9 41 50

All 53 47 100

M_T = E.loc[1,1] # tp
M_barT = E.loc[1,0] # fn
barM_T = E.loc[0,1] # fp

barM_barT = E.loc[0,0] # tn

Métriques:

& |es métriques telles que I'accuracy, la précision, la sensibilité ou la spécificité sont souvent utilisés pour évaluer la précision des modéles de
prédictions. Nous pouvons chercher a les calculer pour estimer la précision de notre modéle. Les formules des principaux métriques sont les
suivantes :

s Accuracy: $\dfrac{MT+\bar M \bar THMT+\bar M \bar T + \bar M T + M \bar T}$

= Précision: $\dfrac{MTHMT +\bar M T}$

* Sensibilité: $\dfrac{MTHMT+M \bar T}$

s fl-score: $2\dfrac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}}$

s Spécificite: $\dfracf\bar M\bar T}{\bar M\bar T+\bar M T}$

Les formules de la spécificité et de |a sensibilité parlent d'elles-mémes : les deux sont complémentaires. Regarder |'une sans I'autre n'apporte rien.

On calcule I'accuracy du test.
La précision permet de connaitre la proportion de bonnes prédictions par rapport a toutes les prédictions.
L'opération est simplement : Nombre de bonnes prédictions / Nombre total de prédictions.

accuracy = (M_T + barM_barT) / (M_T + barM_barT + barM_T + M_barT)
accuracy

6.85

precision = M_T / (M_T + barM_T)
precision

B.87234p4255319149

On calcule la sensibilité du test.
La sensibilité mesure la proportion des prédictions positives correctement identifiées (qui étaient réellement positives). Ce calcul permet d'estimer
combien de vrais positifs nous avons réussi a déterminerr et ceux pas détecté. On souhaite avoir un Recall(Rappel) = 1.

sensibilité = M_T / (M_T + M_barT)
sensibilité

8.82

On calcule le f1-score.

Le F1-Score combine subtilement la précision et le rappel. | est intéressant et plus intéressant que la précision car le nombre de vrais négatifs
n'est pas pris en compte. Et dans les situations d'imbalanced class nous avons une majorité de vrais négatifs qui faussent complétement notre
perception de la performance de |'algorithme. Un grand nombre de vrais négatifs laissera le F1-Score de marbre.

f1_score = 2*(precision*sensibilité)/(precision+sensibilité)
f1_score

B.B4536A8247422681

On calcule la spécificité du test, c'est-a-dire la probabilité d'avoir un test négatif sachant qu'on n'est pas malade.
La spécificité mesure, a l'inverse de la sensibilité, la proportion d'élements négatifs correctement identifiés.

specificité = barM_barT / (barM_barT + barM_T)
specificité

.88

Valeur prédictive du test pour une prévalence donnée

On suppose que la prévalence du diabéte (i.e. la probabilite détre malade) $\mathbb{P}(M)$ dans la population est égale a $0.1%: $$ \mathbb{P}
(M}=0.1, \gquad \mathbb{P}(\bar M)=0.9 $$

On utilise la méthode de prédiction obtenue par machine learning décrite plus haut. Si une personne voit son test positif, quelle est la probabilité
gu'elle soit malade? On appelle cette probabilité la valeur prédictive du test, i.e. la valeur de $\mathbb{P}_{TH{M)$.

D'aprés ce qui précéde, il est convenu que la sensibilité est $0.82%. On a alors $$ \mathbb{P}_{M}(T)=0.1\times0.82, \quad \mathbb{P}_{M}{\bar
T)=0.1\times0.18, \quad \mathbb{P}_{\bar M}T)=0.9\times0.12, \quad \mathbb{P}_{\bar M}{\bar T)=0.9\times0.88. $%

On a $\mathbb{P}T)=\mathbb{P}_{M}(T)+\mathbb{P}_{\bar M}(T)=0.1\times0.82 +0.9\times0.12=0.19%.

La valeur predictive du test est $\mathbb{P}_{T}(M)=\frac{\mathbb{P}{T\cap M}}{imathbb{P}T)}=\fracf\mathbb{P}_{M}(T)}{\mathbb{P}
M}=\frac{0.1\times0.82}{0.19}=0.43%.

