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1. Introduction

De nos jours, le machine learning est employé dans de nombreux domaines pour effectuer des
analyses prédictives, notamment pour créer des modèles de détection précoce et de prévention
des maladies. Aussi appelé apprentissage automatique, il représente un modèle d’apprentissage
qui permet à des applications de prédire des résultats de plus en plus précis. Dans le monde, plus
de 500 millions de personnes vivent avec le diabète dont 96 % souffrent d’un diabète de type
II. Ce nombre devrait plus que doubler et atteindre 1,3 milliard de cas dans les 30 prochaines
années. Cette augmentation met en évidence l’importance d’améliorer le dépistage pour mieux
gérer et prévenir le diabète (Voire par exemple [2]).

Le diabète de type II est une maladie qui est caractérisé par un taux de glucose ou de sucre trop
élevé dans le sang. Elle survient lorsque le pancréas ne produit pas suffisamment d’insuline ou
lorsque l’organisme ne parvient pas à utiliser efficacement l’insuline produite. Les complications
de cette maladie sont sérieuses pouvant affecter significativement les vaisseaux sanguins, les reins
ainsi que les nerfs.

Le Machine Learning offre une approche prometteuse pour aborder ce problème. Dans notre
étude, nous explorerons un exemple concret d’application du Machine Learning, en utilisant un
classificateur basé sur un arbre de décision pour tenter de résoudre le problème du dépistage
du diabète. Un classificateur d’arbre de décision est un modèle qui utilise une série de choix
simples pour diviser les données en groupes basés sur leurs caractéristiques. Cette approche nous
permettra d’analyser et de choisir de manière efficace les données les plus pertinentes, offrant
ainsi une prise en charge précoce du diabète.
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Nous utiliserons des données provenant de de l’étude Pima Indians Diabetes faite par l’Uni-
versité de Californie, School of Information and Computer Science. (Sujet issu de [1]) Nous nous
intéresserons à plusieurs critères sélectionnés parmi une base de données plus grande. En parti-
culier, tous les patients, ici, sont des femmes âgées d’au moins 21 ans. De plus, les patients sont
également d’origine indienne Pima, population la plus touchée dans le monde par le diabète de
type II. L’ensemble de données comprennent plusieurs caractères, notamment une variable cible
spécifique, « M ». Cette variable de classe indiquera si l’individu est sain ou malade. Elle vaut 1
si l’individu est malade et 0 si ce n’est pas le cas.

Dans notre jeu de données, chaque ligne représente un patient et les colonnes correspondent
aux variables prédictives et à la variable cible. Les variables sont les suivantes :

— Grossesses : nombre de fois enceinte
— Glucose : concentration en glucose plasmatique 2 heures dans un test de tolérance au

glucose par voie orale
— Pression : pression artérielle diastolique (mm Hg)
— Insuline : insuline sérique de 2 heures (mu U / ml)
— IMC : indice de masse corporelle (poids en kg) / (taille en m2)
— K : coefficient lié à la présence du diabète parmi ses parents et proches
— Age : âge en année (ans)
— M : variable de classe (0 ou 1) qui indique si l’individu est sain (0) ou malade (1).

Le nombre total de patient étudié est de 500. Pour tenter de résoudre le problème du diabète,
nous allons construire un modèle qui va faire des prédictions. Pour cela, nous devons trouver un
moyen d’évaluer la qualité de ces prédictions. Étant donné que les prédictions, par définition,
ne concernent que des données inédites, nous ne pouvons pas dépendre des données utilisées
pour créer le modèle. Nous devons, tout d’abord, diviser le jeu de données en deux parties non
croisées : les données d’entraînement qui seront utilisées pour construire le modèle et les données
de test qui serviront à évaluer les prédictions du modèle. Nous utiliserons, ensuite, l’ensemble
d’entraînement pour construire notre classificateur. Enfin, nous évaluerons la performance de
notre modèle sur l’ensemble de test.

Nous allons nous servir des bibliothèques Pandas, Pylab et Seaborn pour analyser nos données.
Dans notre cas, il existe déjà deux fichiers séparés (avec des données déjà bien préparées). La table
T sera utilisée pour l’entraînement et la table P pour la phase de test. Les données d’entraînement
contiennent les données de 400 individus, tandis que celles de test contiennent les données de
100 patients. Nous analyserons nos données et étudierons une méthode de machine learning
permettant de réaliser des analyses prédictives.