Valeur prédictive en fonction de la prévalence

Quelle que soit la prévalence $p=\mathbb{P}M)$ du diabéte, |a valeur prédictive du test est $$ \mathbb{P}_{T}{M)=\frac\mathbb{P}(T\cap M)}
{\mathbb{P}T)}=\frac{\mathbb{P}_{M}T)}{\mathbb{P}_{M}T)+\mathbb{P}_{\bar M}(T)}=\frac{p\times0.82}{p\times0.82+(1-
pitimes0.12}=\frac{0.82p}{0.12+0.70p}. $$ On affiche le graphe de $p\mapsto \mathbb{P}_{TH{M)$ qui a la prévalence de la maladie fait
correspondre la valeur prédictive du test.

PM = [k/100 for k in range(100+1)]

L = [0.82*%p/(0.12+0.7*p) for p in PM]

pl.plot(PM,L,color="red")

pl.plot([@.1,0.1,0],[0,0.43,0.43],":")

pl.xlabel('Prévalence (proportion de malades $\mathbb{P}(M)$)',fontsize=14)

pl.ylabel('Valeur prédictive (proportion de malades parmi les positifs $\mathbb{P}_{T}(M)$)',fontsize=14);
pl.savefig("Courbe_de_prevalencedist.png")

1.0 1

0.8

0.6

0.4 1

0.2

0.0

0.0 0:2 0:4 0:6 O.IS 1.0
Prévalence (proportion de malades P(M))

Valeur prédictive (proportion de malades parmi les positifs P{M))

Nous pouvons voir que lorque la prévalence est élevée la valeur prédictive est assez élevée. Cependant, on remaque que lorsque la prévalence est
faible, la valeur prédictive est plutét faible. Cela signifie que quand la proportion de malades est basse, la proportion de malades parmi les positifs
est faible.

Lorsque la maladie est rare (c'est-a-dire lorsque la prévalence est faible), il serait souhaitable que sa valeur prédictive soit plus importante.

Courbe ROC : vrais positifs en fonction de faux positifs
La courbe ROC qui permet de mesurer la performance d'un classificateur. $\mathbb{P}_{T}{M) \mapsto \mathbb{P}_{T}(\bar M)$

Quelle que soit la prévalence $p=\mathbb{P}{M)$ du diabéte, on a $$ \mathbb{P}_{T}M)=\frac{\mathbb{PHT\cap M)H{\mathbb{P}
(M}=\frac{\mathbb{P}_{M}(T){\mathbb{P}_{M}{T)+\mathbb{P}_{\bar M}(T)}=\frac{p\times0.82}{p\times0.82+(1-p)\times0.12}=\frac{0.82p}
{0.12+0.70p}, $$ $% \mathbb{P}_{T}\bar M)=\fracl\mathbb{P}{T\cap\bar M)}{\mathbb{P}(T)}=\frac{\mathbb{P}_{\bar M}(T){{\mathbb{P}_{M}
(T)+\mathbb{P}_{\bar M}T)}=\frac{(1-p)\times0.12Hp\times0.82+(1-p)\times0.12}=\frac{0.12(1-p)}{0.12+0.70p}, $$

Ses probabilités permettent d'obtenir la courbe ROC.

AUC

Nous pouvons alors calculer I'aire sous la courbe ROC (AUC ROC) qui permet d'évaluer la performance globale d'un modéle. L'AUC se situe entre
50% (pour un modéle non-informatif) et 100% (pour un modéle parfait).

Aire = [(L[@]+L[1idx]+2*sum(L[1:1dx]))*(PM[1]-PM[©])/2 for idx in range(len(L))]
pl.plot(PM,Aire)

plL.plot([PM[O],PM[-1]],[0.7,0.7])

pl.grid();

AireTOT = (L[@]+L[-1]+2*sum(L[1:-1]))*(PM[1]-PM[@])/2

AireTOT

B.7854415197276429

L'AUC ROC de notre modéle se situe bien au-dessus de celui d'un modéle non-informatif et en-dessous de celui d'un modéle parfait. Avec 78%
d'AUC ROC, il s'agit d’'un modéle assez performant.

Distance Chebychev ($k=11%)

E5= pa.crosstab(Pn['M"'], Pn['T5'],margins=True)
ES

TS 0 1 Al

M
0 43 7 50
1 10 40 50

All 53 47 100

M5_T = E5.loc[1,1] # tp
M5_barT = E5.loc[1,0] # fn
barM5_T = E5.loc[0,1] # fp

barM5_barT = E5.loc[0,0] # tn
precision = M5_T / (M5_T + barM5_T)
precision

B.851863829787234

sensibilité = M5_T / (M5_T + M5_barT)
sensibilité

8.8

fl_score = 2*(precision*sensibilité)/(precision+sensibilité)
f1_score

B.8247422688412372

specificité = barM5_barT / (barM5_barT + barM5_T)
specificité

a8.86

Distance Manhattan ($k=7%)

E4 = pa.crosstab(Pn['M'], Pn['T4'],margins=True)
E4

T4 0 1 Al

M
0 49 1 50
1 18 32 50

All &7 33 100

M4_T = E4.loc[1,1] # tp
M4_barT = E4.loc[1,0] # fn
barM4_T = E4.loc[0,1] # fp

barM4_barT = E4.loc[0,0] # tn
precision = M4_T / (M4_T + barM4_T)
precision

B.9696969696969697

sensibilité = M4_T / (M4_T + M4_barT)
sensibilité

.64

fl_score = 2*(precision*sensibilité)/(precision+sensibilité)
f1_score

B.7718843373493975
specificité = barM4_barT / (barM4_barT + barM4_T)
specificité

a.98

Pour k=7 vaisins la sensibilité pour la distance euclidienne et distance Manhattan est la méme

Distance Euclidienne ($k=79%)

Méthode k=7 plus proches voisins / Distance Euclidienne

#Prédiction variables M et T
E2 = pa.crosstab(Pn['M"'], Pn['T2'],margins=True)

E2
T2 0 1 Al
M

0 48 2 50
1 18 32 50

All 66 34 100

M2_T = E2.loc[1,1] # tp
M2_barT = E2.loc[1,0] # fn
barM2_T = E2.loc[0,1] # fp

barM2_barT = E2.loc[0,0] # tn
(E2.1oc[0,0]+ E2.loc[1,1]) / 100 #Spécificité du test
a.8

precision = M2_T / (M2_T + barM2_T)
precision

A.9411764705882353

sensibilité = M2_T / (M2_T + M2_barT)
sensibilité

B.64

f1_score = 2*(precision*sensibilité)/(precision+sensibilité)
f1_score

B.7619847619847621

specificité = barM2_barT / (barM2_barT + barM2_T)
specificité

8.9

Valeur prédictive en fonction de la prévalence

Quelle que soit la prévalence $p=\mathbb{P}(M)$ du diabéte, |a valeur prédictive du test est $$ \mathbb{P}_{TH{M)=\frac{\mathbb{P}{T\cap M)}
{\mathbb{P}T)}=\fracf\mathbb{P} {M}T)}{\mathbb{P}_{M}(T)+\mathbb{P}_{\bar M}(T)}=\frac{p\times0.64}{p\times0.64+(1-
p)\times0.04}=\frac{0.64pH0.04+0.6p}. $3 On affiche le graphe de $p\mapsto \mathbb{P}_{THM)$ qui a la prévalence de la maladie fait
correspondre la valeur prédictive du test.

Distance Manhattan ($k=11%)

Croisement des variables pour méthode k=11 plus proches voisins / Manhattan

E1l = pa.crosstab(Pn['M'], Pn['T3'],margins=True)
E1l

T 0 1 Al

M
0 42 8 50
1 9 41 50

All 51 49 100

M1_T = El.loc[1,1] # tp
M1_barT = El.loc[1,0] # fn
barM1_T = El.loc[0,1] # fp

barMl_barT = El.loc[@,0] # tn

precision = M1_T / (M1_T + barM1_T)
precision

B.8367346938775511

sensibilité = M1_T / (M1_T + M1_barT)
sensibilité

a.82

f1_score =
f1_score

2*(precision*sensibilité)/(precision+sensibilité)

B.8282828282828283

specificité =
specificité

barM1_barT / (barMi_barT + barM1_T)

B.84

accuracy = (M1_T + barMi_barT) / (M1_T + barMil_barT + barM1_T + M1_barT)

accuracy

a.83

Valeur prédictive en fonction de la prévalence

Quelle que soit la prévalence $p=\mathbb{P}(M)$ du diabéte, |a valeur prédictive du test est $$ \mathbb{P}_{TH{M)=\frac[\mathbb{P}{T\cap M)}

f\mathbb{P}T)}=\fracf\mathbb{P}_{M}T)}{\mathbb{P}_{M}(T)+\mathbb{P}_{\bar M}(T)}=\frac{p\times0.82}{p\times0.82+(1-

p\times0.16}=\frac{0.82p}0.16+0.66p}. $$ On affiche le graphe de $p\mapsto \mathbb{P}_{THM)$ qui a la prévalence de la maladie fait

correspondre la valeur prédictive du test.