2. Exploration des données

Notre premier objectif est de comprendre les données et trouver les paramètres qui influent le
plus sur la variable cible ("M"). La table T contient les données d’entraînement de 400 individus
qui vont permettre à notre modèle de reconnaître une personne diabétique.

Nous devons, tout d’abord, savoir quelle est la proportion de malade dans notre jeu de données.
Dans notre jeu de données, il y a autant de personnes malades que de personnes saines. Notre
jeu de données est donc équitablement réparti pour construire notre modèle. Notre dataset ne
possède pas de valeurs manquantes. Ensuite, nous pouvons observer le résumé statistique de de
nos données pour en avoir un premier aperçu.
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Figure 1 – Statistiques des données d’entraînement

Par exemple, nous pouvons constater que la moyenne de grossesses dans notre échantillon est
de 3.82, ce qui est assez élevé par rapport à la moyenne nationale française de 1.8, selon l’INSEE.
De plus, le nombre maximal de grossesses observé dans notre série est de 14, ce qui est également
un chiffre très élevé.

Ces observations suggèrent que notre échantillon pourrait présenter une prévalence de gros-
sesses plus élevée que la moyenne nationale. Il serait intéressant d’explorer comment cette variable
est corrélée au diabète. En particulier, nous devrions examiner si les femmes ayant un nombre
élevé de grossesses sont plus susceptibles de développer le diabète par rapport à celles ayant
moins de grossesses.

Figure 2 – Répartition du Diabète en fonction du nombre de grossesses

Ce diagramme montre que si on exclu les femmes sans enfants, plus le nombre de grossesses
augmente, plus le nombre de femmes diabètiques augmente. Cependant, ce n’est pas suffisant
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pour conclure sur l’influence de la grossesse sur le diabète. Nous devons effectuer des analyses
statistiques pour valider notre observation. Nous pouvons explorer d’autres paramètres comme
l’IMC. D’après E-santé l’IMC d’une femme se situe en moyenne entre 18.5 et 25. Nous pouvons
chercher à voir combien de personnes ont un IMC supérieur à la moyenne en considérant seule-
ment les individus qui ont un IMC supérieur à 25 dans notre jeu de données. Dans notre jeu de
données, 272 individus sur 400 ont un IMC supérieur à 25. Ici, il y a donc plus de la moitié de
la population étudiée qui a un IMC supérieur à la moyenne. Ce qui peut nous faire penser que
l’IMC est un paramètre indicateur du diabète.

De plus, nous pouvons chercher à séparer la moyenne de chaque variable en deux catégories :
ceux malades (attribués à la valeur 1) et ceux sains (attribués à la valeur 0).

Figure 3 – Répartition des variables en fonction du statut de maladie

À première vue, nous aurions pu penser que l’insuline est le paramètre influençant principale-
ment le diabète. Cependant, en observant les données, nous constatons que les personnes malades
présentent des valeurs beaucoup plus élevées que les personnes saines pour chaque paramètre.
Nous pouvons, notamment remarquer que, les personnes ont en moyenne plus que deux fois plus
d’enfants que celles non-malades.

2.1. Boîte à moustaches

Nous pouvons, ici, utiliser un box plot, aussi appelé boîte à moustaches pour analyser la dis-
tribution des données. Il nous permettra d’avoir un résumé graphique pour identifier l’asymétrie
de l’ensemble des données.
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Figure 4 – Boîte à moustaches

Une boîte à moustache est composée d’une boîte qui correspond à l’écart interquartile. Ses
cotés gauches et droits représentent les quartiles des données. Elle est coupée en deux par une
ligne qui représente la médiane. Le point rouge qui est situé à droite de la médiane représente
la moyenne. De plus, des moustaches (des barres) se situent à gauche et à droite de la boîte
(Extrait de [3]).