donnees = {'spécifité': [0.84,0.88], 'sensibilité': [©.82,0.82],

tableau = pa.DataFrame(donnees)
tableau.index = ['Manhattan', 'Euclidienne']

print(tableau)

spécifité sensibilité précision f1_score
Manhattan 8.84 8.82 B.836735 ©.8228283
Euclidienne 8.88 8.82 B.872348 ©.845361

donnees = {'spécifité': [0.88,0.96], 'sensibilité': [0.82,0.64],
tableau = pa.DataFrame(donnees)

tableau.index = ['k = 11', 'k = 7"]

print(tableau)

pl.savefig("Tableau.png")

spécifité sensibilité précision f1_score
k=11 8.88 @.82 8.87234 8.845361
=7 8.96 B8.64 8.94888 ©.760888

<Figure size 640x480 with @ Axes>

'précision’: [0.8367346938775511,0.8723404255319149],

'précision’: [0.8723404255319149,0.94],

On affiche la valeur prédictive en fonction de la prévalence avec $k=11% pour la distance Manhattan et Euclidienne

PM = [k/100 for k in range(100+1)]
L1 = [0.82%p/(0.12+0.7*p) for p in PM]
L2= [0.82*p/(@.16+0.66%p) for p in PM]

pl.plot(PM,L2,color="0orange',label="Prédiction pour distance Manhattan et k=11")
pl.plot(PM,L1,color="red',label="Prédiction pour distance euclidenne et k=11")

pl.plot([0.1,6.1,0],[0,0.43,0.43],":")

pl.xlabel('Prévalence (proportion de malades $\mathbb{P}(M)$)',fontsize=14)

pl.ylabel('Valeur prédictive ($\mathbb{P}_{T}(M)$)",fontsize=14);
pl.legend()
pl.savefig("Courbe_de_prevalencek=11.png")

'f1_score'

'f1_score': [0.84536082¢

1.0 1

0.8

0.6

0.4 1

0.2

Valeur prédictive (Pr(M))

: - Prédiction pour distance Manhattan et k=11
0.0 1 : —— Prédiction pour distance euclidenne et k=11

0.0 dZ d4 dﬁ d& 1.0
Prévalence (proportion de malades P(M))

Nous pouvons voir que pour une prévalence faible, la valeur de prédiction est la méme pour les deux distances. Pour une valeur plus élevée, la
valeur de la prédiction pour la distance Manhattan est plus faible que celle pour la distance euclidienne. Utiliser la distance euclidienne semble

étre le plus adéquat pour notre modéle si on choisit $k = 11§.

PM = [k/100 for k in range(100+1)]

L1 = [0.82*p/(0.1240.7*p) for p in PM]

L2= [0.82*p/(0.16+0.66*p) for p in PM]

L3= [0.64*p/(0.04+0.6*p) for p in PM]

L4=[0.64*p/(0.0240.62*p)for p in PM]

L5=[0.8*p/(0.14+0.66*p)for p in PM]

pl.plot(PM,L2,color="blue",label="Prédiction pour distance euclidenne et k=7")
pl.plot(PM,L1,color="red',label="Prédiction pour distance euclidenne et k=11")
pl.plot(PM,L3,color="orange",label="Prédiction pour distance Manhattan et k=11")
pl.plot(PM,L4,color="pink',label="Prédiction pour distance Manhattan et k=7")

pl.plot(PM,L5,color="green"',label="Prédiction pour distance Chebychev et k=7")
pl.plot([0.1,0.1,0],[0,0.43,0.43],":")

pl.xlabel('Prévalence (proportion de malades $\mathbb{P}(M)$)',fontsize=14,)
pl.ylabel('Valeur prédictive ($\mathbb{P}_{T}(M)$)',fontsize=14);

pl.legend()

pl.savefig("Courbefinal_de_prevalence.png")

1.0 A
S o081
Y 061
T
o
Ef 0.4 1
o
| -
a —— Prédiction pour distance euclidenne et k=7
© 0.2 —— Prédiction pour distance euclidenne et k=11
= - Prédiction pour distance Manhattan et k=11
: Prédiction pour distance Manhattan et k=7
0.0 - : —— Prediction pour distance Chebychev et k=7

0.0 d2 d4 dﬁ d& 1.0
Prévalence (proportion de malades P(M))

On constate que la distance de Manhattan avec k = 7 offre la meilleure performance prédictive.

Choix de paramétres différents

On étudie les correlations pour mieux choisir les paramétres significatifs.

Nous pouvons nous intéresser individuellement a chagque parameétre.

Intéressons nous aux grossesses.

Grossesses

On peut chercher a voir gu'elle est le plus grand et le plus petit nombre de grossesses

T.grossesses.agg(['max', 'min', 'mean', 'std'])

max 14. 0668008
min 0.0epe88
mean 3.8260000
std 3.526854

Name: grossesses, dtype: floated

On peut regarder également la répartition des grossesses.