Ce graphique est surtout intéressant lorsqu’on essaye de comparer des variables sur des échelles
similaires. Nous pouvons, ici, utiliser un box plot pour analyser la distribution des données. On
obtient le graphique suivant :

Figure 5 – Boîte à Moustache T

Nous pouvons voir que les variables n’ont pas le même ordre de grandeur, notamment l’insuline
et le glucose. Ce qui empêche une comparaison directe.
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2.2. Normalisation : centrage et réduction des données

Pour pouvoir comparer les différents paramètres (qui n’ont pas les mêmes unités, ni la même
étendue), nous allons standardiser les caractéristiques en les centrant autour de 0 et avec un
écart-type de 1 en les normalisant. Pour cela, on applique la formule :

Tn =
T [parametres] − m

σ

où m représente la moyenne et σ l’écart-type. On obtient une nouvelle table Tn avec les données
normalisées. Pour voir si les valeurs sont normalisées, nous pouvons alors vérifier si la moyenne est
nulle et si la variance égale à 1. Affichons notre boxplot avec les nouvelles variables normalisées :

Figure 6 – Boîte à Moustache Tn

Nous remarquons que maintenant que les valeurs sont normalisées, les dispersions sont com-
parables. On normalise également les paramètres des patients de la table de test avec la même
moyenne et le même écart-type que ceux de la table précédente et on crée la table Pn avec les
données normalisées. On obtient la boîte à moustache suivante :

Figure 7 – Boîte à Moustache pour les données de test
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3. Choix des paramètres

Pour construire notre modèle, nous devons identifier les variables les plus prépondérantes
afin de déterminer les caractéristiques qui ont le plus d’impact sur les personnes atteintes d’un
diabète. Pour cela, nous devons chercher visuellement les attributs qui séparent nos données entre
les malades et le non-malades.

3.1. Matrice de Corrélation

Nous pouvons notamment utiliser une matrice de corrélation pour voir quels paramètres sont
les plus liés à la variable ‘M’. Une matrice de corrélation permet d’évaluer la relation entre
plusieurs variables. Nous allons visualiser la matrice de corrélation de notre jeu de données avec
une "heatmap" ( ou carte de chaleur ) qui est un outil permettant de remplacer les nombres par
des couleurs et décrire l’intensité des données :

Figure 8 – Matrice de Corrélation

Avec un facteur de corrélation de 0,46, la Grossesse a la corrélation la plus élevée avec la
variable "M", c’est-à-dire que la Grossesse est le facteur de risque le plus important pour détecter
le diabète d’après la heatmap. De plus, l’insuline et l’âge peuvent également être considérés
comme des facteurs significatifs pour prédire le diabète. Les autres paramètres ont des coefficients
de corrélation beaucoup plus faibles. Par ailleurs, nous pouvons voir que plus la case a une teinte
de bleu foncée, plus le paramètre correspondant est en forte corrélation avec la variable "M". Les
paramètres les plus corrélés avec la variable "M" semblent ainsi être la Grossesse, l’insuline et
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l’âge. Nous pouvons chercher à utiliser d’autres méthodes pour déterminer quelles variables ont
le plus de corrélation avec la variable "M" pour choisir les paramètres les plus influents.

3.2. Visualisation 3D

Nous avons, aussi, la possibilité de déterminer les facteurs qui permettent de distinguer les
malades des non-malades par une représentation 3D des individus en fonction de trois para-
mètres. Nous pouvons notamment nous servir d’un diagramme de dispersion 3D qui permet de
produire des graphiques en trois dimensions. Nous choisissons alors la représentation qui est la
plus favorable pour distinguer le nuage des malades avec celui des non malades. On représente
les individus malades en rouge et les personnes saines en vert. En testant plusieurs paramètres
pour les valeurs x,y,z, nous pouvons remarquer que les valeurs les plus prépondérantes semblent
toujours être : l’insuline, l’imc et les grossesses. Nous associons alors à la fonction "Par" ces 3 pa-
ramètres que nous utiliserons pour nos prédictions. Le diagramme correspondant aux 3 variables
choisies est le suivant :

Figure 9 – Diagramme de dispersion

4. Méthode des k plus proches voisins

Le Machine learning ou apprentissage automatique se base sur un concept simple : l’utilisa-
tion des données pour que la machine apprenne et construise des modèles qui pourrons être
appliqués sur des nouvelles données. Nous allons utiliser la méthode des k plus proches voisins
pour construire notre modèle. Il est basé sur l’algorithme des k plus proches voisins et a pour
objectif d’identifier les voisins les plus proches d’un point afin de pouvoir attribuer un statut
à ce point. Dans notre cas, le point correspond à un patient pour lequel on veut savoir s’il est
atteint du diabète ou pas. Comme discuté dans l’article [4], cette méthode repose sur la mesure
des distances entre les points de données pour effectuer des prédictions.
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4.1. Introduction à la méthode des k plus proches voisins

La méthode des k plus proches voisins est une technique de base en Machine learning qui
nécessite seulement une valeur k et une mesure de distance. Nous allons voir comment elle
fonctionne. Cette méthode est globalement composée de 4 étapes.

— 1ère étape : Sélection du nombre k de plus proches voisins. Nous devons choisir
un nombre k assez grand pour que notre modèle soit fiable. Pour qu’il soit le plus fiable
possible, il faut que l’on prenne un paramètre k qui minimise le taux d’erreur de l’ensemble
du test.

— 2ème étape : Calcul de la distance entre les données de la table Tn et l’entrée de

la table Pn. Elle consiste à calculer la distance entre toutes les données déjà classifiées de
la table Tn et la nouvelle donnée entrée Pn. Il est possible d’utiliser plusieurs mesures de
distances différentes. La distance que nous allons utiliser est la distance euclidienne entre
deux points (x1, y1) et (x2, y2) qui représente le chemin en ligne droite le plus court entre
deux points. Elle est définie comme :

distanceeuclidienne =

√

(x1 − x2)
2

+ (y1 − y2)
2

Nous prendrons ensuite une autre distance, la distance de Manhattan. Nous comparerons
cette distance avec la distance euclidienne. Le but est alors d’essayer d’avoir une prédiction
plus fiable qu’avec la distance euclidienne. La distance de Manhattan calcule la somme des
différences absolues de coordonnées entre deux points. Mathématiquement, la distance de
Manhattan entre deux points (x1, y1) et (x2, y2) est définie comme :

distanceManhattan = |x1 − x2| + |y1 − y2|

Ça peut être utile d’utiliser la méthode de Manhattan quand les variables d’entrée ne sont
pas de type similaire c’est-à-dire pour des données qui n’ont pas été mises dans la même
échelle. Ce qui est le cas ici. (Voir [6])

— 3ème étape : Extraction des k plus proches voisins. Notre modèle extrait ensuite les
k données déjà classifiées qui ont la distance d la plus petite avec la nouvelle donnée entrée.

— 4ème étape : Test de la méthode On doit alors tester la méthode avec nos patients.
L’idée centrale est alors de prendre un nouvel individu dans la table ’Pn’ et d’observer ses
k plus proches voisins dans la table ’Tn’. On a alors deux possibilités. Si la majorité de ses
voisins est malade, on prédira qu’il est malade, et dans le cas contraire, qu’il est sain.

4.2. Application de la méthode des k plus proches voisins

Appliquons la méthode des k plus proches voisins comme énoncé précédemment.
Nous devons tout d’abord choisir le nombre de k plus proches voisins Nous choisissons k = 11

pour obtenir un résultat assez fiable. On pourrait aussi tester d’autres nombres pour le pa-
ramètre k comme k = 7 et voir lequel donne la meilleure prédiction. Nous allons extraire les
trois paramètres que nous avons déterminé dans le chapitre précédent pour réaliser une pre-
mière prédiction : la grossesse, l’insuline et l’âge. Nous utilisons seulement ces variables pour nos
prédictions. Nous allons, tout d’abord, le faire pour l’individu 0 de la population totale ’Tn’ et
l’individu 0 du groupe des patients ’Pn’. On associe à chaque individu dans ’Tn’ sa distance au
patient 0. Puis, on ordonne la table ’Tn’ selon la distance au patient p = 0. On considère les 11
individus les plus proches, c’est-à-dire les 11 personnes qui ont la distance la plus petite avec le
patient 0 :
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Figure 10 – Tableau de Prédiction du patient 0

On peut voir que le patient p = 0 a des paramètres semblables à 7 individus malades parmi
les 11 les plus proches. Comme 7 > 11/2, cela veut dire que le patient 0 a des caractéristiques
semblables avec plus de la moitié des 11 plus proches voisins considérés. On en déduit que ce
patient a plus de paramètres similaires avec les individus malades que les sains et on prédit que
ce patient est diabétique. Nous devons alors généraliser cette méthode pour tous les patients.
Pour cela, on va alors créer une fonction de prédiction qui associe à chaque patient p dans ‘Pn‘
les 11 individus ‘Tn‘ les plus proches. Si parmi ces 11 individus plus de 5 patients sont malades,
on suppose que le patient p est malade. Si on vérifie avec notre fonction de prédiction le pronostic
du patient p = 0, notre fonction nous indique que celui-ci est bien prédit malade en retournant
le nombre 1. On ajoute, pour finir, dans la table ‘Pn‘ une colonne ‘T‘ qui indique la prédiction
à partir de notre fonction de prédiction. Ici, on a utilisé la distance euclidienne pour appliquer
la méthode des k plus proches voisins. Nous pouvons aussi chercher à utiliser une autre distance
comme la distance de Manhattan pour essayer d’avoir une prédiction plus fiable. On refait le
même procédé et on remplace dans notre fonction de prédiction la distance euclidienne par la
distance Manhattan. On ajoute dans la table ’Pn’, une colonne ’T2’ qui désigne la nouvelle
prédiction obtenue avec la distance de Manhattan. On obtient le tableau suivant :
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Figure 11 – Tableau de Prédiction