T.grossesses.plot.kde(legend=False, title='Grossesses');

Grossesses

0.14

0.12 4

-5 0 5 10 15 20
On peut égalemnt créer un graphique a barres pour visualiser le nombre de grossesses en fonction du diabéte:

T.groupby('M").grossesses.mean().plot(kind="bar");

M

On peut faire pareil avec la variable "Glucose”

Glucose

T.glucose.agg(['max', 'min’, 'mean', 'std'])

max 190 . 800000
min 45.808608
mean 187.422588
std 31.3@4535

Name: glucose, dtype: float6d

T.glucose.plot.kde(legend=False, title='Glucose');

Glucose

0.012 1

0.010 4

0.008 1

0.006

Density

0.004 1

0.002 +

0.000 1

T T T T
4] 50 100 150 200 250

T.groupby('M"').glucose.mean().plot(kind="bar");

100 A

804

60

40 A

20~

Choix d'un seul paramétre : les grossesses

Par2 = ['grossesses']

On extrait les paramétres de |'individu 0 (de la population totale):
L1 = Tn[Par2].loc[0]
L1

grossesses -8.5160841
Name: @, dtype: float64

On extrait les paramétres de I'individu 0 (du patient):

L2 = Pn[Par2].loc[@]
L2

Erossesses 1.186677
Name: 8, dtype: floaté4

distance2 = lambda i,p : dist(Tn[Par2].loc[i] , Pn[Par2].loc[p])

Tn['distance2']= [distance2 (i, @) for i in range (400)]
Tn. head ()

grossesses glucose pression insuline ime K age M distance d distance2
0 -0.516041 -0.109329 0173414 -0.911304 0.743188 -0.663069 (0.334579 1 2245953 1.134929 1.702717
1 1.752270 0433723 -0496492 2570366 -0.122520 -0.642042 0968852 1 3.009691 2748535 0.565593
2 -0.516041 1.455939 -0.800995 -0491225 -0.576447 1416869 -0696115 1 1811946 1.134929 1.702717
3 1468731 1.200385 -1.531801 0498452 1475133 -0.800832 0493147 1 1277862 1.110750 0.282055

4 -0232502 -0.173218 0.234315 1.132130 -0.364915 -0.746634 -0.775399 1 1.740041 1310299 1.419178

Tn.sort_values('distance2').head(11)

117

162

378

156

181

94

24

188

147

127

88

grossesses glucose pression insuline ime K
1185192 -0.684326 1.635028 1424049 -0.201843 0.681394
1185192 -0.173218 -0.374691 -0.078266 1.582386 (.728298
1185192 1.072608 -0.740094 0.142453 -1.325189 0.182555
1185192 -0.109329 (0.599718 2128927 0.897002 -0.655265
1185192 0.178169 -0.374691 0413012 -1.318690 -0.668360
1185192 -1.291267 0.599718 -0.590905 0.337352 0.899225
1185192 2126769 0.599718 1.210450 -1.084534 -0.534648
1185192 0.274002 0356116 -0.626505 1.948693 -0.607003
1185192 0912887 -0.618293 0982610 -0.359527 -N.A3IA2AT
1185192 -1.674598 0417017 -0.505465 -0.465336 -0.690816

1185192 -0.013496 -1.592702 0334692 0.163701 -0.572345

On choisit de prendre les 11 individus les plus proches:

Tn.sort_values('distance2').head(11).M.sum()

i@

age

1.048136

-0.696115

-0.616831

-0.775399

-0.696115

2.078830

-0.141126

-0.696115

-0.696115

-0.696115

0.968852

distance

2.173530

0.206647

0.081397

2.002090

0.284644

2.867494

1.216500

0.754880

0.854239

0.633841

1.678567

d distance2
1.665739 0.001484
0.566304 0.001484
0.566304 0.001484
2307096 0.001484
0.591181 0.001484
2696433 0.001484
1.388619 0.001484
0.566304 0.001484
1.160779 0.001484
0.566304 0.001484
1.586455 0.001484

le patient p=0 a des paramétres similaires a 10 individus malades parmi les 11 les plus proches.