Nous pouvons aussi tester notre fonction de prédiction avec la distance euclidienne et celle de
Manhattan et un k plus petit comme k = 7. On applique alors le même procédé qu’avant et on
rajoute les deux nouvelles prédictions à la table ’Pn’. Il vient alors la nécessité de pouvoir valider
notre modèle de prédiction.

5. Evaluation de notre modèle

Après avoir tester la méthode des k plus proches voisins, nous devons vérifier si notre modèle
est performant.

5.1. Croisement des variables

Nous allons faire le croisement des variables afin de pouvoir comparer les données réelles pour
la variable ’M’ et à celle prédite par notre modèle. Nous pouvons nous représenter les valeurs
prédictives à l’aide d’une matrice de confusion. Elle possède une première colonne qui distingue
les cas des personnes malades et non malades et deux colonnes pour les prédictions.
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Figure 12 – Matrice de Confusion

Nous constatons que 44 personnes non-malades ont été correctement prédites comme négatives
et 41 personnes malades ont été correctement prédites comme positives. Cela signifie que 44
personnes sur 50 non-malades ont été correctement identifiées, ainsi que 41 patients sur 50
malades. Ces résultats indiquent une assez bonne performance du modèle.

Cependant, il est important de noter que 6 personnes non-malades ont été incorrectement
prédites comme malades. Bien que les traitements pour le diabète, tels que les modifications
alimentaires et les médicaments comme l’insuline, soient généralement sûrs lorsqu’ils sont admi-
nistrés correctement, ils peuvent néanmoins entraîner des effets secondaires et ne devraient pas
être utilisés inutilement.

En revanche, il est plus préoccupant de constater que 9 personnes malades ont été incorrec-
tement prédites comme négatives. Cette erreur pourrait être dangereuse dans le contexte de la
détection du diabète. En effet, des complications peuvent survenir si les malades ne sont pas trai-
tés, avec des symptômes tels que la perte de poids, une vision trouble, et d’autres complications
graves. Il serait ainsi souhaitable de réduire le nombre de non-malades incorrectement prédits
comme malades et le nombre de malades incorrectement prédits comme négatifs pour éviter ces
risques et garantir que les patients reçoivent les soins appropriés.

5.2. Mesure de fiabilité des prédictions

Dans cette partie, nous allons évaluer la fiabilité de notre modèle. Nous allons considérer les
événements suivants :

- M : la personne est malade,
- T : son test est positif.
Nous noterons respectivement M̄ l’événement "la personne n’est pas malade" et T̄ l’événement

"le test est négatif".
Pour mesurer la pertinence du classement, nous avons besoin des élements suivants régroupés

dans une Matrice de confusion :
— vrai positif : MT (malade avec un test positif), i.e. M = 1 et T = 1
— vrai négatif : M̄T̄ (sain avec un test négatif) i.e. M = 0 et T = 0
— faux positif : M̄T (sain avec un test positif) i.e. M = 0 et T = 1
— faux négatif : MT̄ (malade avec un test négatif) i.e. M = 1 et T = 0

5.3. Les Métriques

5.3.1. Introduction aux métriques

Nous allons également utiliser des métriques qui sont des variables quantitatives qui caracté-
risent des valeurs numériques et qui sont couramment utilisées pour évaluer la performance d’un
modèle en apprentissage automatique. Voici les métriques que nous allons utiliser, accompagnées
de leur formule et leur signification :
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— Accuracy :
MT + M̄T̄

MT + M̄T̄ + M̄T + MT̄

— Précision :
MT

MT + M̄T

— Sensibilité :
MT

MT + MT̄

— f1-score :

2
precision × recall
precision + recall

— Spécificité :
M̄T̄

M̄T̄ + M̄T

Ces formules sont extraites de [5]. L’Accuracy nous permet de connaître la proportion de bonnes
prédictions par rapport à toutes les prédictions. L’opération est simplement : Nombre de bonnes prédictions

Nombre total de prédictions
La précision correspond au nombre de malade correctement prédit sur le nombre total de
personnes prédits malades. Il permet de mesurer le coût des faux positifs, c’est-à-dire d’es-
timer le nombre d’individus détectés par erreur. La sensibilité (aussi appelée Recall) corres-
pond à la probabilité d’être positif si on est malade. Elle mesure la proportion des prédic-
tions positives correctement identifiées (qui étaient réellement positives). Ce calcul permet d’es-
timer combien de vrais positifs nous avons réussi à déterminer et ceux qu’on n’est pas par-
venu à détecter. De plus, on souhaite avoir un Recall (Rappel) = 1 où le Recall représente

le nombre de positifs bien prédit (Vrai Positif)
l′ensembledespositifs(V raiP ositif+F auxNégatif) et permet de savoir le pourcentage de positifs bien
prédit par notre modèle. Le f1-score combine la précision et le rappel. Il est plus intéressant que
la précision car le nombre de vrais négatifs n’est ici pas pris en compte. Dans le cas de don-
nées déséquilibrées, nous avons une majorité de vrais négatifs qui faussent complètement notre
perception de la performance de l’algorithme. La spécificité représente la probabilité d’avoir un
test négatif sachant qu’on n’est pas malade. La spécificité mesure, à l’inverse de la sensibilité, la
proportion d’éléments négatifs correctement identifiés.

Nous pouvons chercher à les calculer pour estimer la précision de notre modèle.

5.3.2. Calcul des métriques

Maintenant que nous avons les valeurs de MT, M̄T̄ , M̄T et MT̄ , nous pouvons calculer les
métriques énoncés précédemment pour pouvoir déterminer la fiabilité de notre modèle de pré-
dictions. Après avoir fait le calcul de l’accuracy, la précision, la sensibilité et la spécificité, nous
allons analyser les résultats.

Tout d’abord, nous avons calculer l’accuracy de notre modèle en utilisant la formule mentionnée
précédemment. Le résultat obtenu était de 0.85, ce qui indique que 85 % des prédictions étaient
correctes.

Ensuite, nous calculons la précision. Nous avons obtenu un résultat de 0.8723404255319149 ,
ce qui signifie que 8723404255319149 % des cas positifs prédits étaient réellement positifs. Nous
avons mesuré la sensibilité de notre modèle, aussi connue sous le nom de Recall, en utilisant la
formule spécifiée précédemment. Nous avons obtenu un résultat de 0.82, ce qui montre que 82 %
des vrais positifs ont été correctement identifiés parmi tous les vrais positifs. La sensibilité est
supérieure à 0.5. On peut considérer que le test est performant s’il est utilisé pour des individus
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testés positifs. Le f1-score a été calculé en combinant la précision et le rappel, comme indiqué dans
l’introduction. Nous avons obtenu un f1-score de 0.8453608247422681. Notre f1-score est plutôt
élevé. Ce qui montre une bonne performance globale du modèle. Enfin, nous avons évalué la
spécificité de notre modèle en utilisant la formule mentionnée précédemment. Nous avons obtenu
un résultat de 0.88, montrant que 88 % des vrais négatifs ont été correctement identifiés parmi
tous les vrais négatifs. La spécificité est proche de 1. Le test semble ainsi performant lorsqu’il est
utilisé sur des personnes négatifs. Notre modèle présente une performance satisfaisante dans la
prédiction du diabète avec des scores élevés dans toutes les métriques. Cependant, pour valider
notre modèle, nous devons nous assurer que la prédiction soit bonne quelque soit la proportion
de malade. Supposons maintenant que la **prévalence du diabète** (c’est-à-dire la probabilité
dêtre malade) P(M) dans la population est égale à 0.1 :

P(M) = 0.1, P(M̄) = 0.9

On utilise la méthode de prédiction obtenue par Machine learning décrite plus haut. Si une
personne voit son test positif, nous allons chercher quelle est la probabilité qu’elle soit malade.
Cette probabilité est appelée la **valeur prédictive du test**, i.e. la valeur de PT (M). D’après
ce qui précède, la sensibilité est égale à 0.82 dans notre cas. On a alors :

PM (T ) = 0.1 × 0.82, PM (T̄ ) = 0.1 × 0.18, PM̄ (T ) = 0.9 × 0.12, PM̄ (T̄ ) = 0.9 × 0.88.