Comme 10>11/2, on prédit que ce patient est diabétique.

def prediction2(p):

Tn['d']= [distance2 (i , p) for i in range (400)]

nb_malades = Tn.sort_values('d').head(11).M.sum()

if nb_malades »>= 6:

return 1
else:
return 0

prediction2(0)
1
Pn['M"] = P['M"]
Pn['G"'] = [prediction2(p) for p in range(100)]
Pn

grossesses glucose pression insuline ime K
0 1.186677 -0.013513 -0.253206 0.128374 -0.706641 -0.711474
1 -1.084475 -1.132962 0722423 0.691556 -0.231660 0.9R5497
2 0516687 2097448 0051678 3.243701 -0.076218 1.584572
3 -0232793 -0.045498 0112655 0.342240 -0.500231 -0.768260
4 1470571 0914030 -0.619067 -0.007075 0652177 172542
95 (.618889 -0.557246 0905353 -0.791254 -1.068121 -0.750247
96 -0.800581 2161416 0783400 -0.919574 -1.379340 0172170
97 -0.800581 -1.005025 0478516 0206791 1427533 -0.391351
98 -1.084475 1969511 0051678 0.591752 -1.084774 -0.606006
99 (.618889 -0.877088 -0.862975 -0.178169 0.624063 1.284638

100 rows x 14 columns

#prédiction variables M et T

E2 =

E2

pa.crosstab(Pn['M'], Pn['G'],margins=True)

age
-0.696987
1.049449
2.319584
-0.776370

-0.696987

-0.617603

0.334998
-0.776370
-0.379453

-0.617603

M

1

1

#fonction de prediction

T T2 T3 T4 T5

0 1
T 0 1
11
T 1 1
0 1
0o 0 0
0o 0 o
0o 0 0
0o 0 0
10

0 1
0 1
101
11
0D 0
0 0
0 1
0o 0
0 0
0 0

M
0 42 8 50
1 7 43 50

All 49 51 100

(E2.1loc[0,0]+ E2.1loc[1,1]) / 100 #Spécificité du test

a.85

E2.1oc[0,0] / 50

.84

M. T = E2.1loc[1,1] # tp
M_barT = E2.loc[1,0] # fn
barM_T = E2.loc[0,1] # fp
barM_barT = E2.loc[0,0] # tn

precision = M_T / (M_T + barM_T)
precision

B.8431372549819608

sensibilité = M.T / (M_T + M_barT)
sensibilité

a.86

fl_score = 2*(precision*sensibilité)/(precision+sensibilité)
f1_score

A.8514851485148515

specificité = barM_barT / (barM_barT + barM_T)
specificité

B.84

Valeur prédictive du test pour une prévalence donnée

On suppose que |a prévalence du diabéte (i.e. la probabilité détre malade) $\mathbb{P}(M)$ dans la population est égale a 0.1: $$ \mathbb{P}
(M)=0.1, \gquad \mathbb{P}{(\bar M)=0.9 $$

On utilise la méthode de prédiction obtenue par machine learning décrite plus haut. Si une personne voit son test positif; quelle est la probabilité
gu'elle soit malade? On appelle cette probabilité la valeur prédictive du test, i.e. la valeur de $\mathbb{P}_{T}{M)$.

D'aprés ce qui précede, il est convenu que la sensibilité est $0.86%. On a alors $$ \mathbb{P}_{M}(T)=0.1\times0.86, \quad \mathbb{P}_{M}{\bar
T)=0.1\times0.14, \quad \mathbb{P}_{\bar M}{T)=0.9\times0.16, \quad \mathbb{P}_{\bar M}{\bar T)=0.9\times0.84. $$

On a $\mathbb{P}{T)=\mathbb{P}_{M}T)+\mathbb{P}_{\bar M}{T)=0.1\times0.86+0.9\times0.16=0.226%.

La valeur prédictive du test est $\mathbb{P}_{T}(M)=\frac{\mathbb{P}{T\cap M}}{imathbb{P}T)}=\fracf\mathbb{P}_{M}(T)}{\mathbb{P}
(M}=\frac{0.1\times0.86}{0.19}=0.45%.

= [k/100 for k in range(100+1)]

= [0.86*%p/(0.16+0.7*p) for p in PM]

L = [0.82*%p/(0.12+0.7*p) for p in PM]

pl.plot(PM,LG,color="blue")

pl.plot(PM,L,color="red")

pl.plot([e.1,0.1,0],[0,0.43,0.43],":")

pl.xlabel('Prévalence (proportion de malades $\mathbb{P}(M)$)',fontsize=14)

pl.ylabel('Valeur prédictive (proportion de malades parmi les positifs $\mathbb{P}_{T}(M)$)',fontsize=14);

PM
LG

1.0 1

0.8

0.6

0.4 1

0.2

0.0

0.0 0:2 0:4 0:6 O.IB 1.0
Prévalence (proportion de malades P(M))

Valeur prédictive (proportion de malades parmi les positifs P{M))

La Valeur prédictive en fonction de la prévalence semble plus élevée pour les 3 paramétres choisis précédemment que pour le seul paramétre
'grossesses’.