On a :
P(T ) = PM (T ) + PM̄ (T ) = 0.1 × 0.82 + 0.9 × 0.12 = 0.19

.
La valeur prédictive du test est :

PT (M) =
P(T ∩ M)

P(T )
=

PM (T )

P(T )
=

0.1 × 0.82

0.19
= 0.43

.

5.4. Valeur prédictive en fonction de la prévalence

Quelle que soit la prévalence p = P(M) du diabète, la valeur prédictive du test est :

PT (M) =
P(T ∩ M)

P(T )
=

PM (T )

PM (T ) + PM̄ (T )
=

p × 0.82

p × 0.82 + (1 − p) × 0.12
=

0.82p

0.12 + 0.70p
.

On affiche le graphe de :
p 7→ PT (M)

qui correspond à la valeur prédictive du test en fonction de la prévalence de la maladie.
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Figure 13 – Valeur prédictive du test en fonction de la prévalence de la maladie

Nous pouvons voir que lorque la prévalence est élevée la valeur prédictive est assez élevée.
Cependant, on remarque que lorsque la prévalence est faible, la valeur prédictive est plutôt
faible. Cela signifie que quand la proportion de malades est basse, la qualité de notre prédiction
est faible. Lorsque la maladie est rare, il serait mieux que la valeur prédictive soit plus importante
afin de réduire les erreurs de pronostic et de minimiser le risque de manquer des cas de maladie.
Essayons de voir si avec la distance Manhattan, la valeur prédictive est plus élevée pour une
prévalence faible. On refait le même procédé avec la distance Manhattan. On crée une fonction
de prédiction que utilise la méthode des k plus proches voisins mais cette fois-ci en prennant
en compte la distance de Manhattan. Puis, on affiche notre matrice de confusion. On calcule la
sensibilité, la spécificité, la précision et le f1-score pour la distance Manhattan. En les rangeant
avec les valeurs pour la distante euclidienne on trouve :

Figure 14 – Métriques en fonction de la distance euclidienne ou de la distance de Manhattan

On observe que la sensibilité est la même pour les deux distances. La spécificité est plus
basse avec la distance de Manhattan qu’avec la distance euclidienne ( spécificitéManhattan=0.84
< spécificitéeuclidienne=0.88). Cela signifie que moins de vrais négatifs ont été correctement
identifiés parmi tous les vrais négatifs avec la distance de Manhattan. Le f1-score et la précision
sont légèrement plus faibles aussi pour cette distance. De plus, si on calcule l’accuracy de la
distance de Manhattan il est aussi légèrement plus faible.

Quelle que soit la prévalence p = P(M) du diabète, la valeur prédictive du test avec la distance
de Manhattan est :

PT (M) =
P(T ∩ M)

P(T )
=

PM (T )

PM (T ) + PM̄ (T )
=

p × 0.82

p × 0.82 + (1 − p) × 0.16
=

0.82p

0.16 + 0.66p
.
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Figure 15 – Valeur prédictive du test en fonction de la prévalence de la maladie

Nous pouvons voir que pour une prévalence faible, la valeur de prédiction est la même pour les
deux distances. Pour une valeur plus élevée, la valeur de la prédiction pour la distance Manhattan
est plus faible que celle pour la distance euclidienne. Utiliser la distance euclidienne semble être
le plus adéquat pour notre modèle si on choisit k = 11.

Nous pouvons aussi changer le nombre de k plus proches voisins et prendre k = 7. On refait le
même processus qu’avant en remplaçant 11 par 7 dans notre fonction de prédiction et en utilisant
la distance euclidienne.

On obtient les valeurs suivantes :

Figure 16 – Métriques en fonction de la distance euclidienne pour k=7 et k=11

Nous pouvons remarquer que pour k = 7, la sensibité est plutôt faible par rapport à la
sensibilité pour k = 11. Cela signifie que le taux des vrais positifs a été moins bien identifié parmi
tous les vrais positifs pour k = 7 que pour k = 11. Cependant, la spécifité et la précision sont
plus élevés dans le cas où on prend k = 7. Cela signifie que pour k = 7, le test est plus performant
sur des personnes négatifs (car la spécificité se rapproche plus de un) mais que la probabilité
d’être positif si on est malade est plus faible que pour k = 11. Si nous choisissons k = 7, nous
obtenons donc un meilleur résultat permettant de diminuer le coût des vrais négatifs et ainsi
diminuer le nombre de patients diagnostiqués négatifs alors qu’ils sont malades. Si on affiche la
courbe de la valeur prédictive du test en fonction de la prévalence de la maladie pour k = 7, nous
pouvons observer que la valeur prédictive est beaucoup plus élevée quand la prévalence est faible
et légèrement plus grande quand la prévalence est grande. Ce résultat montre qu’avec k = 7, la
probabilité d’être malade augmente si l’on est testé positif, améliorant ainsi la performance du
modèle.
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6. Conclusion

Tandis que de plus en plus de méthodes émergent en Machine learning, il est essentiel de tester
la fiabilité de ces modèles afin de les appliquer dans une variété de domaines tels que le dépistage
du diabète de type II. La construction d’un modèle efficace nécessite une analyse approfondie des
données et la compréhension des variables qui influencent le plus la variable cible, en utilisant par
exemple des matrices de corrélation ou des diagrammes de dispersion. Nous avons sélectionné trois
paramètres principaux : la grossesse, l’insuline et l’âge. Ces paramètres sont souvent influencés
par des facteurs de risque majeurs du diabète de type II, comme la sédentarité et l’alimentation.
En prenant en compte ces paramètres, nous avons pu améliorer la précision de nos prédictions.

Parmi les nombreuses méthodes disponibles, celle des k plus proches voisins se distingue par sa
précision et sa facilité d’application. Dans notre étude, nous avons utilisé la méthode des k plus
proches voisins avec k = 11 pour créer un modèle de prédiction basé sur le calcul de la distance
euclidienne. Pour évaluer la performance de notre modèle, nous avons calculé divers métriques
telles que l’accuracy et la précision. Nous avons également expérimenté avec la distance de
Manhattan pour améliorer la fiabilité de nos prédictions. Cependant, les résultats obtenus étaient
moins bons que ceux avec la distance euclidienne. Cette observation souligne que l’efficacité de
la méthode des k plus proches voisins dépend fortement du choix de la métrique de distance
utilisée.

Notre analyse a montré que la méthode des k plus proches voisins est particulièrement efficace
lorsque la prévalence de la maladie est élevée, mais présente des limites lorsque la proportion de
malades est faible. En ajustant le nombre de voisins k, nous avons pu améliorer la précision de
nos prédictions. Par exemple, nous avons constaté que la distance euclidienne avec k = 7 offrait
une meilleure performance prédictive comparée à k = 11 pour cette même distance.

Ces résultats démontrent l’importance de choisir judicieusement le paramètre k pour optimi-
ser les performances du modèle des k plus proches voisins. D’autres distances, comme celle de
Chebychev, pourraient encore modifier les résultats.

Ces résultats cumulés avec d’autres prédictions sont illustrés dans le graphique suivant, qui
montre la performance prédictive en fonction de la proportion de malades :

Figure 17 – Diagramme de dispersion

Par exemple, le graphique montre clairement que la distance de Manhattan avec k = 7 offrait
une meilleure performance que k = 11, tandis que la distance euclidienne était plus efficace pour
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k = 11. D’autres distances, comme celle de Chebychev, pourraient encore modifier les résultats.
C’est donc la distance de Manhattan avec k = 7 qui nous a donné le modèle de prédiction le plus
efficace.

Pour aller plus loin, il serait intéressant d’améliorer notre modèle en testant d’autres valeurs
de k, en explorant différentes mesures de distance, ou en considérant davantage de paramètres.
De plus, nous pourrions développer d’autres modèles de prédiction en utilisant des méthodes
alternatives telles que les forêts d’arbres décisionnels ou les réseaux de neurones, afin de comparer
leur efficacité et fiabilité dans le dépistage du diabète de type II.

Pour finir, je souhaite remercier Mme Faccanoni du laboratoire Imath pour son engagement,
son aide, le temps qu’elle m’a consacré et ses précieux conseils tout au long de la réalisation de
mon projet de recherche sur le Diabète de type II.
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A. Annexe

Nous présentons ici les codes utilisés pour réaliser ce rapport, accompagnés de courtes descrip-
tions de leur fonction.
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