Choix d'autres parameétres : les grossesses, l'insuline et I''/MC
Par3 = ['grossesses', 'insuline', 'imc']

L1 = Tn[Par3].loc[@]

L1

grossesses -8.5160841
insuline -8.911304
imc @.743188

Name: @, dtype: floated

L2 = Pn[Par3].loc[@]
L2

grossesses 1.186677
insuline B8.128374
imc -8.786641
Name: @, dtype: floated

distance3 = lambda i,p : dist(Tn[Par3].loc[i] , Pn[Par3].loc[p])

Tn['distance3']= [distance3 (i, @) for i in range (400)]
Tn. head ()

grossesses glucose pression insuline ime K age M distance d distance2 distance3
0 -0516041 -0.109329 0173414 -0911304 0743188 -0663069 0334579 1 2245953 1.134929 1.702717 2466208
1 1.752270 D433723 -0496492 2570366 -0.122520 -0.642042 0968852 1 3.009691 1.133381 0565593 2573795
2 -0516041 1455939 -0.800995 -0491225 -0.576447 1416869 -0696115 1 1811946 1.134929 1.702717 1816618
3 1468731 1.200385 -1.531801 D498452 1475133 -0.800832 0493147 1 1277862 0849842 0282055 2.230841

4 0232502 -0.173218 0234315 1.132130 -0364915 -0.746634 -0.775399 1 1.740041 0851391 1419178 1.771545

Tn.sort_values('distance3').head(11)

122

51

168

294

340

249

361

378

180

177

grossesses
0.901654
1.468731
1.468731
1.468731
0.901654
0.901654
1.468731
0.901654
1.185192
0.618115

1.468731

glucose
0.465667
1.998992
-0.141273
0.210113
0.401779
1.647605
1.519828
0.912887
1.072608
-0.300995

-1.930152

pression
1.391426
0.173414
-1.349100
-0.557392
-1.714503
0.538818
-0.800995
0.721519
-0.740094
-0.131088

-0.435591

insuline

-0.042666

0.291973

0.4695972

0.149573

0.092613

0.021413

0.206533

0.249253

0.142453

0.149573

D.519812

ime

-0.524592

-0.485054

-0.703703

-0.352730

-1.070478

-1.069393

-0.331803

-1.142783

-1.325189

-0.454408

-0.285073

Tn.sort_values('distance3').head(11).M.sum()

B

K

-0.533592

-0.532658

-0.604655

-0.819787

-0.013104

-0.595446

0.484469

-0.783014

0.182555

1.061130

-0.642275

age

1.048136

-0.775399

-0.616831

0.413863

-0.378978

-0.616831

-0.616831

-0.378978

-0.616831

-0.775399

-0.061842

distance
1.776498
0.335362
0.450188
1.146295
0.428540
0.314807
0.303461
D.443823
0.081397
0.574335
0.797614

le patient p=0 a des parameétres similaires a 10 individus malades parmi les 11 les plus proches.

Comme 6<11/2, on prédit que ce patient est diabétique.?

def predictioni(p):
Tn['d']= [distance3 (i , p) for i in range (400)]
nb_malades = Tn.sort_values('d').head(11).M.sum()

if nb_malades >= 6:

return 1
else:
return 0

prediction1(9)

1

Pn['M'] = P['M']

Pn.head()
grossesses glucose pression insuline ime
0 1186677 -0.013513 -0.253206 0.128374 -0.706641
1 -1.084475 -1.132962 0.722423 0.691556 -0.231660
2 -0516687 2097448 0051678 3.243701 -0.076218
3 -0.232793 -0.045498 0.112655 0.342240 -0.500231
4 1470571 0914030 -0.619067 -0.007075 D0.652177
Pn['M'] = P['M']
Pn['A'] = [predictionl(p) for p in range(100)]
Pn
grossesses glucose pression insuline ime
0 1186677 -0.013513 -0.253206 0.128374 -0.706641
1 -1.084475 -1.132962 0.722423 0.691556 -0.231660
2 -0516687 2.097448 0.051678 3.243701 -0.076218
3 0232793 -0.045498 0.112655 0.342240 -0.500231
4 1470571 0914030 -0.619067 -0.007075 0.652177
95 0618889 -0.557246 0905353 -0.791254 -1.068121
96 -0.800581 2.161416 0.783400 -0.919574 -1.379340
97 -0.800581 -1.005025 0478516 0.206791 1427533
98 -1.084475 1969511 0051678 0.591752 -1.084774
99 0618889 -0.877088 -0.862975 -0.178169 0.624063

100 rows x 15 columns

#fonction de prediction

K age

-0.711474

0.965497

1.584572

-0.768260

0.172542

K

-0.711474

0.965497

1.584572

-0.768260

D.172542

-0.750247

0172170

-0.391351

-0.606006

1.284638

-0.696987
1.049449
2.319584

-0.776370

-0.696987

age
-0.696987
1.049449
2.319584
-0.776370

-0.696987

-0.617603

0.334998
-0.776370
-0.379453

-0.617603

M

1

T T2

T3

d distance2
0.282765 0.285023
0.849842 0.282055
0.849842 [0.282055
0.849842 0.282055
0.282765 0.285023
0.282765 0.285023
0.849842 0.282055
0.282765 0.285023
0566304 0.001484
0.000774 [0.568562
0.849842 0.282055
T4 T5

101

11

101

101

10

T4 T5 G A
01 1
o 1 01
101 1
101 1
0 0 1
o 0 0
o 1 00
0o 0o oon
0 000
0 0 1

distance3

0.378992

0.394234

0.443004

0.453053

0.463567

0.473569

0.475571

0.534855

0.618709

0622362

0.640701

#prédiction variables M et T
E3 = pa.crosstab(Pn['M'], Pn['A'],margins=True)

E3

A 0 1 Al
M

0 43 7 50
1 7 43 50

All 50 50 100

(E3.loc[@,0]+ E3.1loc[1,1]) / 100 #Spécificité du test

8.86

E3.loc[0,0] / 50

A.86

M3_T = E3.loc[1,1] # tp
M3_barT = E3.loc[1,0] # fn
barM3_T = E3.loc[0,1] # fp

barM3_barT = E3.loc[0,0] # tn

precision = M3_T / (M3_T + barM3_T)
precision

a.86

sensibilité = M3_T / (M3_T + M3_barT)
sensibilité

.86

f1_score = 2*(precision*sensibilité)/(precision+sensibilité)
f1_score

A.8599999999999999

specificité = barM3_barT / (barM3_barT + barM3_T)
specificité

a.86

PM = [k/100 for k in range(100+1)]

LA = [0.86*p/(0.14+0.72*p) for p in PM]

L = [0.82*%p/(0.12+0.7*p) for p in PM]

pl.plot(PM,L,color="blue")

pl.plot(PM,LA,color="red")

pl.plot([0.1,0.1,0],[0,0.43,0.43],":")

pl.xlabel('Prévalence (proportion de malades $\mathbb{P}(M)$)',fontsize=14)

pl.ylabel('Valeur prédictive (proportion de malades parmi les positifs $\mathbb{P}_{T}(M)$)',fontsize=14);

1.0 1

0.8

0.6

0.4 1

0.2

0.0

0.0 0:2 0:4 0:6 O.IB 1.0
Prévalence (proportion de malades P(M))

Valeur prédictive (proportion de malades parmi les positifs P{M))

La Valeur prédictive semble moins bonne avec les 3 nouveaux paramétres considérés. Le modéle parait plus performant pour les varibles

grossesses, insuline et dge.

Conclusion

Notre analyse a montré que la méthode des k plus proches voisins est particuliérement efficace lorsque la prévalence de la maladie est élevée,
mais présente des limites lorsque la proportion de malades est faible. En ajustant le nombre de voisins k, nous avons pu améliorer la précision de
nos prédictions. Par exemple, nous avons constaté que la distance de Manhattan avec k = 7 offrait une meilleure performance prédictive
comparée a k = 11 pour cette méme distance. Toutefois, la distance euclidienne s'est avérée plus efficace pourk = 11.

Pour aller plus loin, il serait intéressant d'améliorer notre modéle en testant d'autres valeurs de k, en explorant différentes mesures de distance, ou
en considérant davantage de parametres.

	Introduction
	Exploration des données
	Boîte à moustaches
	Normalisation : centrage et réduction des données

	Choix des paramètres
	Matrice de Corrélation
	Visualisation 3D

	Méthode des k plus proches voisins
	Introduction à la méthode des k plus proches voisins
	Application de la méthode des k plus proches voisins

	Evaluation de notre modèle
	Croisement des variables
	Mesure de fiabilité des prédictions
	Les Métriques
	Introduction aux métriques
	Calcul des métriques

	Valeur prédictive en fonction de la prévalence

	Conclusion
	Annexe

